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Abstract—Successful ECG monitoring algorithms often rely
on learned models to describe the heartbeats morphology.
Unfortunately, when the heart rate increases the heartbeats
get transformed, and a model that can properly describe the
heartbeats of a specific user in resting conditions might not
be appropriate for monitoring the same user during everyday
activities. We model heartbeats by dictionaries yielding sparse
representations and propose a novel domain-adaptation solution
which transforms user-specific dictionaries according to the heart
rate. In particular, we learn suitable linear transformations from
a large dataset containing ECG tracings, and we show that these
transformations can successfully adapt dictionaries when the
heart rate changes. Remarkably, the same transformations can
be used for multiple users and different sensing apparatus. We
investigate the implications of our findings in ECG monitoring
by wearable devices, and present an efficient implementation of
an anomaly-detection algorithm leveraging such transformations.

I. INTRODUCTION

Representation-learning algorithms [1], [2] play a central
role in health and ECG monitoring, where they are employed
to learn user-specific models describing the heartbeat mor-
phology: many successful algorithms [3], [4], [5] suggest that
these are necessary to achieve state-of-the-art performance in
the detection/classification of dangerous arrhythmias. The next
frontier is to directly perform ECG monitoring on small, low-
power and wearable devices, thus facilitating the transition
from hospital to houses. Despite wearable devices can be
nowadays equipped with a suitable sensor suite and the
computing capabilities to analyze ECG tracings while being
acquired [6], using learned models during long-term monitor-
ing of everyday activities is far from being straightforward. In
particular, learned models have to be adapted to track heart
rate variations, which is the problem we address here.

As shown in Figure 1, heartbeats get transformed when
the heart rate changes, and they become different from the
training set used to learn the user-specific model. Then, learned
models might not properly describe heartbeats acquired during
long recordings, and the ECG monitoring performance might
degrade. Surprisingly, this problem has so far received very
little attention, and most of monitoring solutions leveraging
learned models have been tested on benchmark datasets con-
taining short ECG tracings [7]. Straightforward approaches
like, for instance, learning a model from extended training set
including multiple heart rates for each user are not feasible,
since heartbeats’ morphology changes with electrodes location
[5] and learned models refer specific device positioning.

Moreover, to keep the training procedure simple and without
risks, training data can be only acquired in resting conditions,
without substantial variation in the heart rates.

Here we propose an appealing and feasible solution, which
consists in adapting any user-specific model to track heart rate
variations. This approach calls for the domain-adaptation or
transductive transfer learning scenario [10], where a model
learned from a source domain (heartbeats of a specific user
in resting conditions), is modified / transformed to operate in
a target domain, where observations are different (heartbeats
of the same user at different heart rates). Our settings imply
that training data for each user are available only in the source
domain.

We consider dictionaries yielding sparse representations [2],
[11], which are very effective to detect anomalies in ECG trac-
ings [6], [12]. Domain adaptation techniques specifically de-
signed for dictionaries go under the name of dictionary adap-
tation, and have been mainly developed in image classification
[13], [14], [15]. These cannot be straightforwardly adapted to
ECG monitoring scenario. In particular, [13] constrains data
in source and target domains to share the same sparse repre-
sentations, which is not appropriate for the many heartbeats
composing an ECG tracing. In [14] dictionary adaptation is
performed by a sequence of intermediate-domain dictionaries,
which are learned from training samples in the source and
target domains for each user. Unfortunately, training heartbeats
for a specific user can be only acquired in resting conditions
(source domain). The dictionary-adaptation framework in [15]
projects both source and target data in a common subspace,
and can be customized for ECG monitoring.

Our domain-adaptation solution maps user-specific dictio-
naries through a set of linear and user-independent transfor-
mations. Despite ECG signals heavily depend on the user, the
sensing device and the electrodes position, different human
hearts feature similar electrical conduction systems. For this
reason, we use a large dataset of ECG tracings from several
users [8] to learn transformations that adapt dictionaries as
a function of the heart rate. We successfully learn these
transformations by minimizing a functional that maps low-
dimensional subspaces from source to target domain, requiring
that transformed (source-domain) dictionaries can provide
sparse representations of heartbeats at the target heart rate.

We state the addressed problem in Section II and describe
the proposed solution in Section III, while in Section IV
we show how to use the learned transformations to perform
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Figure 1. Examples of heartbeats recorded at different heart rates for user s20071 (a-c) and user s20431 (d-f) in [8]. Letters indicate the P-waves, the
QRS-complexes and the T-waves [9], as they are referred to in the medical literature, while the heart rates are reported over each plot. Heartbeats in the a and
d have been acquired at 60 bpm. When the heart rate increases (b, c, e, f), the supports of all heartbeats contract, the T-waves approach the QRS complexes
and the QT intervals narrow down. Heartbeats of the two users exhibit a different morphology, which is also influenced by the electrodes location, However
all the heartbeats undergo a similar transformation which does not seem to be a simple dilation / contraction, since peaks change their intensities and shapes.

online ECG monitoring. Considering the resource-constrained
settings characterizing battery-powered wearable devices, we
present in Section V an optimized implementation of the
sparse-coding algorithm to substantially reduce the computa-
tional complexity of online ECG monitoring. Our experiments
in Section VI demonstrate the effectiveness of the proposed so-
lution on both heartbeat reconstruction and anomaly detection,
and show that it can outperform state-of-the-art alternatives
[15], as well as baseline solutions. Moreover, we show that
transformations learned from a public dataset can successfully
map dictionaries learned from a wearable device, equipped
with a very different sensing apparatus. The conclusions along
with future works are presented in Section VII.

II. PROBLEM FORMULATION

Let us denote by su,r ∈ Rp(r) an heartbeat acquired from
the user u at the heart rate r, where the heartbeat support
p(r) depends on the heart rate. According to [6], we assume
that heartbeats can be conveniently approximated by a sparse
representation w.r.t. a dictionary Du,r ∈ Rp(r)×n:

su,r ≈ Du,rxu,r, (1)

where the representation xu,r ∈ Rn has only few nonzero
components, and n is the number of columns of Du,r, which
are referred to as the dictionary atoms. The user-specific dictio-
nary Du,r is learned [11] from a training set Su,r ∈ Rp(r)×m
containing m heartbeats of the user u at heart rate r. As in
domain adaptation, training data are provided for each user u
only in the source domain, namely at heart rate r0.

The problem we address here is to analyze heartbeats of the
same user acquired at different heart rates r1 6= r0, i.e., in the
target domain, where no training data are available to learn
a dictionary Du,r1 . To this purpose, we adapt the dictionary
learned from the user u in the source domain, i.e. Du,r0 , by
means of a transformation Fr1,r0 : Rp(r0)×n → Rp(r1)×n

D̂u,r1 = Fr1,r0(Du,r0) ∀u, (2)

and use the transformed dictionary D̂u,r1 to approximate the
hearbeats of the user u in the target-domain. Our problem is
formulated as learning a set of user-independent transforma-
tions {Fr1,r0}, for multiple pairs (r0, r1), which transform the

dictionary of any user at source heart rate r0, to make it able
to operate at target heart rate r1.

III. LEARNING TRANSFORMATIONS

Learning a dictionary for ECG monitoring corresponds to
learning multiple, low-dimensional subspaces of Rp(r) where
the heartbeats of each specific user live. Each of such sub-
spaces is spanned by few atoms of the dictionary, and we
assume in (1) that training heartbeats can be well approximated
by a suitable union of low-dimensional subspaces. Sparse
coding [16] corresponds to identifying the closest subspace,
and then projecting s in there.

To preserve the structure of these low-dimensional sub-
spaces, we assume transformations {Fr1,r0} to be linear.
A general linear mapping from Rp(r0)×n to Rp(r1)×n has
n2p(r0)p(r1) degrees of freedom, which can be quite a huge
number considering that heartbeats are typically composed of
more than hundred of samples (in our datasets p(r0), p(r1) ≈
150). Therefore, we learn, for each pair (r0, r1), a linear
transformation that maps each atom of Du,r0 into an atom
in the target domain, such that the union of low-dimensional
subspaces generated by the transformed atoms is close to the
heartbeats at heart rate r1. This reduces the degrees of freedom
of Fr1,r0 to p(r0)p(r1). The transformed dictionaries are
obtained by multiplication by a matrix Fr1,r0 ∈ Rp(r0)×p(r1),
as follows:

D̂u,r1 = Fr1,r0Du,r0 ∀u. (3)

As discussed in Section I, transformations {Fr1,r0} should be
user-independent, and we learn them from publicly available
datasets [8] containing heartbeats of L� 1 users at different
heart rates. In particular, for each pair (r0, r1), we learn the
matrix Fr1,r0 by solving the following optimization problem:

Fr1,r0 = argmin
F,{Xu}u

1

2

L∑
u=1

‖Su,r1 − FDu,r0Xu‖
2
2 + µ

L∑
u=1

‖Xu‖1 +

+
λ

2
‖W � F‖22 + ξ ‖W � F‖1 , (4)

where Su,r1 is a matrix stacking in its columns all the
heartbeats from the user u at the heart rate r1, and the columns
of Xu ∈ Rn×m contain the sparse representation of the
corresponding heartbeats. Hadamard product is denoted by �.



The functional in (4) is composed as follows: the recon-
struction error of the transformed dictionaries is the sum of
‖Su,r1 − FDu,r0Xu‖22. Three regularization terms are con-
trolled by parameters µ, λ, ξ ≥ 0 and a weight matrix
W ∈ Rp(r1)×p(r0). The first regularization term ensures that
dictionaries FDu,r0 provide good and sparse approximations
of training heartbeats in Su,r1 , u ∈ {1, . . . , L}. The sparsity is
enforced by penalizing the `1 norm of the coefficient vectors.
The other two terms represent a weighted elastic net penal-
ization, which improves the overall stability of the learning
process, and at the same time steers the estimated Fr1,r0
towards desirable properties specified by W . In particular,
we expect the transformation Fr1,r0 to be local, namely that
the output of each sample of transformed atoms in Du,r1 is
determined by few neighboring samples of the corresponding
input atom. To this purpose, we set W to feature larger weights
in positions far from the diagonal, as shown in Figure 2(a).

The problem (4) is not jointly convex in {Xu}u and F ,
but the functional to be minimized is convex with respect
to each variable when the others are fixed. Therefore, we
solve (4) by the Alternating Direction Method of Multipliers
(ADMM), which enjoys good convergence properties in this
case [17]. The rationale behind the ADMM is to split the
optimization problem in many sub-problems, and alternate
their optimization. To this purpose, we introduce the auxiliary
variables G ∈ Rp(r1)×p(r0) and Yu ∈ Rn×m, u ∈ {1, . . . , L},
and (4) becomes equivalent to the following problem:

argmin
F,{Xu}u,G,{Yu}u

1

2

L∑
u=1

‖Su,r1 − FDu,r0Xu‖
2
2 + µ

L∑
u=1

‖Yu‖1 +

+
λ

2
‖W �G‖22 + ξ ‖W �G‖1 , s.t. F = G, Xu = Yu, ∀u.

(5)
According to the ADMM framework, we define the Aug-
mented Lagrangian of (5) and alternate the minimizations w.r.t.
each variable while keeping the others fixed, and the update
of Lagrange multipliers. The ADMM iterations are given by:

X(k+1)
u = argmin

X

1

2

∥∥∥Su,r1 − F (k)Du,r0X
∥∥∥2
2
+

+
ρ

2

∥∥∥X − Y (k)
u + Z(k)

u

∥∥∥2
2
, ∀u (6)

Y (k+1)
u = argmin

Y
µ ‖Y ‖1 +

ρ

2

∥∥∥X(k+1)
u − Y + Z(k)

u

∥∥∥2
2
, ∀u (7)

F (k+1) = argmin
F

1

2

L∑
u=1

∥∥∥Su,r1 − FDu,r0X(k+1)
u

∥∥∥2
2
+

σ

2

∥∥∥F −G(k) +H(k)
∥∥∥2
2
, (8)

G(k+1) = argmin
G

λ

2
‖W �G‖22 + ξ ‖W �G‖1 +

σ

2

∥∥∥F (k+1) −G+H(k)
∥∥∥2
2
, (9)

Z(k+1)
u = Z(k)

u +X(k+1)
u − Y (k+1)

u , ∀u (10)

H(k+1) = H(k) + F (k+1) −G(k+1), (11)

where Zu ∈ Rn×m, u ∈ {1, . . . , L}, and H ∈ Rp(r1)×p(r0)
are the Lagrange multipliers of the constraints in (5).

Sub-problems (6) and (8) are standard quadratic expressions
which can be efficiently solved by a linear system, using
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Figure 2. (a) Weight matrix W used to learn transformations. The element
(i, j) of W is defined as [W ]ij = 1 − c · exp(−(j − i)2/ω), where ω
determines the width of the Gaussian and the constant c is set to ensure that
the value of weights is between 0 and 1. Setting larger weights far from
the diagonal is a way to promote locality of the learned transformation. (b)
Example of learned F̂r1,r0 for r1 = 90, r0 = 70 using the weight matrix
W shown in (a). The learned transformation is local, since nonzero elements
of F̂r1,r0 are concentrated around the diagonal.

techniques such as Gaussian elimination. Problem (7) admits a
closed-form solution as the proximal mapping [18] of µ/ρ||·||1

[Y (k+1)
u ]ij = Sµ/ρ

([
X(k+1)
u + Z(k)

u

]
ij

)
,

where [·]ij denotes the entry of the i-th row and the j-th
column of a matrix, and Sη : R → R is the soft-thresholding
operator defined as Sη(x) = sign(x) · max{0, x − η}. It can
be shown by calculus and [18] that (9) can be also solved by
the soft thresholding as:

[G(k+1)]ij =
1

1 + λ[W ]2ij/σ
Sξ[W ]ij/σ

([
F (k+1) +H(k)

]
ij

)
.

We initialize the ADMM algorithm by setting to zero the
values of all the variables but F (0), which is initialized to
uniformly distributed random values to avoid trivial solutions.
Then, we iteratively solve (6)-(11) until a maximum number
of iterations is met.

An example of learned Fr1,r0 is shown in Figure 2(b), where
we see that the nonzero elements are concentrated around the
diagonal, thanks to W in the elastic net regularization. The
central rows have smaller support than the first and last rows,
indicating that the QRS complexes are less influenced by the
transformation than the P and T waves, as shown in Figure 1.

IV. ONLINE ECG MONITORING

Here we describe how the proposed domain-adaptation
solution can be used to perform online monitoring of ECG
tracings directly on a wearable device. In particular, we focus
on the detection of anomalous heartbeats, such as arrhythmias.
For an effective processing during long-term monitoring, the
transformations {Fr1,r0}, estimated as described in Section
III, are stored on the wearable device and the heart rates
(r0, r1) are quantized in a range having resolution of 5 beats
per minute (bpm).

ECG Preprocessing. We remove the baseline wander by
standard preprocessing techniques [19]. Then, we extract
heartbeats by cropping a window of p(r) samples around
each R-peak, which are detected by the Pan-Tompkins algo-
rithm [10]. R-peaks are used also to estimate the reference
heart rate r of each heartbeat, by averaging the reciprocals of
the R-R intervals over a window of 5 seconds.



User-configuration. During the device configuration on
each user u, we record 10 minutes of ECG tracing in resting
conditions and collect the heartbeats in the training set Su,r0 .
This is used to learn the user-specific dictionary Du,r0 by
KSVD algorithm [2], where the source heart rate r0 is the
most frequent heart rate in the collected tracing. Then, we
compute D̂u,r1 = Fr1,r0Du,r0 for each target heart rate r1,
and store in memory all dictionaries {D̂u,r1}.

Domain Adaptation. During online monitoring, we esti-
mate the current heart rate r1, and select D̂u,r1 among the
stored dictionaries.

Anomaly Detection. Anomalous heartbeats are detected as
in [6], identifying as anomalous any heartbeat su,r1 that is not
sufficiently close to the union of low-dimensional subspaces
generated by D̂u,r1 . To this purpose, the first step consists
in computing the sparse representation x̂u,r1 of su,r1 w.r.t. to
D̂u,r1 , by solving the sparse coding problem

x̂u,r1 = argmin
x

∥∥∥su,r1 − D̂u,r1x
∥∥∥2
2
, s.t. ‖x‖0 ≤ κ, (12)

where the functional to be minimized is the `2 norm of
the residual w.r.t. to the dictionary, and ‖x‖0 is the num-
ber of nonzero coefficients in x. Sparse coding (12) is an
NP-Hard problem, and we compute a suboptimal solution
through a greedy algorithm, the Orthogonal Matching Pursuit
(OMP) [20]. The reconstruction error e(su,r1) = ‖su,r1 −
D̂u,r1 x̂u,r1‖2 can be used as an indicator to discriminate
between normal heartbeats (that conform with D̂u,r1 ) and
anomalous heartbeats (that do not conform with D̂u,r1 ). In
particular, we adopt the rule:

su,r1 is anomalous ⇔ e(su,r1) > γ, (13)

which recognizes as anomalous any heartbeat that cannot be
properly reconstructed by the transformed dictionary D̂u,r1 .
The threshold γ > 0 determines the promptness of the detector
to identify anomalous heartbeats.

V. OPTIMIZED PROCESSING FOR WEARABLE DEVICES

The study in [6] shows that dictionaries D̂ ∈ Rp×n having
much less atoms than the heartbeat dimension, i.e. n � p,
are more effective in detecting ECG anomalies. This implies
that the union of low dimensional subspaces where normal
heartbeats live can be enclosed in a n-dimensional subspace
of Rp. Since s has to be projected into such n-dimensional
subspace, it is possible to reduce the number of operations
performed in the OMP by changing the basis of the subspace
generated by the columns of D̂. This coordinate change lead to
replacing (12) by the following sparse-coding problem, where
we have omitted the subscript (u, r1), for the notation sake:

x̂ = argmin
x

∥∥QT s−Rx∥∥2
2
, s.t. ‖x‖0 ≤ κ. (14)

In (14), D̂ = QR is the QR decomposition of D̂, R ∈ Rn×n
is a square and upper-triangular matrix, and Q ∈ Rp×n is a
rectangular matrix whose columns are orthonormal and span
the subspace generated by the atoms of D, such that QTQ =
In. The following proposition shows that problem (14) and
(12) has the same solution.

Proposition 1. For every s ∈ Rp and x ∈ Rn it holds:∥∥∥s− D̂x
∥∥∥2
2
=
∥∥QT s−Rx∥∥2

2
+ ‖s‖22 −

∥∥QT s∥∥2
2
. (15)

Proof follows from QTQ = In and basic linear algebra.
Solving (12) is much less expensive than (14), since the
computational complexity of OMP is determined by the target
sparsity κ and the dictionary size1 [20]. When solving (12),
the dictionary D̂ has size p×n and the complexity is O(κpn),
since in our case κ < n � p. In contrast, since R ∈ Rn×n,
solving (14) requires only a complexity of O(κn2) on top of
the cost of computing of QT s, which is O(pn) and becomes
dominant. In practice, we have reduced the overall cost of
OMP from O(κpn) to O(pn) by first transforming each
heartbeat s as QT s, and then computing the OMP w.r.t. R.

It is convenient to modify the user-configuration phase
by computing the QR decomposition of each transformed
dictionary Fr1,r0Du,r0 = D̂u,r1 = Qu,r1Ru,r1 , and storing
the matrices Qu,r1 and Ru,r1 in place of D̂u,r1 to perform
online monitoring. Sparse coding has to be solved for each
acquired heartbeat, thus the proposed solution, which is more
efficient than traditional one, can meaningfully increase the
battery life.

VI. EXPERIMENTS

Our experiments are meant to demonstrate that the learned
transformations can be successfully used to perform domain
adaptation i) on multiple users, and ii) on users monitored
though different devices. In particular, we assess adaptation
performance by signal reconstruction and anomaly-detection
experiments, and we implement a leave-one-out procedure to
prove that transformations learned from a large public dataset
[8], can effectively adapt dictionaries of multiple users. We
also show that the same transformations can be successfully
used on the Bio2Bit Move dataset, which was acquired by a
completely different sensing device.

A. Datasets Description

The Long-Term ST dataset (LT-ST) [8] contains long term
ECG recordings from 80 users, lasting from 21 to 24 hours
and is manually annotated by experts. We consider only two
types of heartbeats: normal, which are used for learning the
transformations, and anomalous, which include all the anno-
tated arrhythmias and that are used to test anomaly-detection
performance. We consider heart rates r ∈ {70, 75, . . . , 120}.

The Bio2Bit Move Dataset (B2B) contains 7 ECG tracings
recorded from healthy users acquired by the Bio2Bit Move
device [21], a prototypal wearable device developed by STMi-
croelectronics. Each ECG tracing lasts more than 1 hour and is
acquired during normal-life activities (e.g. resting, lying down,
walking, resting / walking after an effort): most of the heart
rates refer to r1 ∈ {80, 90, 100}. Due to the small distance
between electrodes, heartbeats in the B2B dataset are very
different from those in the LT-ST dataset.

1The exact number of floating point operations required by the OMP algo-
rithm to solve (12) is: 2κpn+2pn+2κ2p+3κp+2p+2κn+κ3+ 3

2
κ2+ κ

2
.
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Figure 3. Results on LT-ST dataset (a-b) and B2B dataset (c-d). (a) The median reconstruction error over all users. As expected, in case of Oracle solution
the reconstruction error is nearly constant w.r.t. to the heart rate, while it increases more significantly with r1 for all the other domain adaptation solutions,
confirming that the change in the heartbeat morphology becomes more evident for large heart rates. The proposed solution achieve the lowest reconstruction
error. (b) The median AUC for the considered anomaly detection problem computed over all the users. The proposed solution leads to the best domain
adaptation, although DTW achieves similar performance. (c) The boxplots of the reconstruction error computed over all the user in the datasets for each
domain adaptation solutions. (d) The boxplots of the AUC achieved by all solutions to detect inter-user anomalous heartbeats. The proposed solution achieves
the best performance according to both figures of merit, especially in case of r1 = 100.

B. Figures of Merit

We consider two tasks: signal reconstruction and anomaly
detection. Reconstruction error e(su,r1) indicates how good
the transformed dictionaries D̂u,r1 are at modeling normal
heartbeats in the target domain. The anomaly-detection perfor-
mance indicates the ability to distinguish heartbeats featuring
a morphology that is different from normal ones. As figures
of merit we consider the True Positive Rate (TPR) and the
False Positive Rate (FPR). Since both FPR and TPR depend on
the threshold γ in (13), we compute the Receiving Operating
Characteristic (ROC) curve by considering FPR and TPR for
several values of γ, and use the Area Under the ROC Curve
(AUC) as a global indicator.

C. Considered Solutions

We compare the proposed domain-adaptation solution with
the following ones.

Cut: Figure 1 suggests that the support of the heartbeats
contracts as the heart rate increase: thus the simplest form of
dictionary adaptation consists in transformations Fr1,r0 that
remove the first and the last samples in each column of Du,r0 .

DTW: we use dynamic time-warping [22], a classic algo-
rithm to align vectors and measure their similarity, to compute
the transformation matrix Fr1,r0 . For each pair of heartbeats
sr0 ∈ Rp(r0) and sr1 ∈ Rp(r1), dynamic time-warping com-
putes a non uniform resampling of sr0 and sr1 to obtain two
aligned vectors s̃r0 , s̃r1 ∈ Rp̃ having a common (and larger)
support p̃ ≥ p(r0), p(r1). These resamplings can be expressed
as s̃ri = Aisri , i = 0, 1, and are computed by minimizing the
euclidean distance between the aligned vectors. We estimate
the matrices Ai ∈ Rp̃×p(ri) by aligning the first principal
components of Su,r0 and Su,r1 . To obtain user-independent
transformations, we compute matrices Ai by minimizing the
sum of Euclidean distances between the aligned principal
components over all the users. Transformations {Fr1,r0} are
defined by setting Fr1,r0 = A+

r1Ar0 in (3), where A+
r1 denotes

the pseudo-inverse of Ar1 .
SDDL: this solution is obtained by adapting Shared

Domain-adaptive Dictionary Learning solution presented [15]
to our settings. The solution in [15] jointly learns two pro-
jections from the source and target domains onto a common

subspace together with a shared dictionary that provides sparse
representations of all the projected data. In SDDL we learn the
projections for each pair (r0, r1) from LT-ST dataset. Then, we
perform user-configuration by i) projecting the training source
heartbeats at heart rate r0 onto the low-dimensional subspace,
and ii) learning a user-specific dictionary by means of the
KSVD [2]. During online monitoring, we project each heart-
beat at heart rate r1 onto the low-dimensional subspaces using
the learned projection, compute the sparse representation w.r.t.
to the user-specific dictionary, and back-project the obtained
reconstruction to the target domain. The reconstruction error
is then the `2 norm of the difference between the original
heartbeat and the back-projected one.

Oracle: this is an ideal solution, which cannot be pursued
in practice as it uses a training set in each target domain.
Oracle represents an upper bound on the performance of
the considered domain-adaptation solutions. In particular, we
do not estimate any transformation Fr1,r0 , but directly a
dictionary Du,r1 from the training data Su,r1 using KSVD.

D. Experiments on LT-ST Dataset

We learn from the LT-ST dataset the transformations
{Fr1,r0} for the proposed and DTW solutions, as well as the
projection matrices of SDDL. Our goal is to assess whether
the learned transformations / projections can be used to adapt
dictionaries learned from users that were not in the training
set. To this purpose, we implement a leave-one-out procedure
where each test set contains heartbeats of a single user. As
in nested cross-validation, the training users are analyzed in
a 5-fold cross-validation scheme to learn the transformations
/ projections and tune hyper-parameters. In particular, we use
random search [23] to select hyper-parameters that minimize
the average reconstruction error of the heartbeats of the
validation users in the target domain. Heartbeats of the test
user are solely used for performance assessment.

Figure 3(a) shows that the median of the average recon-
struction errors over the users (the lower the better) steadily
increases with the heart rates and that the proposed solution
outperforms all the others, in particular of large r1. A Mann-
Whitney U test confirms that when r1 ≥ 80 the average
reconstruction error achieved by the proposed solution is lower



than that of the DTW (p-value < 0.001), which is the second-
best performing solution. When r1 = 75 there is no clear
statistical evidence (p-value = 0.02), since the morphologies
of source and target heartbeats are similar and the Cut so-
lution is also quite successful. In contrast, as r1 increases,
more flexible transformations are needed to perform domain-
adaptation. Figure 3(b) reports the median AUC (the higher
the better) at different heart rates, and that the best domain-
adaptation solution is the proposed one. DTW achieves similar
performance, and the Mann-Whitney U test confirms that
there is no significant differences between the two solutions.
Thus, anomalous heartbeats are better perceivable at low heart
rates, and dictionaries adapted using the baseline solution
perform comparably to ours even though they achieve lower
reconstruction performance. When the heart rate increases, it
is important to properly adapt the dictionaries to discriminate
normal and anomalous heartbeats. Not surprisingly, the Oracle
solution outperforms all the others and maintains a nearly
constant reconstruction error.

E. Experiments on B2B Dataset

We test whether transformations {Fr1,r0} learned on the LT-
ST dataset can successfully adapt dictionaries learned from the
B2B dataset. We learn a dictionary Du,r0 for each of the 7
users and transform them to operate at r1 ∈ {80, 90, 100}.
Transformed dictionaries are used as in previous heartbeats-
reconstruction and anomaly-detection experiments. The Oracle
solution has not been considered due to the lack of heartbeats
to properly learn the dictionary at some heart rates r1.

The box-plots of the reconstruction error in Figure 3(c)
are consistent with the previous results, indicating that the
proposed solution outperforms the others. To assess the
anomaly-detection performance, we proceed as in [6]: since
these tracings do not contain arrhythmias, we consider as
anomalies all the heartbeats coming from users that were
not in the training set. These artificially introduced inter-
user anomalies are good examples of heartbeats featuring a
different morphology. Boxplots in Figure 3(d) indicate that the
proposed solution is the one yielding the best AUC, and that
learned transformations can be successfully adapt dictionaries
on different devices.

VII. CONCLUSIONS

We address the domain-adaptation problem for dictionaries
yielding sparse representations of ECG tracings. We propose a
novel solution which learns user-independent transformations
from publicly available datasets, and then map user-specific
dictionaries to model heartbeats acquired at target heart rates.
Our experiments show that learned transformations can be
successfully applied on different users, confirming the intuition
that heartbeat variations due to heart rate changes are similar
for different users, even when their heartbeats feature different
morphologies. Most importantly, we show that the learned
transformations can be used to successfully adapt dictionaries
learned on different sensing devices. This has relevant impli-
cations in wearable device scenarios, for which we present

an optimized implementation of OMP. Ongoing work goes
in the direction of developing further solutions for online
ECG monitoring on wearable devices, including techniques to
automatically discard heartbeats corrupted by motion artifacts.
Moreover, we are investigating the use of our solution in other
scenarios where no training data in the target domain are
available, such as anomaly detection in images.
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