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Abstract—Classical redundancy-based fault detection techniques, such as Duplication with Comparison (DWC), rely on replicating the
computation and comparing the replicas’ output at a bit-wise granularity. In many application environments these costs are prohibitive,
especially when applications are characterized by an intrinsic level of tolerance. This paper presents a novel fault-detection approach
for the specific context of image filtering. Peculiarity of the proposed approach is that it estimates the impact of the fault on the
processed output, in order to determine whether the image is usable or should be re-processed. To limit overheads, the proposed
solution exploits Approximate Computing (AC), allowing the definition of disciplined AC strategies to trade-off between accuracy and
costs. Core of our solution is the successful combination of Image Quality Assessment metrics and Machine Learning models to
assess the visual impact of the fault in a lightweight manner. Extensive experimental campaigns demonstrate the effectiveness of the
solution, achieving achieving a reduction in terms of execution time up to 44% with respect to the classical DWC, with a fault detection
precision ranging from 94.58% to 96.70%, and recall ranging from 88.2% to 97.8%, depending on the adopted level of approximation.
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1 INTRODUCTION

In several classes of systems, safety-/mission-critical ap-
plications and non-critical ones coexist. In the aerospace
domain, for example, satellites are equipped with several
mission-critical modules (e.g. Attitude Determination and
Control Subsystem), and other non-critical payload pro-
cessing applications [1]. While fault tolerance is impera-
tive for mission-critical components, less stringent and less
expensive solutions can be adopted to monitor payload
applications, and also to limit the processing overheads due
to faults that do not significantly impact the processed data.

For example, payload applications implementing image
processing functionalities, such as filters, are often charac-
terized by an intrinsic level of tolerance, as these deal with
noisy inputs and directly provide output images to hu-
mans or to other software performing probabilistic estimates
(e.g. classifiers). In this scenario, fault-detection schemes
based on Duplication with Comparison (DWC) may be
too stringent, since the Two-Rail Checker (TRC) would
discard the two processed images when these differ, even
in a single pixel. This scheme is therefore highly inefficient
since it discards slightly corrupted images, which would
be effectively used by the payload application or the user,
and activates unnecessary processing overheads. Recently, a
fault management scheme based on image usability has been
proposed [2] to mitigate these problems.

We present the Fault Impact Estimator (FIE), a novel
solution to detect faults in image processing applications.
The key idea behind the FIE is to adopt an Image Quality
Assessment (IQA) metric – such as Structural Similarity
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index (SSIM index) [3] – to quantitatively assess the visual
impact of a fault occurred while processing the input image.
The following example illustrates that an IQA well corre-
lates with the severity of the fault, and that in some cases
this can discriminate better than classical solutions whether
the output image would be usable or not.

Fig. 1 shows eight faulty outputs of a smoothing filter,
which attenuates the high frequencies of an image. The cap-
tion of each image reports i) the SSIM index value as a way
to quantitatively assess the visual difference between the
fault-free and the faulty output (no difference corresponding
to 1 and large differences approaching 0), ii) the percentage
of pixels where faulty and non-faulty outputs differ, that
is what DWC would report, and iii) the percentage of
pixels where the output of a simple payload application has
changed. First of all, Fig. 1a-d indicate that the SSIM index
is a meaningful metric to assess the impact of the fault, as it
correctly decreases when the fault becomes more impactful.
The second row reports a situation where the SSIM index
can assess the fault impact much better than the percentage
of altered pixels, thus it can determine whether the output
would be usable or not. In fact, faults in Fig. 1e-h do not
exhibit relevant differences, and all provide a low impact
in terms of application. Here, the SSIM index turns to be
a meaningful indicator of the visual impact of these faults,
while counting the number of altered pixels is useless to
determine whether the image is usable or not, as shown by
the large variability of the unchanged pixels percentages.

The proposed FIE is an innovative fault management
strategy, to be used at the application-level, which has been
specifically tailored for image processing applications. In
particular, the FIE has been designed to be lightweight,
requiring much less operations than the classical DWC and
other detection schemes based on replication. The FIE relies
on two major ingredients:
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(a) SSIM: 0.9103
Unchanged pixels: 90.8%
Unchanged class: 92.9%

(b) SSIM: 0.8290
Unchanged pixels: 59.1%
Unchanged class: 78.8%

(c) SSIM: 0.7017
Unchanged pixels: 38.7%
Unchanged class: 75.5%

(d) SSIM: 0.1714
Unchanged pixels: 18.3%
Unchanged class: 44.6%

(e) SSIM: 0.9910
Unchanged pixels: 84.6%
Unchanged class: 95.2%

(f) SSIM: 0.9514
Unchanged pixels: 74.4%
Unchanged class: 92.7%

(g) SSIM: 0.8673
Unchanged pixels: 53.0%
Unchanged class: 92.3%

(h) SSIM: 0.8436
Unchanged pixels: 33.6%
Unchanged class: 90.3%

Figure 1: Faulty outputs of the convolution of an input image I with a smoothing filter f . (a-d) An IQA metric (SSIM index)
provides a reliable estimate of the severity of the fault (e-h) and it can estimate the fault better than the pixel-wise difference
count.

• Approximate Computing (AC) that defines an approxi-
mated replica instead of replicating the nominal process-
ing to reduce the overheads.

• A regression model from the Machine Learning (ML)
literature that estimates the value of an IQA metric
measuring the fault impact.

On the one hand, replication based on AC dramatically
reduces the computational cost with respect to the classical
DWC scheme, where replication introduces more than 100%
overheads in terms of area/time. On the other hand, since
the nominal output and approximated replica are typically
different even in fault-free situations, replication based on
AC prevents to directly compute the IQA metric. To this pur-
pose, we provide a methodology for adopting a ML model
for regression that can estimate the IQA value by comparing
the nominal output and the approximated replica.

The proposed approach is very general and can be
adopted for many types of image processing operations,
IQA metrics, and ML models. Here we consider 2D convo-
lution as target application, as this describes any linear and
space invariant operation on images, which are ubiquitous
in image processing pipelines. Nonetheless, we show that
the FIE can be used even in the extreme case where the ap-
proximated replica coincides with the input (thus reducing
to zero the replication cost), indicating that this is a viable
approach for other classes of filters and processing blocks,
disregarding the type of approximation.

Moreover, the FIE features some very practical advan-
tages which can ease its development in real-world scenar-
ios. In particular, since the regression model is trained to

estimate an IQA metric, the whole system can be set-up in a
completely unsupervised manner, without requiring either
experts or oracles to annotate images as usable/unusable, as
in [2]. The FIE can be also easily adapted when the operating
conditions change (e.g. when the spatial resolution of the
imaging apparatus varies or the employed filter changes)
without requiring a re-design of the solution from scratch.

Experiments, performed on large datasets of aerial im-
ages, show that the FIE i) provides a flexible framework to
accurately estimate the fault impact at various levels of AC,
ii) can be used to determine whether the output of an image
processing pipeline is usable or not, and iii) favourably
compares against the classical DWC solution in terms of
execution times. This is particularly evident when we push
AC to the limit, and estimate the fault impact by comparing
the input image with the faulty output.

Our paper is organized as follows. Section 2 introduces
a few basic notions. The architecture of FIE is presented
in Section 3, while design choices and steps are discussed
in Section 4. Extensions over the basic FIE scheme are
presented in Section 5. Results of our extensive experimental
campaign are reported in Section 6. Section 7 overviews the
state-of-the-art solutions discussing limitations and the gaps
our solution aims at filling, and finally Section 8 concludes
the paper.

2 PRELIMINARIES

Here we present the preliminary information to contextual-
ize our proposal, setting the background and the baseline
alternatives.
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2.1 Fault Model and Management
Our goal is to design a fault management scheme that
supports reliability against Single Event Upsets (SEUs) in
computing systems running image processing applications.
SEUs may cause different effects; i) system crashes, ii) non-
terminations, and iii) Silent Data Corruptions (SDCs). While
faults belonging to the first two classes are easily detectable
since the system stops responding, faults causing SDCs
are the most critical ones because the system returns an
incorrect result with no additional evidence of the occurred
anomaly. Our aim is to provide protection for image pro-
cessing tasks against SDCs, to trigger a re-computation only
when the fault has a large impact and the output image
would not be considered usable. To this end, the FIE signif-
icantly reduces the average execution times with respect to
traditional approaches. We assume at most one fault may
occur during a single run of the application.

2.2 Considered Class of Filters
We focus on the large class of convolutional filters to present
our methodology. These represent the building blocks of
many image processing pipelines and algorithms, ranging
from noise suppression [4] and contrast enhancement –
which are typically performed as preprocessing steps – to
feature extraction, which underpins high-level visual recog-
nition algorithms [5]. Each of these filters is identified by a
2D matrix f , typically having much smaller size than the
input image I , which defines the convolution output

(I ~ f)(r, c) =
∑

i,j=−H,...,H

f(i, j)I(r − i, c− j) (1)

where ~ is the convolution symbol, (r, c) are the coordinates
in the filtered image and the filter size is L = 2H + 1,
assuming the filter to be square for the sake of simplicity.

We test our solution on both smoothing filters, widely
used in denoising and to suppress high-frequency compo-
nents, and Laplacian filters, used to improve contrast and
enhance edges and details.

2.3 Image Quality Assessment Metrics
The visual quality of a digital image is affected by a wide
variety of image distortions, thus Image Quality Assessment
has attracted a lot of interest [6] [7]. In particular, most of
these IQA metrics to be computed require a reference image
free of distortions. We propose to exploit IQA metrics to
assess the fault impact, where the distorted image corre-
sponds to the possibly faulty output of an image processing
pipeline. Our FIE can be used to predict any IQA metric
it is trained for, and in our experiments we consider three
different metrics: the Root Mean Square Error (RMSE), the
SSIM index [3] and the Gradient Similarity Metric (GSM)
[8]. While IQA metrics are typically meant for processing
natural images, we use them on filtered outputs. Thus,
the IQA has to be wisely selected to provide meaningful
assessment of the fault impact.

2.4 Baseline Solutions
We will compare the performance of the FIE with two al-
ready mentioned alternative schemes. The first one consists
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Figure 2: Our fault impact estimation strategy.

in processing the input image twice, to obtain an exact
replica and then counting the number of pixels where the
two outputs differ. Images where the number of different
pixels exceed a threshold are discarded. We refer to this
solution as flexible DWC, as this is a relaxation of the classical
DWC with TRC scheme. The second solution is denoted as
Dupl+IQA and computes an exact replica, followed by the
computation of an IQA metric to measure the fault impact.
The value of this metric is then used to determine if the
output is usable or not.

3 THE FAULT IMPACT ESTIMATOR

This section presents the FIE architecture, our major contri-
bution. We first describe how to use this module in a fault-
detection scheme, then we provide a formal description of
the fault impact estimation problem, and finally describe the
FIE in details.

3.1 Fault Detection Scheme

Fig. 2 illustrates the fault-detection scheme where the FIE
can be employed. As in DWC, each input image is processed
twice, but instead of two exact replicas, there are a nominal
processing and an approximate one. In the considered case
study, these are the convolution against a nominal and an
approximated filter, f and a, respectively. The two outputs
are then fed to the FIE module that assesses the visual im-
pact of the fault (if any) by estimating m̂, namely the value
of the selected IQA metric. The estimated fault impact is
then compared against a threshold Γ to determine whether
it is sufficiently large and the output should be discarded
as unusable. Our strategy is robust and general, since the
design and implementation of the FIE does not depend on
the IQA metric threshold Γ which can be set by the designer
for the specific application context, as discussed later in
Section 4. Moreover, the level of approximation in the FIE
can be tuned depending on the available resources, and the
FIE has to be designed and trained accordingly.

3.2 The Fault Impact Estimation Problem

To ease the description of the FIE, we first define the
problem of estimating the impact of a fault G corrupting an
image filtering module. Let us consider the 2D convolution
of an input image I ∈ RR×C against a filter f ∈ RL×L,
which we refer to as the nominal filter1. We indicate by I ~ f
the output of the convolution when no fault occurs, and by
G(I ~ f) the output corrupted by a fault G.

1. In color images the convolution is typically being applied on each
color plane separately, thus we consider 2D convolutions only.
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Figure 3: The proposed FIE module.

Our goal is to estimate the fault impact, which on the
convolution operation can be defined as:

m =M ((I ~ f),G(I ~ f)) , (2)

whereM is the IQA metric selected to quantitatively assess
the effects of the fault G with respect to the fault-free output
(I ~ f). As illustrated in Section 1 (Fig. 1), this IQA metric
can be used determine whether the output G(I~f) is usable
or not and the FIE module efficiently estimates the fault
impact as in Eq. (2) without the need of replicating (I ~ f).

3.3 FIE Scheme

Fig. 3 illustrates the scheme of the proposed FIE which
estimates the fault impact Eq. (2) from the nominal output
(I ~ f) and its approximated replica (I ~ a) by:

1) computing the pixel-wise difference D between the
nominal output and approximated replica;

2) extracting a feature vector x = E(D) ∈ Rd, that
provides a compact description of the values in D;

3) estimating the fault impact m̂ = R(x) by means of a
regression model R that takes as input a feature vector
x.

In formulas, the FIE computes an estimate m̂ of the fault
impact m in Eq. (2) as follows:

m̂ = R(E(G(I ~ f)− (I ~ a))), (3)

where E denotes the operator extracting the feature vector
from the nominal and approximated replica. In the follow-
ing we describe the modules corresponding to these op-
erations discussing the rationale underpinning our design
choices.

Computing Output Difference
We compute the difference image D ∈ RR×C as the pixel-
wise difference between the nominal output and approxi-
mated replica, namely:

D(r, c) = (I ~ f)(r, c)− (I ~ a)(r, c) (4)

Due to approximation, this is typically nonzero even in
fault-free conditions, as shown in Fig. 4.

The assumption underpinning FIE follows from this
observation: since convolution is a linear operation, D can
be seen as the convolution of I against the filter (f − a).
Then, when I belongs to a specific type of images (e.g.,
aerial images at a fixed resolution), for each pair of filters
f and a and in absence of faults, the values in D follow
an unknown but fixed distribution. In contrast, when the

fault has a severe impact, values in D follow a different
distribution.

Histograms in Fig. 5 illustrates this fundamental princi-
ple.

Feature Extraction
The distribution of values in D is difficult to handle, even
in the form of a histogram, as it is very high-dimensional.
For this reason, we extract a feature vector x ∈ Rd as a
compact and efficient-to-compute descriptor of the shape of
the distribution of D. Each component of x is defined as

xi =
#{(r, c), D(r, c) > qi}

R · C
, i = 1, . . . , d (5)

where # denotes the cardinality of a set and each compo-
nent xi of x ∈ Rd, contains the proportions of pixels in
D exceeding a fixed quantile qi. Thus, extracting a feature
vector corresponds to sampling the empirical cumulative
density function of D at pre-defined cut-points (quantiles)
Q = {qi}di=1, see Fig. 5b. Features are extracted by the
operator E(·), which returns a feature vector from an input
image I , namely x = Ef,a,Q(I). The operator E obviously
depends on the filters f, a, and on the quantiles Q.

Among other options for describing a distribution, we
select Eq. (5) because of its efficiency, since the feature vector
x can be computed from a single pass over D and at most
d comparisons against fixed quantiles Q. From the example
in Fig. 5a, we see that faults affect the distribution of the
values in D. In particular, we notice that faults having a
high-impact on the image, also have a high impact on this
distribution. This is even more evident when comparing the
empirical cumulative distributions shown in Fig. 5b, hence
when comparing the respective feature vectors.

The set of quantiles Q plays a central role in the FIE
and these quantiles are strongly dependent on the class of
images I being processed and on the pair of filters (f, a). In
Section 4, we describe how these can be obtained from a set
of images without faults, while in Section 5.1 we show that
adapting these quantiles provides a lot of flexibility to the
FIE in many practical circumstances.

A Machine Learning model for IQA Metric Estimation
The last step performed by the FIE is to estimate the fault
impact. A feature vector might reveal when a fault is heavily
corrupting the output image (see Fig. 5), but there is no
analytical expression leading from x to the fault impact
in Eq. (2). Therefore, we resort to an ML model and train
a regressor such as an Linear Model (LM) or an Neural
Network (NN) that takes as input x and returns an estimate
of the corresponding fault impact for a specific quality
metricM.

4 THE FIE DESIGN

A design methodology has been defined for both configur-
ing and training the FIE, and to support the proposed fault
detection strategy. Fig. 6 illustrates the design flow, which
depends on the filters f and a, on the dataset I containing
images from the considered application (e.g., aerial images),
and on the target processing platform with the adopted fault
model. This is composed of the following key steps.
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(a) Input image I (b) Nominal output
(I ~ f)

(c) Approximate
output (I ~ a)

(d) Detail of the
nominal output

(e) Detail of the
approximate output

Figure 4: Input image I and LoG nominal and approximate outputs, with details.
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Figure 5: Density and cumulative distributions of the values
in D at different level of fault impact (images in Fig. 1e and
Fig. 1c).
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Figure 6: The FIE design methodology.

Quantiles Computation
To extract features we define cut-points Q = {qi}di=1 where
the d quantile represents the empirical distribution of pixel-
wise differences in nominal-approximate pairs. Therefore,
we randomly select a few dozens of images from I , compute
for each one of these D as in (4), and accumulate all the
values in a histogram to compute the quantiles Q. Since we
expect faults to mainly affect the tails of this distribution,
we select symmetric quantiles that are denser close to 0%
and 100%, and sparser around 50%. We also insert six
fixed thresholds {wj} = {−250,−200,−150, 150, 200, 250}
to take into account large pixel differences that rarely occur
in fault-free conditions (thus would not be estimated from a
few images). We experienced that the latter can significantly
improve the accuracy of the FIE. In the following, unless
differently stated, the quantiles set is Q = {qi} ∪ {wj}.

Fault Corruption Analysis
We here adopt a strategy similar to the one proposed in [2],
[9] to generate a large set of corrupted images corresponding
to the adopted fault model (e.g. SEUs), target platform and
image processing application being executed. We combine
the accuracy of fault injection with the controllability of
error simulation in a two-step flow. First, architecture-level
fault injection experiments are performed on the real hard-
ware platform while executing the application to collect a
number of corrupted images. Then, the collected images are
analyzed to extract a number of visual corruption patterns
representative of the effects that hardware fault may induce
in the produced output images. Such visual corruption
patterns are finally integrated into a simulator to generate
the training set for the regression model, as described in the
following.

Training Set Generation
To train the regression model we generate a large training
set TR containing pairs of feature vectors x and correspond-
ing quality metric m:

TR(I, f, a,Q) = {(x,m)|x = Ef,a,Q(I), I ∈ I} (6)

where m is computed as in Eq. (2).
As described in Algorithm 1, for each image we first

compute the feature vectors in a fault-free situation (Lines 3–
4). Since in this case G(I ~ f) = (I ~ f), we associate with
these feature vectors the best quality metric value m = BM
(eg. RMSE=0, SSIM=1), as stated by Eq. (2). For TR to
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Algorithm 1 The training set generation procedure

Inputs:
I : data set of images
f, a: nominal and approximate filter
M, BM: quality metric and its maximum value.
E: list of visual corruption patterns

Outputs:
TR: training set containing pairs of feature vectors (x)

and the corresponding quality metric values (q).

Body:

1: TR ← {}
2: for all I ∈ I do
3: x← extract_features((I ~ f), (I ~ a))
4: TR ← (TR ∪ {(x, BM)})
5: for e← 1 toE do
6: G ← select_random_corruption_pattern(e)
7: G(I ~ f)← inject_corruption_pattern((I ~ f), G)
8: x← extract_features(G(I ~ f), (I ~ a))
9: m← computeM (G(I ~ f), (I ~ f))

10: TR ← (TR ∪ {(x,m)})

be representative of all the possible effects of faults, thus
allowing the FIE module to learn all of them, we perform
multiple executions of the application on every image in the
dataset, injecting one of the previously visually identified
corruption models (Lines 5–10). In each execution, we apply
a randomly selected visual corruption pattern G and we
corrupt the nominal output to obtain G(I ~ f). We corrupt
only (I ~ f) because a corruption in the nominal com-
putation may cause an erroneous output to be produced,
while corruptions affecting the approximate replica or the
FIE would not be propagated to the output (refer to Fig. 2).
Finally, we compute the corresponding fault impact m as in
Eq. (2) by comparing (I~f) and G(I~f) using the selected
IQA metricM.

Training the Regression Model
At the core of FIE we need to solve a regression problem
for estimating the fault impact m (2) from the feature vector
x. Since there is no analytical expression relating m and x,
we resort to ML models [10], and train a regression model
over the training set TR (Eq. (6)). In order to prepare FIE to
predict multiple IQA metrics simultaneously we can either
train multiple scalar regression models or, alternatively, a
single multivariate regression model. In our experiments we
consider both NNs and LMs, but since the proposed FIE is
a general methodology, other regression models can be in
principle adopted.

Setting the Detection Threshold
The Γ threshold is key to determine whether the processed
images are usable or not. When a reference downstream
application is available, it is possible to annotate these
images as usable / unusable and compute false positives
and false negatives. The former are unusable outputs not
detected by the FIE, the latter are usable images (slightly
or not corrupted) that are wrongly detected by the FIE. The
domain expert can then select a threshold that balances the

false positive rate and the false negative rate, taking into
account fault management overheads.

However, since FIE produces estimates of the fault im-
pact, it is also possible to set Γ by inspecting a set of heav-
ily and slightly corrupted images, preparing illustrations
similar to Fig. 1. Visual inspection enables a designer to
manually set Γ considering the impact of faults that they
would like to be reported, even without a specific payload
application as a reference.

Finally, it is always possible to set the threshold Γ to
control the amount of false positives, as these would trigger
costly fault-management procedures. In these cases, Γ is set
empirically by computing the fault impact estimates over a
set of fault-free outputs and choosing the value of Γ yielding
the desired percentage of false positives. Remarkably, the
two latter options do not require any form of annotation or
supervision over the training set TR.

5 FIE EXTENSIONS

The proposed FIE is a general methodology, which can
be customized to train a classifier determining whether
an output is usable or not, as long as training samples
are provided from an application [2] or a domain expert.
In these cases, the proposed efficient monitoring scheme
pairing a nominal and approximated replica would take
place, yielding the same feature vector which is associated
to a usable or unusable label, rather than the measure of the
fault impact (2). A binary classifier can then be trained to
directly determine whether the output is usable or not.

Nonetheless, we believe that the greatest advantage of
the FIE is it can be trained without supervision, which
makes it very practical to train and use, since the detection
scheme can be manually adjusted on the estimated severity
of the fault. In what follows we describe other relevant
extensions on basic scheme described in Section 3.

5.1 Adaptation
Every FIE module has been trained for a specific a specific
setting2 (I, f, a). Should a or f change (e.g. when a different
level of approximation is required or a different filter is em-
ployed) or should I not be representative of the images to
be processed during operations (e.g. when a different sensor
or different spatial resolutions are used), then the regression
model would need to be re-trained. This operation is not
very practical, because it requires to repeat the design pro-
cess from scratch on the new setting (I ′, f ′, a′), in particular
to generate a new training set TR′ = TR(I ′, f ′, a′, Q′).

FIE allows a very practical form of adaptation to use a
previously trained regression model (say on TR(I, f, a,Q))
in different settings by solely recomputing the quantiles
Q′ used in the features extraction. Ideally, in fault-free
conditions, images processed in the same setting (I, f, a)
are characterized by similar distributions of D, and conse-
quently will lead to similar feature vectors. When the type of
images in I or the filters (f, a) change, instead of training a
new model, we can adapt the feature extraction phase to the
new setting (I ′, f ′, a′) by simply computing the quantiles

2. This training also depends on the IQA metricM, but in this section
we assume the IQA metric to be fixed.
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Q′ from a few dozens of fault-free images. Then, a pre-
trained model R trained on the initial TR can be used on
the features Ef ′,a′,Q′(I ′).

Such a technique can be seen as a form of Transfer
Learning (TL) [11], which refers to methods and algorithms
for adapting a model configured for a specific task/environ-
ment to a different one. As experiments will show, this is an
effective strategy to avoid acquiring large datasets to train
the regression model from scratch, which might even be
impossible when the application scenario deviates / evolves
from the planned one.

5.2 No Approximation
In the extreme case where a is a 1×1 filter, the FIE provides
fault management capabilities without the need of any
replica, by estimating the IQA metric from the input image
I and the (potentially corrupted) G(I~f). This substantially
reduces the overall operations to feature extraction and
execution of the regressor. Results in Section 6 show that this
solution is not as powerful as when the approximate replica
is computed, but it is effective, and could be of interest
in particularly cost-aware conditions that only require a
limited degree of reliability. Moreover, this result indicates
that adopting FIE is viable even when the convolution I ~ f
is computed in Fourier domain, where it would be more
difficult to define an approximate replica.

5.3 Extensions Beyond Convolution
Our experiments show that the FIE achieves interesting
performance in 1× 1 approximation where the fault impact
is estimated comparing the output of a convolution block
with its very same input. This fact suggests that FIE can be
applied to any processing block, without having to define
an approximated replica, opening the FIE to a broad range
of applications, including monitoring blocks performing
iterative image processing operations (e.g., RL deconvolu-
tion [12] [13]). In these latter cases, the FIE can also be
used to compare the output the image produced at some
intermediate stages, as this can reduce the approximation
level and at the same time locate the iteration when the
fault has occurred. Of course, when monitoring filters or
other processing blocks that do not provide a natural image
as output, it is important to make sure that the selected IQA
can appropriately be used over the specific type of output.

6 EXPERIMENTAL RESULTS

Our experimental campaigns have a twofold mission; first,
we demonstrate that the FIE efficiently provides accurate
estimates of the fault impact, and then we show that the
estimated IQAs can be effectively used in fault manage-
ment strategies that assess whether the output image is
usable/unusable.

6.1 Experimental Setup
Computing platform
The target computing platform is composed of a single-
core processor running a single-threaded image processing
application. The proposed strategy is applied at the software

level and the three tasks (nominal processing, approximated
processing, and fault impact estimation) are executed se-
quentially, according to a time-triggered schedule. In the
experiments we consider two different processor types for
embedded and mobile applications; ARM A7 and ARM
A15, having an in-order and out-of-order architecture, re-
spectively. An Odroid XU3 board is used to run the experi-
ments for timing performance evaluation; frequencies of the
two cores were set to 1.4GHz and 2.0GHz respectively. In the
future, we will also explore the same approach with differ-
ent platforms, such as GPUs, to see if further improvements
can be obtained.

Software Implementation of 2D-Convolution
The convolution has been implemented in C as a stand-
alone application reading images from a flash drive. Three
11 × 11 nominal filters have been considered, namely a
Gaussian smoothing filter G11 with σ = 5, a uniform
smoothing filter U11 and a Laplacian of Gaussian (LoG)
contrast enhancement filter L11 with σ = 1. We denote
the approximate filters by Gh, Uh and Lh, where h is the
filter size. Filter approximation is performed via filter size
reduction, which enables a flexible tuning of the level of
approximation, using different sizes to balance output pre-
cision and processing time. In particular, smoothing filters
can be approximated by taking the inner h × h section of
the nominal filter and rescaling this to sum to 1, while the
approximate LoG filters are generated as h × h filters with
the same σ parameter.

Design Methodology
The design methodology is implemented with two macro-
modules; a state-of-the-art fault injector for microproces-
sor systems, LLFI [14], and a set of Matlab scripts that
automate the rest of the flow in Fig. 6. We first ran a
fault injection campaign on 10, 000 images from the INRIA
dataset ( presented in Section 6.2) following the procedure
described in Section 4, then we implemented functions to
inject corruption patterns, thus simulating the effects of the
faults yielded by the fault injection, as in [2]. Matlab is
also used to generate the training set TR and to run the
experiments assessing the FIE performance.

IQA Metrics
We show the effectiveness and generality of the FIE in
estimating three IQA metrics featuring different properties.
The first one is RMSE, a classical error measure in statistics
and signal processing. The second, SSIM index [3] measures
the input similarity taking into consideration structural
information, luminance and contrast. Finally, we consider
GSM [8], which takes into consideration the gradient infor-
mation and focuses on distortions. While SSIM index and
GSM return a value between 0 and 1 (1 being the best),
RMSE returns a value in [0, 255] (0 being the best) which we
re-scale to the interval [0, 1].

Regression Models
In our experiments we test two regression models: a NN and
a linear model. There is a large freedom in the design of the
NN architecture and we use a feed-forward fully-connected
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neural network where we set the number and the size of the
hidden layers depending on the dimension d of the input
features. The first hidden layer has a maximum of 64 neu-
rons, but when d is small, the number of neurons becomes
the largest power of 2 smaller or equal to d. Each subsequent
hidden layer has half of the neurons of the previous layer.
The last hidden layer has 2 neurons while the output layer
has only 1 (the predicted fault impact). We conveniently
use a saturated linear function as activation function for the
last layer, yielding a regression network in the range [0, 1],
since all the IQA metrics have been accordingly rescaled
before training. The NN is then trained over the training
set TR in (6) via standard stochastic gradient descent [10].
All the results have been averaged over 5 different trained
networks that differ only for their random initialization of
weights.

We also use a linear model for regression, which is a
simpler model. To promote interpretability of the results
– which might be of interest in more critical applications
– we fit the parameters of this model by promoting spar-
sity through the Least Absolute Shrinkage and Selection
Operator (LASSO) [15]. The peculiarity of LASSO is that
it automatically performs feature selection by dropping the
coefficients associated to the less useful components, identi-
fied at training time. Since LASSO is deterministic, there is
no need to average the results over multiple runs.

6.2 Datasets

We considered two different sources of satellite images:
the first one [16] is a repository of images of US and
European cities acquired at a space resolution of 0.3m/px.
These images were cut into 500 × 500 grayscale images,
forming a dataset of 31,000 images, which we will refer
to as the INRIA dataset. The second source is Microsoft
Bing Maps [17], which provides an API to download aerial
images for a query location and resolution. To assess the
flexibility of the proposed approach, we generated three
additional datasets, BINGH ,BINGM and BINGL each
containing 14,400 500×500 grayscale images each, acquired
from different cities at various spatial resolution levels,
0.15m/px, 0.3m/px and 1.19m/px, respectively. Faulty images
in both INRIA and Bing datasets have been generated using
Matlab functions reproducing the visual corruption patterns
that we previously identified. We split these datasets in a
training set and a test set.

We also assess the FIE performance on faulty outputs
generated using LLFI [14]. We randomly select 5 input
images from the INRIA dataset and we repeatedly filtered
them injecting single faults to generate about 5000 outputs
affected by the SDCs. We compute the fault impact as in Eq.
(2) using a fault-free output and use this value to compute
prediction error. We refer to this third dataset as the LLFI
dataset.

6.3 Figures of Merit

Let I = {Ik} be a set of images, let mk be the impact of
the fault on image Ik computed as in Eq. (2), and let m̂k be
its estimate provided by the FIE as in Eq. (3) for a selected

IQA metricM. To assess the accuracy of FIE estimates, we
compute the following Mean Absolute Error (MAE):

MAE =
1

#I

#I∑
k=1

|mk − m̂k|. (7)

We also assess the performance of the fault-detection
scheme in Fig. 2, by setting a threshold Γ and considering
an output G(I ~ f) unusable when mk < Γ, and usable oth-
erwise. We detect as unusable each input yielding m̂k < Γ,
and we refer to a positive (negative) detection when the
output is unusable (usable). The number of True Positives
(TP), False Positives (FP) and False Negatives (FN) for a
fixed value Γ are:

TP(Γ) = #{Ik ∈ I|mk < Γ ∧ m̂k < Γ},
FP(Γ) = #{Ik ∈ I|mk ≥ Γ ∧ m̂k < Γ},
FN (Γ) = #{Ik ∈ I|mk < Γ ∧ Γ ≤ m̂k < 1},

which are used to compute the following figures of merit:
• the FIE precision, i.e. the percentage of unusable images

over all the detections:

Precision(Γ) =
TP(Γ)

TP(Γ) + FP(Γ)
, (8)

• the FIE recall, i.e. the percentage of detected unusable
images:

Recall(Γ) =
TP(Γ)

TP(Γ) + FN (Γ)
(9)

To measure the cost reduction of FIE with respect to DWC
solutions, we compute the overall execution time of each
hardened solution and the fault management overhead, i.e.
the percentage of time required for fault detection w.r.t. the
time of nominal processing:

Overhead =
TReplica + TDecision

TNominal
. (10)

Each figure of merit is computed for all analyzed IQAs,
considering different approximation levels for the filters,
and different numbers of extracted quantiles. For the sake
of space, in-depth analysis results are reported for a selected
IQA metric and for the most promising combination of
approximation level and number of quantiles.

6.4 IQA to Support Image Usability
We first show that an IQA metric can be effectively used
to determine whether filtered images are usable or not. To
this purpose, we consider an application scenario where
we classify pixels in aerial images as "Natural" or "Man-
made" (buildings, roads, parking lots, etc...), by means of
a feed-forward NN made of 4 layers. This NN maps a
filtered image I ~ f to a binary mask B(I ~ f) of the
same size where 0 (resp. 1) corresponds to pixels classified
as "Natural" (resp. "Man-made"). We count the number of
pixels where the classification outputs B(G(I ~ f)) and
B(I ~ f) differ and consider each faulty image G(I ~ f) as
"Usable" when their difference is less than 5% of the pixels
and "Unusable" otherwise. We then use these labels to split
a set of faulty filtered images in two subsets of usable and
unusable outputs respectively. Fig. 7 shows that the SSIM
is able to discriminate between usable and unusable images
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Figure 7: Distributions of the SSIM-based fault impact val-
ues for the Usable and Unusable images. For visualization
purposes values lower than 0.9 are in the leftmost bin.

(blue and red lines, respectively) and that the proposed FIE
(dashed lines) closely approximate the fault impact that can
be computed by exact replication (solid lines).

6.5 Fault Impact Estimation Analysis

We further assess the accuracy of the FIE by measuring
the MAE on the metric estimation (7) and show that the
FIE can provide accurate estimates of the IQA metrics.
Thus, FIE can replace the computation of fault impact as in
Eq. (2) via exact replication. Fig. 8 shows the results of the
SSIM index estimation and the fault management overhead
in the (INRIA, G11, Gh) setting, for all the combinations
of approximation level h and number of quantiles d. As
expected, when decreasing the approximated filter size, the
MAE increases (solid lines), while the overhead decreases
(dashed lines). We select d = 38 quantiles as a good trade-
off in terms of accuracy and computational costs, and use
this configuration for the analysis in Tab. 1 and Tab. 2 where
we test different approximation levels.

Tab. 1 presents the MAE values of the estimation of
the considered IQA metrics when using both an NN and
a linear model fit using LASSO. Results show that FIE can
reliably estimate the metric values with nearly negligible
errors on the set of fault-free images. This is very important
to control false positives in fault detection schemes. On cor-
rupted images, the FIE behaves as expected, only marginally
decreasing its accuracy. MAE values indicate that NNs
always outperform linear models, which are indeed simpler
models. The feature selection capability of LASSO indicates
that the most important quantiles for estimating the fault
impact (corresponding to nonzero coefficients in the solu-
tion) are those associated to the center and the tails of the
distribution. Fixed quantiles {wi} are not primarily relevant,
but we experienced these are very important to handle a
few corruption patterns. Due to space limitation, we do not
provide further analysis on the intepretability, and in the
next sections we consider only NNs as regression models.
It is worth mentioning that we trained and tested FIE
also on Laplacian filters presented in Section 6.1 achieving
similar results as the Gaussian and the Uniform filters (see
Section 6.7). This shows that the proposed methodology
successfully applies also to non-smoothing filters.

Tab. 2 reports both the execution times and computation
overhead on the target platforms of the FIE at various
approximation levels as well as those of the baseline al-
ternatives presented in Section 2.4, i.e., the flexible DWC
and the Dupl+IQA, which computes the IQA metric after
replication. For the sake of comparison, we also report
the execution times of the nominal processing. For a more
detailed analysis, we report in Tab. 3 the execution times
of the all the software modules considered in the various
versions of the filter and checkers. These values confirm
that approximating the filter replica offers a considerable
time saving. Moreover, the execution times of GSM and
SSIM index are not affordable, while the execution time of
the FIE checker, even if longer than the ones of the DWC
and RMSE checker, is well compensated by the savings of
adopting an approximated replica. All in all, FIE attains the
lowest computational overhead among the considered solu-
tions; in particular, it improves the execution time up 44%
w.r.t. the DWC baseline, still preserving accurate estimates.
It is worth noting that – compared to alternatives based
on DWC – the FIE can guarantee additional computational
savings by preventing the re-execution of the whole pipeline
on images deemed as usable.

As an additional remark, we comment that FIE solutions
are also rather efficient to train and configure. The prepara-
tion of a training set containing 14,400 images took about 1
hour on a standard workstation. NNs training time depends
on the network architecture and the number of quantiles: in
our setup, it spans from a few seconds to about 1 hour.
LASSO always took a few seconds. It is worth mentioning
that features do not need to be re-extracted when changing
the IQA metric or the number of adopted quantiles, hence
reducing the total time required to configure the FIE with
a different configuration. Exploring all FIE configurations
with respect to IQA metrics, approximation levels, number
of quantiles and regression models took less than 30 hours.

Finally, we emphasise the remarkable performance of
the FIE based on the 1x1 approximation, where we directly
compare input and output. This solution has minimal com-
putational overhead (as shown in Tab. 2), but still provides
accurate fault impact estimates.

6.6 Fault Detection Analysis
In this second experimental campaign we have exploited
the output of the FIE module to detect heavily corrupted
images (i.e. images such that m < Γ) to be discarded and
reprocessed. As discussed in Section 4, there are different
ways of setting the detection threshold Γ, either depending
on the minimum visual impact of faults to be detected, or
to yield an the expected false positive rate. In Tab. 4 we
pursue this latter option and demonstrate that, for all the
considered values of Γ, the detector achieves high precision
(ranging from 94.58% − 96.70%) and recall (ranging in
(88.2% − 97.8%) depending on the approximation levels.
This indicates that FIE turns to be very accurate when clas-
sifying images in usable/unusable. These results concern
the FIE based on the SSIM in two settings with d = 38:
(INRIA, G11, G5), where a 5 × 5 approximated filter is
used, and (INRIA, G11, G1), where no approximation is
employed. Both settings yield a good trade-off between the
estimation error and the computational cost.
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Table 1: MAE of the estimation of various IQA metrics in the setting (INRIA, G11, Gh) for h ∈ {1, 3, 5, 7, 9} and d = 38.

Approx
Using NN as regressor Using LASSO as regressor

MAE (fault-free images) MAE (corrupted images) MAE (fault-free images) MAE (corrupted images)
SSIM RMSE GSM SSIM RMSE GSM SSIM RMSE GSM SSIM RMSE GSM

(x10−2) (x10−2) (x10−2) (x10−2) (x10−2) (x10−2) (x10−2) (x10−2) (x10−2) (x10−2) (x10−2) (x10−2)
1x1 1.236 1.170 0.091 1.923 0.991 0.198 3.412 1.727 0.247 3.886 2.376 0.356
3x3 0.608 0.599 0.050 1.367 0.655 0.163 2.549 1.695 0.175 2.686 2.007 0.271
5x5 0.347 0.465 0.045 1.035 0.563 0.147 1.433 1.449 0.093 1.773 1.821 0.211
7x7 0.274 0.503 0.020 0.898 0.653 0.133 0.681 1.291 0.051 1.222 1.755 0.183
9x9 0.198 0.444 0.012 0.804 0.713 0.125 0.166 1.180 0.029 1.406 1.973 0.198
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Figure 8: MAE for the estimation of the SSIM index (solid
line) and computational overhead (dashed line) for different
number of quantiles and different approximation levels.

Table 2: Computational overhead of the FIE and of the
baseline alternatives.

Scenario Approx A7 core A15 core
Total Overhead Total Overhead
(ms) (ms)

Nominal filter - 158 - 58 -
Dupl+GSM - 1326 739% 523 801%
Dupl+SSIM - 1268 703% 410 607%
Dupl+RMSE - 320 103% 117 102%

Flexible DWC - 319 102% 117 102%
FIE 9x9 301 91% 110 90%
FIE 7x7 259 64% 100 72%
FIE 5x5 229 45% 89 53%
FIE 3x3 208 32% 78 34%
FIE 1x1 178 13% 68 17%

Table 3: Execution times of the various software modules.

Module Execution time (ms)
A7 core A15 core

Filter 1x1 0 0
Filter 3x3 30 10
Filter 5x5 51 21
Filter 7x7 81 32
Filter 9x9 123 42

Filter 11x11 158 58
FIE module 20 10

GSM 1010 407
SSIM 952 294
RMSE 4 1

Flexible DWC checker 3 1

On top of the very high classification performance, we
report the MAE as in Eq. (7) but averaged over all the
erroneous detections, namely FP and FN, and notice these
corresponds to very small errors. This is a very important
aspect, since these errors can be taken into account when
setting the threshold Γ based on the maximum fault impact
that can be accepted.

Tab. 4 indicates that FIE achieves similar precision and
recall values on the LLFI dataset even though the MAE is
larger than in the INRIA dataset. This small performance
drop is due to the fact that FIE was trained over different
visual corruption patterns, and confirms that the proposed
solution can be reliably employed also in unseen scenarios,
achieving good detection performance.

6.7 FIE Adaptation Analysis

Our last experimental campaign investigates the effective-
ness of the adaptation strategy described in Section 5.1 when
filters f, a change and when the spatial resolution of images
changes. To this purpose we consider three different FIE
solutions: i) the ideal one, where the FIE is entirely trained to
operate in the new setting characterized by the new filters
f ′, a′ or the new images I ′. ii) The adaptive FIE, which
is configured on an initial training set TR(I, f, a,Q) and,
to better operate in the target setting, adapts the set of
quantiles Q → Q′ and the feature extraction phase Ef ′,a′,Q′

accordingly. iii) The no adaptation solution, where FIE was
trained on the training set TR(I, f, a,Q) and is used as is in
the target settings. We restrict our analysis to 5×5 and 1×1
approximation.

Tab. 5 shows the estimation accuracy of the three solu-
tions when changing the filters (f, a)→ (f ′, a′) from Gaus-
sian G(·) to Uniform U(·) and vice-versa. We notice that,
most often, the estimation error without adaptation substan-
tially increases, while the proposed adaptation achieves as
good performance as in the ideal solution that was trained
using the new filters. When changing from G → U , adap-
tation provides substantial improvements on faulty images
and smaller improvements on fault-free images, where we
remark it is very important to provide accurate estimates
not to have large number of false alarms. When changing
U → G we observe that the no-adaptation solution is
surprisingly better than the ideal one in fault-free images,
and we explain this phenomenon as a consequence of a
tightening of the distribution of pixel-wise differences in D.
When this happens and the quantiles are not adjusted to the
new distribution, the components of the feature vector are
less spread, describing a less-corrupted output. This results
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Table 4: Performance of the FIE for the SSIM estimation, having set Γ to yield a fixed FPR. The setting are (INRIA, G11, G5)
(above) and (INRIA, G11, G1) (below) with d = 38.

Approximate filter size: 5x5

INRIA dataset LLFI dataset
% FP

Γ Precision Recall MAE (x10−2) Precision Recall MAE (x10−2)
(fault-free) Average Std Average Std

1.00 % 0.957 96.48 % 95.65 % 4.676 4.956 94.05 % 95.59 % 24.420 25.671
0.75 % 0.953 96.61 % 95.53 % 4.762 5.075 99.77 % 95.40 % 30.376 30.019
0.50 % 0.946 96.70 % 95.37 % 4.901 5.322 100.00 % 95.11 % 30.822 29.896
0.25 % 0.906 95.94 % 94.37 % 5.011 5.385 100.00 % 96.24 % 39.345 30.876
0.10 % 0.772 96.38 % 97.85 % 6.881 7.314 99.83 % 93.58 % 32.417 27.598

Approximate filter size: 1x1

INRIA dataset LLFI dataset
% FP

Γ Precision Recall MAE (x10−2) Precision Recall MAE (x10−2)
(fault-free) Average Std Average Std

1.00 % 0.871 94.58 % 88.26 % 10.778 9.959 99.92 % 85.70 % 33.364 17.540
0.75 % 0.837 95.43 % 91.49 % 13.687 10.875 100.00 % 85.69 % 34.428 17.247
0.50 % 0.733 94.81 % 94.34 % 13.948 12.887 99.61 % 85.42 % 35.117 17.640
0.25 % 0.639 95.49 % 95.24 % 12.734 14.218 97.89 % 88.66 % 34.101 21.978
0.10 % 0.528 96.58 % 96.46 % 10.838 14.637 98.51 % 87.44 % 31.138 24.069

in a lower prediction error, since the IQA value associated
to any faulty-free image is equal to BM. The advantages
of adaptation on faulty images are very apparent in Fig. 9,
where we plot the SSIM estimation MAEs of the Gaussian to
Uniform experiment for both the h = 1 and h = 5 settings
and for all the number of quantiles d considered in our
experiments.

Tab. 6 presents the estimation error in the scenario where
the spatial resolution of test images I ′ is different than
images I used for training. In particular, we train our FIE
on BINGM and explore both the cases where the spatial
resolution decreases (BINGM → BINGL) and increases
(BINGM → BINGH ). A change in the population of test
images, like that in spatial resolution, is perhaps more
interesting than the filter change as the latter could be
handled at design time. In contrast, changes in the image
population might not be foreseen at design time, or it would
not be possible to gather enough images for training in the
new settings. Thus, adaptation might be the only viable
option. Tab. 6 shows that when the resolution decreases,
the proposed adaptation grants a substantial performance
improvement. On the other hand, when moving to higher
spatial resolution, we observe the same tightening of the
distribution of pixel-wise differences in D, as in the pre-
vious experiment, leading to the same behavior of the no-
adapt solution. It is worth mentioning that also in this case
adaptation preserves the estimation accuracy when there the
change would result in a substantial performance drop.

7 RELATED WORK

Approximate Computing has been widely employed in the
past years to define lighter redundancy-based hardening
schemes at various abstraction levels: at logic level, Register-
Transfer Level (RTL) and system level, and we here review
the most relevant ones, from the ones working at the lowest
abstraction level to those at the highest one.

Various approaches (e.g. [18], [19], [20], [21]) defined
approximate Triple Modular Redundancy (TMR) schemes
at logic level. The basic scheme is defined for logic circuits
and applied to each single-bit output combinatorial function
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Figure 9: MAE of the SSIM index estimation in the
filter-change TL scenarios from (INRIA, G11, Gh) to
(INRIA, U11, Uh) for h ∈ {1, 5}.

with the aim of minimizing the trade-off between the overall
area and the error rate introduced by approximation. Vari-
ous automated synthesis approaches [18], [19] have been
proposed adopting this solution, whereas the scheme in [21]
also approximates the nominal replica by using a Boolean
factorization method. Finally [20], [22] target FPGA devices,
thus specifying also an approximated TMR that is aware of
the technological mapping.

In a similar direction, approximate Concurrent Error
Detection (CED) schemes [23] and voters [24] for combi-
natorial logic circuits have been investigated. Approximate
CED schemes are further enhanced in [25] to obtain two
concurrent error masking approaches for logic and timing
errors. Finally, approximated checker and voter architec-
tures for inexact DWC and TMR have been proposed in [24],
to optimize power consumption and circuit area and tolerate
both process and supply voltage variations.

Moving to RTL, it is possible to classify existing solutions
into two groups: approaches that exploit numeric precision
reduction and those that use an approximated replica of
the nominal block. The basic idea of the Reduced Precision
Redundancy (RPR) is to define replicated components that
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Table 5: FIE adaptation to filter-change (d = 38) for different IQA metrics. Networks NN trained on
TR(INRIA, G11, Gh, Q) are used for fault estimation in the settings (INRIA, U11, Uh) (above) and viceversa (below).

IQA
Approx

(INRIA, G11, Gh)→ (INRIA, U11, Uh) (INRIA, U11, Uh)→ (INRIA, G11, Gh)

metric MAE (faulty) MAE (fault-free) MAE (faulty) MAE (fault-free)
ideal no adapt adapt ideal no adapt adapt ideal no adapt adapt ideal no adapt adapt

SSIM 1x1 2.003 9.866 2.389 1.378 1.606 2.027 1.923 9.670 1.993 1.236 1.099 1.156
(×10−2) 5x5 1.111 9.559 1.167 0.448 1.123 0.302 1.035 9.164 1.219 0.347 0.158 0.719

RMSE 1x1 1.053 3.949 1.263 1.231 1.338 1.299 0.991 3.890 1.194 1.170 1.060 1.115
(×10−2) 5x5 0.618 3.689 0.714 0.551 0.859 0.459 0.563 3.558 0.806 0.465 0.359 0.713

GSM 1x1 0.211 0.705 0.226 0.114 0.118 0.139 0.198 0.701 0.227 0.091 0.093 0.094
(×10−2) 5x5 0.141 0.698 0.155 0.038 0.097 0.039 0.147 0.660 0.158 0.045 0.015 0.050

Table 6: FIE adaptation to dataset-change (d = 38) for different IQA metrics. Networks NN trained on
TR(BINGM , G11, Gh, Q) are used for fault estimation in the settings (BINGL, G11, Gh) (above) and (BINGH , G11, Gh)
(below).

IQA
Approx

(BINGM , G11, Gh)→ (BINGL, G11, Gh) (BINGM , G11, Gh)→ (BINGH , G11, Gh)

metric MAE (faulty) MAE (fault-free) MAE (faulty) MAE (fault-free)
ideal no adapt adapt ideal no adapt adapt ideal no adapt adapt ideal no adapt adapt

SSIM 1x1 1.389 9.250 3.180 0.443 13.626 0.555 1.140 1.195 1.975 0.594 0.306 0.877
(×10−2) 5x5 0.711 2.469 1.722 0.121 2.509 0.156 0.813 0.824 1.094 0.215 0.175 0.243

RMSE 1x1 0.591 3.452 1.463 0.529 5.362 0.856 0.507 0.556 1.171 0.517 0.464 0.772
(×10−2) 5x5 0.318 0.932 0.540 0.272 1.297 0.444 0.531 0.527 0.695 0.369 0.344 0.440

GSM 1x1 0.130 0.853 0.305 0.032 1.061 0.055 0.129 0.141 0.199 0.043 0.029 0.082
(×10−2) 5x5 0.098 0.298 0.194 0.015 0.254 0.024 0.112 0.119 0.146 0.020 0.015 0.024

elaborate only on a subset of the most significant bits
processed by the nominal system. The outcome is that it is
possible to confine errors in a subset of the least significant
bits of the scalar values in output, to be tuned according to
the desired precision. This idea is exploited in several ap-
proaches enhancing TMR [26], targeting FPGA devices [27]
or focusing on signal processing applications [28].

The works proposed by Shanbhag et alii [28], [29], [30]
fall into the second group, and deal with signal processing
applications. The proposed underlying strategy is called Al-
gorithmic Noise Tolerance (ANT) (refined in the subsequent
publications), and associates the nominal computation with
an estimator of the same functionality. During the opera-
tional phase of the system, if the difference between the pro-
cessed signal and the estimator one is above a set threshold
(the acceptable noise) a problem is detected. The goal of the
approach is to detect timing errors due to the reduction of
the threshold voltage (applied for power saving). In [29] the
strategy does not use replicas, but compares the input and
output of the filter taken into account, whereas in [28], RPR
is also introduced to extend the initial approach. Later on,
in [30], the same authors demonstrated the suitability of the
approach also for soft errors tolerance in the combinatorial
logic and they extended the basic ANT scheme to mimic
N-Modular Redundancy (NMR) to achieve fault tolerance.

All these approaches are based on the analysis of the
single processed data, being it the input of a logic circuit,
or single value of the input signal at a given moment.
More precisely, these methodologies are based on the idea
of determining whether a component of the information
being processed (a bit, a pixel or, more in general, a value)
is affected by an error by analysing the component itself.
In our approach, we move from the analysis of the single
value to the entire data, that is from the single pixel to
the entire image. As a result, even though the image has

erroneous pixels, the acceptability property applies to the
whole data rather than its components, based on the impact
of the fault. On the other hand, an interesting aspect of ANT
and [31] is the exploitation of the intrinsic error tolerance
of the target application to define the hardening scheme,
and in particular the estimated, reduced replica and the
checker. In this perspective, ANT is, to some extent, the
work that is more similar to our proposal, although not
directly applicable to our context.

At system level there is a single work exploiting ap-
proximation for fault tolerance, namely [32]. The paper pro-
poses a design approach that combines an application-level
hardening techniques based on NMR and the subsequent
mapping and scheduling of the applications’ tasks on the
available processing units. The peculiar aspect is the use of
approximation on replicated tasks to reduce their execution
time. Since the output of the replicated tasks are “similar”
but different (because of approximation), a classical majority
voting cannot be applied, however the authors do not
discuss how it can be designed.

A different class of approaches exploiting some usability
concepts in image processing, includes solutions that opti-
mize other figures of merit, such as energy saving (e.g., [31]),
low-power (e.g., [33]), and cope with the reduced quality of
the processed image, by proposing error tolerant solutions to
the inexactness introduced by the adopted strategies (e.g.,
aggressive voltage scaling in [31]). Although the same idea
of usability is somehow exploited, these approaches offer
and provide hints that cannot be used or compared against
in our scenario.

Finally, another work abandoning the correct/incorrect
paradigm to move towards the usable/unusable one is the
work presented in [2], where the classical DWC scheme is
modified to use a Convolutional Neural Network (CNN)
to determine whether an error corrupted the image (or
an intermediate result in case of an application pipeline)
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instead of the rigid TRC. Because no approximation is used,
two identical replicas of the processed image are compared
to determine whether they can be considered usable, and a
supervised learning approach is adopted to train the CNN.
The CNN overcomes the limitations of the SSIM index from
the performance point of view, however it requires the
definition of a tailored concept of usable/unusable and of
supervised learning, limitations that the proposed solution
avoids, offering a more flexible and considerably easier
design and training process.

8 CONCLUSIONS

We present the FIE, a new framework for performing fault
detection in a flexible and lightweight manner. The pecu-
liarity of the FIE is to quantitatively assess the visual impact
of the fault, by estimating an IQA metric that can reliably
distinguish faults that severely affect the output from small
distortions. This makes it the ideal module in detection
schemes that refer to the usability of the output rather than
its exactness, with an additional saving of computational
time and power during fault management. The FIE module
is trained in a completely unsupervised manner, and is very
flexible and easy to adapt to different settings. Moreover,
the FIE can be straightforwardly modified to directly assess
usability, as long as annotations are provided from an appli-
cation or domain expert. Our experiments demonstrate that
the FIE achieves a reduction in terms of execution times up
to 44% with respect to the classical DWC, yielding very high
precision and recall.

As future work, we will develop further our approach
to monitor more general applications, including iterative
filters and deep learning models. The major challenge is the
definition of sound fault assessment metrics in situations
where IQA metrics cannot be adopted. Another promising
direction to investigate is the design of detection schemes
combining multiple IQA metric estimates, as these can
be computed from the same feature vector. Furthermore,
considering the numerous aspects driving the design and
tuning of the FIE, characterized by different levels of accu-
racy and performance improvements, we envision a design
space exploration framework, to identify through multi-
objective optimization the different alternative solutions,
among which the expert can choose the most appropriate
one, according to his/her constraints and goals.
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