
Inferring Functional Properties
from Fluid Dynamics Features

Andrea Schillaci, Maurizio Quadrio
Dipartimento di Scienze e
Tecnologie Aerospaziali
Politecnico di Milano

Milano, Italy
Email: andrea.schillaci@polimi.it

maurizio.quadrio@polimi.it

Carlotta Pipolo
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Abstract—In a wide range of applied problems involving fluid
flows, Computational Fluid Dynamics (CFD) provides detailed
quantitative information on the flow field, at variable level of
fidelity and computational cost. However, CFD alone cannot pre-
dict high-level functional properties that are not easily obtained
from the equations of fluid motion. In this work, we present a
data-driven framework to extract these additional information,
such as medical diagnostic output, from CFD solutions. This
is a challenging task because of the huge data dimensionality of
CFD, and the limited training data that can be typically gathered
due to the large computational cost of CFD. By pursuing a
traditional Machine Learning (ML) pipeline of pre-processing,
feature extraction, and model training, we demonstrate that
informative features can be extracted from CFD data. Two
experiments, pertaining to different application domains, support
our claim that the convective properties implicit into a CFD
solution can be leveraged to retrieve functional information that
does not admit an analytical definition. Despite the preliminary
nature of our study and the relative simplicity of both the
geometrical and CFD models, for the first time we demonstrate
that the combination of ML and CFD can diagnose a complex
system in terms of high-level functional properties.

Index Terms—Computational Fluid Dynamics, Data-driven
models, Inference, Nasal Breathing Difficulties

I. INTRODUCTION

Computational Fluid Dynamics (CFD), i.e., solving the
differential equations of the fluid motion with the aid of a
digital computer, plays a crucial role in a large number of
applications, ranging from industry to health. Nowadays CFD
is relied upon as much as (sometimes more than) the traditional
wind-tunnel testing, and its accuracy (determined by the
amount of discretization as well as by the models employed)
can be increased at will, provided the computational cost
remains affordable.

Quite often, however, the final goal of the CFD analysis,
i.e. the diagnosis of the system, remains elusive: the ultimate
information that is relevant for the end-user might not be
directly provided by the CFD itself, or might not be expressed
as a function of the CFD solution. In particular, the complex
interplay between fluid dynamics and the geometry of interest,
prevents us to formulate (and solve) the design of the best ge-
ometry as an optimization problem involving CFD outcomes.

Fig. 1. CFD solution of the airflow in the upper human airways during an
inspiration: streamlines are colored with the magnitude of the local velocity
in m/s.

Illustrative cases exist in the medical domain [1], and we
consider the diagnosis of Nasal Breathing Difficulties (NBD)
as a running example. NBD represent an extremely widespread
pathological condition of the human upper airways and often
requires corrective surgery: a precise diagnosis is troublesome
and the failure rate of surgery is up to 50% [2], [3]. A detailed
CFD solution for the nasal airflow for a specific patient (see
Fig. 1), is certainly important and useful to diagnose NBD,
but per se it does not help the surgeon to make a rational
decision as to whether and how to perform a specific surgical
manoeuvre. Several other similar examples could be made,
ranging from flood control in rivers, to aerodynamics in the
transport sector, to a large number of industrial problems such
as probe placement in wind tunnels. In fluid dynamics, the
strong non-linearity of the governing equations makes a small
geometrical detail potentially result in significant flow changes
far away (for example a small imperfection on the wing surface
can compromise the aerodynamic performance of the entire
aircraft). On the other hand, a large geometrical modification
sometimes leads to little or no consequences (for example a
large deviation of the nasal septum may be compatible with



normal breathing). The diagnosis of these complex systems
can benefit from CFD outcomes, as for instance to determine
whether and where to perform surgery, where to best prevent
coastline erosion, where to optimally place a probe. The
answers to these questions are indeed contained within and
dictated by the CFD-computed flow field, but an analytical link
between the flow field itself and the required information is not
available. We believe that pattern recognition techniques [4]
and data-driven models in particular [5] have a large potential
in this relatively unexplored class of problems.

Using data-driven models on CFD data is particularly chal-
lenging for several reasons. First and foremost, there is a
dimensionality problem: CFD invariably leads to large data
sets, which are costly to produce and difficult to analyse.
Such a huge amount of data is not amenable to be directly
handled by Machine Learning (ML) models. To set the stage,
we mention that a simple two-dimensional CFD simulation of
the time-averaged flow field around an airfoil – i.e. a basic con-
figuration of aeronautical interest addressed with the simplest
of the CFD approaches – requires the discretization of space
into no less than 106 cells. Since several flow variables (two
velocity components, pressure, auxiliary turbulence variables)
are computed for each cell, a single CFD simulation easily
produces hundreds of Megabytes of data. This figure grows
by orders of magnitude when three-dimensional configurations
are considered, and/or higher-fidelity simulations are used.
Furthermore, it is very difficult to gather large training sets of
annotated simulations, due to their large computational cost
and the difficulty of gathering a representative set of experts’
decisions in domains such as medicine.

Here we propose a ML methodology to diagnose a complex
system whose physics is governed by fluid dynamics. The
class of problems we consider relies on the ability of the flow
field to convey information, especially of the geometrical type,
from an a priori unknown location to a predetermined sensing
location. Crucially, the success of this endeavour hinges upon
the convective properties of the flow. In particular, we aim at
using data-driven models to arrive at important information
that cannot be computed via the simulation itself, such as a
diagnostic output in medicine. We identify and describe low-
dimensional features that can be realistically extracted from
CFD data and then used in a ML pipeline. These features,
namely the field values measured at predefined locations or
streamlines arrival time, will be demonstrated to be effective
in two different application scenarios, where they enable
accurate inference of the target variable even with rather
small training sets. Since, to the best of our knowledge, no
CFD dataset on parametric geometries is publicly available
to date, we develop two case studies in distant application
domains: studying the airflow in the human nose, and the
airflow around a two-dimensional section of an airplane wing.
The airfoils dataset is publicly available for download at
https://doi.org/10.5281/zenodo.4106752.

For reasons related to the computational cost of creating
the database, both experiments are quite simplified in terms
of geometric and CFD models, without compromising the

validity of the ML procedure. Both problems share an identical
structure, insofar as the interest lies in retrieving non-local
information (pathological anatomic anomalies of the airways,
or shape characteristics of the profile) from simple features
extracted from the computed flow field.

II. RELATED WORK

In the last 5-10 years, the application of ML to fluid
mechanics has bloomed. This is witnessed by the quantity
and quality of the published material. Recent researches and
authoritative surveys can be found in [6]–[10]. Most often
ML is used to model fluid equations using CFD as input (or,
equivalently, physical realizations of a flow), and expecting
fluid mechanical quantities as output. Hence ML models are
often used to predict the complex input-output relationship
typical of fluid flows governed by highly non-linear equations.
To the best of our knowledge, however, there is no previous
work that shares our goal of inferring quantities that cannot
be computed by the CFD itself.

A clearly identifiable strand of work aims at improving
turbulence models [8], which is needed in CFD approaches
where the small-scale details and the unsteady behaviour of a
turbulent flow cannot be computed. Indeed, a universal and ac-
curate turbulence model is still lacking. Recent developments
are leading to bound uncertainties in existing turbulence mod-
els via physical constraints and to adopt statistical inference
to characterize the empirical coefficients of existing models.
Among the several examples, Ling et al. [11] were the first
to employ a deep neural network to enforce a correction to
the popular Spalart-Allmaras RANS turbulence model [12],
by embedding the required Galilean invariance into the model-
predicted tensor of the turbulent stresses. Along similar lines,
Wang et al. [13] used random forests to identify large discrep-
ancies in model-based turbulent stresses. Fukami et al. [14]
applied supervised ML to solve a number of regression prob-
lems for reconstruction and estimation. Example applications
were the estimation of time-varying force coefficients and flow
reconstruction from a limited number of sensors. They also
considered convolutional neural networks for super-resolution,
training the ML model with direct numerical simulations to
extract key features from the training data.

Another class of works attempts to bypass the use of the
differential equations that govern the fluid motion to get rid
of the simulation stage altogether. For example, a physics-
informed deep-learning framework was developed [15] to learn
the velocity and pressure fields from the flow visualizations;
it shows potential also for biomedical applications, in cases
where quantitative measurements are unavailable. Srinivasan
et al. [16] illustrated the potential of neural networks to predict
the dynamical evolution of a simple model of a temporally-
evolving turbulent shear flow, training multilayer perceptron
and long short-term memory networks.

It is important to note that in all the aforementioned works
the fluid dynamics quantities are used as both input and output
of the ML algorithm. In other words, ML is typically used
as a surrogate of the Navier–Stokes governing differential
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equations, either to speed up or replace the computation, or to
improve the turbulence modeling required by CFD.

III. PROBLEM FORMULATION

The output of a CFD simulation is a set of scalar or
vector fields defined over a domain Ω ⊂ R3 which in CFD
always undergoes discretization, for example into many small
volumes or a computational mesh. These fields are obtained
by solving the discretized Navier–Stokes equations (sometimes
in a simplified form supplemented by a turbulence model)
together with boundary conditions applied at the geometrical
boundary Γ ⊂ R3. For instance, for the human nose, Γ
includes the internal geometry of the nasal cavities extracted
from the CT scan of the patient, as shown in Fig. 1.

A CFD simulation results in several output fields, which
in general are also time-dependent. However, the present
work only considers time-averaged quantities, in particular the
vector field of the mean velocity U(x, y, z) and the scalar
field of the mean pressure p(x, y, z) (expressed in a Cartesian
reference system without loss of generality):

U(x, y, z) =

u(x, y, z)
v(x, y, z)
w(x, y, z)

 , p(x, y, z). (1)

All the flow quantities referring to the generic i-th cell
resulting from the discretization of Ω can be stacked into a
vector Qi ∈ R4:

Qi =


ui
vi
wi

pi

 , (2)

where for conciseness ui = u(xi, yi, zi) being (xi, yi, zi) ∈ Ω
the cell center. Since the spatial domain Ω is discretized over n
cells, which in our elementary case studies is already n ∼ 106,
the CFD output is a (very large) matrix C ∈ R4×n, which
contains all the flow quantities in every cell.

Our goal is to train a model K that predicts a target value
Y associated to the matrix C provided by CFD:

K : C 7→ Y. (3)

The target variable can be either categorical (as for a clas-
sifier that identifies the most suitable surgery for NBD), or
ordinal/real (as for a regressor that estimates some geometric
quantities from Γ). To this purpose, we assume that a training
set of l labelled pairs {(Cj , Yj), j = 1, . . . , l} is provided.

The major challenges to be addressed in our settings are
i) the large dimensionality of each input (namely large n);
and ii) the limited number of training samples l, due to the
high computational cost of each CFD simulation. To tackle the
latter challenge, we opted for a computationally cheap CFD
approach – i.e. solving the Reynolds Averaged Navier–Stokes
(RANS) equations. The available alternatives would lead to
a prohibitive computational cost for dataset generation, even
though more accurate results may contain additional important
information. RANS equations are fast to solve (around 10-12
computing hours per case in our simple 3D application), but
they only provide information on the mean fields.

IV. PROPOSED SOLUTION

We describe now our approach for training a model and
performing inference over the CFD output C. It consists of a
concatenation of rather customary steps of ML pipelines [4],
namely pre-processing, feature extraction, and model training;
however, the first two steps are customized to CFD data and
are therefore described in detail below.

A. Pre-processing

The CFD output C is first pre-processed to compute stream-
lines. By definition, streamlines are locally tangent to the
velocity vector and can be thought of as massless tracer
paths. A number of streamlines is drawn connecting a start
region S ⊂ Ω to an end region E ⊂ Ω. For example, Fig.
2 shows streamlines for the nasal airflow starting from S, a
spherical surface placed in front of the nostrils, and ending at
E , a plane crossing the downstream end of the computational
domain, beneath the larynx. Fig. 3 shows the streamlines
pattern for the two-dimensional flow around an airfoil: in
this case, S is a vertical line upstream of the profile and E
is a similar line placed downstream. Streamlines provide a
compact view of the flow field in the domain Ω, and can
highlight vortical structures, recirculation zones, and high-
velocity regions (where the streamlines approach each other).

Each streamline is defined by its tangent, which is locally
parallel to the velocity vector U. Hence, once the velocity
field is known, streamlines are computed by selecting s
locations over the region S, and by numerically integrating
their trajectory. In detail, we set an initial location for the k-
th streamline (x0

k, y0
k, z0

k) ∈ S and initialize its velocity
as U(x0

k, y0
k, z0

k). Then, trajectory is integrated until the
end region E is reached; the velocity U is obtained by linear
interpolation out of the mesh nodes.

B. Feature Extraction

Due to its large size, the CFD output C cannot be fed
to the classifier K directly. Therefore, we perform feature
extraction to dramatically reduce the number of inputs of the
classifier, while preserving the information content of the CFD.
We propose two kinds of expert-driven features, which are
inspired by engineering practice in the analysis of flow fields:
distribution of streamline arrival times and regional averages
of flow variables.

Distribution of Streamline Arrival Times: Once the s
streamlines connecting S to E have been computed, we
measure the time required to travel from S to E along each
streamline at the local mean velocity. The arrival times are then
considered as realizations of a random variable with unknown
distribution, of which we estimate mean µ1 and centered
moments up to fifth order, i.e. µ2, . . . , µ5. The statistics of the
arrival times provide an extremely compact and meaningful
description of the flow. For example, streamlines entangled by
vortices would take longer to reach E than straight streamlines;
similarly, streamlines passing through highly turbulent regions
would result in outliers with respect to the distribution of
normal trajectories. Besides arrival times, additional quantities



Fig. 2. Airflow in the human nasal cavities during inspiration. (a) Streamlines start from region S and end in region E . The orange slice indicates the cross-
sectional cut plotted in panels (b) and (c). (b) Mean velocity component normal to the cross-sectional cut. (c) Division of the plane in 4 regions {R1−4},
colored with the value of the regional average velocity uk .

can be extracted from streamlines, e.g. by integrating flow
quantities (like velocity or pressure) along the streamlines and
computing the sample moments of their distribution.

Features extracted from streamlines are very practical, since
they compactly convey flow information while sampling most
of the volume Ω with minimal knowledge of the geometry Γ.
In fact, only the initial and final regions S and E need to be
identified: no accurate registration is required for the rest of
the surface.

Regional Averages: Other informative features can be ex-
tracted by averaging the flow quantities over r pre-defined
regions Rk ⊂ Ω, k = 1, · · · , r. To take into account the
uneven layout of the samples in Ω, these averages are volume-
weighted. For example, the region-averaged pressure p over
region Rk is referred to as pk and is defined as

pk =

∑
i piVi∑
i Vi

(4)

where the index i includes all the cells (xi, yi, zi) ∈ Rk, and
Vi denotes their volumes.

Fig. 2(a) illustrates a thin orange slice (A − A) as a
meaningful choice for a set {Rk}. This coronal section
(Fig. 2(b)) intersects large areas exhibiting little or no flow
(the paranasal sinuses), as well as narrower areas delimited
by the turbinates, where most of the flow rate is concentrated.
Fig. 2(c) shows how this section has been divided into four
regions (k = 1, . . . , 4), with the color indicating the computed
value uk in each region.

Information conveyed in regionally-averaged features obvi-
ously depends on whether the set of selected regions {Rk}
is meaningful. The selection of these regions might not be
straightforward in the medical domain, where Rk typically
refers to landmarks that cannot be detected automatically or
that require sophisticated registration procedures to align the
input surface Γ with a common reference where regions can
be defined.

Regional averages mimic procedures often used in wind-
tunnels measurement campaigns, where probes like hot-wire
anemometers or Pitot tubes are placed in the flow beforehand.
Our experiments suggest that averages over a few significant
regions in Ω might be discriminative enough to solve our
inference problems.

C. Model training
The pre-processing and feature-extraction steps map the

output C ∈ R4×n of each CFD to a feature vector f ∈ Rm,
which stacks m features being either the streamline moments
or the regional averages of velocity and pressure. Overall, we
expect m� 4× n, so that these two steps yield a substantial
reduction in the dimensionality of the problem. Depending on
the nature of the target variables, any classifier or regressor
K can be trained from the set of labeled feature vectors
{(fj ,Yj), j = 1, · · · , l}. In the experiments described below,
we adopt Neural Networks trained to perform regression over
the space of target variables and we show that a limited
number of features is often enough to provide very accurate
predictions.

V. EXPERIMENTS

We describe two experiments to show that a handful of in-
formative features are sufficient to infer quantities that cannot
be computed directly from a CFD simulation. To demonstrate
the flexibility of the method presented in Section IV, the two
case studies belong to distant application domains: prediction
of geometrical parameters of an airfoil (subsection V-A) and
prediction of the severity of an anatomical anomaly of a human
nose (subsection V-B). From a fluid-dynamic perspective, the
two case studies are far away from each other: the airfoil case
is two-dimensional and involves an external fully turbulent
flow, in which the inertia forces dominate. The human nose
case is three-dimensional and involves an internal, mostly
laminar or transitional flow. However, in both cases the goal is
to retrieve geometrical information from far away CFD data.



Fig. 3. Flow field around an airfoil at incidence (flow is from left to right). (a) Sketch of the airfoil, indicating chord c (the segment connecting the leading
edge to the trailing edge), angle of incidence α formed between chord and free-stream velocity, the leading edge at x = 0, and the trailing edge at x = c. The
green line is the camber line. First number of NACA code: maximum camber I . Second number of the NACA code: position II of maximum camber along
the cord. Third number of the NACA code: maximum thickness III . (b) Streamlines connecting start region S to end region E , with part of the regional sets
Rk (which in a two-dimensional case reduce to lines). (c) Zoom around the airfoil. Smaller regions around y = 0 like {R4−5} can be appreciated.

The numerical simulations are carried out with OpenFOAM
[17], a popular open-source C++ CFD toolbox. We choose the
most simple and computationally affordable CFD approach
by solving the Reynolds-Averaged Navier–Stokes (RANS)
equations using the Spalart-Allmaras [12] turbulence model
to generate the airfoil dataset, and the k − ω SST turbulence
model [18] to generate the human nose dataset.

Overall, the best features are found to be the regional
averages, with accuracy varying according to the distance
between {Rk} and the geometry of interest. Table I shows
that in the airfoil dataset, the overall accuracy exceeds 95%
when the regional sets are not too far away from the profile.

A. Prediction of Geometrical Features of an Airfoil

1) Dataset and task: We consider a popular family of
airfoils four digit NACA (National Advisory Committee for
Aeronautics). Our goal is to train a multivariate regressor K
to predict the NACA numbers, i.e. the shape of the airfoil
itself, starting from the CFD solution.

The shape of a NACA airfoil is described by their four-
digits code, which corresponds to three integer numbers, and
the length of the chord c (see Fig. 3 a). The first number in the
NACA code corresponds to the first digit (integer, [0-9]) and
quantifies the maximum camber of the airfoil in units of c/100;
the second number corresponds to the second digit (integer,
[0-9]) and locates the point of maximum camber along the
chord measured from the leading edge, expressed in c/10; the
third number has two digits (integer, [05-50]) and quantifies
the maximum thickness of the airfoil expressed in c/100.

The two-dimensional CFD domain Ω is centered on the
airfoil and has a radius larger than 500c; the angle of incidence
α (Fig. 3 a) is set at 10 degrees, the free-stream velocity is
30 m/s. A database of CFD solutions is built by considering
3025 different combinations of digits, hence 3025 different
airfoil shapes.

2) Feature Extraction: Streamlines connecting S to E are
shown in Fig.3 (a). S is a straight segment of length 10c
orthogonal to the free-stream velocity, whose center is 3c
distant from the leading edge; E is identical to S with center
shifted 3c downstream from the trailing edge. Along S, the
streamlines starting points (x0

k, y0
k, z0

k) are non-uniformly
spaced, with finer spacing towards the center, as shown in
panel (c) of Fig. 3.

To extract region-averaged flow quantities, 24 regions {Rk}
are selected, consisting of eight portions of three vertical
lines drawn perpendicular to the airfoil chord. The first eight
segments for 1 ≤ k ≤ 8 lay on a vertical line placed
at x = −c upstream of the airfoil; eight segments for
9 ≤ k ≤ 16 lay on a vertical line placed 1c downstream
(Fig. 3 b,c), and the eight segments for 17 ≤ k ≤ 24 lay on a
vertical line placed 10c downstream the airfoil trailing edge.
On each segment, the regions are symmetrically placed with
respect to y = 0, and their boundaries have y coordinates of
[−500,−10,−1,−0.1, 0, 0.1, 1, 10, 500]. Note that in Fig. 3
the most rearward segment and the regions farthest from the
profile are not displayed.

3) Model Training and Performance Assessment: We train
a three-layers neural network to estimate the three numbers in
the NACA code. This is a regression network with 3 output
neurons, one per each number of the NACA code. Since
the estimated numbers are not necessarily integers, they are
rounded to yield the output code. We adopt different splitting
criteria in training and test set, considering both interpolation
(Table I) and extrapolation (Table II). As a figure of merit,
we primarily consider |e|, the mean absolute error over each
estimated code and also the classification accuracy a, the
percentage of correctly estimated codes.

4) k-fold cross-validation experiment: The goal of this
experiment is to identify the most informative features and
assess our regression performance when varying the dimension
of the training set. Features are initially grouped according



TABLE I
INTERPOLATION EXPERIMENTS FOR THE AIRFOIL DATASET. TRAINING

SET DIMENSION FOR REGIONAL AVERAGES: 484, TRAINING SET
DIMENSION FOR STREAMLINES: 2000.

Features I II III a

|e| σ |e| σ |e| σ [%]
µ1−5 0.24 1.16 0.41 1.16 0.89 11.54 60.79
p1−8 0.04 0.30 0.06 0.29 0.03 0.16 99.34

v1−8 0.04 0.30 0.06 0.21 0.04 0.39 97.45
p9−16 0.06 0.16 0.11 0.31 0.06 0.16 96.39

v9−16 0.03 0.32 0.04 0.13 0.04 0.54 99.47
p17−24 0.15 0.37 0.27 0.70 0.15 0.70 86.25

v17−24 0.15 0.43 0.26 0.60 0.12 0.29 85.71

to classical fluid dynamics practices, and are then selected
by performing a 5-fold split over the whole training set. In
particular, we select three sections, up and downstream the
airfoil, where to extract features from pressure and velocity
measures.

Table I shows the mean absolute error |e| and the standard
deviation σ for each NACA number, as well as the classifi-
cation accuracy a. The network is trained by minimizing the
mean square error of the estimated NACA numbers. When 8
regionally-averaged flow features are used with a training set
of only 484 airfoils, the neural network achieves very small
absolute errors and an overall accuracy between 85% and 99%
on the NACA code (cfr. last column of Table I). The relatively
large range in accuracy suggests that some regional averages
are more informative than others. In particular, regions closer
to the airfoil like p1−8, v1−8 (located at x = −c) and p9−16,
v9−16 (located at x = 2c) achieve higher prediction scores
than those further away (like {R13−18} placed at x = 11c).
This is not surprising since all the flow variables become more
uniform as the distance from the airfoil increases: thus, spatial
information conveyed by each flow variables decreases with
the distance from the airfoil. The statistical moments of arrival
times provide fairly good predictive capabilities too, especially
for the first number in the NACA code. Even with a training
set of 2000 airfoils, |e| is relatively low for the second and
third NACA numbers.

Based on these results, we restrict to regional average
features extracted from pressure for studying how the perfor-
mance varies as a function of the training set size. The above
experiment is repeated by progressively reducing the training
set size, to investigate how this solution would perform when
– owing to their computational cost – only a few CFD
simulations are available for training. We split the dataset
into N equal segments and separately perform training and
testing on each segment through a 5-fold cross validation. This
procedure allows us to reliably compute the standard deviation
of the regression error.

Fig. 4 illustrates the accuracy of the network classification
as a function of training set size, with features p1−8 and p9−16,
and indicates that about 300 training samples are enough to
achieve 90% accuracy. This plot confirms that, at least when

Fig. 4. Classification accuracy a versus dimension of the training set, with
features p1−8, measured on regions at x = −c, and p9−16 measured at
x = 2c

the training set is small, features located downstream (x = 2c)
are more informative than those upstream (x = −c) at the
same distance.

5) Extrapolation: In this experiment we assess the model
performance at predicting NACA numbers that are out of the
range of training samples. All the entries corresponding to
a subrange of the third NACA number, which has a range
of 05–50, are removed from the training set. In the first
experiment, we test the range 30–40, and in the second
experiment, we skip an internal subrange testing 05–15 and
45–50. Every experiment is carried out 5 times, to average the
results. Table II shows that the first extrapolation experiments
are very close to the previous k-fold cross validation tests,
even though the training set is four times larger than in
the k-fold cross-validation case (table I). Little difference is
observed when velocity or pressure are chosen as a feature,
with the far downstream regions at x = 11c consistently
performing slightly worse than the other two regions. The
second experiment is obviously more extreme. Velocity seems
to be more informative than pressure as a feature. The far
regions at x = 11c lead to worse performance than the others
placed closer to the airfoil.

B. Prediction of pathologies in a simplified human nose

1) Dataset and task: Fig. 5 (a-c) illustrates the simplified
model used to build the CFD database for the human nose.
This model replicates all the essential features of a human
nose as represented in Fig.1 and 2, but at the same time
involves a CAD-based simplified shape which, for example,
does not include paranasal sinuses. A key advantage of the
simplified CAD model is its parametrization, which is used
to implement controlled variations of the basic anatomy. The
CFD dataset has been created by defining and modifying
7 geometrical parameters of the baseline model. These pa-
rameters mimic anatomical variations observed by Ear-Nose-
Throat (ENT) doctors in their clinical practice. In particular,
four of them result in “healthy” anatomical alterations of the
human noses, namely that ENT doctors deem not to affect the
normal breathing function. The other three parameters mimic
pathological conditions at different levels of severity. These are



Fig. 5. Simplified model of the human nose. (a) CAD geometry which excludes paranasal sinuses, and placement of regions S and E . (b) Cut planes for
regional averages. Pathologies, if present, are applied in the space between the sections highlighted in red. (c) Regional averages of the x velocity component
in the region set {R17−32}.

TABLE II
EXTRAPOLATION EXPERIMENTS FOR THE AIRFOIL DATASET. TRAINING

SET DIMENSION: 2400

Features I II III a

|e| σ |e| σ |e| σ [%]

In
ne

r

p1−8 0.03 0.04 0.07 0.08 0.03 0.04 99.97

v1−8 0.03 0.06 0.06 0.15 0.03 0.05 98.36
p9−16 0.06 0.08 0.08 0.12 0.06 0.08 99.79

u9−16 0.06 0.08 0.08 0.15 0.05 0.08 98.83
v9−16 0.05 0.08 0.07 0.45 0.05 0.08 98.83
p17−24 0.1 0.14 0.19 0.28 0.1 0.15 92.83

v17−24 0.08 0.12 0.16 0.24 0.09 0.12 95.34

O
ut

er

p1−8 0.55 1.75 1.22 3.63 1.54 6.37 76.92

v1−8 0.12 1.00 0.14 0.68 0.19 1.30 95.27
p9−16 0.69 2.47 1.58 5.34 1.52 6.06 75.24

u9−16 0.21 1.02 0.27 0.82 0.29 1.66 85.45
v9−16 0.15 0.92 0.20 1.15 0.19 1.04 92.42
p17−24 1.72 5.81 4.39 15.88 1.54 5.27 52.33

v17−24 0.41 1.29 0.81 2.45 0.41 1.32 61.82

the anterior hypertrophy of the Inferior Turbinate, the hyper-
trophy of the whole Inferior Turbinate, and the hypertrophy of
the anterior head of the Middle Turbinate. These parameters
affect the shape between the sections labeled in red in Fig.
5 (b). While our CAD model is certainly overly simplified
compared to a CT scan of the human nose and the variety
of pathologies, the size of the CFD simulations is instead
comparable to those that can be derived from a CT scan. To
take into account anatomical variability of human noses, the
CFD dataset is generated from 200 unique combinations of
these 7 parameters. We address the task of estimating the three
pathological parameters, and to this purpose we train a neural
network having 3 hidden layers and 3 output neurons.

2) Feature Extraction: The regional averages are computed
over the sections shown in Fig. 5 (b). The six cross-sectional
planes are perpendicular to the mean flow and are further
subdivided in several regions (from 6 to 16 each, depending on

the surface area). The results of the experiments are reported
in Table III, in terms of streamlines arrival time and pressure
regional averages. Most of the regional averages achieve a
small regression error, such as for {R17−32} which lie on
a cross plane that directly “sees” the modification of the
turbinates. Since, as in the airfoils case, regional averages of
velocity are found to perform similarly to regional averages
of pressure, they have not been reported.

3) Model Training and Performance Assessment: In a real
scenario, there is of course no guarantee to know data directly
from the region where the patient’s pathology is present, since
this is a priori unknown. Thus, the most significant results in
Table III are those concerning features extracted from regions
far from where the pathological alterations have been applied.
For example, the regional averages from regions {R33−44},
have a mean absolute error varying between 0.0185 and 0.0570
mm, considering that the severity of the pathologies varies
with a step of 0.05mm, it is a good result. Obviously the error
is expected to be smaller when CFD information is extracted
right from the regions where the pathology is present: for this
reason, these values are greyed out in Table III.

This demonstrates that the ML algorithm is actually able

TABLE III
INTERPOLATION EXPERIMENTS FOR THE HUMAN NOSE DATASET. ROWS

CORRESPONDING TO FEATURES EXTRACTED ON A PATHOLOGICAL
SECTION ARE GREYED OUT

Features Inf. Turb. Head Inf. Turb. Body Middle Turb. Head
|e|[mm] σ |e|[mm] σ |e|[mm] σ

µ1−5 4.478 5.581 18.556 22.214 6.008 7.3033
p1−6 0.113 0.181 0.083 0.140 0.087 0.1307

p7−16 0.023 0.038 0.012 0.022 0.020 0.038

p17−32 0.017 0.028 0.014 0.023 0.031 0.047

p33−44 0.019 0.032 0.019 0.032 0.057 0.099

p45−50 0.034 0.056 0.014 0.026 0.064 0.110

p51−56 0.038 0.060 0.018 0.029 0.072 0.119



to make accurate predictions, taking advantage of the fluid
dynamic ability to transport information along the flow. In-
deed the regions close to the throat such as {R45−50} and
{R51−56} still produce rather low inference error, taking into
account how far these are from the position where pathological
alterations have been introduced. In comparison, streamlines
arrival times do not achieve good performance, with an error
of over 18.56 mm in a reference domain of 12 mm. The
hypertrophy of the head of the Middle Turbinate appears to
be more difficult to predict; most likely, this is due to the fact
that the Middle Turbinate is interested by a smaller fraction
of the global flow rate, hence its influence on the overall flow
is smaller.

VI. CONCLUSIONS

We have demonstrated that ML can effectively predict func-
tional properties of complex fluid mechanical systems, when
the knowledge of the flow field does not immediately provide
required high-level diagnostic information. We exploit the
convective properties of the fluid flow by identifying a small
set of informative features extracted from CFD simulations,
which provide accurate predictions of geometrical information.
The required training sets are relatively small: this is an
extremely important characteristic, owing to the large cost
of CFD and the difficulty in gathering annotated data from
experts, especially in domains such as medicine.

The flexibility of the proposed approach is demonstrated
by dealing with two rather simplified examples, pertaining
to applications as diverse as industry and health: the airflow
around wing sections (where the goal is the prediction of the
airfoil type) and the airflow within a model of the human
nose (where the goal is to predict pathological anatomic
deformation leading to breathing difficulties).

We identify two types of features that are potentially very
informative and reconcile the massive dimensionality of a CFD
dataset within a ML pipeline. One hinges upon the recon-
struction of streamlines in the flow field and the integration of
flow quantities along them. The other consists in averages of
fluid dynamic variables over suitable regions in the flow field.
Their relative merit has been assessed, with regional averages
performing better than streamlines, although this is deemed
to depend on the type and quality of the CFD analysis. In
fact, the steady nature of the CFD simulation used here fails
at providing the streamlines with the information required to
successfully solve the addressed regression problems. This is
particularly apparent in the human nose, where streamlines
computed using RANS simulation differ much from the true
ones. In contrast, streamlines are more informative in the
airfoil scenario, since the flow is essentially steady. We believe
that the use of unsteady CFD on an unsteady problem will
unlock their full potential.

Ongoing work concerns designing effective features for
addressing real-world medical scenarios, where we plan to
combine ML and CFD to infer diagnostic information. Fur-
thermore the construction of a more realistic database, using
geometries from CT-scans, is ongoing. In particular, we will

use our framework for surgery planning in the ENT domain,
where high-fidelity and time-resolved CFD simulations will
be used to analyze patient-specific CT scans. A wider target
consists in adapting our framework to handle measurements
derived from experimental fluid mechanics data. This opens
plenty of relevant applications, such as identifying anomalies
due to damages or detecting ice formation over airfoils.
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