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ABSTRACT

We present Augmented Grad-CAM, a general framework to
provide a high-resolution visual explanation of CNN out-
puts. Our idea is to take advantage of image augmentation to
aggregate multiple low-resolution heat-maps – in our experi-
ments Grad-CAMs – computed from augmented copies of the
same input image. We generate the high-resolution heat-map
through super-resolution, and we formulate a general opti-
mization problem based on Total Variation regularization.
This problem is entirely solved on the GPU at inference time,
together with image augmentation. Augmented Grad-CAM
outperforms Grad-CAM in weakly supervised localization
on Imagenet dataset, and provides more detailed heat-maps.
Moreover, Augmented Grad-CAM turns to be particularly
useful in monitoring the production of silicon wafers, where
CNNs are employed to classify defective patterns on the
wafer surface to detect harmful faults in the production line.

Index Terms— Visual interpretation, Superresolution,
Class Activation Mapping, Image Augmentation

1. INTRODUCTION

Several works have recently addressed the problem of high-
lighting which pixels in the input image have mostly influ-
enced the output of a CNN [1, 2, 3, 4]. These interpretability
tools, of which Grad-CAM [2] is the most prominent exam-
ple, generate heat-maps that shade light on why a CNN made
a specific decision and are very useful to support a decision-
making process (e.g. in industrial monitoring). Meaningful
heat-maps have to be well localized around the object of
the queried category (class-discriminative) and should cap-
ture fine-grained details (high-resolution). Unfortunately,
heat-maps are computed from the activations at the last con-
volutional layer, which contains very informative features but
has a low spatial extent. As a matter of fact, bilinear/bicubic
interpolation is used to severely upsample (e.g. 32x) and
then superimpose a heat-map to the input image, resulting in
necessarily poor localization.

Our idea is to increase heat-maps resolution through im-
age augmentation. While image augmentation is widely used
for improving CNN training, and for increasing robustness of

(a) Grad-CAM. (b) Augmented Grad-CAM.

Fig. 1: Example of heat-maps of the mastiff class computed
using VGG16. Augmented Grad-CAM provides a better lo-
calized heat-map than the traditional Grad-CAM and bet-
ter captures fine-grained details like the dog’s legs and ears.
Moreover Augmented Grad-CAM does not highlight areas
outside the dog, as opposed to Grad-CAM.

predictions at test time [5], none of the existing visual ex-
planation tools [1, 2, 3, 4] leverages augmentation to per-
form super-resolution. Nevertheless, all the responses that
the network generates to the multiple augmented versions of
the same input image are very informative for reconstructing
an high-resolution heat-map. Here we show that, by mod-
eling the interplay between image augmentation and heat-
map computation, it is possible to exploit this information and
achieve better high-resolution heat-maps than interpolation.

Our contribution is Augmented Grad-CAM, a general
framework to perform heat-map super-resolution by tak-
ing advantage of the information shared in multiple low-
resolution heat-maps computed from the same input under
different – but known – transformations. In particular, we
model heat-maps computed by Grad-CAM as the result of
an unknown downsampling operator, which we invert to
recover a high-resolution heat-map, as in multiframe super-
resolution [6]. We formulate heat-map super-resolution as
an optimization problem where Anistropic Total Variation
regularization is used to preserve the edges in the recovered
high-resolution heat-map. Our framework is flexible and can
be applied to heat-maps computed form different visualiza-
tion tools, not necessarily Grad-CAM. Moreover, the whole



super-resolution procedure can be efficiently performed on
the GPU at inference time. Our TensorFlow implementation
of Augmented Grad-CAM has been publicly released1. Our
experiments demonstrate that Augmented Grad-CAM yields
more detailed heat-maps than its original counterpart Grad-
CAM (see for instance Figure 1), and that it outperforms
Grad-CAM in the primary test for quantitatively assessing
interpretability, namely the Imagenet weakly supervised lo-
calization challenge [7]. We also show that Augmented
Grad-CAM is particularly useful in wafer monitoring, a cru-
cial problem for semiconductor manufacturing where CNNs
are employed [8, 9] to classify spatial arrangements (patterns)
of defects detected on the surface of silicon wafer. This is a
very important problem since certain patterns might indicate
specific problems in the production machinery that have to
be promptly fixed. In this monitoring context, interpretability
techniques and high-resolution maps can help to figure out
ambiguous patterns and support the decision-making process
of an operator.

2. RELATED WORKS

Several tools have been recently proposed to provide a visual
explanation of CNN decisions and Class Activation Mapping
(CAM) [1] is one of the first solutions. CAM needs to mod-
ify a trained CNN by removing all the fully-connected layers
at the top and introducing a Global Average Pooling (GAP)
layer followed by a single fully connected layer. This sim-
plified architecture allows CAM to compute a heat-map for
each output class, by summing the activations of the last con-
volutional layer rescaled by the weights of the newly intro-
duced fully-connected layer associated to the selected class.
Modifying the network architecture results in a few draw-
backs: need for retraining and lower performance due to the
simple layer on top of the CNN. Grad-CAM [2] is a gener-
alization of CAM that does not require to change the CNN
architecture, thus can be also applied to networks not nec-
essarily designed for classification, but also for other tasks
like captioning or visual question answering. There are a
few recent extensions of Grad-CAM. Grad-CAM++ [3] com-
putes higher-order derivatives to increase localization accu-
racy of Grad-CAMs, in particular in presence of multiple oc-
currence of the same objects in the image. Smooth Grad-
CAM++ [4] adopts Smoothgrad [10] to smooth the gradients
computed during Grad-CAM++, and provide visually sharpen
heat-maps. Smoothgrad adopts multiple noisy versions of the
same input image, which can be seen as a simple form of
image augmentation. Except from noise addition in Smooth
Grad-CAM++, interpretability tools based on heat-maps ig-
nore augmentation, and none of the existing solutions address
heat-maps computation as a super-resolution problem.

1Our implementation is available at https://github.com/
diegocarrera89/AugmentedGradCAM

3. GRAD-CAM AND PROBLEM FORMULATION

Whilst our super-resolution framework can be used on any
heat-map, thus not necessarily Grad-CAM [2] or its exten-
sions, here we focus on Grad-CAM being the best known.
Grad-CAM computes a heat-map g ∈ Rn×m that highlights
which regions of the input image x ∈ RN×M have mostly
influenced the classifier score in favor of the class c (upper-
case letters indicate sizes that are larger than lowercase one,
i.e. N > n and M > m). Let yc denote the score of the class
c and ak ∈ Rn×m, k = 1, . . . ,K, the activation maps corre-
sponding to the k-th filter of the last convolutional layer. The
Grad-CAM for the class c is defined as a weighted average of
ak, k = 1, . . . ,K, followed by a ReLU activation:

gc = ReLU
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k
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k
)
, (1)
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age derivatives of yc with respect to each pixel (i, j) in the
activation ak:

αk
c =

1

nm

∑
i

∑
j

∂yc
∂ak(i, j)

. (2)

The ReLU in (1) indicates that only positive contributions are
relevant to compute the heat-map.

The heat-map gc has typically low-resolution and it is up-
sampled to the size of x via bilinear/bicubic interpolation.
This resizing allows to superimpose the Grad-CAM to the
input image and interpret network decisions, as in Figure 1.
Another option to increase the resolution of the Grad-CAM
is to select activations at previous convolutional layers of the
network, as these exhibit a higher spatial resolution. How-
ever, the high-level semantic features are mainly in the last
layer [2], and this option would yield heat-maps that are less
class-discriminative.

The problem we address here is to increase the resolution
of Grad-CAM in an input image. Our idea is to leverage im-
age augmentation, which is often employed to improve clas-
sification performance of a CNN.

4. AUGMENTED GRAD-CAM

To improve the resolution of heat-maps provided by Grad-
CAM we take advantage of image augmentation performed
at test time and, given an input image x and a class c 2, we
generate L augmented copies of x as

xl = Al(x), l = 1 . . . , L, (3)

where the augmentation operators Al : RN×M → RN×M in-
clude random rotations and translations of x.

2for sake of simplicity hereinafter we remove the subscript c, being often
the network prediction.



Fig. 2: Example of Augmented Grad-CAMS (top row), each
one generated from different augmented version of the same
image (bottom row). The Augmented Grad-CAMs contain
different information that can be exploited to achieve a more
detailed high-resolution heat-maps, see Figure 1.

Our intuition is that the set of Grad-CAMs {gl} computed
from augmented images {xl} is much more informative than
the Grad-CAM computed from the single input image x, as
can be observed in Figure 2. In fact, the trained CNN is
not perfectly invariant to roto-translations, and Grad-CAMs
computed from augmented versions of the same input image
do not correspond to roto-translations of the Grad-CAM of
the original image. Therefore, each augmented Grad-CAM
{gl} might bring useful information to a super-resolution
algorithm, resulting in superior high-resolution heat-maps.
Super-resolution allows us to exploit the whole semantic
information in the network coming from activations at the
last convolutional layer, and at the same time leverage in-
formation spread through multiple maps provided by image
augmentation.

The modeling assumption underlying Augmented Grad-
CAM is that each gl is obtained from downsampling an aug-
mented version of an unknown high-resolution heat-map h ∈
RN×M , which is the one we want to reconstruct:

gl ≈ D ◦ Al(h), (4)

where D : RN×M → Rn×m is the downsampling operator
and ◦ denotes the function composition. Moreover, since
the downsampling and the augmentation operators, at least in
case of augmentation made of roto-translations, are linear, (4)
can be written as gl ≈ DAlh, where D and Al are the matrix
representing transformations D and Al respectively.

We reconstruct h by solving this optimization problem:

min
h

1

2

L∑
l=1

‖DAlh− gl‖22 + λTV`1(h) +
µ

2
‖h‖22, (5)

where TV`1 denotes the anisotropic total-variation regular-
ization, defined as the sum of the absolute values of the hori-
zontal and vertical derivative of h, i.e.

TV`1(h) =
∑
i,j

|∂xh(i, j)|+ |∂yh(i, j)|.

Table 1: Top-1 and Top-1 localization errors achieved over
the ILSVRC 2015 validation set.

Single Avg Max Augmented
Top-1 Error 0.5908 0.5964 0.5817 0.5725
Top-5 Error 0.4974 0.5025 0.4859 0.4747

This regularization is typically employed in super-resolution
algorithms [6] as it preserves the edges in the reconstructed
image. We also adopt an `2 penalization term, as we expe-
rience it improves the stability of the minimization problem.
Problem (5) is convex and nonsmooth due to the TV`1 term.
We solve (5) by means of subgradient descent, where we set
the step size using the Adam optmizer [11] and use a Tensor-
Flow implementation to exploit GPU computing parallelism.

5. EXPERIMENTS

Our experiments are meant to demonstrate that: i) Augmented
Grad-CAM improves the quality of heat-maps used for visual
explanation of CNNs and ii) simple aggregation strategies are
not sufficient to produce good high-resolution heat-maps. We
consider the following solutions:
Single Grad-CAM: the Grad-CAM [2] computed from the
input image, which does not involve any augmentation.
Max / Avg Grad-CAM: two baseline aggregation solutions
where {gl} are first upsampled by bilinear interpolation, and
then registered to the original image x by the inverse opera-
tor A−1

l . Finally, the registered heat-maps are aggregated by
pixel-wise maximum / average.
Augmented Grad-CAM: the proposed solution, where
{gl} are aggregated by solving (5). The parameters λ and
µ in (5) are manually selected to achieve good quality high-
resolution heat-maps in a small subset of 5 images.
We perform two experiments: at first we consider weakly su-
pervised localization to quantitatively assess interpretability
performance. Then, we show that our solution yields high-
resolution heat-maps for wafer monitoring that are qualitative
better than the alternatives.

In all our experiments, we generate L = 99 augmented
input images xl plus the original image to compute 100 low-
resolution Grad-CAMs {gl}. The augmentation consists in
roto-translating the input images, where the choice of the
roto-translation parameters depends on the considered appli-
cation, and is described in what follows.

5.1. Weakly Supervised Localization

The goal of weakly supervised localization is estimate a
bounding box of the principal object of the image on top
of its label. The term “weakly” refers to the fact that no
bounding box annotations are provided for training. We ad-
dress this problem following the approach in [2]: given the
predicted class, we compute a heat-map h using each of the
considered methods. Each bounding box is computed by



(a) Single (b) Max (c) Augmented (d) Single (e) Max (f) Augmented

(g) Single (h) Max (i) Augmented (j) Single (k) Max (l) Augmented

Fig. 3: Heat-maps generated by the considered methods superimposed to WDMs reporting the following patterns: two scratches
(a,b,c), a ring (d,e,f), a scratch and a fingerprint simultaneously (g,h,i and j,k,i respectively). Heat-maps in the second row are
computed for the same WDM considering the scratch class (g,h,i) and the fingerprint class (j,k,i).

thresholding the heat-map h at 15% of its maximum value,
and by drawing a bounding box around the largest connected
component of the resulting binary mask. As a backbone for
the classification network we adopt a pre-trained VGG-16 [5]
as in [2]. The augmentation is performed using rotations
of angles uniformly sampled in [−30◦, 30◦] followed by a
translations in the range [−10, 10] pixel along each direction.
Localization performance are computed over the validation
set of the ILSVRC 2015 localization challenge [12] using the
evaluation tool provided. As for classification, we consider
both the top-1 and top-5 localization errors, reported in Ta-
ble 1. The proposed method outperforms the others showing
superior localization performance both in terms of top-1 and
top-5 errors. Although we were not able to reproduce the lo-
calization performance provided in [2], we employ the same
implementation (publicly available in the released package)
of the Grad-CAM in all the approaches.

5.2. Augmented Grad-CAMs for Wafer Monitoring

Here we show that Augmented Grad-CAM is an effective in-
terpretability tool for monitoring silicon wafer production. In
particular, we analyze Wafer Defect Maps (WDMs), namely
the output of inspection machines that report the location of
each defect detected on the wafer surface, and train a CNN
made of 6 convolutional layers followed by two fully con-
nected layers to classify defect patterns in 13 classes. We
generate the input image by binning the WDM, obtaining a
grayscale image of 128 × 128 pixels, while the resolution
of the computed Grad-CAM is 12 × 12. The network is
trained over the ST dataset described in [8] which comprises
29,746 WDMs acquired in the production site of STMicro-
electronics of Agrate Brianza, Italy. In our experiments we
generate L = 99 augmented copies of the original input im-
age x by random rotations of angles uniformly sampled in
[−360◦, 360◦].

Figure 3 depicts some interesting cases we analyzed. Sin-
gle Grad-CAM fails in identifying multiple occurrences of
the same class within the same WDM (e.g. the two scratches
in 3.a), while Max and Augmented Grad-CAMs provide more
class-discriminative responses (3.b and 3.c). As expected,
our super-resolution provides better localized results than
Max aggregation. We also observe that Single Grad-CAM is
poorly localized (3.d), as few regions belonging to the ring
pattern are highlighted, whereas Max and Augmented Grad-
CAMs cover larger areas of the pattern. The second row of
Figure 3 reports a WDM containing two different patterns
(scratch and fingerprint). For the scratch class, Augmented
Grad-CAM (3.i) reports the highest activation values for re-
gions covering the target pattern, while Single Grad-CAM
(3.g) mostly highlights regions corresponding to the finger-
print class. Similarly, in the Augmented Grad-CAM for the
fingerprint class the regions corresponding to the scratch
class are less active than in other methods (3.l).

6. CONCLUSIONS

We have presented Augmented Grad-CAM, an efficient tool
for providing high-resolution heat-maps for explaining CNN
outputs. Grad-CAM performs super-resolution from multiple
heat-maps obtained from augmentation and this allows to im-
prove the localization performance w.r.t. Grad-CAM of a sub-
stantial margin, and to achieve better visual interpretation of
WDM in the considered industrial monitoring problem. De-
spite our experiments have been focused on Grad-CAM only,
the super-resolution framework underlying Augmented Grad-
CAM is general and can account for other techniques to com-
pute low-resolution heat-maps. Ongoing works concern ex-
tending Augmented Grad-CAM to sub-manifold sparse con-
volutional networks [13], which would require much higher
upsampling factors [8] and raise alignment issues due to the
sparse activations over network layers.
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