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Abstract. Chips in semiconductor manufacturing are produced in cir-
cular wafers that are constantly monitored by inspection machines. These
machines produce a wafer defect map, namely a list of defect locations
which corresponds to a very large, sparse and binary image. While in
these production processes it is normal to see defects that are randomly
spread through the wafer, specific defect patterns might indicate prob-
lems in the production that have to be promptly identified.
We cast wafer monitoring in a challenging image classification problem
where traditional convolutional neural networks, that represent state-of-
the-art solutions, cannot be straightforwardly employed due to the very
large image size (say 20,000 x 20,000 pixels) and the extreme class imbal-
ance. We successfully address these challenges by means of Submanifold
Sparse Convolutional Networks, deep architectures that are specifically
designed to handle sparse data, and through an ad-hoc data augmenta-
tion procedure designed for wafer defect maps. Our experiments show
that the proposed solution is very successful over a dataset of almost
30,000 maps acquired and annotated by our industrial partner. In par-
ticular, the proposed solution achieves significantly high recall on normal
wafer defect maps, that represent the large majority of the production.
Moreover, our data augmentation procedure turns out to be beneficial
also in smaller images, as it allows to outperform the state-of-the-art
classifier on a public datasets of wafer defect maps.
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1 Introduction

Semiconductor manufacturing is a long and expensive process, which involves
many specialized steps to yield wafers containing hundreds of chips, see Fig-
ure 1(a). Multiple sophisticated inspection tools are employed along the produc-
tion line, which locate defective regions inside each chip and assemble a Wafer
Defect Map (WDM), namely a list of coordinates where all defects within a wafer
lie. In normal production conditions, defects appear randomly distributed over
WDMs, without any specific spatial arrangement. In contrast, WDMs portray-
ing patterns like those in Figure 1 might indicate problems occurred during the
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production. In fact, some of these patterns can be traced to a particular problem
in a manufacturing step and their prompt detection allows timely alerts to pre-
vent huge production waste, thus substantially improving production efficiency.
Therefore, automatic tools that identify patterns in WDMs are of paramount
importance for semiconductor industries, which have to guarantee high-quality
standards and high-throughput production to satisfy the growing demand of
chips, lately further pushed by automotive/mobile/wearable/IoT sectors.

Algorithms for identifying defect patterns on wafers have been quite exten-
sively investigated in the literature [1, 7], and the most effective solutions rely
on classifiers [3, 4, 15, 14]. However, none of these classifiers handles WDMs di-
rectly, since each WDM corresponds to a very large binary image, whose size
is limited only by the resolution of the inspection tool (in our case each WDM
has resolution 20, 000× 20, 000). This representation is impossible to handle by
standard classifiers as they would require many computational resources (both
in term of operations and memory) to process images of this size. Therefore,
most of the existing solutions [3, 4, 10, 15] reduce the image size by a preliminary
preprocessing step, which corresponds to a lossy conversion of the information
contained in the original WDM that might prevent capturing the full diversity
of defect patterns.

Our intuition is that, to successfully employ a classifier, and in particular a
convolutional neural network (CNN) [8], two major challenges have to be ad-
dressed. First, the network should be designed to efficiently process very large
inputs, to provide the classifier with the entirety of the WDM information con-
tent. Second, the training procedure should cope with severe class imbalance,
since in real-world monitoring conditions some defect classes occur very rarely.

Here we adopt Submanifold Sparse Convolutional Networks (SSCN) [5] to
handle our WDMs that are very large and at the same time sparse. Convolu-
tional layers in a SSCN implement a convolution operator that modifies only the
nonzero values in the feature maps. As a result, very deep SSCNs preserve the
sparsity of the input data (which is reduced only by max pooling operations)
and this property allows the network to better capture those peculiar patterns
in the input. Moreover, the submanifold convolution operator is computation-
ally more efficient than its traditional counterpart, both in terms of number of
operations performed and memory required, since only the nonzero coefficients
in each feature maps are stored and processed.

Our contribution is twofold: we are the first to adopt SSCN to classify images
that are as large as WDMs by means of a very deep architecture. Moreover, to
cope with class imbalance, we design an ad-hoc data-augmentation procedure to
map each WDM in a set of realistic WDMs. In particular, we extend the set of
standard geometric transformations performed in data augmentation routines,
and introduce cropping and mixing with synthetically generated WDMs. To this
purpose, we learn from our training set a statistical model of the distribution of
random defects in normal WDMs, and perform data augmentation in a class-
specific procedure that provides very rich information to the network and at the
same time mitigates class imbalance.
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Fig. 1. (a) An example of wafer containing few hundreds of chips (the small cells). (b)
An example of WDM for each of the class in ST Dataset. We also report the number
of instances of each class in our dataset to emphasize the severe class imbalance.

Our experiments, performed on a large dataset of WDMs collected and an-
notated by our industrial partner, show that the proposed approach is a bet-
ter option than a state-of-the-art pre-trained network (VGG-16 [13]) fine-tuned
on low-resolution images obtained by preprocessing the WDMs. In particular,
our SSCN achieves a significantly higher recall on normal WDMs, which repre-
sent the vast majority of the industrial production. Moreover, we show that, on
the large WM811K dataset [14], CNNs trained by employing our class-specific
image-augmentation procedure can outperform the solution in [14] based on
hand-crafted features.

Related Works. All the solutions in the literature preprocess WDMs to
reduce their size. Most often, WDMs are pre-processed to create a wafer bin
map, namely a binary image where each pixel corresponds to a chip and indicates
whether that chip contains defects or not. Since the number of chips in the
wafer is relatively small (typically a few hundreds), wafer bin maps are much
easier to handle. Wafer bin maps have been analyzed using either unsupervised
or supervised methods. Unsupervised methods ([7, 1]) create clusters of similar
wafers by clustering algorithms such as Adaptive Resonance Theory, k-means
and Particle Swarm Optimization. The solution in [1] combines the clustering
with a statistical test based on Log Odd Ratio, that preliminary screens the
wafer bin maps to determine which ones do not present any specific pattern (such
as the WDMs in Normal class, see Figure 1). Although unsupervised methods
have the great advantage of not requiring annotated datasets, they are meant to
group together similar wafers rather than associating each wafer to a class of a
predefined set, which is instead the problem we address here.
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Most supervised methods employ hand-crafted features to monitor the wafer
production. Geometric features are often very intuitive and include regional fea-
tures (e.g. area, perimeter, eccentricity of a defects cluster) and density-based
features (e.g. location of the most defect-dense area). Transformed domain fea-
tures analyze the wafer image in a different domain through transforms like
Radon or Hough, that make specific patterns clearly noticeable. A mixture of
these features [3, 4, 15] are assembled in a vector and fed to a classifier, usually
a Support Vector Machine (SVM) or a decision tree. On the one hand, hand-
crafted features are not always able to grasp meaningful patterns in whatever
conditions might appear, e.g. when these are rotated, shifted or affect only parts
of the wafer surface, to name common issues in WDM monitoring. On the other
hand, the impressive achievements of CNN in many visual recognition tasks sug-
gest that approaches based on learned features have a great potential in wafer
classification.

To the best of our knowledge, only [9, 10] use Deep Learning models to classify
specific patterns in WDMs. However, as opposed to the approach we propose
here, [9] operates on wafer bin maps and address a simpler classification problem
that consists in distinguishing radial map patterns from non radial ones. The
solution presented in [10] adopts a different preprocessing yielding low-resolution
grayscale images (instead of wafer bin maps that are binary) where each pixel
corresponds to a chip and its intensity value indicates the number of defects
found in that chip. This solution has been trained exclusively on a synthetically
generated dataset and tested on a small batch of real data, which does not cover
all the classes considered during training. In [14] it is shown that performing
transfer learning of a pretrained model (the Alexnet [8]) does not outperform
the proposed solution based on hand-crafted features.

2 Problem Formulation

A WDM is a list of 2D coordinates indicating the locations of the defects
inside the wafer. Obviously, a WDM can be represented as a binary image
w ∈ {0, 1}K×K where each pixel (i, j) corresponds to a location on the wafer
checked by the inspection machine and w(i, j) = 1 when a defect is found at
(i, j). Each WDM w corresponds to a label ` ∈ L, depending on the spatial
arrangements of defects in w. Our goal is to define a classifier K that associates
to each WDM w a label ̂̀= K(w). To this purpose, we assume a training set of
n labeled WDMs W = {(w1, `1), . . . , (wn, `n)} is provided.

While these are rather customary settings, WDMs classification requires to
address two major challenges. At first, the resolution of a WDM w is huge – in
our case K = 20, 000 – and a grayscale image of such resolution would require
almost 3 GB to be loaded in memory in single precision. The second challenge is
the severe class imbalance: while it is very easy to collect WDMs from Normal
class, some patterns, such as BasketBall, occur very rarely during the production,
thus are also very under-represented in the training set. Figure 1(b) illustrates
the 13 classes of WDM patterns, as identified in our dataset by domain experts,
and show that a few classes are heavily under represented in out training set.
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3 Proposed Solution

In this section we present our solution to WDM classification. First, we introduce
the network architecture we design to handle very large WDMs, then we describe
the specific data-augmentation procedures we use both during training and test
phases.

Network Architecture. As described in Section 2, our problem can be
easily cast in the image classification framework, but traditional convolutional
neural networks cannot be straightforwardly used for WDMs classification since
they handle images at relatively low resolution (e.g., the VGG16 in [13] takes as
input 224×224 RGB images). In fact, input of such dimension would require huge
training and testing time and memory, to store all the feature maps of the CNN.
To overcome this issue, we built a very deep network stacking Submanifold Sparse
Convolutional (SSC) layers [5]. A SSC layer implements a modified convolution
operator that is designed to process sparse data. The main advantage of the SSC
w.r.t. its traditional counterpart is that it efficiently handles sparse data as a
list of the coordinates of nonzero locations. Moreover, this layer preserves the
sparsity of the input, since it does not increase the number of nonzero values
in the feature maps. This property better preserves defect patterns through the
layers of the network.

Our SSCN recalls for the VGG16 architecture, and the basic building block is
composed by a SSC layer with ReLu activations followed by a max pooling layer
with stride 2, thus the resolution of the feature maps is reduced by a factor 4
after each block. We stack 13 of these building blocks, followed by a convolutional
layer and finally a fully connected one. The output of the last layer is a vector of
#L scores, whose maximum value determines the class of the processed WDM.
To the best of our knowledge, this is the first architecture trained to process
very large binary images as the WDMs we consider.

We remark that our very deep architecture replaces preliminary binning that
is typically employed to reduce the WDMs dimension [10]. As we will show in
Section 4, our entirely data-driven solution outperforms CNN trained over low-
resolution images of the wafer as this preprocessing is a-priori defined and not
optimized over training data.

Data Augmentation. As shown in Figure 1, our dataset is highly im-
balanced and contains a relatively small number of WDMs compared to the
datasets typically used in image classification. To increase the dataset size and
avoid overfitting during training, we design a data augmentation procedure that
implements a set T ` of label-preserving transformations on our WDMs:

T ` =
{
T `
θ : {0, 1}K×K → {0, 1}K×K , θ ∈ Θ`

}
, (1)

where θ denotes the parameters defining each transformations, and Θ` is the set
of transformations parameter which also depends on the label `. In practice, each
T `
θ is a composition of transformations commonly used for data augmentation,

such as rotations around the center of the wafer, horizontal flip, and small trans-
lations of the defective coordinates. Moreover, we perform two transformations
that were specifically designed for WDMs, namely noise injection and random
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mixing. Noise injection adds a small number of defects to each WDM to increase
network robustness and reduce the risk of overfitting. In particular, WDMs in
the Normal class can be seen as pure noise, since the defects in the wafer are not
due to any specific problem during the production. Therefore, we estimate the
distribution of the number of defects in Normal WDMs from the training set
and use this distribution to draw the number N of defects that has to be added
to each WDM. Our study and production engineers confirm that there is no
particular arrangement of defects in normal WDMs, thus we uniformly sample
defect coordinates within the WDM. This part of data augmentation is conve-
niently performed in polar coordinates since WDMs are circular. Adding noise
does not change the class a WDM belongs to, because a few defects randomly
spread in the WDM are present in every wafer. Random mixing consists in crop-
ping portions of WDMs from samples of those classes that are very peculiar and
are less represented in the training set, such as the BasketBall and Donut, and
superimposing them to obatin novel WDMs that are used as additional train-
ing examples. In these cases, production engineers were not able to distinguish
these mixed WDMs from the real ones. This data augmentation procedure is
constantly invoked during training, generating new batches by transforming the
original WDMs using T `

θ where the parameters θ are randomly sampled by Θ`.
In principle the network trained on augmented WDMs should extract a high-

level representations [2] of a WDM that are invariant to the transformations in
T `. However, invariance is hardly achieved in practice, thus we enforce data
augmentation also when classifying WDMs by our SSCN. To this purpose, we
define the set of transformations

T = {Tθ : θ ∈ Θ}, (2)

where Θ = ∩`∈LΘ` is the set of transformations common to all classes, thus
preserving all the labels in L. For each WDM w to be tested, we compute a set
A(w) of N augmented WDMs:

A(w) = {Tθi
(w), i = 1, . . . , N}, (3)

where each θi is randomly sampled from Θ. Then, the whole set A(w) is fed

to the network and the classifier output ̂̀ = K(w) is the class achieving the
maximum average score over A(w).

4 Experiments

Our experiments aim at showing that i) our solution based on SSCN can suc-
cessfully handle WDMs and outperforms traditional CNNs trained to classify
images having lower resolution than WDMs, and ii) a properly designed and
trained deep architecture can outperform traditional classifiers based on hand
crafted features also in WDMs classification.

Datasets. We test our architectures on two different datasets. The first one
is the ST dataset, which comprises 29,746 WDMs acquired in the production site
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Fig. 2. Confusion matrix obtained by our SCNN on the ST dataset. Our network
achieves very high accuracy on all the classes, and most misclassified samples belong
to classes that are very similar, such as Incomplete and Cluster Small.

of STMicroelectronics in Agrate Brianza, Italy. Beside the Normal class (which
does not present any defect pattern), engineers have identified 12 classes illus-
trated in Figure 1. The second one is the WM-811K, which is a public dataset [14]
composed of 172,951 images provided by Taiwan Semiconductor Manufacturing
Company. The dataset includes nine classes and is highly unbalanced: as in the
ST dataset, the Normal class (called None in [14]) covers almost the 70% of
the dataset. Differently from ST dataset, the WM-811K dataset contains wafer
bin maps, which are very small resolution images ranging from 15 × 15 pixels
to 200× 200 pixels. We resize all this images to 64× 64 using nearest neighbor
interpolation, as this is by far the most common resolution in the dataset.

Figures of Merit. The traditional figure of merit used in multiclass classifi-
cation problems is the confusion matrix, which assesses the classifier performance
on each class separately, but it does not provide an overall measure of classifica-
tion performance. The Area Under the ROC Curve (AUC) is probably the best
option in binary classification, as it is independent from the class proportions
and from the threshold employed, but it does not admit a straightforward ex-
tension to multiclass problems, thus we consider two versions of multiclass AUC.
The first one is the 1vsRest-AUC [11] and corresponds to the average of all the
binary AUCs computed in a one-versus-rest fashion. In particular, for each class,
a binary classification problem is tested, where the selected class is the positive
one and the remaining ones are merged in the negative class. The 1vsRest-AUC
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Table 1. Results on the STdataset.

Class SSCN w/0 Aug. SSCN VGG16

Normal 94% 93% 89%
BasketBall 69% 92% 100%
ClusterBig 66% 80% 79%
ClusterSmall 71% 80% 82%
Donut 70 % 89% 91%
Fingerprints 55 % 85% 86%
GeoScratch 49 % 87% 89%
Grid 69% 91% 88%
HalfMoon 41% 77% 80%
Incomplete 75% 86% 92%
Ring 77 % 87% 86%
Slice 49% 96% 92%
ZigZag 44% 77% 75%

1vsRest-AUC 0.9824 0.9902 0.9887
1vs1-AUC 0.9430 0.9860 0.9858

is then obtained as a weighted average of the AUC values computed for each of
these binary classification problems. In contrast, the 1vs1-AUC in [6] employs
a one-versus-one scheme and average the AUC from all the possibile pairs. The
main difference between the two measures is that the 1vs1 -AUC is independent
from the class proportions, while 1vsRest-AUC is not. Since our model are rel-
atively fast to train on a GPU, in all our experiments we assess classification
performance by means of 10-fold cross validation, and average our results to
reduce the variance in the figures of merit.

Considered Methods. To show the effectiveness of our SSCN on the ST
dataset we consider the following alternatives in the ST dataset we consider as
alternative solution a CNN obtained by training over the VGG16 [13], a state-of-
the-art convolutional neural network that won the localization task in ILSVRC
2014 competition [12]. Since the VGG16 takes as input 224×224 images, we per-
form a preliminary binning operation to obtain a low-resolution representation
of the original WDM. In particular, each WDM is transformed in a 224 × 224
grayscale image where each pixel indicates the number of defects in the corre-
sponding bin. Then, we perform a fine tuning on the ST dataset, which is a
customary procedure in transfer learning. The VGG16 is trained and tested in
the same conditions as our SSCN, i.e. we perform the same data augmentation
on WDMs before binning. To assess the importance of data augmentation, we
test the proposed SSCN both with data-augmentation and without (SSCN w/o
Aug).

On the WM-811K dataset we adopt a traditional CNN rather than a sparse
CNN, since the input images are rather small and not very sparse. Therefore,
we consider a comparable architecture, though less deep, obtained by stacking
traditional convolutional and max pooling layers. As alternative method, we
consider the solution in [14] (denoted here as SVM ), that extracts hand-crafted
features and classify the feature vectors using a Support Vector Machine.
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Advantages of directly handling WDMs instead of images We train
our SSCN network over the ST dataset using the Adadelta optimizer [16] with
parameters ρ = 0.9 and ε = 10−6. Training requires about 8 hours (for 100
epochs) and was performed using two GPUs (a Titan Xp and a Titan V), while
the averaged time required to classify a WDM is 0.061 ± 0.055 seconds (we
compute N = 250 augmented WDMs in (3)). The high variance is due to the
fact that the number of operations performed by SSCNs highly depends on WDM
sparsity, which varies a lot in our dataset.

Figure 2 shows the confusion matrix of the classification performance over the
ST dataset. The accuracy over different classes indicate that our SSCN achieves
very good classification performance and that most of classification errors are
among very similar classes (e.g., Incomplete and ClusterSmall, see Figure 1(b)).
Due to space limitation, Table 1 reports only a comparison in terms of class
accuracy for the proposed SSCN against VGG16 and SSCN w/o Aug. These
values correspond to the diagonals of the confusion matrices, and show that data
augmentation is key to improve classification performance. When augmentation
is omitted during training and testing, the classification accuracy drops below
50% in many classes.

The performance of SSCN and VGG16 are very similar in a few classes in
terms of accuracy, and also the AUC values, shown in the last rows of Table 1,
are rather close. However, when the AUC is close to 1, small improvements
can be very significant. In fact, the first column indicates that the SSCN w/o
Aug. is significantly worst than both SSCN and VGG16, although it achieves
only slightly smaller 1vsRest-AUC values. Most importantly, our SSCN achieves
93% accuracy on the Normal class, while VGG does not exceed 89% accuracy.
High accuracy on normal data is certainly important in an industrial moni-
toring scenario, since the vast majority of manufactured wafers belongs to the
Normal class. Low accuracy on the Normal class results in a large number of
false alarms. Therefore, directly handling the huge and sparse WDM (using our
SSCN) greatly reduces the false alarms w.r.t. to a traditional CNN that operated
on low-resolution images.

Finally, the difference between the two AUC measures indicates the effect
of class imbalance: the 1vsRest-AUC is always higher than the 1vs1-AUC, since
the latter is independent from the class proportion. This effect is more evident
for SSCN w/o Aug, which achieves lower accuracy on the other classes.

Comparison with Classification over Hand-Crafted Features Table 2
reports the diagonals of the confusion matrices for both our CNN and the SVM
in [14] over the WM-811K dataset. As in the experiments on the ST dataset,
the proposed solution is evaluated using 10-fold cross validation, while the per-
formance of [14] are reported from the paper, and have been computed on a
specific training and test split.1 Our CNN significantly outperforms SVM [14],
achieving an accuracy gap ranging from a minimum of 0.1% for the Edge-Loc,

1 Unfortunately, the implementation of [14] has not been provided for a comparison
over a 10-fold cross validation.
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Table 2. Class accuracy on the WM-811K dataset. The values of the 1vs1-AUC and
1vsRest-AUC of our CNN are 0.9989 and 0.9955, respectively. We cannot compute
them for the classifier in [14], since no posterior probabilities were provided.

Class SMV CNN

Normal 95.7% 97.9%
Center 84.9% 94.0%
Donut 74.0% 97.1%
Edge-Loc 85.1% 85.2%
Edge-Ring 79.7% 96.8%
Loc 68.5% 72.7%
Near-Full 97.9% 99.3%
Random 79.8% 94.9%
Scratch 82.4% 87.6%

up to a maximum of 23.1% for the Donut. Moreover, both the multiclass AUC
values are above 0.99, indicating very good classification performance.

5 Conclusions

Accurate and automatic monitoring solutions are crucial for improving efficiency
in semiconductor manufacturing. Here, we address the problem of classifying
defect patterns on Wafer Defect Maps generated by inspection machines during
the production. Our solution employs Submanifold Convolutional Neural Net-
works, which are perfectly suited for WDMs as they appear as huge and sparse
binary images. As a result, our SCNN efficiently handles WDMs without any
pre-processing procedure that alternative solutions typically require. Moreover,
we propose a specific data-augmentation procedure for WDMs that turns out
to be crucial to effectively train both SSCN and CNN. Our experiments, per-
formed on a dataset of WDMs acquired in the production sites of our industrial
partner, show that our SCNN achieves high accuracy on all the classes, and that
outperforms all the alternatives on the Normal. Since Normal WDMs represent
the vast majority of the production, this performance gap is very relevant as
it yields few false alarms during monitoring. Future works address the problem
of detecting unknown patterns appearing on WDMs, as this would enable to
promptly react to problems that have never been observed before or that are
too rare to collect enough training samples.
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