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Introduction. We consider the recovery of a noise-free image y from
a noisy image z ∈ RN , where z = y + η, and η ∼ N (0, σ2),
focusing on a recent denoising approach [1], [2] that assumes that
y admits a sparse representation with respect to a convolutional
dictionary expressed as a set of filters {dm} [3], [4], [5]. Under
this assumption, the denoised estimate of y is ŷ =

∑
m dm ∗ x̂m,

where x̂ solves the convolutional sparse coding (CSC) problem

x̂ = arg min
x
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2

∥∥∥z−∑
m

dm ∗ xm
∥∥∥2
2

+ λ
∑
m

‖wm � xm‖1 , (1)

� denoting the element-wise product. A particularly effective heuris-
tic criteria to set weights {wm} in (1) has the form of correlation
reciprocal [2]

wm[i] =
1

(dm ∗ y)[i]
=

1

(DT
my)[i]

, (2)

where dm denotes the conjugate filter of dm, and Dm denotes the
corresponding Toepliz matrix. In practice, smaller weights are being
assigned where the image is more highly correlated with the filter dm.
Directly implementing (2) is not possible as it involves y, which thus
needs to be replaced by a previous estimate. Here we investigate the
rationale underpinning the weighting criteria in (2), and its connection
with the WaveShrink algorithm [6], which is related to CSC, but more
amenable to analysis due to its simpler form.
Oracle Thresholds for WaveShrink. The classical WaveShrink
algorithm [6] solves the optimization problem

x̂ = arg min
x

1

2
‖z −Dx‖22 + ‖w � x‖1 , (3)

where D ∈ RN×N is an orthonormal dictionary, thus (3) is solved
by applying the soft thresholding to each component of DT z:

x̂[i] = Sw[i]((D
T z)[i]) , (4)

where w[i] is the threshold used for the i-th component of DT z
and Sω(u) = sign(u) · max(|u| − ω, 0), for ω > 0 and u∈R. The
estimated image is then ŷ = Dx̂.

In WaveShrink, the oracle weights w[i] can be defined as

w[i] = ϕσ((DTy)[i]), (5)
where

ϕσ(x) = arg min
ω

MSEσ(ω, x), (6)

and the function MSEσ(ω, x) = E
{(
Sω((DT z)[i])− (DTy)[i]

)2}
denotes the mean square error between the estimated x̂[i] (4) and the
corresponding noise-free coefficient x = x[i] = (DTy)[i].

This rather simple denoising framework allows to derive the
closed-form expression as in [6]

MSEσ(ω, x) = σ2 + ω2 + σ2(x− ω)φσ(−ω − x)+

+ σ2(−ω − x)φσ(ω − x)+

+ (x2 − ω2 − σ2) [Φσ(ω − x)− Φσ(−ω − x)] ,

(7)

where φσ and Φσ respectively denote the probability density and the
cumulative distribution function of N (0, σ2). Fig. 1 illustrates MSE1

and the oracle weights ϕ1 obtained by numerical minimization of
(7). Asymptotic analysis shows that ϕσ(x) ∼ 2σ2φσ(x) for large x,

whereas ϕσ(x) ∼ σ2c/x for small x. Here c is the fixed point of the
hyperbolic cotangent, i.e. c = cotanh(c), and approximately c=1.2.
Oracle Waveshrink and Correlation Reciprocal Weights. We
observe that the asymptotic rate for small x of the oracle weights
matches that of the correlation reciprocal (2) in case of WaveShrink.
Fig. 2 gives a further insight on this relation by comparing the
output of soft thresholding (4) using either weights defined by the
correlation reciprocal (2) (Fig. 2.b) or the oracle WaveShrink weights
(5) (Fig. 2.c). We note that neither of the two corresponds to the
standard soft thresholding (Fig. 2.a), since the threshold for DT z[i] is
selected based on the value DTy[i], making them akin to a nonlinear
counterpart of the classical Wiener filtering DT z |x|2

|x|2+σ2 , which is
a linear minimum MSE estimator. Careful inspection of Figs. 1
and 2 also reveals that the two weighting schemes mainly differ at
the plateau of the WaveShrink MSE surface, from which one can
conclude that these differences are of minimal consequence and that
the correlation reciprocal is essentially a close approximation of the
oracle WaveShrink weights.

The same conclusions hold for other values of σ, as it can be shown
that MSEσ(ω, x) = MSE1(ω/σ, x/σ)σ2 and ϕσ(x) = ϕ1(x/σ)σ,
for any σ>0 and x, ω ∈ R. Therefore, the surface and the curves in
Fig. 1 can be obtained for σ 6= 1 through simple rescaling.
Weighting Scheme for CSC. CSC can be regarded as a generaliza-
tion of the optimization problem solved by WaveShrink to the case
of overcomplete and translation-invariant dictionaries. Therefore we
define the weights for CSC by means of the function ϕσ(x), even
though here this does not guarantee the same optimality properties:

wm[i] = ϕσ((dm ∗ y)[i]). (8)

The trend of ϕσ in Fig. 1 suggests that wm[i] is small when
(dm ∗ y)[i] is large, and vice versa. In the following experiments
we show that this weighting scheme performs very similarly to (2),
in agreement with our previous analysis on orthonormal dictionaries.
Experiments. We consider natural image denoising through CSC
with the weighting schemes in (2) and (8). As customary in sparsity-
based denoising, the CSC is performed on a high-pass version of z,
preserving the complementary low-pass component. We compute a
pilot estimate ŷpilot by solving (1) with wm[i] = 1, then, we replace
y with ŷpilot in (2) and (8).

Fig. 3 shows the PSNR averaged over 50 noise realizations for
the two considered weighting schemes and the pilot estimate (Fixed
Weights). The performance of the two weighting schemes are very
similar and both yield a substantial improvement w.r.t. the pilot
estimate, consistently yielding an extra 0.5 dB for all values of σ.
Conclusions. Our study shows that the performance of convolutional
sparse denoising can be substantially improved by suitable weighting
schemes. We also show that, in the case of orthonormal dictionaries,
the correlation reciprocal (the most effective weighting scheme in
CSC), yields weights that are very similar to the oracle weights
in WaveShrink. Moreover, when these oracle weights are employed
in CSC, they provide very similar denoising performance to the
correlation reciprocal.
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Fig. 1. (a) WaveShrink MSE1 surface (7); the oracle minimizer ϕ1 (6) is drawn in blue over the surface whereas the black dashed line corresponds to c/x,
c=1.2 being the fixed point of the hyperbolic cotangent; c/x is asymptotic to ϕ1(x) for small x, as shown also in the plots (b) and (c).

Fig. 2. Comparison of soft-thresholding output Sω(DT z) with fixed threshold (weight) ω = 1.5σ (a), with weight ω = 1
x

defined by correlation reciprocal

(2) (b), oracle WaveShrink weights ω = ϕσ(x) (5) (c), and the output of Wiener filtering DT z |x|2
|x|2+σ2 (d). In all cases σ=1.
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Fig. 3. PSNR averaged achieved by CSC leveraging three weighting schemes:
fixed weights, correlation reciprocal (2), and oracle WaveShrink weights (5).
The latter two were computed using the CSC estimate with fixed weights in
place of the oracle in order to define the weights. The PSNR is averaged
over five test images (Lena, Barbara, Man, Peppers, Cameraman) corrupted
with Gaussian noise with standard deviation σ ∈ {10, 15, . . . , 40}. The
filters {dm} are the synthesis filter of the Daubechies db3 wavelet with 4
decomposition levels. We follow the procedure suggested in [1] and compute
the CSC on a high-pass version zh of the noisy image z.
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