
1

Credit Card Fraud Detection: a Realistic Modeling
and a Novel Learning Strategy

Andrea Dal Pozzolo, Giacomo Boracchi, Olivier Caelen, Cesare Alippi, and Gianluca Bontempi

Abstract—Detecting frauds in credit card transactions is per-
haps one of the best testbeds for computational intelligence
algorithms. In fact, this problem involves a number of relevant
challenges, namely: concept drift (customers habits evolve and
fraudsters change their strategies over time), class imbalance
(genuine transactions far outnumber frauds) and verification
latency (only a small set of transactions are timely checked by
investigators). However, the vast majority of learning algorithms
that have been proposed for fraud detection, relies on assump-
tions that hardly hold in a real-world Fraud Detection System
(FDS). This lack of realism concerns two main aspects: i) the
way and timing with which supervised information is provided
and ii) the measures used to assess fraud-detection performance.

This paper has three major contributions. First we propose,
with the help of our industrial partner, a formalization of the
fraud-detection problem which realistically describes the operat-
ing conditions of FDSs that everyday analyze massive streams of
credit card transactions. We also illustrate the most appropriate
performance measures to be used for fraud-detection purposes.
Second, we design and assess a novel learning strategy which
effectively address class imbalance, concept drift and verification
latency. Third, in our experiments we demonstrate the impact
of class unbalance and concept drift in a real-world data stream
containing more than 75 millions transactions, authorized over
a time window of three years.

Index Terms—Credit Card Fraud Detection, Unbalanced Clas-
sification, Concept Drift, Learning in nonstationary environ-
ments.

I. INTRODUCTION

Credit card fraud detection is a relevant problem that
draws the attention of machine-learning and computational
intelligence communities, where large number of automatic
solutions have been proposed [1], [6], [8], [23], [24], [41],
[47], [55], [56], [66]. In fact, this problem appears to be
particularly challenging from a learning persepctive, since it
is characterized at the same time by class imbalance [21],
[22], namely genuine transactions far outnumber frauds, and
concept drift [4], [35], namely transactions might change their
statistical properties over time. These, however, are not the
only challenges characterizing learning problems in a real-
world Fraud-Detection System (FDS).

In a real-world FDS, the massive stream of payment re-
quests is quickly scanned by automatic tools that determine

Andrea Dal Pozzolo and Gianluca Bontempi are with the Ma-
chine Learning Group, Computer Science Department, Université Libre
de Bruxelles, Brussels, Belgium. (email: {adalpozz, gbonte}@ulb.ac.be).
Giacomo Boracchi and Cesare Alippi are with the Dipartimento di Elet-
tronica, Informazione e Bioingegneria, Politecnico di Milano, Italy. (email:
{giacomo.boracchi, cesare.alippi}@polimi.it). Cesare Alippi is also with
Università della Svizzera italiana, Switzerland. Olivier Caelen is with
the R&D High Processing & Volume team, Worldline, Belgium. (email:
olivier.caelen@worldline.com).

which transactions to authorize. Classifiers are typically em-
ployed to analyze all the authorized transactions and alert the
most suspicious ones. Alerts are then inspected by professional
investigators that contact the cardholders to determine the
true nature (either genuine or fraudulent) of each alerted
transaction. By doing this, investigators provide a feedback
to the system in the form of labeled transactions, which can
be used to train or update the classifier, in order to preserve
(or eventually improve) the fraud-detection performance over
time. The vast majority of transactions cannot be verified
by investigators for obvious time and cost constraints. These
transactions remain unlabeled until customers discover and
report frauds, or until a sufficient amount of time has elapsed
such that non-disputed transactions are considered genuine.

Thus, in practice, most of supervised samples are provided
with a substantial delay, a problem known as verification
latency [44]. The only recent supervised information made
available to update the classifier is provided through the alert-
feedback interaction. Most papers in the literature ignore
the verification latency [53] as well as the alert-feedback
interaction, and unrealistically assume that the label of each
transaction is regularly made available to the FDS, e.g., on a
daily basis (see, for instance [6], [8], [12], [23], [24], [28],
[47], [55]). However, these aspects have to be considered
when designing a real-world FDS, since verification latency
is harmful when concept drift occurs, and the alert-feedback
interaction is responsible of a sort of sample selection bias
(SSB) [19] that injects further differences between the distri-
bution of training and test data.

Another important difference between what is typically done
in the literature and the real-world operating conditions of
FDS concerns the measures used to assess the fraud-detection
performance. Most often, global ranking measures [23], [24],
[63], like the area under the ROC curve (AUC), or cost-based
measures [6], [47], [55] are used, but these ignore the fact that
only few alerts can be controlled everyday, and that companies
are very concerned of the precision of the generated alerts.

The main contributions of this paper are:
• We describe the mechanisms regulating a real-world FDS,

and provide a formal model of the articulated classifica-
tion problem to be addressed in fraud detection.

• We introduce the performance measures that are consid-
ered in a real-world FDS.

• Within this sound and realistic model, we propose an
effective learning strategy for addressing the above chal-
lenges, including the verification latency and the alert-
feedback interaction. This learning strategy is tested on
a large number of credit card transactions.

2

The paper is organized as follows. We first detail the
operating conditions of a real-world FDS (Section II), and then
(Section III) model the articulated fraud-detection problem and
present the most suitable performance measures. In particular,
we deem that it is most appropriate to assess the number of
detected fraudulent transactions (or cards) over the maximum
number of transactions (or cards) that investigators can check.
The main challenges raising when training a classifier for
fraud-detection purposes are then discussed in Section IV.
Section V introduces the proposed learning strategy, which
consists in separately training different classifiers from feed-
backs and delayed supervised samples, and then aggregating
their predictions. This strategy, inspired by the different nature
of feedbacks and delayed supervised samples, is shown to
be particularly effective in FDS using sliding window or
ensemble of classifiers. We validate our claims in experiments
(Section VI) on more than 75 million e-commerce credit card
transactions acquired over three years, which are also analyzed
to observe the impact of class imbalance and concept drift in
real-world transaction streams.

Our work builds upon our previous publication [20], which
we significantly extend by describing in detail the real-world
operating conditions of a FDS and by analyzing the SSB
introduced by the alert-feedback interaction. Furthermore, the
experimental section has been largely updated and completed
by presenting additional analysis over two large datasets.

II. REAL-WORLD FDS

Here we describe the main peculiarities and the operating
conditions of a real-world FDS, inspired by the one routinely
used by our industrial partner. Figure 1 illustrates the five
layers of control typically employed in a FDS: i) the Terminal,
ii) the Transaction Blocking Rules, iii) the Scoring Rules, iv)
the Data Driven Model (DDM) and v) the Investigators.

Layers i) - iv) fully implement automatic controls, while the
layer v) is the only one requiring human intervention.

A. Layers of Controls in a FDS

1) Terminal: The terminal represents the first control layer
in a FDS and performs conventional security checks on all
the payment requests [63]. Security checks include controlling
the PIN code (possible only in case of cards provided with
chip), the number of attempts, the card status (either active
or blocked), the balance available and the expenditure limit.
In case of online transactions, these operations have to be
performed in real time (response has to be provided in a few
milliseconds), during which the terminal queries a server of
the card issuing company. Requests that do not pass any of
these controls are denied, while the others become transaction
requests that are processed by the second layer of control.

2) Transaction-Blocking Rules: Transaction-blocking rules
are if-then (-else) statements meant to block transaction re-
quests that are clearly perceived as frauds. These rules use
the few information available when the payment is requested,
without analyzing historical records or cardholder profile. An
example of blocking rule could be: “IF internet transactions

AND unsecured website THEN deny the transaction”1. In
practice, several transaction-blocking rules are simultaneously
executed, and transactions firing any of these rules are blocked
(though cards are not deactivated). Transaction-blocking rules
are manually designed by the investigator and, as such, are
expert-driven components of the FDS. To guarantee real-time
operations and avoid blocking many genuine transactions,
blocking rules should be: i) quick to compute and ii) very
precise, namely should raise very few false alarms.

All transactions passing blocking rules are finally autho-
rized. However, the fraud detection activity continues after
having enriched transaction data with aggregated features
used to compare the current purchase against the previous
ones and the cardholder profile. These aggregated features
include, for instance, the average expenditure, the average
number of transactions in the same day or the location of
the previous purchases. The process of computing aggregated
features is referred to as feature augmentation and is described
in Section II-B. Augmented features and current transaction
data are stacked in a feature vector that is supposed to be
informative for determining whether the authorized transaction
is fraudulent or genuine. The following layers of the FDS
operate on this feature vector.

3) Scoring Rules: Scoring rules are also expert-driven mod-
els that are expressed as if-then (-else) statements. However,
these operate on feature vectors and assign a score to each
authorized transaction: the larger the score, the more likely
the transaction to be a fraud. Scoring rules are manually
designed by investigators, which arbitrarily define their as-
sociated scores. An example of scoring rule can be “IF
previous transaction in a different continent AND less than
one hour from the previous transaction THEN fraud score =
0.95”1. Unfortunately, scoring rules can detect only fraudulent
strategies that have already been discovered by investigators,
and that exhibit patterns involving few components of the
feature vectors. Moreover, scoring rules are rather subjective,
since different experts design different rules.

4) Data Driven Model (DDM): This layer is purely data
driven and adopts a classifier or another statistical model
to estimate the probability for each feature vector being a
fraud. This probability is used as the fraud score associated
to the authorized transactions. Thus, the data-driven model
is trained from a set of labeled transactions and can not be
interpreted or manually modified by investigators. An effective
data-driven model is expected to detect fraudulent patterns by
simultaneously analyzing multiple components of the feature
vector, possibly through nonlinear expressions. Therefore, the
DDM is expected to find frauds according to rules that go
beyond investigator experience, and that do not necessarily
correspond to interpretable rules.

This paper focuses on this component of the FDS and
proposes a strategy to design, train and update the DDM to
improve fraud-detection performance. Transactions associated
with feature vectors that have either received a large fraud
score or an high probability of being a fraud, generate alerts.

1These rules are confidential and we cannot disclose any of them. Here
we provide a realistic example to illustrate which sort of information can be
used in these rules.

3

Transaction Denied

InvestigatorsTerminal Blocking
Rules

Data Driven
Model

Scoring

Transaction Denied

Automatic Tools
 A

uthorized Transaction

A
lerts

Feedback

Human Supervision

FDS part we ModelExpert Driven Data Driven

Transaction

Transaction R

equest

Transaction A

ttem
pt

Correct PIN?
Sufficient Balance?

Active Account?

Disputed
Transactions

Real Time Near Real Time Offline

Rules

Fig. 1. A scheme illustrating the layers of control in a FDS. Our focus is mainly on the data-driven model and the alert-feedback interaction, which regulates
the way recent supervised samples are provided.

Only a limited number of alerted transactions are reported to
the investigators, which represent the final layer of control.

5) Investigators: Investigators are professionals experi-
enced in analyzing credit card transactions and are responsible
of the expert-driven layers of the FDS. In particular, investi-
gators design transaction-blocking and scoring rules.

Investigators are also in charge of controlling alerts raised
by the scoring rules and the DDM, to determine whether
these correspond to frauds or false alarms. In particular, they
visualize all the alerted transactions in a case management
tool, where all the information about the transaction is re-
ported, including the assigned scores/probabilities, which in
practice indicate how risky each transaction is. Investigators
call cardholders and, after having verified, assign the label
“genuine” or “fraudulent” to the alerted transaction, and return
this information to the FDS. In the following we refer to
these labeled transactions as feedbacks and use the term
alert-feedback interaction to describe this mechanism yielding
supervised information in a real-world FDS.

Any card that is found victim of a fraud is immediately
blocked, to prevent further fraudulent activities. Typically,
investigators check all the recent transactions from a com-
promised card, which means that each detected fraud can
potentially generate more than one feedback, not necessar-
ily corresponding to alerts or frauds. In a real-world FDS,
investigators can only check few alerts per day [45] as this
process can be long and tedious. Therefore, the primary goal

of a DDM is to return precise alerts, as investigators might
ignore further alerts when too many false alarms are reported.

B. Features Augmentation

Any transaction request is described by few variables such
as the merchant ID, cardholder ID, purchase amount, date and
time. All transactions requests passing the blocking rules are
entered in a database containing all recent authorized transac-
tions, where the feature-augmentation process starts. During
feature augmentation, a specific set of aggregated features
associated to each authorized transactions is computed, to
provide additional information about the purchase and better
discriminate frauds from genuine transactions. Examples of
aggregated features are the average expenditure of the cus-
tomer every week/month, the average number of transactions
per day or in the same shop, the average transaction amount,
the location of the last purchases [7], [8], [23], [41], [45], [66].
Van Vlasselaer et al. [63] show that additional informative
features can be extracted from the social networks connecting
the cardholders with merchants/shops.

Aggregated features are very informative, as they summa-
rize the recent cardholder activities. Thus, they allow to alert
transactions that are not suspicious by themselves but might
be unusual compared to the shopping habits of the specific
cardholder. Features augmentation can be computationally ex-
pensive, and aggregated features are often precomputed offline
for each cardholder on the basis of historical transactions.

4

Aggregated features are stacked with the transaction data in
the feature vector.

C. Supervised Information

Investigators’ feedbacks are the most recent supervised
information made available to the FDS, but represent only
a small fraction of the transactions processed every day [20].
Additional labeled transactions are provided by cardholders
that directly dispute unauthorized transactions [20], [63]. The
timing of disputed transactions can vary substantially, since
cardholders have different habits when checking the transcript
of credit card sent by the bank. Moreover, checking disputed
transactions entails some necessary administrative procedures
that might introduce substantial delays.

All other transactions remain unlabeled: these can be either
genuine transactions or frauds that were missed by the FDS
and ignored by the cardholders. However, after a certain
number of days have passed without cardholder dispute, all
the unreported transactions are considered genuine by default,
and inserted in the training set of the DDM.

Overall, there are two types of supervised information: i)
feedbacks provided by investigators which are limited in num-
ber but refer to recent transactions, and ii) delayed supervised
transactions, which are the vast majority for which the labels
become available after several days (e.g. one month). This
latter includes both disputed and non-disputed transactions.

D. System Update

Customers’ spending behavior evolves and fraudsters con-
tinuously design new attacks, thus their strategies also change
over time. It is then necessary to constantly update the
FDS to guarantee satisfactory performance. Expert-driven sys-
tems are regularly updated by investigators who add ad-hoc
(transaction-blocking or scoring) rules to counteract the onset
of new fraudulent activities and remove those rules liable of
too many false alerts. However, investigators can not modify
the DDM, since it is not interpretable and can be only updated
(e.g. re-trained) on the basis of recent supervised information,
as shown in Figure 1. This operation typically requires a large
number of labeled transactions, therefore, though investigators
steadily provide feedbacks during the day, the classifier is
usually updated/re-trained only once, notably at the end of
the day, when a sufficient number of feedbacks is available.

III. PROBLEM FORMULATION

Here, we model the classification problem to be addressed
in a real-world FDS, providing a formal description of the
alert-feedback interaction and presenting suitable performance
measures. The proposed learning strategy (Section V) and our
experiments (Section VI) are built upon this model.

Let xi denote the feature vector associated with the i-th
authorized transaction and yi ∈ {+,−} be the corresponding
class, where + denotes a fraud and − a genuine transaction.
To cope with the time-variant nature of the transaction stream,
a classifier K is updated (or newly retrained) every day. In
particular, we denote by Kt−1 the classifier that is trained on

supervised transactions available up to day t−1. The classifier
Kt−1 is then used to process the set of transactions Tt that
have been authorized at day t. We denote by PKt−1

(+|xi)
the posterior of Kt−1, namely the probability for xi to be a
fraud according to Kt−1. Investigators check only few, high-
risk, transactions. Thus, we model alerts as the k-most risky
transactions, namely

At = {xi ∈ Tt s.t. r(xi) ≤ k}, (1)

where r(xi) ∈ {1, . . . , |Tt|} is the rank of xi according to
PKt(+|xi), and k > 0 is the maximum number of alerts
that can be checked by investigators2. As discussed in Sec-
tion II-A5, investigators contact the cardholders and provide
supervised samples to the FDS in the form of feedbacks. In
particular, feedbacks include all recent transactions from the
controlled cards, which we model as:

Ft = {(xi, yi) s.t. xi is from cards(At)}, (2)

where cards(At) denotes the set of cards having at least
a transaction in At. The number of feedbacks, i.e., |Ft|,
depends on the number of transactions associated with the
k controlled cards. After a certain verification latency, the
labels of all the transactions are provided to the FDS, since,
as discussed in Section II-C, non-disputed transactions are
considered genuine. For the sake of simplicity, we assume
a constant verification latency of δ days, such that at day t
the labels of all the transactions authorized at day t − δ are
provided. We refer to these as delayed supervised samples:

Dt−δ = {(xi, yi), xi ∈ Tt−δ}. (3)

Note that Ft−δ ⊂ Dt−δ since transactions at day t−δ obviously
include those that have been alerted. Figure 2 illustrates the
different types of supervised information available in a FDS.

It is worth mentioning that, despite our formal description
includes several aspects and details that have been so far
ignored in the fraud-detection literature, this is still a sim-
plified model. In fact, alerts in a real-world FDS are typically
raised online while transactions are being processed, without
having to rank all transactions in Tt. Similarly, the delayed
supervised couples do not come all-at-once, as each disputed
transactions might take less (or possibly more) than δ days.
Notwithstanding, we deem that our formulation takes into
account the aspects of a real-world FDS that are the most
important ones from a learning perspective, which include
alerts, alter-feedback interaction and verification latency. We
further comment that in principle, since the classifier analyzes
each feature vector xi independently, it does not alert cards
receiving several risky transactions until any of these enters
in the pool of the alerts (1). However, these situations are
particularly relevant for investigators, and can be handled
either by: i) suitable scoring rules or ii) feature augmentation,
adding for instance a component that keeps track of the scores
of recent transactions.

Fraud-detection performance can be conveniently assessed
in terms of the alert precision Pk(t), which is defined as:

Pk(t) =
|TPk(t)|

k
(4)

2Throughout the paper we denote by |·| the cardinality of a set.

5

where TPk(t) = {(xi, yi) such that xi ∈ At, yi = +}. Thus,
Pk(t) is the proportion of frauds in the alerts At. Though
the classifier independently process each feature vector, the
alert precision would be more realistically measured in terms
of cards rather than authorized transactions. In fact, multiple
transactions in At from the same card should be counted as a
single alert, since investigators check all the recent transactions
when contacting cardholders. This implies that k depends
on the maximum number of cards that the investigators can
control. In this context, it is more informative to measure the
detection performance at the card level, such that multiple
fraudulent transactions from the same card count as a single
correct detection. Thus, we introduce CPk, the card precision,
as the proportion of fraudulent cards detected in the k cards
controlled by the investigators:

CPk(t) =
|C+
t |
k

, (5)

where C+
t denotes the set of fraudulent cards correctly detected

at day t, namely, fraudulent cards having reported at least one
alert. To correctly account for those days where less than k
cards are fraudulent, we define the normalized CPk(t) as:

NCPk(t) =
CPk(t)

Γ(t)
with Γ(t) =

{
1 if γt ≥ k
γt
k if γt < k

(6)

where Γ(t) is the maximum value of CPk(t) and γt is the
number of fraudulent cards at day t. From (6) we have that
NCPk(t) takes values in the range [0, 1], while CPk(t) is in
[0, 1] when γt > k and in [0, γtk] otherwise. For example,
if at day t we have correctly detected 40 fraudulent cards
(|C+

t | = 40) out of the k = 100 cards checked by investigators,
and the overall number of fraudulent cards is 50 (γt = 50),
then CPk(t) = 0.4 while NCPk(t) = 0.4

0.5 = 0.8.
Note that, since Γ(t) does not depend on the specific

classifier Kt−1 adopted, when the algorithm “A” is better than
algorithm “B” in terms of CPk, “A” is also better than “B”
in terms of NCPk. Moreover, because of verification latency,
the number of fraudulent cards in day t (i.e., γt), can be only
computed after few days, therefore NCPk cannot be computed
in real time. Thus we recommend using CPk for assessing the
running performance, while NCPk for backtesting e.g. when
testing different FDS configurations, as in Section VI-F.

IV. RELATED WORKS

A. Data-Driven Approaches in Credit Card Fraud Detection

Both supervised [8], [12], [15] and unsupervised [11],
[14], [62] methods have been proposed for credit card fraud-
detection purposes. Unsupervised methods consist in out-
lier/anomaly detection techniques that consider as a fraud
any transaction that does not conform with the majority.
Remarkably, an unsupervised DDM in a FDS can be directly
configured from unlabeled transactions. A well known method
is Peer Group Analysis [65], which clusters customers ac-
cording to their profile and identifies frauds as transactions
departing from the typical cardholder’s behavior (see also the
recent survey by Phua et al. [52]). The typical cardholder’s
behavior have also been modeled by means of self-organizing
maps [51], [54], [71].

t −1 t

Feedbacks)

Delayed)Samples)

t −δ

All)fraudulent)transac6ons)of)a)day)

All)genuine)transac6ons)of)a)day)
Fraudulent)transac6ons)in)the)feedbacks)
Genuine)transac6ons)in)the)feedbacks)

FtFt�1Ft�3Ft�4Ft�5Ft�6 Ft�2

Dt�7Dt�8

Ft�7Ft�8

Fig. 2. The supervised samples available at the end of day t include: i)
feedbacks (F(·)) and ii) delayed couples (D(·)) occurred before t− δ days.
In this plot we have assumed δ = 7. Patterns indicate different labels, and
the size of these regions indicates balanced / unbalanced class proportions.

Supervised methods are by far the most popular in fraud de-
tection, and exploit labeled transactions for training a classifier.
Frauds are detected by classifying feature vectors of the au-
thorized transactions or possibly by analyzing the posterior of
the classifier [10]. Several classification algorithms have been
tested on credit card transactions to detect frauds, including
Neural Networks [1], [12], [28], Logistic Regression [41], As-
sociation Rules [56], Support Vector Machines [66], Modified
Fisher Discriminant Analysis [47], and Decision Trees [6],
[24], [55]. Several studies have reported Random Forest to
achieve the best performance [8], [20], [23], [63], [66]: this
is one of the reasons why we adopt Random Forests in our
experiments.

B. Performance Measure for Fraud Detection

The typical performance measure for fraud-detection prob-
lems is the area under the ROC curve (AUC) [23], [24], [63].
AUC can be estimated by means of the Mann-Whitney statis-
tic [48] and its value can be interpreted as the probability that
a classifier ranks frauds higher than genuine transactions [37].
Another ranking measure frequently used in fraud detection is
Average Precision (AP) [23], which corresponds to the area
under the precision-recall curve. While these measures are
widely used in detection problems, cost-based measures have
been specifically designed for fraud-detection purposes. Cost-
based measures [6], [47], [55] quantify the monetary loss of a
fraud by means of a cost matrix that associates a cost to each
entry of the confusion matrix. Elkan [29] shows that a cost-
matrix may be misleading because the minimum/maximum
loss of the problem can change over time. To avoid this
problem, normalized cost [66] or savings [6] are used to asses
the performance w.r.t. the maximum loss.

We argue that performance measures should also account
for the investigators availability, as they have to check all the
alerts raised by the FDS. Given the limited time investigators
have, only a few alerts can be verified every day, thus an
effective FDS should provide investigators a small number of
reliable alerts. This is the reason why we have introduced the
alert-precision measures described in Section III.

6

C. Major Challenges To Be Addressed in a Real-World FDS

As anticipated in Section I, the major challenges to be
addressed when designing a FDS include: i) handling the
class imbalance, since legitimate transactions far outnumber
the fraudulent ones, ii) handling the concept drift since the
statistical properties of both frauds and genuine transactions
evolve with time and iii) operating with a small number
of recent supervised transactions, provided in the form of
investigators’ feedback.

1) Class Imbalance: Class distribution is extremely unbal-
anced in credit card transactions, since frauds are typically less
than 1% of the overall transactions, as shown in [24], [45] and
in our analysis (see Table I). Learning under class imbalance
has lately received a lot of attention, since traditional learning
methods yield classifiers that are poorly performing on the
minority class, which is definitively the class of interest in
detection problems. Several techniques have been proposed to
deal with class imbalance, and for a comprehensive overview
we refer the reader to [38]. The two main approaches for
dealing with class imbalance are: i) sampling methods and ii)
cost-based methods. Sampling methods are used to balance
the class distribution in the training set before running a tra-
ditional learning algorithm, while cost-based methods modify
the learning algorithm to assign a larger misclassification cost
to the minority class [29].

Sampling methods are divided in undersampling, which
balance the class proportions in the training set by removing
samples from the majority class, and oversampling ones, which
achieve the same goal by replicating training samples of
the minority class [21]. Advanced oversampling methods like
SMOTE [17] generate synthetic training instances from the
minority class by interpolation, instead of sample replication.

Cost-based methods do not need to balance the proportion
of training data, as they take into account different losses
for classification errors on samples belonging to the minority
and majority class. In credit card fraud detection, the cost
of a missed fraud is often assumed to be proportional to the
transaction amount [6], [47], [55], and this assigns a larger
misclassification cost to frauds, thus steering the classifier to
prefer false alerts rather than taking the risk of missing a fraud.
As a consequence, these algorithms might generate many false
positives while investigators require precise alerts.

2) Concept Drift: There are two main factors introducing
changes/evolutions in the stream of credit card transactions,
which in the literature are typically referred to as concept
drift [27], [35]. At first, genuine transactions evolve because
cardholders typically change their spending behaviors over
time (e.g., during holidays they purchase more and differently
from the rest of the year). Second, frauds change over time,
since new fraudulent activities are perpetrated. In our experi-
ments (see Section VI-D) we observe the evolving nature of
credit card transactions in two large datasets of real-world e-
commerce transactions. Learning under concept drift is one
of the major challenges that data-driven methods have to
face, since classifiers operating in these conditions have in
practice to autonomously identify the most relevant, up-to-
date, supervised information while ignoring the obsolete one.

Concept drift adaptation approaches can be divided in two
families: i) active adaptation and ii) passive adaptation.

Active approaches [4], [9], [34], [50], [60] use a change-
detection test [3] or other statistical triggers to monitor the
incoming data by analyzing the classification error and/or the
data distribution [2]. As soon as a change in the incoming
data is detected, adaptation is activated and the classifier
is updated/retrained on recent supervised samples that are
considered to be coherent with the current state of the process.
As such, active approaches are mostly suited when the data
distribution changes abruptly, and the process generating the
data shifts through a sequence of stationary states.

In passive approaches, the classifier is continuously up-
dated when new supervised samples become available, with-
out involving any explicit triggering mechanism. Ensemble
methods [23], [30], [43], [61], [72], and classifiers trained
over a sliding window of the recent supervised samples (like
STAGGER [57] and FLORA [67]) are probably the most
extensively investigated passive solutions. Passive approaches
are the more suitable ones in gradually drifting environments,
and when the supervised information is provided in batches.

When data streams are characterized by both concept drift
and unbalanced distributions, adaptation is often achieved by
combining ensemble methods and resampling techniques [26],
[36], [64]. An alternative approach consists in propagating the
training samples of the minority class over time [36], possibly
undersampling the majority class. Chen and He proposed
REA [18] which only propagates examples from the minority
class that belongs to the current concept.

3) Alert-Feedback Interaction and Sample Selection Bias:
The majority of classifiers used for credit card fraud detection
in the literature (e.g. [11], [12], [15]) are tested in experiments
where transaction labels are supposed to be available the very
next day since the transaction is authorized. In a real-world
FDS (Section II-C) the only recent supervised information
are the feedbacks Ft, provided by investigators, while the
vast majority of transactions authorized everyday does not
receive a label in a short time (|Ft| << |Tt|). Feedbacks are
not representative of the transactions processed everyday for
two main reasons: i) feedbacks contain transactions that are
characterized by a high probability of being frauds, and ii)
the proportion of frauds in the feedbacks is different from
the proportion of frauds occurring everyday. Thus, feedbacks
represent a sort of biased training set: this problem evokes
what is known in the literature as Sample Selection Bias
(SSB) [19].

A biased training set may hinder the performance of
learning algorithms, since training data do not match the
distribution of the test ones. The reader can refer to [49]
for a survey on SSB. Here we simply mention that there are
three different types of SSB: class-prior bias, feature bias (also
called covariate shift) and complete bias. A standard remedy
to SSB is importance weighting [32], [69], [70], namely semi-
supervised re-weighting techniques that assign larger weights
to those training samples that more closely resemble the data
distribution in the test set. The main idea of importance
weighting is to reduce the influence of the most biased samples
in the learning process. Ensembles of classifiers have been also

7

proposed to correct SSB [31].
The interaction between the FDS (raising alerts) and the

investigators (providing true labels) recalls the active learn-
ing scenario [58], where it is possible to select few –very
informative– samples and query their labels to an oracle
which in the FDS would be the investigators. However, this is
not feasible in a real-world FDS, since investigators have to
focus on the most suspicious transactions to detect the largest
number of frauds. Requests to check (possibly genuine) trans-
actions for obtaining informative samples would be ignored.
Considering the limited number of transactions investigators
can check, addressing these questions would necessarily imply
that some high-risk transaction is not being controlled, with
the consequent loss in detection performance.

V. THE PROPOSED LEARNING STRATEGY

It is important to stress that feedbacks (Ft) and delayed
samples (Dt−δ) are very different sets of supervised samples.
The first difference is quite evident: Ft provides recent, up-
to-date, information while Dt−δ might be already obsolete
for training a classifier that is meant to analyze transactions
that will be authorized the next day. The second difference
concerns the percentage of frauds in Ft and Dt−δ: while
the class proportion in Dt−δ is heavily skewed towards the
genuine class (see the proportions of frauds in Table I), the
number of frauds in Ft actually depends on the detection
performance of Kt−1, and high precision values might even
result in Ft skewed towards frauds. The third, and probably
the most subtle, difference is that supervised couples in Ft are
not independently drawn, but are instead transactions from
cards selected by Kt−1 as those that are most likely to have
been frauded. As such, Ft is affected by SSB and any classifier
trained on Ft would in principle learn how to label transactions
that are most likely to be fraudulent. Thus, this might not be in
principle precise on the vast majority of genuine transactions.

Our intuition is that feedbacks and delayed samples are rep-
resentative of two different classification problems, thus they
have to be separately handled. Therefore, our learning strategy
consists in training a classifier exclusively on feedbacks (i.e.,
Ft) and a classifier exclusively on delayed supervised samples
(i.e., Dt), and by aggregating their posterior probabilities when
defining PKt(+|xi) to determine which transactions to alert.

In the following we detail the proposed learning strategy,
where adaptation is performed according to a passive approach
and the classifier is updated everyday on a batch containing
the latest supervised couples available, either feedbacks or
delayed samples. As in Section III, we consider a constant
verification latency of δ days. In particular, to process the
transactions authorized at day t + 1, we rely on Q days
of feedbacks {Ft, . . . ,Ft−(Q−1)}, and M days of delayed
supervised samples {Dt−δ, . . . ,Dt−(δ+M−1)}, and these latter
obviously include the feedbacks received in the same days
(i.e., Fi ⊂ Di, i ≤ t − δ). Our learning strategy, which
is detailed in Algorithm 1, consists in separately training a
classifier Ft on feedbacks

Ft = TRAIN
(
{Ft, . . . ,Ft−(Q−1)}

)
(7)

and a classifier on delayed supervised samples

Dt = TRAIN
(
{Dt−δ, . . . ,Dt−(δ+M−1)}

)
(8)

and to detect frauds by the aggregation classifier At, whose
posterior probability is defined as:

PAt
(+|x) = αPFt

(+|x) + (1− α)PDt
(+|x) (9)

where 0 ≤ α ≤ 1 is the weight parameter that balances the
contribution of Ft and Dt. Thus, the posterior probability of
the classifier Kt, which alerts the transactions authorized at
day t+ 1, is given by (9).

The parameters Q and M , which respectively define how
many days of feedbacks and delayed supervised samples are
used for training our classifiers, have to be defined considering
the overall number of feedbacks and the percentage of frauds.
The training set of Ft approximately contains Q · |Ft| samples
(a different number of feedbacks might be provided everyday)
and this has to be a sufficiently large number to train a
classifier addressing quite a challenging classification problem
in high dimensions. However, Q can not be made arbitrarily
large, not to include old feedbacks. Similar considerations hold
when setting M , the considered number of days containing
delayed transactions, which have to include a sufficient number
of frauds. Note that it is nevertheless possible to include in the
training set of Ft feedbacks received before δ days (Q ≥ δ)
and in particular in our experiments we used Q = δ +M .

The rationale behind the proposed learning strategy is two-
fold. At first, by training a classifier (7) exclusively on feed-
backs, we guarantee larger relevance to these supervised sam-
ples, which would be otherwise outnumbered by the delayed
supervised samples. Second, we alert only those transactions
that both Ft and Dt consider most probably frauds: this
follows from the fact that, in practice, because of the large
number of transactions processed everyday, alerts corresponds
to values of PAt

that are very close to 1. Let us recall that
Ft, thus also At, is affected by SSB due to alert-feedback
interaction. The only training samples that are not affected
by SSB are the delayed supervised samples which, however,
might be obsolete because of concept drift.

A. Implementation of the Proposed Learning Strategy

In our experiments we implement the proposed learning
strategy in two different scenarios, which correspond to two
mainstream approaches for learning Dt. In the former, Dt
is a sliding window classifier as in [62], [63], which we
denote by WD

t , while in the latter Dt is an ensemble of
classifiers similar to [23], [36], which we denote by EDt . Both
the classifiers WD

t and EDt are trained on delayed samples
{Dt−δ, . . . ,Dt−(δ+M−1)}. However, while WD

t employs a
unique model to this purpose, EDt is an ensemble of M
classifiers {M1,M2, . . . ,MM} where each individual clas-
sifier Mi is trained on delayed samples of a different day,
i.e., Dt−δ−i, i = 0, . . . ,M − 1. The posterior PEDt (+|x)
is obtained by averaging the posterior probabilities of the
individual classifiers, i.e., PEDt (+|x) =

∑M
i PMi

(+|x)
M .

In the sliding window case, the proposed learning strat-
egy consists in analyzing the posterior of the classifier

8

Algorithm 1 Proposed Learning Strategy
Require: M and Q, i.e., the number of days of delayed

samples and feedbacks to use, respectively; Ft and Dt
classifiers previously trained.
Tt+1 ← transactions at day t+ 1.
for each transaction x ∈ Tt+1 do

compute PFt
(+, x)

compute PDt(+, x)
compute PAt(+, x) as in (9)

rank Tt+1 according to PAt(+, ·),
generate alerts At.
if update the classifier then

Ft+1 ← feedbacks from cards alerted in At.
Ft+1 ← TRAIN({Ft+1, . . . ,Ft−Q})
Dt+1−δ ← transactions authorized at t+ 1− δ
Dt+1 ← TRAIN({Dt+1−δ, . . . ,Dt−(δ+M)})

return Ft,Dt and At defined as in (9).

AWt , which aggregates Ft and WD
t , i.e., PAW

t
(+|x) =

αPFt
(+|x) + (1 − α)PWD

t
(+|x) as in (9). The benchmark

to compare against AWt is the classifier Wt, which is trained
on all the supervised transactions referring to the same
time interval (thus mixing delayed samples and feedbacks):
{Ft, . . . ,Ft−(δ−1),Dt−δ, . . . ,Dt−(δ+M−1)}.

Similarly, in the ensemble case, the proposed learning
strategy consists in analyzing the posterior of the classifier
AEt , which is obtained by aggregating the posteriors of Ft
and EDt , i.e., PAE

t
(+|x) = αPFt

(+|x) + (1 − α)PEDt (+|x),
as in (9). The benchmark to compare against AEt is the
classifier Et, whose individuals are {M1,M2, . . . ,MM ,Ft},
and whose posterior PEt(+|x) is estimated by averaging the
posterior probabilities of all its individuals, i.e., PEt(+|x) =∑M

i PMi
(+|x)+PFt (+|x)
M+1 .

In both aggregations AWt and AEt we set α = 0.5 to
give equal contribution to the feedback and delayed classi-
fier, as better discussed in Section VI-F. For all the base
classifiers involved (i.e., Ft,WD

t ,Wt,Mi, i = 1, . . . ,M) we
adopt Random Forest (RF) [13] having 100 tree each. Each
tree is trained on a balanced bootstrap sample, obtained by
randomly undersampling the majority class while preserving
all the minority class samples in the corresponding training
set. In this way, each tree is trained on randomly selected
genuine transactions and on the same fraud examples. This
undersampling strategy allows one to learn trees with balanced
distribution and to exploit many subsets of the majority class.
At the same time, the training times of these classifiers are
reasonably low. A drawback of undersampling is that we
potentially remove relevant training samples from the dataset,
though this problem is mitigated by the fact that we learn 100
different trees for each base classifier.

VI. EXPERIMENTS

Our experiments are organized as follows: in Section VI-A
we describe datasets and in Section VI-B we detail the
experimental settings. Section VI-C presents our first exper-
iment which uses the classifiers described in Section V-A

TABLE I
DATASETS

Id Start day End day # Days # Instances # Features % Fraud Trx
2013 2013-09-05 2014-01-18 136 21’830’330 51 0.19%

2014-2015 2014-08-05 2015-05-31 296 54’764’384 51 0.24%

to assess the effectiveness of the proposed learning strategy.
In the second experiment (Section VI-D) we analyze more
than 54 Millions of credit card transactions acquired over 10
months, and show that this stream is seriously affected by
concept drift. Then, to investigate the adaptation ability of
the proposed learning strategy, we synthetically introduce an
abrupt concept drift in specific locations of the transaction
stream, and assess the classification performance. In the third
experiment (Section VI-E) we investigate the sample-selection
bias introduced by the alert-feedback interaction, and we show
that importance weighting [19] – a conventional technique to
correct SSB – is not effective on training sets of feedbacks.
Finally, in Section VI-F we discuss the most important param-
eters influencing the proposed learning strategy.

A. Our Datasets

We use two large dataset of online e-commerce transactions
from European credit card holders, provided by our industrial
partner. Even though these transactions are not initiated from
a physical terminal, they undergo the same process described
in Figure 1. In Table I we provide all the information about
these datasets, which we denote as 2013 and 2014-2015,
and in particular we stress the extreme class-imbalance since
frauds account for about 0.2% of all transactions. As shown
in Figure 3, the number of frauds per day varies significantly
over time, and there are more fraudulent transactions than
fraudulent cards, indicating that sometimes multiple frauds
are perpetrated on the same card. The 2013 dataset has been
also used in [20] and part of this dataset have been suitably
anonymized and made publicly available for download [22].

To reliably assess the fraud-detection performance in terms
of Pk, we have removed the CARD ID component from all the
feature vectors. This is very important when testing a classifier
on a dataset of historical transactions, since a classifier that
receives in input the variable CARD ID might learn this as
a discriminative feature to detect multiple frauds from the
same card in different days (thus providing too optimistic
performance). However, in a real-world FDS, it is not possible
to have multiple frauds from the same card after having
detected the first one since, as discussed in Section II, that card
is immediately blocked. A different option would be to remove
all transactions of the same card after having detected the first
fraud. However, this would reduce the number of available
frauds, further worsening the class imbalance in our dataset.
Therefore, we consider the CARD ID exclusively to compute
the aggregated features, and do not include it in the feature
vectors.

B. Experimental Settings

In agreement with our industrial partner, we assumed that
investigators can check up to 100 cards alerted by the DDM

9

2013 20142015

0

500

1000

1500

2000

2500

Sep Oct Nov Dec Jan Oct Jan Apr

 Day

N
um

be
r

of
 fr

au
du

le
nt

 tr
an

sa
ct

io
ns

(a) Number of fraudulent transactions

2013 20142015

100

200

300

Oct Nov Dec Jan Oct Jan Apr

 Day

N
um

be
r

of
 fr

au
du

le
nt

 c
ar

ds

(b) Number of fraudulent cards

Fig. 3. Number of fraudulent transactions and cards per day in the datasets
described in Table I. It emerges that there are more fraudulent transactions
than cards, meaning that some cards have received more than a fraud.

every day. Thus, Ft, is everyday trained over Q days contain-
ing each alerted transactions from 100 different cardholders.
Let us recall that feedbacks depend on the actual classifier
requesting the labels. As such, the training set of Ft might be
different when used in At and when used standalone: in fact,
in the former case alerts depend also on the posterior of Dt,
while in the latter, alerts are uniquely determined by Ft.

We assess the overall fraud-detection performance in our
datasets both by averaging daily performance measures (Pk,
CPk and AUC) and also by analyzing the sum of classifiers’
ranks in each day. In particular, in each day j we rank the S
tested classifiers from the best to the least performing one, and
denote by rK,j ∈ {1, . . . , S} the rank of the classifier K on
day j: when K is the best classifier its rank is maximum,
i.e., rK,j = S, while when it is the worst rK,j = 1. As
recommended by Demšar [25], we perform a Friedman test
[33] and reject the null hypothesis that all the classifiers
achieve the same performance. Then, we define a global
ranking by summing all the daily ranks (see for instance Table
III): the larger the sum of ranks, the better the classifier, and
we use paired t-tests to determine whether the differences in
the global ranking are significant. In practice, for each pair
of classifiers K and H a t-test is used to compare their ranks
over all days (i.e., rK,j − rH,j , j ∈ {1, . . . , J}), being J the
number of days3.

Each experiment is repeated 10 times to reduce perfor-
mance’s variability, and when comparing classifiers on multi-
ple days we omit the index t from the classifier notation. In
most of our experiments we consider one week of verification

3Since the training sets used in consecutive days are largely overlapping,
the ranks are not independent and this might affect the significance of the
tests. In fact, when a classifier is outperforming others in one day, it is also
likely the same happens during the next few days. However, this is a standard
post-hoc analysis for non-parametric tests, such as the Friedman test [25].

FtFt�1Ft�3Ft�4Ft�5Ft�6 Ft�2Dt�7Dt�8

Wt

(a) Pooling together all labeled transactions

FtFt�1Ft�3Ft�4Ft�5Ft�6 Ft�2

Dt�7Dt�8

Ft�7Ft�8

Ft

WD
t AW

t

Rt

(b) Separating feedbacks and delayed samples

Fig. 4. Supervised information used by the classifiers considered in our
experiments. In this illustrative example we set δ = 7, M = 2 and
Q = 7 + 2 = 9.

TABLE II
CLASSIFIERS CONSIDERED IN OUR EXPERIMENTS.

Symbol supervised samples adaptation # days training
F feedbacks sliding Q
WD delayed sliding M
W feedbacks + delayed sliding δ +M
AW feedbacks + delayed sliding Q+M
R all the recent sliding δ
ED delayed ensemble M
E feedbacks + delayed ensemble δ +M
AE feedbacks + delayed ensemble Q+M

latency (δ = 7) and M = 8, such that the overall number
of feedbacks used is Q = M + δ = 15. In Section VI-F
we repeat the experiments considering a longer verification
latency δ = 15 and M = 15, Q = 30.

C. Separating Feedbacks From Delayed Supervised Samples

To assess the effectiveness of the proposed learning strategy,
we compare the performance of the proposed classifiers AW
(resp. AE) against the corresponding benchmarks introduced
in Section V-A and the classifiers used to define their posteri-
ors, i.e. F andWD (resp. ED). Figure 4 illustrates the training
set involved when using AWt and the related classifiers, while
Table II summarizes the most important parameters and the
training samples used by the considered classifiers.

In this experiment we have also included the ideal classifier
Rt which is trained on all transactions authorized between day
t and t−δ. This classifier is considered an ideal counterpart of
sliding window classifiers, which unrealistically assume that
investigators can everyday assign the correct label to each
authorized transaction. In particular, the training set of Rt is
not influenced by the alert-feedback interaction.

Table III shows the average Pk, CPk and AUC over all
the batches for the two datasets separately. The columns

10

comparison report the results of the paired t-test on the ranks
described above. Classifiers having the same letter cannot
be considered significantly different. In both datasets, AW
outperformsW in terms of Pk and CPk, and this indicates that
separating feedbacks and delayed samples is indeed a good
learning strategy. The same result holds for the considered
ensembles, i.e., AE and E . Since both AE and E average
the posteriors of their individuals, their difference consists
only in the aggregation weights: in AE 50% of the total
weight is assigned to PF (+|x) and the remaining 50% is
equally distributed to the other individuals. In contrast, in
E all the individuals contribute equally. The same relation
does not hold between AW and W , which are updated in
a sliding-window manner. However, also in this case we can
conclude that feedbacks are very informative and need to be
carefully considered to increase the alert precision. This is also
confirmed by the fact that F outperforms both WD and W .
As a general comment, we notice that CPk is typically lower
than Pk, since often, multiple frauds are perpetrated on the
same card.

Table III reports also the results in terms of AUC, a global
ranking measure that evaluates the classifier’s posteriors over
all the instances and not only in the top k (differently from CPk
and Pk). In terms of AUC the ideal classifier R is significantly
better than AW and F is by far the worse, indicating that F
is not effective when ranking all the transactions.

We interpret these results as follows: when the goal is
to obtain an accurate ranking of the most suspicious cards
(i.e., maximize CPk) we should assign larger weights to those
transactions that are as risky as those we want to predict, hence
using AW . On the contrary, a classifier trained on all daily
transactions (which are mostly genuine) is better at ranking all
the transactions, as it emerges from the AUC of R. In Table III
we can also see that R outperforms WD in terms of Pk,CPk
and AUC. This result suggests that the stream of credit card
transactions is nonstationary. In fact, both the training sets of
R and WD contain all transactions authorized in δ = 7 and
M = 8 consecutive days, respectively. Their major difference
is that R is trained on the most recent transactions, while
transactions in WD come with a lag of δ days. The fact that
R outperformsWD indicates that the most recent transactions
are more informative to detect frauds in the next days, thus
that the distribution of transaction is nonstationary.

The standard deviations of Pk and CPk, reported in Table
III, are rather high in particular if compared to those of the
AUC. As we discussed in Section III, and as shown in Figure
5, the values of CPk (and Pk as well) are heavily influenced by
the number of frauds occurring every day. Since this number
heavily fluctuates over time (see Figure 3), it is reasonable to
expect such a large dispersion. We remark that the comparison
between classifiers in Table III indicates that differences in
terms of performance are always significant, despite such a
large standard deviation. Notice that the values of NCPk (see
Table VI) are less affected by such fluctuations.

D. Concept Drift
In this section we first analyze the 2014-2015 dataset

which contains more than 54 millions transaction authorized

CP , 15 days averagek

C
P
 k

a)

number of fraudulent cards, 15 days average

b)

100

200

of

 fr
au

du
le

nt
 c

ar
ds

Fig. 5. a) The values of CPk for S, WD and AW on dataset 2014-2015;
b) the number of fraudulent cards on the same period. For the visualization
sake these values have averaged over a sliding window of 15 days. The peak
of CPk in plot a) corresponds to the peak in number of fraudulent cards in
plot b). This result confirms that the classifiers become more precise in those
days characterized by a large number of fraudulent cards.

over ten months and show that this stream is affected by
concept drift. To this purpose, we use a static classifier St,
which is initially trained on M days and never updated (such
that it initially coincides with WD

t), and compare it against
WD
t (which is instead regularly updated) and AWt (which

also leverages updated supervised samples). In a stationary
classification problem, the two classifiers S and WD would
perform similarly. The fact that St outperforms WD

t over
time (see Figure 5.a) confirms that this dataset is affected by
concept drift. While it might not sound surprising that the
stream of credit card transactions is nonstationary, ours is, to
the best of our knowledge, the first analysis on the impact of
concept drift on such a large transaction dataset.

Figure 5.a also shows that the proposed AW always
achieves superior performance in terms of CPk, demonstrating
a better adaptation to concept drift. It is worth noting that the
performance of all the classifiers in Figure 5.a fluctuate quite
heavily and report a peak during February 2015. This is indeed
the month having the largest number of fraudulent cards in our
dataset (which is reported in Figure 5.b). In contrast, during
October 2014 (the period exhibiting the lowest number of
fraudulent cards in our dataset) all the classifiers achieve low
values of CPk. Thus, Figure 5 confirms that the alert precision
heavily depends on the number of fraudulent cards in a day.

To further investigate the adaptation performance of AW in
nonstationary environments, we assess its adaptation abilities
with respect to an artificially introduced concept drift. In par-
ticular, we artificially introduce changes at known locations,
adding an abrupt drift on top of the (gradual) one affecting
the transaction stream, which we have previously discussed.
As in [20], we prepared 10 short streams by juxtaposing
transactions authorized in two non consecutive months. Each

11

TABLE III
FRAUD-DETECTION PERFORMANCE WHEN USING 15 DAYS OF TRANSACTIONS (δ = 7, M = 8, Q = 15)

Classifier Dataset Average Pk Average CPk Average AUC
mean (std) sum of ranks comparison mean (std) sum of ranks comparison mean (std) sum of ranks comparison

AW 2014-2015 0.77 (0.21) 1796.50 a 0.37 (0.18) 1824.00 a 0.94 (0.02) 1396.00 b
F 2014-2015 0.73 (0.23) 1632.00 b 0.32 (0.17) 1505.00 b 0.87 (0.05) 409.00 e
R 2014-2015 0.63 (0.24) 1156.00 c 0.30 (0.18) 1354.50 c 0.96 (0.02) 1822.00 a
W 2014-2015 0.61 (0.25) 1055.50 d 0.25 (0.14) 955.00 d 0.91 (0.04) 865.00 d
WD 2014-2015 0.57 (0.26) 889.00 e 0.25 (0.14) 885.00 e 0.94 (0.03) 1315.00 c
AW 2013 0.75 (0.20) 732.00 a 0.35 (0.12) 754.50 a 0.94 (0.03) 631.00 b
F 2013 0.73 (0.21) 693.00 b 0.32 (0.13) 670.50 b 0.89 (0.05) 229.00 e
R 2013 0.58 (0.22) 493.50 c 0.25 (0.11) 514.00 c 0.96 (0.01) 736.00 a
W 2013 0.54 (0.25) 434.00 d 0.22 (0.11) 387.00 d 0.91 (0.05) 355.00 d
WD 2013 0.50 (0.23) 345.00 e 0.21 (0.09) 330.00 e 0.93 (0.03) 539.00 c
AE 2014-2015 0.77 (0.21) 981.50 a 0.39 (0.17) 940.00 a 0.94 (0.03) 873.00 b
F 2014-2015 0.73 (0.23) 827.50 b 0.36 (0.17) 800.50 b 0.87 (0.06) 294.00 d
E 2014-2015 0.66 (0.25) 637.50 c 0.26 (0.14) 533.50 c 0.94 (0.03) 943.00 a
ED 2014-2015 0.54 (0.26) 323.50 d 0.23 (0.12) 276.00 d 0.93 (0.03) 660.00 c
AE 2013 0.76 (0.20) 410.50 a 0.37 (0.14) 335.00 a 0.94 (0.02) 380.00 a
F 2013 0.73 (0.21) 354.00 b 0.35 (0.15) 285.00 b 0.89 (0.04) 129.00 c
E 2013 0.62 (0.23) 246.50 c 0.24 (0.11) 193.00 c 0.93 (0.03) 374.00 a
ED 2013 0.48 (0.24) 119.00 d 0.20 (0.11) 97.00 d 0.93 (0.03) 247.00 b

of these streams contains an abrupt concept drift in the middle,
which should be more clearly perceivable when the time
distance between the juxtaposed months increases. To assess
the adaptation ability of the proposed learning strategy, we
compare the performance of AW and WD in terms of CPk.
In particular, we measure the relative performance loss due to
concept drift as the difference between the CPk in the first
and the second month, divided by the value of CPk in the first
month. Our experiments show that on these 10 datasets the
CPk of AW decays of 7.7%, while the CPk of WD decays of
12.5%, confirming the superior adaptation performance of the
proposed learning strategy.

E. Sample Selection Bias Due to Alert-Feedback Interaction

Here we investigate whether importance weighting [19], a
mainstream solution to correct SSB, can successfully compen-
sate the SSB introduced by the alert-feedback interaction. To
this purpose, we consider the feedback classifier Ft, as this
is the one mainly affected by the SSB due to alert-feedback
interaction, and use a weight-sensitive implementation of the
Random Forests based on conditional inference trees [40].

Importance weighting [32], [69], [70] consists of re-
weighting each training sample in Ft using the following
weight:

w =
P(s = 1)

P(s = 1|x, y)
, (10)

where s is a selection variable that associates to each sample in
Tt the value 1 if the transaction is in Ft and 0 otherwise. Thus,
P(s = 1|x, y) corresponds to the probability for a sample
(x, y) to be in the training set Ft. The definition of weights
in (10) follows from the Bayes theorem and the fact that it is
possible to express (as in [19]) the unbiased join distribution
P(x, y) w.r.t. the biased joint distribution P(x, y|s = 1) as

P(x, y) =
P(s = 1)

P(s = 1|x, y)
P(x, y|s = 1) = wP(x, y|s = 1).

Table IV reports the performance achieved when correcting
the SSB using weights provided by (10) and it emerges

TABLE IV
AVERAGE Pk , CPk AND AUC FOR Ft WHEN Q = 15.

metric mean sd dataset
Pk 0.68 0.26 2014-2015
Pk 0.59 0.26 2013

CPk 0.26 0.16 2014-2015
CPk 0.25 0.13 2013
AUC 0.85 0.06 2014-2015
AUC 0.85 0.06 2013

that these are lower than the performance achieved by F in
Table III. Importance weighting does not actually improve the
performance of F , which we interpret as a failure when com-
pensating the SSB introduced by the alert-feedback interaction.

We believe that importance weighting turns to be ineffective
since P(s = 1|x, y) and P(+|x) in (10) are highly correlated,
due to the alert-feedback interaction. It means that, the more
a transaction is likely to be considered risky, the larger the
probability P(s = 1|x, y) and the lower is its weight in (10),
accordingly. Thus, importance weighting lowers the influence
of those samples within the feedbacks that are more likely to
be a fraud, and this negatively impacts on the alert precision.

As a sanity check, we repeated this experiment in a frame-
work where recent supervised samples are not provided by
the alert-feedback interaction but are randomly selected (in the
same number and class proportions of the above experiment)
among transactions having amount larger than e 500. This
form of SSB is referred to as covariate shift [42], [59], [68],
since we have P(s|y, x) = P(s|x), i.e., given the input x,
the selection variable s is independent of the class y. In this
case, importance weighting was able to correctly compensate
for this bias, and the de-biased classifier outperforms a similar
classifier trained without correcting the SSB.

F. Influence of Parameters

Here we show how the performance of Ft and AWt are
influenced by: i) the number of feedback days considered to
train our classifiers (i.e., Q), ii) the number of cards that are
everyday controlled by investigators, iii) the parameter α that

12

TABLE V
AVERAGE CPk WHEN USING 30 DAYS (δ = 15, M = 15, Q = 30).

classifier mean sd sum of ranks comparison dataset
AW 0.38 0.17 1671.00 a 2014-2015
F 0.36 0.17 1482.50 b 2014-2015
R 0.31 0.17 1234.50 c 2014-2015
W 0.25 0.13 850.50 d 2014-2015
WD 0.24 0.12 705.50 e 2014-2015
S 0.23 0.12 605.50 f 2014-2015
AW 0.38 0.14 609.00 a 2013
F 0.35 0.14 541.00 b 2013
R 0.27 0.11 411.50 c 2013
W 0.25 0.13 325.50 d 2013
WD 0.24 0.12 281.00 e 2013
S 0.20 0.12 198.00 f 2013

regulates the aggregation classifier in (9). To this purpose we
consider δ = 15 days of verification latency, such that Ft
is trained on 30 days of feedbacks (Q = 30, M = 15,
δ = 15) and the delayed supervised samples come after 15
days. Table V shows that F is better in terms of CPk when
it is trained using Q = 30 days of feedbacks than Q = 15
(see Table III). The same holds for AW , as a consequence of
the superior performance achieved by F . Therefore, the larger
amount of feedbacks used during training well compensate in
this case the increase of verification latency.

We repeat this experiment by considering a larger number
of feedbacks per day, to show how this parameter influences
the performance of F and AW . In Table VI we assume that
investigators are able to check more than 100 cards, and
report the fraud-detection performance in terms of NCPk to
properly assess the alert precision when more cards can be
controlled. This result confirms that having more feedbacks
guarantees superior fraud-detection performance. This analysis
can be considered as a guideline for companies that have
to decide whether the costs of hiring more investigators
is compensated by the expected improvement in the fraud-
detection performance.

Another important parameter in our learning strategy is α,
which balances the contribution of the feedback and delayed
classifiers in (9). This was empirically set to 0.5 after having
investigated multiple strategies to make this parameter adap-
tive on a daily basis. Our idea was to take into account the
precision (or other performance measures) achieved during day
t−1 by the Ft−1 and Dt−1, and then assigning weights to Ft
and Dt accordingly (the best the classifier was during day t−1,
the larger the weight during day t). Unfortunately, none of the
implemented solutions seemed to outperforms the average of
the two posteriors, i.e., αt = 0.5 ∀t.

Thus, we ran an extensive simulation on the sliding window
solution, where we tested everyday αt ∈ {0.1, 0.2, . . . , 0.9}
and then we choose α∗t as the one yielding the aggregation
performing at best in terms of Pk. Such an optimal selec-
tion of weights is of course not feasible in a real-world
FDS, as it would necessary require to request feedbacks for
each αt ∈ {0.1, 0.2, . . . , 0.9}. However, setting everyday
α∗t yielded minimal improvements with respect to setting
αt = 0.5 ∀t. This can be explained by the fact that α∗t had a
peaked distribution about 0.5, having mean(α∗t) ≈ 0.52. The
Pk value was steadily decreasing when approaching α = 0.1
and α = 0.9, indicating that extreme values of α are very

TABLE VI
AVERAGE NCPk WHEN k ≥ 100 IN THE 2013 DATASET (δ = 15).

classifier mean sd sum of ranks comparison k

AW 0.48 0.09 506.00 a 300
F 0.46 0.10 448.00 b 300
W 0.38 0.11 283.00 c 300
WD 0.35 0.10 172.50 d 300
AW 0.41 0.10 519.50 a 150
F 0.38 0.10 441.50 b 150
W 0.29 0.10 272.50 c 150
WD 0.27 0.09 179.50 d 150
AW 0.40 0.13 518.50 a 100
F 0.37 0.13 443.00 b 100
R 0.29 0.10 342.50 c 100
WD 0.26 0.11 249.00 d 100

seldom the best option. In these extreme cases, At approaches
either Dt or Ft (which are shown not to be the best options)
and the classifier receiving the lowest weight has little chances
to request feedbacks in order to improve its performance and
increase its weight.

VII. CONCLUSIONS

The majority of works addressing the fraud-detection prob-
lem in credit card transactions (e.g. [5], [23], [63]) unrealisti-
cally assumes that the class of each transaction is immediately
provided for training the classifier. Here we analyze in detail
the real-world working conditions of FDS and provide a formal
description of the articulated classification problem involved.
In particular, we have described the alert-feedback interaction,
which is the mechanism providing recent supervised samples
to train/update the classifier. We also claim that, in contrast
with traditional performance measures used in the literature,
in a real-world FDS, the precision of the reported alerts is
probably the most meaningful one, since investigators can
check only few alerts.

Our experiments on two vast datasets of real-world transac-
tions show that, in order to get precise alerts, it is mandatory
to assign larger importance to feedbacks during the learning
problem. Not surprisingly, feedbacks play a central role in
the proposed learning strategy, which consists in separately
training a classifier on feedbacks and a classifier on delayed
supervised samples, and then aggregating their posteriors to
identify alerts. Our experiments also show that solutions which
lower the influence of feedbacks in the learning process (e.g.
classifiers that mix feedbacks and delayed supervised samples
or that implement instance weighting schemes) are often
returning less precise alerts.

Future work concerns the study of adaptive and possibly
non-linear aggregation methods for the classifiers trained on
feedbacks and delayed supervised samples. We also expect to
further increase the alert precision by implementing a learning
to rank approach [46] that would be specifically designed to
replace the linear aggregation of the posterior probabilities.
Finally, a very promising research direction concerns semi-
supervised learning methods [16], [39] for exploiting in the
learning process also few recent, unlabeled transactions.

ACKNOWLEDGMENT

A. Dal Pozzolo was supported by the Doctiris scholarship,
G. Bontempi by the projects BridgeIRIS and BruFence funded
by Innoviris, Belgium.

13

REFERENCES

[1] E. Aleskerov, B. Freisleben, and B. Rao. Cardwatch: A neural network
based database mining system for credit card fraud detection. In
Computational Intelligence for Financial Engineering, pages 220–226.
IEEE/IAFE, 1997.

[2] C. Alippi, G. Boracchi, and M. Roveri. A just-in-time adaptive
classification system based on the intersection of confidence intervals
rule. Neural Networks, 24(8):791–800, 2011.

[3] C. Alippi, G. Boracchi, and M. Roveri. Hierarchical change-detection
tests. Transactions on Neural Networks and Learning Systems,
PP(99):1–13, 2016.

[4] C. Alippi, G. Boracchi, and M. Roveri. Just-in-time classifiers for
recurrent concepts. Transactions on Neural Networks and Learning
Systems, 24(4):620–634, April.

[5] B. Baesens, V. Van Vlasselaer, and W. Verbeke. Fraud Analytics Using
Descriptive, Predictive, and Social Network Techniques: A Guide to
Data Science for Fraud Detection. John Wiley & Sons, 2015.

[6] A. C. Bahnsen, D. Aouada, and B. Ottersten. Example-dependent cost-
sensitive decision trees. Expert Systems with Applications, 2015.

[7] A. C. Bahnsen, D. Aouada, A. Stojanovic, et al. Detecting credit card
fraud using periodic features. In 14th International Conference on
Machine Learning and Applications, pages 208–213. IEEE, 2015.

[8] S. Bhattacharyya, S. Jha, K. Tharakunnel, and J. C. Westland. Data
mining for credit card fraud: A comparative study. Decision Support
Systems, 50(3):602–613, 2011.

[9] A. Bifet and R. Gavalda. Learning from time-changing data with
adaptive windowing. In SDM, volume 7, page 2007. SIAM, 2007.

[10] R. Bolton and D. Hand. Statistical fraud detection: A review. Statistical
Science, pages 235–249, 2002.

[11] R. J. Bolton and D. J. Hand. Unsupervised profiling methods for fraud
detection. Credit Scoring and Credit Control VII, pages 235–255, 2001.

[12] R. Brause, T. Langsdorf, and M. Hepp. Neural data mining for credit
card fraud detection. In Tools with Artificial Intelligence, pages 103–106.
IEEE, 1999.

[13] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[14] M. Carminati, R. Caron, F. Maggi, I. Epifani, and S. Zanero. BankSealer:

An Online Banking Fraud Analysis and Decision Support System, pages
380–394. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

[15] P. Chan, W. Fan, A. Prodromidis, and S. Stolfo. Distributed data mining
in credit card fraud detection. Intelligent Systems and their Applications,
14(6):67–74, 1999.

[16] O. Chapelle, B. Schölkopf, A. Zien, et al. Semi-supervised learning.
page 528, 2006.

[17] N. Chawla, K. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote:
synthetic minority over-sampling technique. Journal of Artificial Intel-
ligence Research (JAIR), 16:321–357, 2002.

[18] S. Chen and H. He. Towards incremental learning of nonstationary
imbalanced data stream: a multiple selectively recursive approach.
Evolving Systems, 2(1):35–50, 2011.

[19] C. Cortes, M. Mohri, M. Riley, and A. Rostamizadeh. Sample selection
bias correction theory. In Algorithmic learning theory, pages 38–53.
Springer, 2008.

[20] A. Dal Pozzolo, G. Boracchi, O. Caelen, C. Alippi, and G. Bontempi.
Credit card fraud detection and concept-drift adaptation with delayed
supervised information. In International Joint Conference on Neural
Networks. IEEE, 2015.

[21] A. Dal Pozzolo, O. Caelen, and G. Bontempi. When is undersampling
effective in unbalanced classification tasks? In Machine Learning and
Knowledge Discovery in Databases. Springer, 2015.

[22] A. Dal Pozzolo, O. Caelen, R. A. Johnson, and G. Bontempi. Cal-
ibrating probability with undersampling for unbalanced classification.
In Computational Intelligence, 2015 IEEE Symposium Series on, pages
159–166. IEEE, 2015.

[23] A. Dal Pozzolo, O. Caelen, Y.-A. Le Borgne, S. Waterschoot, and
G. Bontempi. Learned lessons in credit card fraud detection from a
practitioner perspective. Expert Systems with Applications, 41(10):4915–
4928, 2014.

[24] A. Dal Pozzolo, R. A. Johnson, O. Caelen, S. Waterschoot, N. V. Chawla,
and G. Bontempi. Using HDDT to avoid instances propagation in
unbalanced and evolving data streams. In International Joint Conference
on Neural Networks, pages 588–594. IEEE, 2014.

[25] J. Demšar. Statistical comparisons of classifiers over multiple data sets.
The Journal of Machine Learning Research, 7:1–30, 2006.

[26] G. Ditzler and R. Polikar. Incremental learning of concept drift from
streaming imbalanced data. Transactions on Knowledge and Data
Engineering, 25(10):2283–2301, 2013.

[27] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar. Learning in nonsta-
tionary environments: A survey. Computational Intelligence Magazine,
IEEE, 10(4):12–25, 2015.

[28] J. Dorronsoro, F. Ginel, C. Sgnchez, and C. Cruz. Neural fraud detection
in credit card operations. Neural Networks, 8(4):827–834, 1997.

[29] C. Elkan. The foundations of cost-sensitive learning. In International
Joint Conference on Artificial Intelligence, volume 17, pages 973–978.
Citeseer, 2001.

[30] R. Elwell and R. Polikar. Incremental learning of concept drift in nonsta-
tionary environments. Transactions on Neural Networks,, 22(10):1517–
1531, 2011.

[31] W. Fan and I. Davidson. On sample selection bias and its efficient
correction via model averaging and unlabeled examples. In SDM, pages
320–331. SIAM, 2007.

[32] W. Fan, I. Davidson, B. Zadrozny, and P. S. Yu. An improved
categorization of classifier’s sensitivity on sample selection bias. In
5th International Conference on Data Mining, pages 4–pp. IEEE, 2005.

[33] M. Friedman. The use of ranks to avoid the assumption of normality
implicit in the analysis of variance. Journal of the American Statistical
Association, 32(200):675–701, 1937.

[34] J. Gama, P. Medas, G. Castillo, and P. Rodrigues. Learning with
drift detection. In Advances in artificial intelligence, pages 286–295.
Springer, 2004.

[35] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia. A
survey on concept drift adaptation. ACM Computing Surveys (CSUR),
46(4):44, 2014.

[36] J. Gao, B. Ding, W. Fan, J. Han, and P. S. Yu. Classifying data streams
with skewed class distributions and concept drifts. Internet Computing,
12(6):37–49, 2008.

[37] D. Hand. Measuring classifier performance: a coherent alternative to the
area under the roc curve. Machine learning, 77(1):103–123, 2009.

[38] H. He and E. A. Garcia. Learning from imbalanced data. Transactions
on Knowledge and Data Engineering, 21(9):1263–1284, 2009.

[39] M. J. Hosseini, A. Gholipour, and H. Beigy. An ensemble of cluster-
based classifiers for semi-supervised classification of non-stationary data
streams. Knowledge and Information Systems, 46(3):567–597, 2016.

[40] T. Hothorn, P. Bühlmann, S. Dudoit, A. Molinaro, and M. J. Van
Der Laan. Survival ensembles. Biostatistics, 7(3):355–373, 2006.

[41] S. Jha, M. Guillen, and J. C. Westland. Employing transaction ag-
gregation strategy to detect credit card fraud. Expert systems with
applications, 39(16):12650–12657, 2012.

[42] M. G. Kelly, D. J. Hand, and N. M. Adams. The impact of changing
populations on classifier performance. In 25th International Conference
on Knowledge Discovery and Data Mining, pages 367–371. ACM, 1999.

[43] J. Z. Kolter and M. A. Maloof. Dynamic weighted majority: An
ensemble method for drifting concepts. The Journal of Machine
Learning Research, 8:2755–2790, 2007.

[44] G. Krempl and V. Hofer. Classification in presence of drift and latency.
In 11th Data Mining Workshops, pages 596–603. IEEE, 2011.

[45] M. Krivko. A hybrid model for plastic card fraud detection systems.
Expert Systems with Applications, 37(8):6070–6076, 2010.

[46] T.-Y. Liu. Learning to rank for information retrieval. Foundations and
Trends in Information Retrieval, 3(3):225–331, 2009.

[47] N. Mahmoudi and E. Duman. Detecting credit card fraud by mod-
ified fisher discriminant analysis. Expert Systems with Applications,
42(5):2510–2516, 2015.

[48] H. B. Mann and D. R. Whitney. On a test of whether one of two
random variables is stochastically larger than the other. The annals of
mathematical statistics, pages 50–60, 1947.

[49] J. G. Moreno-Torres, T. Raeder, R. Alaiz-Rodrı́guez, N. V. Chawla, and
F. Herrera. A unifying view on dataset shift in classification. Pattern
Recognition, 45(1):521–530, 2012.

[50] K. Nishida and K. Yamauchi. Detecting concept drift using statistical
testing. In Discovery Science, pages 264–269. Springer, 2007.

[51] D. Olszewski. Fraud detection using self-organizing map visualizing the
user profiles. Knowledge-Based Systems, 70:324–334, 2014.

[52] C. Phua, V. Lee, K. Smith, and R. Gayler. A comprehensive survey of
data mining-based fraud detection research. arXiv:1009.6119, 2010.

[53] J. Plasse and N. Adams. Handling delayed labels in temporally evolving
data streams. In International Conference on Big Data, pages 2416–
2424. IEEE, 2016.

[54] J. T. Quah and M. Sriganesh. Real-time credit card fraud detection
using computational intelligence. Expert Systems with Applications,
35(4):1721–1732, 2008.

[55] Y. Sahin, S. Bulkan, and E. Duman. A cost-sensitive decision tree
approach for fraud detection. Expert Systems with Applications,
40(15):5916–5923, 2013.

14

[56] D. Sánchez, M. Vila, L. Cerda, and J. Serrano. Association rules
applied to credit card fraud detection. Expert Systems with Applications,
36(2):3630–3640, 2009.

[57] J. C. Schlimmer and R. H. Granger Jr. Incremental learning from noisy
data. Machine learning, 1(3):317–354, 1986.

[58] B. Settles. Active learning literature survey. University of Wisconsin,
Madison, 52:55–66, 2010.

[59] H. Shimodaira. Improving predictive inference under covariate shift by
weighting the log-likelihood function. Journal of statistical planning
and inference, 90(2):227–244, 2000.

[60] P. Sobhani and H. Beigy. New drift detection method for data streams.
Springer, 2011.

[61] W. N. Street and Y. Kim. A streaming ensemble algorithm (SEA) for
large-scale classification. In 7th International Conference on Knowledge
Discovery and Data Mining, pages 377–382. ACM, 2001.

[62] D. K. Tasoulis, N. M. Adams, and D. J. Hand. Unsupervised clustering in
streaming data. In Intenational Conference on Data Mining Workshops,
pages 638–642, 2006.

[63] V. Van Vlasselaer, C. Bravo, O. Caelen, T. Eliassi-Rad, L. Akoglu,
M. Snoeck, and B. Baesens. Apate: A novel approach for automated
credit card transaction fraud detection using network-based extensions.
Decision Support Systems, 2015.

[64] S. Wang, L. L. Minku, and X. Yao. Resampling-based ensemble methods
for online class imbalance learning. Transactions on Knowledge and
Data Engineering, 27(5):1356–1368, May 2015.

[65] D. Weston, D. Hand, N. Adams, C. Whitrow, and P. Juszczak. Plastic
card fraud detection using peer group analysis. Advances in Data
Analysis and Classification, 2(1):45–62, 2008.

[66] C. Whitrow, D. J. Hand, P. Juszczak, D. Weston, and N. M. Adams.
Transaction aggregation as a strategy for credit card fraud detection.
Data Mining and Knowledge Discovery, 18(1):30–55, 2009.

[67] G. Widmer and M. Kubat. Learning in the presence of concept drift
and hidden contexts. Machine learning, 23(1):69–101, 1996.

[68] K. Yamazaki, M. Kawanabe, S. Watanabe, M. Sugiyama, and K.-R.
Müller. Asymptotic bayesian generalization error when training and test
distributions are different. In 24th International Conference on Machine
learning, pages 1079–1086. ACM, 2007.

[69] B. Zadrozny. Learning and evaluating classifiers under sample selection
bias. In 21st International Conference on Machine learning, page 114.
ACM, 2004.

[70] B. Zadrozny, J. Langford, and N. Abe. Cost-sensitive learning by cost-
proportionate example weighting. In International Confernece on Data
Mining, pages 435–442. IEEE, 2003.

[71] V. Zaslavsky and A. Strizhak. Credit card fraud detection using self-
organizing maps. Information and Security, 18:48, 2006.

[72] I. Žliobaitė. Learning under concept drift: an overview.
arXiv:1010.4784, 2010.

Andrea Dal Pozzolo received in 2011 a master
degree cum laude from the faculty of Statistics,
Universitá di Bologna (Italy) and later in 2015 a PhD
from the Machine Learning Group of the Université
Libre de Bruxelles (Belgium). During his PhD the
research focused on Machine Learning and statis-
tical techniques for Fraud Detection. His interests
cover techniques for unbalanced data streams, cost-
sensitive learning and concept drift. Currently he
works as a consultant for major Banks and Insurance
companies.

Giacomo Boracchi received the M.S. degree in
Mathematics from the Università degli Studi di
Milano, Italy, and the Ph.D. degree in Information
Technology at the Politecnico di Milano, Italy, in
2004 and 2008, respectively. He was researcher at
the Tampere International Center for Signal Pro-
cessing, Finland, in 2004-2005. Currently, he is an
assistant professor at the Dipartimento di Elettronica,
Informazione e Bioingegneria of the Politecnico di
Milano, Italy. His main research interests include
learning methods for nonstationary environments,

as well as mathematical and statistical methods for image processing and
analysis. In 2015 he received the IBM Faculty Award, in 2016 the IEEE
Transactions on Neural Networks and Learning Systems Outstanding Paper
Award, and in 2017 he received the Nokia visiting professor grant.

Olivier Caelen got his PhD at the Machine Learning
Group of the Université Libre de Bruxelles under
the supervision of Prof. Gianluca Bontempi. He
currently works at Worldline (an Atos company).
After spending 5 years in the credit card fraud
detection team, he is now working in the R&D High
Processing & Volume team. His researches mainly
focus on Machine Learning techniques for anomaly
and fraud detection.

Cesare Alippi is a Professor with the Politecnico di
Milano, Milano, Italy and Universit della Svizzera
italiana, Lugano, Switzerland. Alippi is an IEEE
Fellow, Member of the Administrative Committee of
the IEEE Computational Intelligence Society, Board
of Governors member of the International Neural
Network Society, Board of Directors member of
the European Neural Network Society. In 2016 he
received the Gabor award from the International
Neural Networks Society and the IEEE Computa-
tional Intelligence Society Outstanding Transactions

on Neural Networks and Learning Systems Paper Award; in 2004 the IEEE
Instrumentation and Measurement Society Young Engineer Award. Current
research activity addresses adaptation and learning in non-stationary environ-
ments and Intelligence for embedded and cyber-physical systems.

Gianluca Bontempi is Full Professor in the Com-
puter Science Department of ULB, coHead of the
ULB Machine Learning Group and Director of
the Interuniversity Institute of Bioinformatics in
Brussels. His interests cover data mining, scalable
machine learning, bioinformatics and time series
prediction. He graduated with honors in Electronic
Engineering (Politecnico of Milan, Italy) and ob-
tained his PhD in Applied Sciences (ULB, Brus-
sels, Belgium). He took part to research projects in
academy and private companies all over Europe. He

is author of more than 200 scientific publications and IEEE Senior Member.
He is also co-author of software for data mining and prediction, which was
awarded in two international competitions.

	Introduction
	Real-World FDS
	Layers of Controls in a FDS
	Terminal
	Transaction-Blocking Rules
	Scoring Rules
	Data Driven Model (DDM)
	Investigators

	Features Augmentation
	Supervised Information
	System Update

	Problem formulation
	Related works
	Data-Driven Approaches in Credit Card Fraud Detection
	Performance Measure for Fraud Detection
	Major Challenges To Be Addressed in a Real-World FDS
	Class Imbalance
	Concept Drift
	Alert-Feedback Interaction and Sample Selection Bias

	The Proposed Learning Strategy
	Implementation of the Proposed Learning Strategy

	Experiments
	Our Datasets
	Experimental Settings
	Separating Feedbacks From Delayed Supervised Samples
	Concept Drift
	Sample Selection Bias Due to Alert-Feedback Interaction
	Influence of Parameters

	Conclusions
	References
	Biographies
	Andrea Dal Pozzolo
	Giacomo Boracchi
	Olivier Caelen
	Cesare Alippi
	Gianluca Bontempi

