
QuantTree: Histograms for Change Detection in Multivariate Data Streams

Giacomo Boracchi 1 Diego Carrera 1 Cristiano Cervellera 2 Danilo Macciò 2

Abstract
We address the problem of detecting distribution
changes in multivariate data streams by means
of histograms. Histograms are very general and
flexible models, which have been relatively ig-
nored in the change-detection literature as they
often require a number of bins that grows un-
feasibly with the data dimension. We present
QuantTree, a recursive binary splitting scheme
that adaptively defines the histogram bins to ease
the detection of any distribution change. Our de-
sign scheme implies that i) we can easily con-
trol the overall number of bins and ii) the bin
probabilities do not depend on the distribution
of stationary data. This latter is a very relevant
aspect in change detection, since thresholds of
tests statistics based on these histograms (e.g.,
the Pearson statistic or the total variation) can
be numerically computed from univariate and
synthetically generated data, yet guaranteeing a
controlled false positive rate. Our experiments
show that the proposed histograms are very ef-
fective in detecting changes in high dimensional
data streams, and that the resulting thresholds can
effectively control the false positive rate, even
when the number of training samples is relatively
small.

1. Introduction
Change detection, namely the problem of analyzing a data
stream to detect changes in the data-generating distribution,
is very relevant in machine-learning and is typically ad-
dressed in an unsupervised manner. This approach is gen-
erally dictated by many practical aspects, which include the
unpredictability of the change and the fact that the training
set often contains only stationary data. As a matter of fact,

1Dipartimenti di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, Milan, Italy. 2Institute of Intelligent Sys-
tems for Automation, National Research Council, Genova, Italy.
Correspondence to: Diego Carrera <diego.carrera@polimi.it>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

most change-detection tests in the literature (Basseville &
Nikiforov, 1993; Lung-Yut-Fong et al., 2011; Ross et al.,
2011; Kuncheva, 2013) consist of three major ingredients:
i) a model describing the distribution of stationary data, φ0,
that is typically learned from a training set, ii) a test statis-
tic T used to assess the conformance of test data with the
learned model, and iii) a decision rule that monitors T to
detect changes in φ0. Needless to say, all these have to be
wisely designed and combined to yield a sound test that
can provide prompt detections as well as a controlled False
Positive Rate (FPR), which is one of the primary concerns
in change detection. Unfortunately, when it comes to mon-
itoring multivariate data, it is difficult to find good density
models and test statistics that do not depend on φ0: this rep-
resents a severe limitation for real-world monitoring prob-
lems, where the stream distribution is unknown. Our work
presents an efficient change-detection test for multivariate
data that overcomes this limitation.

The first change-detection tests were developed to moni-
tor univariate data streams in the statistical process control
literature (Basseville & Nikiforov, 1993). In classification
problems, changes in the data stream are known as con-
cept drift (Gama et al., 2014) and are detected by monitor-
ing the sequence of classification errors on supervised data
(Harel et al., 2014; Alippi et al., 2013; Bifet & Gavalda,
2007). Many change-detection tests are parametric, i.e.,
they assume that φ0 belongs to a known family, e.g., (Page,
1954), or are based on ad-hoc statistics that detect specific
changes, e.g., the Hotelling statistic (Lehmann & Romano,
2006). Most nonparametric statistics are instead based on
ranking, e.g., the Kolmogorov-Smirnov (Ross & Adams,
2012) and Lepage (Ross et al., 2011) statistics, and can be
applied exclusively to univariate data.

There exist a few multivariate tests able to detect any dis-
tribution change (Lung-Yut-Fong et al., 2011; Justel et al.,
1997). Two popular approaches consists either in reducing
the data dimension by PCA (Kuncheva, 2013; Qahtan et al.,
2015) or computing the likelihood with respect to a model
fitted on a training set, e.g., a Gaussian mixture (Kuncheva,
2013; Alippi et al., 2016), a Gaussian process (Saatçi et al.,
2010) or a kernel density estimator (Krempl, 2011). In
the latter case the change-detection problem boils down
to monitoring a univariate stream. Unfortunately, in these
cases, T often depends on φ0, and detection rules be-

QuantTree: Histograms for Change Detection in Multivariate Data Streams

come heuristic in nature (Kuncheva, 2013; Ditzler & Po-
likar, 2011) preventing a proper control over the FPR. His-
tograms, which are perhaps the most natural candidates for
describing densities, enable a different form of monitoring
that is based on a comparison among distributions (Ditzler
& Polikar, 2011; Boracchi et al., 2017). However, they are
often implemented over regular grids and require a num-
ber of bins that grows exponentially with the data dimen-
sion. Only a few change-detection solutions (Dasu et al.,
2006; Boracchi et al., 2017) adopt alternative partitioning
schemes that scale well in high dimensions. In particular,
kqd-trees (Dasu et al., 2006), were introduced as a variant
of kd-trees (Bentley, 1975) to guarantee that all the leaves
contain a minimum number of training samples and have a
minimum size. In (Boracchi et al., 2017) it is shown that
histograms built on uniform-density partitions rather than
regular grids provide superior detection performance.

Our main contribution is QuantTree, a recursive bi-
nary splitting scheme that defines histograms for change-
detection purposes. The most prominent advantage of us-
ing QuantTree is that the distribution of any statistic de-
fined over the resulting histograms does not depend on φ0.
This implies that decision rules to be used in multivari-
ate change-detection problems do not depend on the data,
and can be numerically computed from synthetically gen-
erated univariate sequences. Moreover, histograms defined
by QuantTree can have a pre-assigned number of bins and
can be represented as a tree, thus enabling a very efficient
computation of test statistics.

QuantTree (Section 3) iteratively divides the input space
by means of binary splits on a single covariate, where the
cutting points are defined by the quantiles of the marginal
distributions. This splitting strategy is similar to the one
adopted by kd-trees (Bentley, 1975), where the split is per-
formed w.r.t. the median value of the marginal. Such a
simple construction scheme can be handled analytically, as
it is possible to prove (Section 4) that the distribution of
each bin probability does not depend on φ0. Our experi-
ments (Section 5) show that QuantTree enables good detec-
tion performance in high dimensional streams. Moreover,
when testing few samples, QuantTree guarantees a better
FPR control than the Pearson goodness-of-fit test and tests
based on empirical thresholds computed through bootstrap.
We also show that histograms constructed with a few bins
gathering the same density under φ0 achieve higher power
than monitoring schemes based on different histograms.

2. Problem Formulation
Before the change, namely in stationary conditions, data in
the monitored stream x ∈ Rd are independent and identi-
cally distributed (i.i.d.) realizations of a continuous random
vector X0 having an unknown probability density function

(pdf) φ0, whose support is X ⊆ Rd. We assume that a
training set TR = {xi ∈ X , i = 1, . . . , N} containing N
stationary data (i.e., xi ∼ φ0) is provided.

Histograms: we define a histogram as:

h = {(Sk, π̂k)}k=1,...,K , (1)

where the K subsets Sk ⊆ X form a partition of Rd, i.e.,⋃K
k=1 Sk = Rd and Sj ∩ Si = ∅, for j 6= i, and each

π̂k ∈ [0, 1] corresponds to the probability for data gener-
ated from φ0 to fall inside Sk. Both the subsets {Sk}k and
probabilities {π̂k}k can be adaptively defined from train-
ing data TR, and in particular π̂k is typically estimated as
π̂k = Lk/N , i.e. the number of training samples LK be-
longing to Sk over the number of points in TR.

Batch-wise monitoring: for the sake of simplicity, we an-
alyze the incoming data in batches W = {x1, . . . ,xν} of
ν samples. We detect changes by an hypothesis test (HT)
which assesses whether data in W are consistent with a
reference histogram h learned from TR. In particular, this
hypothesis test can be stated as follows:

H0 :W ∼ φ0 vs H1 :W ∼ φ1 6= φ0 (2)

where φ1 represents the unknown post-change distribution.
We focus on HTs that are based on a test statistic Th defined
over the histogram h, like for instance the Pearson statistic
(Lehmann & Romano, 2006). Thus, Th uniquely depends
on {yk}k=1,...,K , where yk denotes the number of samples
in W falling in Sk. We detect a change in the incoming W
when

Th(W) = Th(y1, . . . , yK) > τ, (3)

where τ ∈ R is a threshold that controls the FPR, namely
the proportion of type I errors (Lehmann & Romano, 2006).

Goal: our goal is two-fold, i) learn a histogram h from TR
to be used for change-detection purposes and ii) for each
given test statistic Th and reference FPR value α, define a
threshold τ such that

Pφ0
(Th(W) > τ) ≤ α, (4)

where Pφ0
denotes the probability under the null hypothe-

sis that W contains samples generated from φ0.

There are two important comments. First, while (3) might
seem an oversimplified monitoring scheme, this is enough
to demonstrate that when histograms are built through
QuantTree, the monitoring can be performed independently
of φ0. As a consequence, test statistics Th can be po-
tentially employed in sequential monitoring schemes like
(Ross & Adams, 2012). Second, we focus on general-
purpose tests, which are able to detect any distribution
change φ0 → φ1 as well as on histograms that can model
densities in high dimensions, i.e., d� 1.

QuantTree: Histograms for Change Detection in Multivariate Data Streams

Algorithm 1 QuantTree

Input: Training set TR containing N stationary points in
X ; number of bins K; target probabilities {πk}k.

Output: The histogram h = {(Sk, π̂k)}k.
1: Set N0 = N , L0 = 0.
2: for k = 1, . . . ,K do
3: Set Nk = Nk−1 − Lk−1, Xk = X \

⋃
j<k Sj , and

Lk = round(πkN).
4: Choose a random component i ∈ {1, . . . , d}.
5: Define zn = [xn]i for each xn ∈ Xk.
6: Sort {zn}: z(1) ≤ z(2) ≤ . . . z(Nk).
7: Draw γ ∈ {0, 1} from a Bernoulli(0.5).
8: if γ = 0 then
9: Define Sk = {x ∈ Xk [x]i ≤ z(Lk)}.

10: else
11: Define Sk = {x ∈ Xk [x]i ≥ z(Nk−Lk+1)}.
12: end if
13: Set π̂k = Lk/N .
14: end for

3. The QuantTree Algorithm
Here we describe QuantTree1, an algorithm to define his-
tograms h through a recursive binary splitting of the in-
put space X . This algorithm takes as input a training
set TR containing N stationary points, the number of
bins K in the histogram, and the target probabilities on
each bin {πk}k=1,...,K , and returns a histogram h =
{(Sk, π̂k)}k=1,...,K , where each π̂k represents an estimate
of the probability for a sample drawn from φ0 to fall in Sk.

Algorithm 1 presents in detail the iterative formulation of
QuantTree, which constructs a new bin of h at each step k.
We denote by Xk ⊆ X the subset of the input space that
still has to be partitioned (i.e., Xk = X \

⋃
j<k Sk) and

by Nk the number of points of TR belonging to Xk. We
compute (line 3) the number of training points that has to
fall inside Sk as Lk = round(πkN). The subset Sk is then
defined by splitting Xk along a component i ∈ {1, . . . , d}
that is randomly chosen with uniform probability (line 4).
The splitting point is defined by sorting zn = [xn]i, i.e., the
values of the i-th component for each xn ∈ Xk (lines 5).
We thus obtain z(1) ≤ z(2) ≤ · · · ≤ z(Nk) (line 6) and we
define Sk by splitting Xk w.r.t. z(Lk) or z(Nk−Lk+1) (lines
7-11). In both cases Sk contains Lk points among the N
in X , thus the estimated probability of Sk is π̂k = Lk/N
(line 13). This procedure is iterated until K subsets are
extracted.

QuantTree divides X in a given number of subsets, where
each Sk has an estimated probability π̂k ' πk, and the

1The implementation of QuantTree is available at http://
home.deib.polimi.it/boracchi/Projects

Algorithm 2 Numerical procedure to compute thresholds

Input: Test statistic Th; arbitrarily chosen ψ0; the number
B of datasets and batches to compute the threshold; the
number of points ν in each batch; N ,K, and π̂k as in
Algorithm 1; the desired FPR α.

Output: The value τ of the threshold
1: for b = 1, . . . , B do
2: Draw from ψ0 a training set TRb of N samples.
3: Use QuantTree to compute the histogram hb with
K bins and target probabilities {πk}k over TR.

4: Draw a batch Wb containing ν points from φ0.
5: Compute the value tb = Th(W).
6: end for
7: Compute the threshold τ as in (5).

equality holds when πkN is integer. Since the probabilities
πk are set a priori, in what follows we use πk in place of π̂k.
Indexes i and parameter γ are randomly chosen to add vari-
ability to the histogram construction. Figure 1(a) shows a
tree obtained from a bivariate Gaussian training set, defined
by K = 4 bins, each having probability πk = N/4.

3.1. Computation of Distribution-Free Test Statistics

A key feature of a histogram computed by QuantTree is
that any statistic Th built over it has a distribution that is
independent from φ0. This result follows from Theorem 1,
that is proved in Section 4.

Theorem 1. Let Th(·) be defined as in (3) over the his-
togram h computed by QuantTree. When W ∼ φ0, the
distribution of Th(W) depends only on ν, N and {πk}k.

Theorem 1 implies that we can numerically compute the
thresholds for any statistic Th defined on histograms, pro-
vided ν, N and {πk}, thus disregarding φ0 and the data di-
mension d. To this end, we synthetically generate data from
a conveniently chosen distribution ψ0, and we follow the
procedure outlined in Algorithm 2 to estimate the threshold
τ for HT in (2) yielding a desired FPR α. At first we gen-
erate B training sets {TRb}b=1,...,B , sampling N points
from ψ0 and, for each training set, we build a histogram hb
using QuantTree (lines 2-3). Then, for each hb we generate
a batch Wb of ν points drawn from ψ0, and compute the
value of the statistic tb = Th(Wb) (lines 4-5). Finally, we
estimate τ (line 7) from the set TB = {t1, . . . , tB} as the
1 − α quantile of the empirical distribution of Th over the
generated batches, i.e.

τ = min
{
t ∈ TB : #{v ∈ TB : v > t} ≤ αB

}
, (5)

where #A denotes the cardinality of a set A.

To take full advantage of the distribution-free nature of the
procedure, we set ψ0 to a univariate uniform distribution

QuantTree: Histograms for Change Detection in Multivariate Data Streams

U(0, 1). This allows to obtain high accuracy on the estima-
tion of the thresholds, since we can use very large values of
B with limited computational cost.

3.2. Considered Statistics

We consider two meaningful examples of statistics Th
that can be employed for batch-wise monitoring through
histograms: the Pearson statistic and the total variation
(Lehmann & Romano, 2006). The Pearson statistic is de-
fined as

T Ph (W) =

K∑
k=1

(yk − νπk)2

νπk
, (6)

while the total variation is defined as

T TVh (W) =
1

2

K∑
k=1

|yk − νπk| . (7)

It is well known that, when {πk}k are the true probabilities
of the bins {Sk}k, under the null hypothesis the statistic
T Ph (W) is asymptotically distributed as a χ2

K−1. However,
when the πk are estimated, the threshold obtained from the
χ2
K−1 distribution does not allow to properly control the

FPR, and this effect is more evident when yk is small. In
contrast, thresholds defined by Algorithm 2 hold also in
case of limited sample size, since they are not based on an
asymptotic result.

These two statistics will be used for our experiments in Sec-
tion 5, using thresholds reported in Table 1 for different val-
ues of N , K, ν and choosing πk = K/N , k = 1, . . . ,K.
These values have been computed applying the procedure
described in Algorithm 2 with B = 2.5 · 106. We note
that both statistics T Ph and T TVh assume only discrete val-
ues, therefore it is not always possible to set the threshold
τ yielding the FPR exactly equal to α, but only to ensure
that the FPR does not exceed α.

3.3. Computational Remarks

We remark that since the histogram h computed by
QuantTree is exclusively defined on the marginal proba-
bilities of single components, the dimensionality of the in-
put data d does not impact the overall computational cost.
In fact, the computational cost of building a QuantTree is
dominated by sorting the covariates (Algorithm 1 line 6),
which is performed K times on an progressively smaller
number of samples at each iteration. Therefore, the overall
complexity of constructing a QuantTree is O(KN logN).
In case of univariate distribution (i.e., d = 1), the complex-
ity is reduced toO(N logN), since the partition {Sk}k can
be defined through a single sorting operation.

Since any histogram h computed by QuantTree can be rep-
resented as a tree structure, it is very efficient to identify

α
Pearson’s Total Variation

K = 32 K = 128 K = 32 K = 128 N ν

0.001 64 192 25 43 4096 64
62.75 187 52 85 16384 256

0.01 54 172 23 42 4096 64
53.25 171 47 81 16384 256

0.05 46 156 21 41 4096 64
45.75 157 44 78 16384 256

Table 1: Examples of thresholds τ that guarantee FPR below α in
HT (2) using a uniform histogram h, i.e. by settings πk = 1/K,
k = 1, . . . ,K. The thresholds are computed by Algorithm 2
using U(0, 1) as ψ0 and different values of N , ν and K.

the bin where any testing point belongs to. In fact, during
monitoring, at most K IF-THEN operations (that reduces
to logK when d = 1) have to be performed for each input
sample x. Moreover, in contrast with histograms based on
regular grids, the number of binsK is here a priori defined,
and does not need to grow exponentially with d.

4. Theoretical Analysis
We prove Theorem 1 showing that the distribution of any
test statistic Th defined over an histogram h computed by
QuantTree does not depend on φ0. To this end, we first
prove some preliminary propositions to characterize the
distribution of the true probability of each bin Sk under φ0:

pk = Pφ0
(Sk), (8)

which is also a random variable as it depends on the train-
ing data TR.

For the sake of simplicity, we assume that QuantTree al-
ways splits with respect to the left tail, i.e., γ = 0 in line
8 of Algorithm 1 (proofs hold when γ ∼ Bernoulli(0.5))
and, to simplify the notation, we will omit the subscript φ0

from Pφ0 , thus P denotes the probability computed w.r.t.
φ0. The following proposition will be used to derive the
distributions of pk.

Proposition 1. Let x1, . . . ,xM be i.i.d. realizations of a
continuous random vector X defined over D ⊆ Rd. Let us
define the i-th component of x as z = [x]i, and denote with
z(1) ≤ z(2) ≤ · · · ≤ z(M) the M sorted components of
x1, . . . ,xM . For any L ∈ {1, . . . ,M} we define the set

Qi,L := {x ∈ D : [x]i ≤ z(L)}. (9)

Then, for each i ∈ {1, . . . , d}, the random variable p =
PX(Qi,L) is distributed as a Beta(L,M − L+ 1).

Proof. The proof consists of showing that p is an order
statistic of the uniform distribution, which in turns follows
a Beta distribution. For this purpose, we consider X de-
fined over Rd and PX(Rd\D) = 0, thus p can be expressed
as

p = PX(Qi,L) = PX(x ∈ Rd : [x]i ≤ z(L)) =
= PZ(z ∈ R : z ≤ z(L)),

(10)

QuantTree: Histograms for Change Detection in Multivariate Data Streams

− 2.0 − 1.5 − 1.0 − 0.5 0.0 0.5 1.0 1.5 2.0

− 8

− 6

− 4

− 2

0

2

4

6

S
1

S
2

S
3

S
4

(a)

S1 S2

S3

(b)

S1
S2

S3

(c)

S1 S2 S3

(d)

Figure 1: (a) A histogram {Sk}k=1,...,4 computed by QuantTree to yield uniform density on the bins. (b)-(d) Examples of values
assumed by L̃k in three different configurations, when N = 9 and L1 = L2 = L3 = 3. In these cases L̃1 = L1, while in (a) L̃2 = 3, in
(b) L̃2 = 5, and in (c) L̃2 = 6. Note that when QuantTree chooses always the same component, we have that L̃2 = L1 + L2, as in (c).

where PZ denotes the marginal probability of Z = [X]i,
namely the marginal of X w.r.t. the component i. We de-
note with FZ the cumulative distribution of Z and define
U = F−1

Z (Z) and un = F−1
Z (zn), n = 1, . . . ,M , where

F−1
Z (z) = inf{t ∈ R : FZ(t) > z}. (11)

The function F−1
Z (·) is monotonically nondecreasing, thus

it preserves the order and the L-th sorted value of {un} can
be computed as u(L) = F−1

Z (z(L)). Then, (10) becomes

p = PZ(z ∈ R : z ≤ z(L)) = (12)
= PU (u ∈ [0, 1] : u ≤ u(L)) = FU (u(L)) = u(L).

Since U follows a uniform distribution over [0, 1] (Balakr-
ishnan & Rao, 1998), it follows that p is the L-th order
statistic of the uniform distribution, that is a distributed as
a Beta(L,M − L+ 1) (Balakrishnan & Rao, 1998).

Thus, p1 in (8), namely the probability of S1 under φ0, is
distributed as a Beta(L1, N − L1 + 1). To derive the dis-
tribution of the remaining pk, k ≥ 2, we define the condi-
tional probability

PS1
(x ∈ A) = Pφ0

(x ∈ A | x /∈ S1), (13)

where A is any Borel subset of X . Then, from the defini-
tion of conditional probability and the fact that x1, . . . ,xN
are i.i.d. according to φ0, it can be easily proved that the
N − L1 points that do not belong to S1 are i.i.d. accord-
ing to PS1

. Therefore, we can apply Proposition 1 to the
subset of the N − L1 points that do not fall in S1 by set-
ting D = Rd \ S1 and considering PS1

in place of PX.
Thus, the random variable p̃2 = PS1(S2) is distributed as
Beta(L2, N2 − L2, 1), where N2 = N −N1. Iterating the
above procedure, we obtain that all the random variables
p̃k, k = 1, . . . ,K, defined as2

p̃k = P⋃k−1
j=1 Sj

(Sk), (14)

are distributed as Beta(Lk, Nk − Lk + 1), where Nk =

N −
∑k−1
j=1 Nj .

2We adopt the following conventions: an empty union of sets
is the empty set, an empty sum is zero, and an empty product is 1.

We remark the different roles of pk and p̃k. While pk in
(8) the measure of the bin Sk under φ0, p̃k in (14) is the
ratio between pk and the measure under φ0 of Xk = Rd \⋃k−1
j Sj , namely the space that remains to be partitioned

at step k. As an example, for a tree with K = 3 leaves, if
we set target probabilities π1 = π2 = π3 = 1/3, we obtain
p̃1 = 1/3, p̃2 = 1/2 and p̃3 = 1. To prove Theorem 1 we
need to derive the distribution of pk, that are expressed in
terms of p̃k by the following proposition.
Proposition 2. In case of histograms defined by
QuantTree, the following relation holds between pk and p̃k:

pk = p̃k · (1−
k−1∑
j=1

pj) = p̃k

k−1∏
j=1

(1− p̃j). (15)

Proof. From the law of total probability we have that

pk = Pφ0
(x ∈ Sk) =

= Pφ0

(
x ∈ Sk | x /∈ ∪k−1

j=1Sj
)
· Pφ0

(
x /∈ ∪k−1

j=1Sj
)
+

+ Pφ0

(
x ∈ Sk | x ∈ ∪k−1

j=1Sj
)
· Pφ0

(
x ∈ ∪k−1

j=1Sj
)
.

(16)
Since sets {Sk} defined by QuantTree are disjoint, it fol-
lows that Sk and

⋃k−1
j=1 Sj are also disjoint, thus the sec-

ond term in the sum in (16) is equal to 0. The first equal-
ity in (15) follows from the definition of p̃k = Pφ0(x ∈
Sk | x /∈

⋃k−1
j=1 Sj) and the fact that Pφ0

(x /∈
⋃k−1
j=1 Sj) =

1 −
∑k−1
j=1 pj . The second equality in (15) can be proved

by induction over j.

The following proposition allows us to express pj as a prod-
uct of independent Beta distributions.
Proposition 3. The random variables p̃k defined over his-
tograms computed by QuantTree are independent.
Proof. To prove the independence of the p̃k, k = 1, . . . ,K,
we show that p̃k is independent from p̃j , j = 1, . . . , k − 1.
In particular, we prove that

Pφ0
(p̃k ≤ tk | p̃j = tj , j = 1, . . . , k−1) = Pφ0

(p̃k ≤ tk).
(17)

To this end, we follow the proof of Proposition 1, and ex-
press p̃k as an order statistic of the uniform distribution.

QuantTree: Histograms for Change Detection in Multivariate Data Streams

At iteration k, QuantTree randomly selects a dimension
ik and performs a split w.r.t. the Lk-th order statistic of
the ik components over the remaining Nk points (line 9
of Algorithm 1). Let L̃k be the position of this splitting
point in {zn = [xn]ik , n = 1, . . . , N}, namely the se-
quence of ordered ik components of all the points in TR.
The value of L̃k ∈ N depends on realizations x1, . . . ,xN ,
and is a random variable ranging in {Lk, . . . ,Mk}, where
Mk =

∑k
j=1 Lj . Obviously, at the first iteration L1 = L̃1

but then the two may differ, as shown in Figure 1. Let us
now consider the splitting point with respect to L̃k, i.e.,
z(L̃k)

. From the definition of p̃k we have that

p̃k = P⋃k−1
j=1 Sj

(Sk) = P⋃k−1
j=1 Sj

(z ≤ z(L̃k)
). (18)

As in the proof of Proposition 1, we denote with FZ the cdf
of Z = [X]ik , and define U = F−1

Z (Z), that has a uniform
distribution on [0, 1]. Therefore it holds that

p̃k = P⋃k−1
j=1 Sj

(z ≤ z(L̃k)
) = P⋃k−1

j=1 Sj
(u ≤ u(L̃k)

) =

= FU (u(L̃k)
) = u(L̃k)

. (19)

We use the law of total probability w.r.t. the events {L̃k =
a}, a ∈ {Lk, . . . ,Mk}, to decompose the left hand side in
(17) as (for simpler notation we omit the expression j =
1, . . . , k − 1 in what follows):

Pφ0
(p̃k ≤ tk | p̃j = tj) = Pφ0

(u(L̃k)
≤ tk | p̃j = tj) =

=

Mk∑
a=Lk

Pφ0
(u(L̃k)

≤ tk | L̃k = a, p̃j = tj) · Pφ0
(L̃k = a)

=

Mk∑
a=Lk

Pφ0(u(a) ≤ tk | p̃j = tj) · Pφ0(L̃k = a). (20)

Since the distribution of u(a) does not depend on p̃j , we
have that Pφ0

(u(a) ≤ tk | p̃j = tj) = Pφ0
(u(a) ≤ tk),

therefore it follows

Pφ0
(p̃k ≤ tk | p̃j = tj) =

=

Mk∑
a=Lk

Pφ0
(u(a) ≤ tk) · Pφ0

(L̃k = a)

=

Mk∑
a=Lk

Pφ0(u(L̃k)
≤ tk | L̃k = a) · Pφ0

(L̃k = a) =

= Pφ0
(u(L̃k)

≤ tk) = Pφ0
(p̃k ≤ tk), (21)

and (17) is proved.

The proof of Theorem 1 follows from Proposition 3.

Proof of Theorem 1. For any stationary distribution φ0, the
random vector [y1, . . . , yK] conditioned on p1, . . . , pK
follows a Multinomial distribution with parameters
(ν, p1, . . . , pK) (White et al., 2009). From Proposition
3 each pk is a product of independent Beta distributions,
thus depends only on {Lk} and it is independent from φ0.

Therefore any statistic Th that is a function of {yk} depends
only on ν, and onN and {πk}which determines {Lk}.

5. Experiments
We quantitatively assess the advantages of change-
detection tests based on QuantTree w.r.t. other general-
purpose tests able to detect any distribution change φ0 →
φ1. In particular, we show that: i) thresholds provided
by Algorithm 2 can better control the FPR w.r.t. alterna-
tives based on asymptotic results or bootstrap ii) HT based
on histograms provided by QuantTree yielding a uniform-
density partition of Rd achieve higher power than other par-
titioning schemes.

5.1. Datasets and Change Models

We employ both synthetic and real-world datasets: Syn-
thetic datasets are generated by choosing, for each di-
mension d ∈ {2, 8, 32, 64}, 250 pairs (φ0, φ1) of Gaus-
sians, where φ0 has a randomly defined covariance, and
φ1 = φ0(Q · +v) is a roto-transalation of φ0 such that the
symmetric Kullback-Leibler divergence sKL(φ0, φ1) = 1.
We control sKL(φ0, φ1) by the CCM framework (Carrera
& Boracchi, 2017), which guarantees all the changes to
have the same magnitude. This is required when comparing
detection performance in different dimensions.

We also employ four real-world high-dimensional sets:
MiniBooNE particle identification (“particle”, d = 50),
Physicochemical Properties of Protein Tertiary Structure
(“protein”, d = 9), Sensorless Drive Diagnosis (“sensor-
less”, d = 48) from the UCI Machine Learning Repos-
itory (Lichman, 2013), and Credit Card Fraud Detection
(“credit”, d = 29) from (Dal Pozzolo et al., 2015). We
standardize these datasets and add to each component of
the “particle” and “sensorless” an imperceivable amount of
noise η ∼ N(0, 0.001) to scramble the many repeated val-
ues, which harms histogram construction. For each dataset
we simulate 150 changes φ0 → φ1 by randomly selecting
TR and defining a random shift drawn from a normal dis-
tribution.

5.2. Change Detection Methods

Four of the considered methods rely on the same histogram
computed through QuantTree (Algorithm 1) to provide a
uniform density partition of Rd, i.e. the target probabil-
ities are πk = 1/K, ∀k. These methods differ only for
the threshold adopted and have been considered mainly to
investigate the control over false positives.

Pearson Distribution Free / TV Distribution Free:
thresholds are computed by Algorithm 2 for the Pearson
T Ph (6) and the total variation T TVh statistics (7), respec-
tively. The adopted thresholds are reported in Table 1.

QuantTree: Histograms for Change Detection in Multivariate Data Streams

Figure 2: Results on both synthetic (a)-(d) and real world (e)-(h) datasets using the small TR configuration. In (a) and (b) we report the
FPR computed on the Gaussian datasets using K = 32 and K = 128 bins, respectively, while (c) and (d) reports the corresponding
powers. Thresholds computed by Algorithm 2 successfully yield averaged FPR values smaller than the desired value α disregarding the
data dimension d, as expected by Theorem 1. Moreover, the methods based on histograms computed by QuantTree achieve the highest
power. The FPR obtained on the real datasets are shown in (e) and (f), for K = 32 and K = 128, respectively, and the powers are
reported in (g) and (h). Also in this cases Algorithm 2 provides thresholds that successfully control the FPR and, as on Gaussian datasets,
methods based on uniform histograms outperform the other in terms of power.

Pearson Asymptotic: thresholds for T Ph are provided from
the classic χ2 goodness-of-fit test (Lehmann & Romano,
2006), which provides an asymptotic control over the FPR.

TV Bootstrap: thresholds for T TVh are computed empiri-
cally by bootstrapping TR.

Three other methods built on different density models have

been considered to assess the advantages – also in terms of
HT power – of histograms providing uniform density.

Voronoi: a histogram where the {Sk}k are defined as
Voronoi cells around K randomly chosen centers in TR.
Here we compute T TVh and use thresholds estimated by
bootstrapping over TR.

QuantTree: Histograms for Change Detection in Multivariate Data Streams

Density Tree: A binary tree aiming at approximating φ0,
where splits are defined by a maximum information-gain
criterion, in a similar fashion to random density trees like
(Criminisi et al., 2011). We use T TVh with thresholds em-
pirically computed by bootstrap over TR.

Parametric: in the synthetic experiments we consider also
an HT based on a parametric density model. In particu-
lar, we fit a Gaussian density on TR, compute the log-
likelihood (Song et al., 2007; Kuncheva, 2013) of each in-
coming batchW , and detect changes by means of the t-test.
Since this method exploits the true density model, it has to
be considered as an ideal reference.

All the methods are configured and tested on the same
TR and tested on the same batches W . We perform a
PCA transformation, estimated from TR, to all the meth-
ods based on trees as density models. We have in fact ex-
perienced that this improves the change-detection perfor-
mance, since it aligns the coordinate axes – along which
splits are performed – with the principal components that
become parallel to the bin boundaries.

5.3. Test Design and Performance Measures

We consider a small TR configuration, where N = 4096
and ν = 64, and a large TR configuration, where N =
16384 and ν = 256. Both configurations have been tested
with a number of bins K = 32 and K = 128, leading to
4 different combinations (N, ν,K). In all our experiments,
the target FPR has been set to α = 0.05.

We empirically compute the FPR as the ratio of detections
over 100 stationary batches W ∼ φ0, for each considered
φ0. Similarly, for each change φ0 → φ1, we estimate the
test power over 100 batches W ∼ φ1. The average FPR
and power computed over the whole datasets are reported
as dots in Figure 2. To illustrate the distribution of the FPR
and power we report their boxplots.

5.4. Results and Discussion

Figure 2 shows the FPR and the power of all the methods
in the small TR configuration. Figures 2(a-b),(e-f) confirm
that QuantTree effectively controls the FPR, for both the
Pearson and total variation statistics, which is very impor-
tant in change-detection. The peculiar QuantTree construc-
tion and Algorithm 2 provide very accurate thresholds re-
sulting in FPR below the reference value α = 0.05. More-
over, even if histograms defined by QuantTree feature a
small number of bins, they are able to effectively monitor
high-dimensional datastreams.

The FPRs of the total variation statistic are typically lower
than others: this is due to the discrete nature of the statis-
tics, which affects both testing and quantile estimation. The
same problem occurs, but to a lesser extent, in the Pearson

statistic, since the expression (6) contains a square that al-
lows this statistic to assume a larger number of distinct val-
ues. Clearly, increasing K attenuates this problem, bring-
ing the FPR closer to α. Thresholds used in the traditional
Pearson’s test achieve larger FPR values, as the number of
training samples in each bin is too low for the asymptotic
approximation to hold: in the large TR configuration, the
problem attenuates (plots and tables of average values are
reported in the Appendix). Since the likelihood values do
not follow a Gaussian distribution, the FPR are not prop-
erly controlled in the t-test of the Parametric method either.
Thresholds estimated by bootstrap yield FPR values with a
larger dispersion than those computed by Algorithm 2.In
all these tests, smaller values of K provide a better control
over FPR, since the number of samples in each bin is larger.

Concerning the power, Figures 2(c-d) show a clear decay
when d increases: this is consistent with the Detectabil-
ity loss problem, which has been analytically studied in
(Alippi et al., 2016) when monitoring the log-likelihood (as
the Parametric). In general, all the methods on Synthetic
datasets achieve satisfactory performance, and uniform his-
tograms obtained through the QuantTree appear a better
choice than Density Tree and Voronoi. There are minor
differences among methods based on QuantTree which are
nevertheless consistent with the FPR in Figure 2(a-b). Uni-
form density histograms outperforms others on real world
datasets, see Figure 2(g-h), indicating that their partition-
ing scheme is better at detecting changes. Obviously, in-
creasing N and ν provides superior performance (see the
Appendix) and, again, methods where thresholds are com-
puted by bootstrap exhibit larger dispersion in the power.

6. Conclusions
In this paper we have presented QuantTree, an algorithm to
build histograms for change detection through a recursive
binary splitting of the input space. Our theoretical analy-
sis allows a characterization of the probability of each bin
defined by QuantTree and shows that this probability is in-
dependent from the distribution φ0 of stationary data. This
implies that statistics defined over such histograms are non
parametric and thresholds can be estimated through numer-
ical simulation on synthetically generated data. Experi-
ments show that our thresholds (estimated using samples
drawn from a univariate uniform distribution) enable a bet-
ter control of the FPR than asymptotic ones or those es-
timated by bootstrap, which is no longer necessary when
using such histograms. Ongoing work investigates how
to mitigate the impact of test statistics assuming a lim-
ited number of discrete values, asymptotic results for his-
tograms generated by QuantTree, and extensions to sequen-
tial monitoring schemes.

QuantTree: Histograms for Change Detection in Multivariate Data Streams

References
Alippi, C., Boracchi, G., and Roveri, M. Just-in-time clas-

sifiers for recurrent concepts. IEEE Transactions on
Neural Networks and Learning Systems, 24(4):620–634,
2013.

Alippi, C., Boracchi, G., Carrera, D., and Roveri, M.
Change detection in multivariate datastreams: Likeli-
hood and detectability loss. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence (IJ-
CAI), volume 2, pp. 1368–1374, 2016.

Balakrishnan, N. and Rao, C. R. Order statistics: theory &
methods. Elsevier Amsterdam, 1998.

Basseville, M. and Nikiforov, I. V. Detection of abrupt
changes: theory and application. Prentice Hall Engle-
wood Cliffs, 1993.

Bentley, J. L. Multidimensional binary search trees used
for associative searching. Communications of the ACM,
18(9):509–517, 1975.

Bifet, A. and Gavalda, R. Learning from time-changing
data with adaptive windowing. In Proceedings of the
SIAM International Conference on Data Mining, vol-
ume 7, pp. 2007–2023, 2007.

Boracchi, G., Cervellera, C., and Macciò, D. Uniform his-
tograms for change detection in multivariate data. In
Proceedings of the IEEE International Joint Conference
of Neural Networks (IJCNN), pp. 1732–1739, 2017.

Carrera, D. and Boracchi, G. Generating high-dimensional
datastreams for change detection. Big Data Research,
2017.

Criminisi, A., Shotton, J., and Konukoglu, E. Decision
forests for classification, regression, density estimation,
manifold learning and semi-supervised learning. Mi-
crosoft Research, 2011.

Dal Pozzolo, A., Caelen, O., Johnson, R. A., and Bontempi,
G. Calibrating probability with undersampling for unbal-
anced classification. In Proceedings of the IEEE Sym-
posium Series on Computational Intelligence and Data
Mining (CIDM), pp. 159–166, 2015.

Dasu, T., Krishnan, S., Venkatasubramanian, S., and Yi, K.
An information-theoretic approach to detecting changes
in multi-dimensional data streams. In Proceedings of
the Symposium on the Interface of Statistics, Computing
Science, and Applications, 2006.

Ditzler, G. and Polikar, R. Hellinger distance based
drift detection for nonstationary environments. In Pro-
ceedings of the IEEE Symposium on Computational
Intelligence in Dynamic and Uncertain Environments
(CIDUE), pp. 41–48, 2011.

Gama, J., Zliobaite, I., Bifet, A., Pechenizkiy, M., and
Bouchachia, A. A survey on concept drift adaptation.
ACM Computing Surveys (CSUR), 46(4):1–44, 2014.

Harel, M., Mannor, S., El-Yaniv, R., and Crammer, K. Con-
cept drift detection through resampling. In Proceedings
of the International Conference on Machine Learning
(ICML), pp. 1009–1017, 2014.

Justel, A., Peña, D., and Zamar, R. A multivariate
kolmogorov-smirnov test of goodness of fit. Statistics
& Probability Letters, 35(3):251–259, 1997.

Krempl, G. The algorithm apt to classify in concurrence of
latency and drift. In Proceedings of the Intelligent Data
Analysis (IDA), pp. 222–233, 2011.

Kuncheva, L. I. Change detection in streaming multivari-
ate data using likelihood detectors. IEEE Transactions
on Knowledge and Data Engineering, 25(5):1175–1180,
2013.

Lehmann, E. L. and Romano, J. P. Testing statistical hy-
potheses. Springer, 2006.

Lichman, M. UCI machine learning repository, 2013. URL
http://archive.ics.uci.edu/ml.

Lung-Yut-Fong, A., Lévy-Leduc, C., and Cappé, O. Ro-
bust changepoint detection based on multivariate rank
statistics. In Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 3608–3611, 2011.

Page, E. S. Continuous inspection schemes. Biometrika,
41(1/2):100–115, 1954.

Qahtan, A. A., Alharbi, B., Wang, S., and Zhang, X. A pca-
based change detection framework for multidimensional
data streams: Change detection in multidimensional data
streams. In Proceedings of the ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
Mining (KDD), pp. 935–944, 2015.

Ross, G. J. and Adams, N. M. Two nonparametric control
charts for detecting arbitrary distribution changes. Jour-
nal of Quality Technology, 44(2):102, 2012.

Ross, G. J., Tasoulis, D. K., and Adams, N. M. Nonpara-
metric monitoring of data streams for changes in location
and scale. Technometrics, 53(4):379–389, 2011.

Saatçi, Y., Turner, R. D., and Rasmussen, C. E. Gaussian
process change point models. In Proceedings of the In-
ternational Conference on Machine Learning (ICML),
pp. 927–934, 2010.

QuantTree: Histograms for Change Detection in Multivariate Data Streams

Song, X., Wu, M., Jermaine, C., and Ranka, S. Statisti-
cal change detection for multi-dimensional data. In Pro-
ceedings of the International Conference on Knowledge
Discovery and Data Mining (KDD), pp. 667–676, 2007.

White, L. F., Bonetti, M., and Pagano, M. The choice of
the number of bins for the m statistic. Computational
statistics & data analysis, 53(10):3640–3649, 2009.

