Uniform Histograms for Change Detection
in Multivariate Data

Giacomo Boracchi
Dipartimento di Elettronica,
Informazione e Bioingegeria
Politecnico di Milano, Italy
giacomo.boracchi @polimi.it

Abstract—We address change-detection problems in the chal-
lenging conditions where data are multivariate and no a priori
information or experimental evidence suggests a specific family
of distributions to match stationary data. In such nonparametric
settings, one typically resorts to computing an empirical model
for the distribution of stationary data in the form of histograms.
We here analyze two ways for building histograms in the change-
detection context. In particular, we consider histograms following
a uniformity criterion: uniformity in the volume and uniformity
in the density. In the former case the input domain is divided into
a regular grid, while in the latter the input domain is adaptively
partitioned to yield subsets having the same probability to contain
stationary data. For both histograms we discuss nonparametric
monitoring procedures which implement likelihood-based and
distance-based approaches to detect changes in the distribution.
In our experiments, performed both on synthetic and real-
world datasets, we show that the combination of uniform density
histograms and distance-based approaches achieves the best
change-detection performance.

Index Terms—Change detection, multivariate data, histograms,
datastream, total variation distance.

I. INTRODUCTION

Change detection is an important problem in many ap-
plication domains, where changes might indicate an unfore-
seen evolution of the data-generating process or a fault in a
sensor/machinery, to name a few examples. Change-detection
problems are typically encountered in time-series analysis
[1], quality inspection [2] and monitoring systems [3], [4];
in computational intelligence, change-detection tests are used
to pilot the adaptation of learning systems in nonstationary
environments (concept drift) [5], [6].

Unfortunately, in many practical situations, the forthcoming
changes are a priori unknown. Change-detection problems
are thus typically addressed by estimating the distribution
of stationary data, namely ¢¢, from a training set and then
computing a suitable statistic to determine whether test data
match ¢ or not. There are two major approaches in the
literature to take such a decision: i) determining how different
the distributions of training and test data are (e.g., [7]) and ii)
determining whether test data are likely to have been generated
by ¢o (e.g., [8], [9]). We can roughly distinguish these two
approaches under the notions of distance-based and likelihood-
based, respectively, even if there exist connections between the
two (see, for instance, the discussion in [10]).
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Implementing either a distance-based or a likelihood-based
approach becomes particularly challenging when no a priori
information or experimental evidence suggests that a spe-
cific family of distributions is able to properly approximate
stationary data. In these unfortunate situations, which are
rather common when input data are multivariate and possibly
collect different sorts of measurements, it is not possible to
learn ¢y by simply fitting few parameters. Then, one has
to resort to nonparametric methods, leading to an empirical
characterization of ¢.

One of the most popular and practical ways to obtain an
empirical estimate of ¢ consists in partitioning the input
domain X into a union of disjoint subsets, and then estimating
the probability for samples generated by ¢ to fall inside each
subset. In practice, this corresponds to building a histogram
describing the distribution of stationary data over the given
partition. In change-detection problems it is very important to
choose the right partition, since this has relevant implications
on the monitoring schemes that can be employed [11], [7].
However, to the best of the authors’ knowledge, this aspect
has never been extensively investigated in the related literature
and, in particular, no comparison between the distance-based
and the likelihood-based approaches in multivariate change
detection has been performed.

We here investigate the use of histograms for change-
detection purposes in multivariate data, and we provide a
rigorous performance assessment of different algorithms im-
plementing a distance-based or a likelihood-based approach.
We consider histograms built upon partitions of X designed
according to two different uniformity criteria: i) regular grids
providing a uniform volume partition, and i) adaptively de-
fined subsets yielding a uniform density partition. We refer to
both these as uniform histograms. We also describe efficient
monitoring schemes to be adopted on uniform histograms,
and discuss their main advantages and drawbacks. Our experi-
ments, performed on both synthetically generated multivariate
Gaussian data and on a 5-dimensional real-world dataset,
indicate that distance-based algorithms are more effective at
detecting changes than the likelihood-based ones, and that
uniform density partitions are preferable.

The paper structure is as follows: Section II formulates
the change-detection problem and defines the histograms.



Section III describes the likelihood-based and distance-based
approaches to change detection, while Section IV describes
uniform histograms, how these can be constructed and em-
ployed in change-detection algorithms. Our experiments are
developed in Section V, while concluding remarks are in
Section VI.

II. PROBLEM FORMULATION

We consider a monitoring scenario where a d-dimensional
stream is analyzed to detect changes in the distribution of
the data-generating process. Namely, we assume that data
in stationary conditions are i.i.d. realizations of a random
variable that follows an unknown distribution ¢g. Our goal
is to detect change points, namely those time instants 7 when
the distribution of the data-generating process changes:
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where x; € X C R? denotes the data point observed at time
t and ¢1 # ¢¢ is the post-change data distribution. Model (1)
corresponds to an abrupt and permanent change affecting ¢.
The input domain X is assumed to be a sufficiently large set
to contain all the possible data points; if necessary, X = R

We assume that both ¢g and ¢; are unknown, and only
a training set X = {x;};=1,.. n containing N stationary
data is provided to estimate ¢y. In particular, we focus on
situations where no analytic distribution seems to properly
match the training data, so that ¢ can not be fit on X e.g.,
through a maximum likelihood procedure. Thus, we resort
to computing a histogram h° to estimate the distribution of
stationary data, and use this for change-detection purposes.
Our goal is to investigate monitoring schemes associated
to uniform histograms (Section IV) and determine which is
the most advantageous option in terms of change-detection
performance.
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A. Histograms

A histogram built from ¢ consists in a partition of X
into a collection of K subsets {Si}r=1,. k., along with
the associated probabilities {p) }r—1,.. . More specifically,
the histogram K0 is defined as the collection of (subset,
probability) pairs:

hO(X) = {(Sk, PY) Yhet,. ks )

where p corresponds to the probability for data generated by
¢ to fall inside the corresponding subset Sj.

We require the subsets Sy to be a disjoint covering of X,
ie., Uszl Sk =X and S;NS; = 0 for j # 4. Each probability
py is computed by counting the number my, of points of X

belonging to Sy, i.e., p{ = my/N.

B. Batch-wise Monitoring

We assume that data to be analyzed arrive in batches
containing v samples each, and we denote by W a batch
of consecutive v points. Changes are detected by operating
batch-wise (as in [7]), assessing whether recent data in W are

consistent with the reference histogram KO, thus whether W
contains a change point or data generated by ¢;. In a data-
streaming scenario, batches could be conveniently selected as
windows opened over the most recent data.

III. MONITORING SCHEMES

In what follows we survey the two major approaches be-
hind monitoring schemes: the likelihood-based and distance-
based one, and discuss how these are typically used in
change-detection algorithms. Notice that, in the considered
nonparametric settings, most of these monitoring schemes
require, on top of the training set used to construct hY,
another set of stationary data for estimating the distribution
of the adopted test statistics when the incoming batches W
contain stationary data. In these cases, we must split X as
X ={xt}=1,. n+ U{xs }+=n+-+41,.. n and use only the first
N* data to build h°.

From now on, we refer to “computing the probabilities of
W with respect to h®”, to indicate computing the probabilities
{pkW} k=1,.., K by counting how many points of WV fall inside
each subset S), of hO.

A. Likelihood-based Change Detection

Likelihood-based methods are widely adopted in the
change-detection literature, see [8], [9] to name a few exam-
ples. These methods are very handy in those situations where
the distribution of stationary data can be estimated by fitting a
probability density function ¢ to X. According to the general
monitoring scheme, the training phase consists in estimating
¢o. Then, during operations, the likelihood of test data — or,
to mitigate numerical problems, an approximated expression
of the log-likelihood — is computed as:

lAt = log (q@o(xt)> for all t > N. ?3)

Since lAt € R, the change ¢9 — ¢; can be detected by tests
designed for univariate streams, which are quite popular in the
statistical process control literature [2]. Monitoring the log-
likelihood is particularly advantageous since this propagates
changes affecting the correlation among the components of ¢,
which are not perceivable when monitoring each component
of x; (separately) or its norm. Thus, the log-likelihood can be
seen as an effective one-dimensional feature to be monitored
for change-detection purposes. Moreover, it is reasonable to
expect a change to shift (most probably decrease) the log-
likelihood values, thus changes can be detected by simply
monitoring the expectation of I; for ¢ > N.

Likelihood-based monitoring schemes can be easily adopted
in nonparametric settings, by straightforwardly replacing ¢g in
(3) with k0, namely

lAt(Xt) =pY forallt>N 4)

being & the index of the subset Sj, where x; falls.

This yields a sequence {l;};~n of discrete and scalar
data that can be in principle monitored in an element-wise
and sequential manner. However, to fairly compare against



distance-based methods, we consider only one-shot monitoring
techniques (Section II-B) that use an hypothesis test like the
Lepage [12], Mann-Withney [13] or t-test [14] to determine
whether the log-likelihoods computed from the batch W
conform with training ones.

In particular, in our experiments we compute Iy, the
average log-likelihood over W, and compare it against [y,
defined as the average log-likelihood over the training data
{x¢}i=n+41,.. n that were not used for estimating K. Such
a comparison is performed using a t-test having as null
hypothesis “the average log-likelihood over the test batch W/
equals [y, setting a desired confidence level a. We adopted
a t-test since tests based on ranking statistics like the Mann-
Withney [13] or Lepage [12] might fail on discrete data when
these take few different values, a situation that may happen
when monitoring discrete probabilities as in (4).

B. Distance-based Change Detection

As a general paradigm, distance-based methods detect
changes by measuring a suitable distance between distribu-
tions. These methods typically compute, for each test batch
W, the probabilities with respect to h° and compare these
against {p%}kzlw_, k- Since probabilities in a histogram as-
sume discrete values, such comparison has to be performed by
means of distance measures between categorical distributions.

To this purpose we can employ the total variation [14], the
Kolmogorov-Smirnov [14] or the Hellinger distance [7], to
name a few examples. In particular, to determine whether the
distribution of data in a test batch W matches h° it is possible
to build empirical confidence regions for the chosen distance
and estimate the p-values. The confidence region refers to the
null hypothesis that no change has happened, thus it can be
estimated computing the distribution of the considered distance
when input batches are generated in stationary conditions.

In particular, we adopt the total variation distance, which in
our context can be expressed as

1 K
dry = 5};!:»2 -] (5)

Thanks to its additive formulation, the total variation is less
affected by errors in the estimated probabilities p{ than
other distances based on the maximum operator (such as
the Kolmogorov-Smirnov distance), which can be instead
seriously affected by large errors in few subsets of h°. The
distribution of d7y in stationary conditions is estimated taking
B non-overlapping batches of v points from {x;};=n++1,.. N
(which were not used for estimating h°, thus B < [(N —
N*)/v|), and computing for each batch W, the probabilities
{Pz}kzl,..--,K with respect to kY, for b = 1,...,B. These
probabilities provide B different values for dpy when no
change has happened, which allows us to compute empirical
confidence intervals and p-values for the test statistic in
stationary conditions.

During operations, we compute the probabilities of each
incoming batch W with respect to the reference h°, to obtain

the value of dry (5). The corresponding p-value determines
whether to reject or not the null hypothesis, at a chosen
confidence level a. When X does not contain enough points
for building B independent batches having length v, we can
resort to a bootstrap procedure [15] from a single batch W.

Another viable option when comparing distributions is to
employ a distance-based parametric test such as the Pearson
chi-square test [14]. In this case, the test statistic for a batch
W containing v points has the form

K 0 W\2
dp=vy PP ) (©)
k=1 Py

where {pZV}k:LM K s the set of probabilities computed from
W with respect to h°. Under the assumption that samples in
W are generated from ¢ and that p) corresponds to the true
probability of ¢¢ over Sy, dp follows a x? distribution with
K — 1 degrees of freedom. Thus, there is no need to estimate
empirical p-values, and changes can be detected by a standard
x? test for goodness of fit [14] using (6) as the test statistic.
In this case, the whole stationary training set X can be used
to build n° (i.e., N* = N).

In practice, Pearson chi-square test must be used with
special care, since it is known that the distribution of dp can
be quite different from the theoretical x? when the reference
probabilities p? are estimated from data. This means that the
results of the test might be unreliable when there are not
enough training data, i.e., when we are not confident that all
the subsets of h° contain a sufficient number of samples to
allow an accurate estimation of the reference probabilities.

In contrast with likelihood-based monitoring schemes,
which enable an element-wise analysis of the stream, distance-
based ones can only operate batch-wise, since the whole batch
is needed to estimate the distribution of test data. However, it
is possible to use a sequential monitoring scheme on the values
of dry (respectively dp) computed over time.

IV. UNIFORM HISTOGRAMS

We here describe the two schemes for partitioning the
input domain following a uniformity criterion, over which the
reference histogram h° is defined. We consider i) regular grids,
which are quite traditional in the change-detection literature,
and i) uniform density partitions, for which we employ a
recursive construction that we introduce next.

In both cases, the resolution of the partition {Sk }r=1,. K
is ruled by an integer parameter g that sets the number of
intervals in which each dimension is divided, determining as
a consequence the overall number of subsets K. The most
apparent difference is that subsets Si in regular grids are fixed,
while in the uniform density case these are adaptively defined
from the training set, each to include (approximatively) the
same number of training samples (see Figures 1 and 2). The
two partition schemes differ also in their actual construction
and, most importantly, in their use within change-detection
algorithms.



A. Regular grids

Regular grids enclose the training set X using ¢? non-
overlapping hyperectangles having the same volume. The
partition includes also the complement of X to cover the whole
domain X, thus the overall number of subsets is K = qd +1.
In particular, the grid is defined as follows.

o Defining the grid boundaries
From the training set X we define a hyperrectangle Z
that encloses all the training data. Thus,

Z= H

where (z)7"" and (w);’“” denote the minimum and
maximum value of the component j over the training
set, respectively. Define Z = X \ Z the complement of
Z wrt. X.
o Defining rectangular subsets
For j = 1,...,d we divide the range of each component,
namely, &; = (z)7"*" — ()" into ¢ segments having
the same length. This operation defines the regular grid
dividing Z into ¢¢ subsets of the form

mzn max]

d
[T + 7o @) + o5+ 1)/l
with r; € {0,...,¢ — 1}.

o Indexing subsets and computing probabilities
Associate an index to each of these subsets i.e., S; from
1 to K — 1. Compute the number m} of points of X
falling into each subset Sk, thus set p} = m{/N. Define
Sk = Z and set the probability p% = 0.

Notice that data in a test batch W might, in principle, fall
outside Z, which is defined by the training set X. The subset
Sk, having reference probability equal to 0, gathers all these
points. For a batch W containing v points the corresponding
probability is computed as p¥ = m¥ /v, where m¥ is the
number of points of W falling outside Z.

From the operational point of view, we can determine the
subset containing any point X € Z by iteratively searching
through all the d components of x. However, in regular
grids this search can be solved analytically in a closed form
expression. Let us assume, for the sake of simplicity and
without loss of generality, that Z = [0, 1]d. Then, the center
ci of each subset Sy, k € {1,...,q%} in the grid can be
univocally indexed as follows:

k—1]1 1
k= |—— |-+ (7N

(ex)r iq“J qa 2q

and

(cx) ik;’dJul )

)i = =+ =

¢l q 2
where (ci); is the i-th component of cg, for i = 1,...,d
and k7, = mod (k —1,¢*~**!). In practice, this indexing

procedure corresponds to progressively scanning the set 7,
sweeping all the dimensions in a raster style.

Fig. 1: Regular grid model for d = 2 and ¢ = 3. All these
subsets cover the same volume and have the same shape.

Thanks to this indexing, any point x € [0,1)¢ can immedi-
ately be mapped to the subset k it belongs to by the following
expression:

~

k=(x)1q] ¢" "+ |(2)2q)q" ()iqlg™™" 9)

HM&

where (z); denotes the i-th component of x, while for x =
(1,...,1) we set k = ¢?. Figure 1 illustrates a grid partition
obtained for a bivariate Gaussian with ¢ = 3.

B. Uniform Density Partition

Regular grids partition the training set in subsets having
equal volume. An alternative approach is to define the partition
in such a way that all the subsets have the same probabilities.
In other words, we look for a partition that yields a histogram
corresponding to a set of categorical uniform probabilities,
i.e., we want p) ~ 1/K for each k =1,..., K'. We propose
a recursive scheme that splits all the subsets in the current
partition along the same component. This procedure starts
from the first component and stops once all the d components
have been considered. Most importantly, such a recursive
binary partition algorithm leads to a binary tree structure. The
construction of such a tree can be summarized as follows.

o Initialization
Given the training set X, we initially set ¢+ = 1 and define
vy = X as the only subset of the partition. Then, we
proceed as follows:
o While 7 < d do:
1) Labeling the current tree subsets
Denote by K; the current number of subsets in the
partition and define the indexes of the subsets as
{517"‘7SK1‘}'
2) Each subset is split along the i-th component in q
subsets each containing the same number of points

IThe ¢ ~/ symbol is due to the fact that it is not always possible to divide
N points in K subsets, each containing exactly the same number of points.



Fig. 2: Uniform density model for d = 2 and ¢ = 3. All these
subsets have the same probability to contain stationary data.
The smaller subsets are placed over high-density regions.

For k € {1,..., K;}, consider the set X, j containing
all the values assumed by the ¢-th component of the
points in S. Split Sy in ¢ parts by cutting the ¢-th com-
ponent along hyper-planes parallel to the other axes,
and crossing the ¢-th axis at values corresponding to
the (r/q)-100 percentiles of X; ., withr =1,..., ¢—1.
3) Cycle over all the components
Seti =14 1.
o Labeling the final tree.
The final partition {S1,..., Sk} is given by the subsets
obtained after the last round of splits.
o Compute the probabilities.
For each subset Sj, compute m%, the number of points
of X falling into S, and set p) = m/N.

This procedure yields a total number of K = ¢? parti-
tion subsets, where each subset contains approximately N/K
points. Figure 2 illustrates a uniform density partition for
bivariate Gaussian data.

Thanks to the tree structure of such a histogram, locating
any point x € X over the subsets {Sy }x=1,.. x is straightfor-
ward and very efficient. Thus, % can be estimated by running
a finite sequence of IF-THEN-ELSE statements.

C. Comments

As mentioned before, the main difference between the two
partitions consists in how the concept of “uniformity” is
implemented: in regular grids each subset has the same volume
(Section IV-A), while in the uniform density case each subset
approximatively contains the same number of training points
(Section I'V-B). There are however other important differences.
While the number of subsets K in the considered histograms
is certainly bound to an exponential growth with d, subsets in
regular grids are mainly sparse, since the number of elements
where p} is different from 0 is at most N. This is a key aspect
from a computational point of view. In contrast, in uniform
density histograms, all the K = ¢¢ subsets have non-zero

probabilities, which however suggests that this partition can
not be adopted when d is very large or ¢? is larger than N.
An advantage of uniform-density histograms is that they do
not need to define a specific subset containing points falling
outside Z, since here the subsets cover the whole X.

Second, these two histograms can implement different types
of change-detection tests. In fact, histograms built upon regular
grids can be used both in likelihood-based tests (Section
III-A) and in distance-based test (Section III-B). However,
when using likelihood-based tests, remember that ranking
statistics like the Mann-Withney [13] or the Lepage [12] might
fail when probabilities p? might assume a limited number
of values (e.g. when the histogram does not contain many
samples and/or the probabilities are constant in some of
cases). Distance-based monitoring schemes, which compute
the empirical distribution of the statistics, like dry in (5) are
also viable. In these cases it is not advisable to employ the
Pearson chi-square test (6), since the reference probabilities
might not be accurately estimated in subsets containing a
very small number of points. Histograms built on uniform-
density partition do not allow to pursue likelihood-based
approaches since likelihood values in (4) would be always
constant, disregarding the distribution of the data-generating
process. Thus, the distance-based approach is the only viable
option when using a uniform-density partition. In particular,
since each subset contains approximately the same number of
training points, it is possible to apply the Pearson chi-square
test, making sure that there are enough training points falling
in each subset Sj.

V. EXPERIMENTS

In this section we present our experiments to assess the
change-detection performance when using a histogram built
upon a regular grid or a uniform density partition. In particular,
we showcase the behavior of the change-detection monitoring
schemes outlined in Section III using both synthetic and real-
world datasets having dimensions ranging from d = 2,...,5.

A. Datasets

1) Gaussian Dataset: We generate data from a known
reference distribution ¢y and introduce changes having a
controlled magnitude. In particular, for d = 2,...,5, we
generate a multivariate Gaussian random variable having zero
mean and covariance matrix g, i.e., o9 = N(0, X¢). The post-
change distribution is also a Gaussian ¢; = N(u1,31), where
the parameters 1 ad > are defined by the algorithm in [16]
to guarantee that the symmetric Kullback-Leibler divergence
between ¢ and ¢; equals 1. As discussed in [16], controlling
the change magnitude is very important when considering
change-detection problems in different data dimensions.

In particular, we randomly define 1000 matrices Xy and
for each ¥ we define 100 different parameters (p, X1), thus
each change ¢y — ¢ corresponds to a rotation and translation
of the stationary state. This setup eventually allows to test
each change detection algorithm over a total of 10° different
changes.



2) Real-Word Dataset: We consider the “Physicochemi-
cal Properties of Protein Tertiary Structure” dataset (Protein
dataset in what follows) from the UCI repository [17], which
contains 9 input features and more than 45.000 samples.
These data appear to be far from being Gaussian, and it
is difficult to fit any parametric distribution. Thus, this is
the scenario where histograms are among the most attractive
options for change-detection purposes. Unfortunately, we can
not control the magnitude of the introduced change by [16] as
this would require to fit a parametric model to the distribution
of stationary data (e.g. a Gaussian mixture). Thus, we fix
the dimension of the input to d = 5 selecting the first 5
components of the dataset.

Changes are introduced by translating the data, which
corresponds to having a post-change distribution defined as
¢1(-) = ¢o(- + v), where v is a randomly defined vector. In
particular, we generate 1000 vectors v and use these to test
all the considered change-detection algorithms.

B. Considered Change-Detection Algorithms

We consider change-detection algorithms built upon:

GRID-LB: histograms built upon regular grids using the
likelihood-based test described in Section III-A.

GRID-TV: histograms built upon regular grids using a test
on the p-values of dpy .

TREE-TV: histograms yielding uniform density using a test
on the p-values of dry .

TREE-PS: histograms yielding uniform density using the
Person chi-square test, i.e. dpg.

In addition to the aforementioned algorithms, only for
the Gaussian dataset where ¢ is known, we implement a
likelihood-based parametric monitoring scheme that does not
use any histogram and directly computes the likelihood in (3)
with respect to the true distribution ¢. Such ideal condition
where ¢y is known, which is seldom the case in practical
applications, is considered as a reference in our experiments.

C. Experimental Setup

We repeat our experiments building histograms setting ¢ =
2 and ¢ = 3 to yield partitions having different resolutions
both in regular grids and uniform density cases. Larger values
of ¢ would lead to histograms having too many subsets and,
consequently, too few points inside each subset to guarantee
accurate estimates when d = 5.

In the Gaussian dataset, for each change ¢¢9 — ¢1, we
generate a new training set X and batches W, while for
the Protein dataset we randomly shuffle the whole dataset as
in Section V-A to define every time a different training set.
Batches are selected as non-overlaping windows containing
v points each form the shuffled dataset, and changes are
introduced by summing a vector v to each component. All
these change-detection algorithms have been configured to
yield 5% type I errors (false positive rate).

The number N of training points in X is set to 1500 - d
in the Gaussian dataset, and equal to 15000 for the Protein
dataset, which requires a larger training set to estimate a more

TABLE I: Median of the powers for Gaussian data (¢ = 2).

d=2 d=3 d=4 d=5
GRID-TV 099 086 062 033
TREE-TV 1 097 081 046
TREE-PS 1 098 085 049
GRID-LB 03 0.14 009 008

TABLE II: Median of the powers for Gaussian data (¢ = 3).

d=2 d=3 d=4 d=5
GRID-TV 1 089 056  0.26
TREE-TV 1 099 079 032
TREE-PS 1 1 0.86 0.44
GRID-LB 031 011 008 007

TABLE III: PAR-LB: median of the powers for Gaussian data.

d=2
0.86

d=3
0.73

d=4
0.61

d=5
0.51

PAR-LB

TABLE IV: Median of the powers for the Protein dataset.

GRID-TV ~ TREE-TV  TREE-PS GRID-LB
qg=2 0.11 0.87 0.91 0.08
qg=3 0.16 0.96 0.98 0.07

complex distribution. In both cases, test batches W contain
150 points, and we use B = 100 stationary batches
to compute the empirical distribution of dpy . These settings
yield reliable estimates of the empirical distributions such that
the false positive rate is close to 5% with all the datasets and
algorithms.

Change-detection performance is assessed by the empirical
power of each test, computed as the number of correct detec-
tions over 100 batches containing changed data. The boxplots
in Figure 3 portray the distribution of test powers for the
10° considered changes ¢y — ¢ in the Gaussian case, when
increasing data dimension d. The medians of these boxplots
are reported in Tables II. All these values refer only to the
partitioning built setting ¢ = 3, while boxplots corresponding
q = 2 exhibit a similar behavior and have not been reported.
The medians of the test powers when ¢ = 2 are reported in
Table 1. For a reference comparison, Figure 3 and Table III
report also the powers of the PAR-LB algorithm.

The boxplots of the test powers computed from the Protein
dataset are depicted in Figure 4 for ¢ = 3. Again, the boxplots
for the case ¢ = 2 show a similar behavior and the medians of
the power are reported in Table IV for both ¢ = 2 and ¢ = 3.

vV =

D. Results And Discussion

All the results consistently indicate two important outcomes:
first, distance-based algorithms outperform likelihood-based
ones. This point obviously concerns the considered batch-wise
monitoring scheme, where our experiments show that com-
paring the empirical distribution of the input and stationary
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Fig. 3: Boxplots of all the considered methods in the Gaussian dataset. Change-detection algorithms implementing a minimum-
distance monitoring scheme (GRID-TV, TREE-TV, TREE-PS) outperform those that monitor the likelihood (GRID-LB, PAR-
LB). In particular, distance-based monitoring schemes implemented on the uniform-density partitions (TREE-TV, TREE-PS)

achieve the best results.
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Fig. 4: Boxplots of the powers for the Protein dataset when
q = 3. The change-detection performance is in line with
the Gaussian case (Figure 3), and in particular distance-
based methods implemented on the uniform-density partitions
(TREE-TV, TREE-PS) achieve the best results.

data turns to be more effective than monitoring variations in
the expectation of the log-likelihood. The PAR-LB test, which
as expected outperforms its empirical counterpart (GRID-LB),
achieves best power levels that are inferior to those of distance-
based algorithms. This indicates that changes can be better
detected by analyzing the data distribution on the whole input
domain rather than simply testing whether the average log-

likelihood has changed by a t-test. As expected, the boxplots
of the PAR-ML algorithm exhibit also a smaller dispersion
than all the other algorithms since this parametric method does
not suffer from density-estimation errors.

The second outcome is that the best option among distance-
based monitoring schemes consists in employing histograms
yielding uniform density. Moreover, our experiments show that
the TREE-TV and the TREE-PS algorithms are the only ones
achieving good performance in the Protein dataset. In this real-
world dataset, the grid provides a very unbalanced covering of
the data, since most of the subsets turn out to contain too few
points to allow a reliable estimate of the reference distribution.
In contrast, the uniform density partition does not suffer of this
problem since it adapts to the shape of the distribution.

The boxplots of the test power for the Gaussian case indicate
there is quite a substantial variability in these results also due
to the wide range of considered changes. However, paired t-
tests performed on these powers confirm that their means are
statistically different.

As a final remark, we comment that on Gaussian data there
is a consistent decay of the test power as the dimension
d increases. There are two reasons for such a performance
decay. First, when d increases, estimating h° becomes more
difficult and requires more data. Second, the detectability loss
phenomenon, which was investigated in [18] for likelihood-
based approaches and analytically proved for Gaussian data,
indicates that change detection becomes intrinsically more
challenging. Detectability loss explains the performance decay
of PAR-ML, which does not have to estimate h°. Figure
3 indicates that detectability loss occurs also when adopt-
ing histograms and distance-based approaches, and not only
likelihood-based methods.



Concerning the resolution parameter ¢, in the Gaussian
case ¢ = 2 (i.e., lower resolution) appears to be better
when d = 4,5, while ¢ = 3 works better when d = 2, 3.
This is probably due to the fact that setting ¢ = 3 leads
to subsets containing not enough points from the training
set when d = 4,5. This problem affects also the TREE-
PS algorithm since the Pearson test relies on the assumption
that the reference uniform probability in the tree subsets is
estimated accurately.

VI. CONCLUSIONS

In this work we have investigated the use of histograms
built according to two uniformity criteria for modeling the dis-
tribution of stationary data in change-detection problems. We
have considered both histograms constructed on a regular grid,
yielding subsets having uniform volume, and histograms ob-
tained through a recursive procedure which yields subsets hav-
ing uniform density. We have also discussed how the choice
of the histogram influences the design of change-detection
algorithms implementing distance-based and likelihood-based
approaches. Our experiments show that the best option in
batch-wise monitoring consists in combining uniform density
histograms with a distance-based method.

Future work aims at developing further uniform density
histograms for high-dimensional change-detection problems
[19], where it is not feasible to grow the partition size as ¢.
Moreover, we will extend our experimental assessment to in-
clude other nonparametric monitoring schemes such as kernel-
density estimation methods used for learning in nonstationary
environments [20], [21].
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