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Abstract

A popular testbed for change-detection algorithms consists in detecting changes that have been synthetically
injected in real-world datastreams. Unfortunately, most of experimental practices in the literature lead to
injecting changes whose magnitude is unknown and can not be controlled. As a consequence, results are
difficult to interpret, reproduce, and compare with. Most importantly, controlling the change magnitude is
a primary requirement to investigate the change-detection performance when data dimension scales, which
is an issue to be typically addressed in big data scenarios.

Here we present a best practice to inject changes in multivariate / high-dimensional datastreams: “Con-
trolling Change Magnitude” (CCM) is a rigorous method to generate datastreams affected by a change
having a desired magnitude at a known location. In CCM, changes are introduced by directly applying
a roto-translation to the data, and the change magnitude is measured by the symmetric Kullback-Leibler
divergence between the pre- and post-change data distributions. The roto-translation parameters yielding
the desired change magnitude are identified by two iterative algorithms whose convergence is here proven.
Our experiments show that CCM can effectively control the change magnitude in real-world datastreams,
while traditional experimental practices might not be appropriate for assessing the performance of change-
detection algorithms in high-dimensional data.

1. Introduction

Commonly faced problems in datastream min-
ing include determining whether something has
changed in the monitored data, or whether two
datastreams are different. Moreover, change-
detection algorithms [1, 2, 3, 4, 5, 6, 7] are typ-
ically employed to pilot adaptation in the post-
change condition of the data-generating process
[8, 9, 10, 11, 12, 13]. Needless to say, change-
detection problems are being addressed also in big
data scenarios [14, 15], where datastreams have an
increasingly large number of components. In these
cases, change-detection algorithms are often com-
bined with pre-processing techniques which extract
features [16, 17] or reduce data dimensionality [18],
and are then applied to the stream of extracted fea-
tures.

To provide stable performance measures, exper-
iments need to be performed over a large num-
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ber of datastreams, which have to be affected by
changes at known locations. Unfortunately, there
are not many real-world datasets satisfying this
requirement, and when the exact change-location
is unknown, change-detection performance has to
be interpreted by visualizing the analyzed datas-
tream [6]. While visual inspection can indicate
whether the algorithm was successful or not, it
does not provide a statistically sound assessment,
and it is definitively not a viable option when data
dimension increases. Therefore, experiments are
more conveniently performed on real-world datasets
that have been manipulated to contain a change
at a known location. This practice allows testing
change-detection algorithms both in realistic con-
ditions and on a sufficient number of datastreams
to enable stable performance measures. Unfortu-
nately, most of experimental practices are not able
to control the magnitude of the injected changes,
making results difficult to compare and reproduce
on different datastreams. Despite the vast litera-
ture on change-detection algorithms [1, 2, 3, 4, 5,
6, 7] and a few frameworks designed for generat-
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ing datastreams containing changes [19, 20, 21], the
problem of controlling the magnitude of injected
changes has never been addressed before our study.

Here we present “Controlling Change Mag-
nitude” (CCM), a rigorous method to prepare
testbeds for change-detection algorithms. CCM has
been designed to introduce changes φ0 → φ1 having
a desired magnitude, where φ0 denotes the distribu-
tion of stationary (change/anomaly free) data, and
φ1 the post-change distribution (or the distribu-
tion of anomalies). The change magnitude is conve-
niently measured by sKL(φ0, φ1), namely the sym-
metric Kullback-Leibler divergence between φ0 and
φ1. Changes are introduced by roto-transalating
the data. This is a very general change model
that encompasses both changes affecting the ex-
pected value and the correlation among the data
components, as well as the most common experi-
mental practices. These roto-translations are com-
puted through iterative algorithms that are guaran-
teed to converge to the desired change magnitude.
CCM is a flexible method that has been designed
assuming that stationary data can be effectively
approximated by a Gaussian mixture (GM). This
assumption guarantees sKL(φ0, φ1) to be finite for
any choice of roto-translation parameters, and it is
used to prove the convergence of the proposed al-
gorithms.

CCM is a necessary tool to test change-detection
algorithms meant for high-dimensional data. In
particular, experiments performed to validate the
detectability loss [14], namely the fact that the per-
formance of change-detection algorithms monitor-
ing log-likelihood decays when the number of in-
put components scales, would have not been pos-
sible without CCM. This and similar studies re-
quire special experimental settings (described in
[5] and in Section 6.3) where CCM is used to
generate, for each considered dimension, multiple
datastreams affected by changes that i) have the
same magnitude and ii) occur at the same loca-
tion. In contrast, other experimental practices re-
sult in changes having increasing magnitude when
data dimension scales, thus are not suitable to as-
sess change-detection performance at different di-
mensions.

In more traditional experimental settings, CCM
can be used to ease the interpretation and repeata-
bility of experiments, since introducing changes
having a known magnitude allows to fairly compare
multiple change-detection algorithms on different
datasets. In those scenarios where the datastream

is conveniently pre-processed by feature-extraction
or dimensionality-reduction techniques, CCM can
be used to manipulate the output stream, and
can provide some guidelines for feature extraction.
CCM has been implemented in a MATLAB pack-
age1 that allows to prepare datastreams for change-
detection purposes using datasets of popular ma-
chine learning repositories like the UCI one [22].

This paper extends [23], which describes CCM
and compares it against other experimental prac-
tices to inject changes in datastreams. Our exten-
sion mainly concerns NP-CCM, a non-parametric
version of CCM that allows controlling the change
magnitude without having to fit a parametric dis-
tribution φ0 to the stationary data. NP-CCM re-
quires a reliable technique to measure the symmet-
ric Kullback-Leibler divergence between two sample
populations, and to this purpose we use the method
presented in [24]. We also describe CCM with fur-
ther details that were omitted in [23] due to space
limitations, and present a more comprehensive ex-
perimental campaign.

The paper is structured as follows. Section 2
overviews the experimental practices commonly
used to generate datastreams for testing change-
detection algorithms, while Section 3 formally
states the addressed problem. CCM is presented
in Section 4 together with Theorems 1 and 2 that
guarantee its convergence. Proofs are reported in
the Appendices. The extension to NP-CCM is il-
lustrated in Section 5, while experiments are shown
in Section 6, and the MATLAB framework imple-
menting CCM (including NP-CCM) is described in
Section 7. Finally, discussions and conclusions are
in Section 8.

2. Background and Related Works

There are two major options for generating datas-
treams for testing change/anomaly detection algo-
rithms. The first option consists in choosing two
different distributions, φ0 and φ1, and use these
to generate the pre- and post-change data, respec-
tively (see e.g., [6]). This is probably the easiest
way to arbitrarily increase the number of datas-
treams to be tested, and achieve the desired accu-
racy in the performance measures. However, syn-
thetically generated data rarely represent realistic

1publicly available for download at: http://home.deib.

polimi.it/carrerad
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monitoring scenarios, as they follow quite simplistic
distributions.

The second option consists in manipulating real-
world datastreams to inject changes at known lo-
cations. This is certainly a more appealing strat-
egy, since stationary data remain unaltered, yield-
ing very realistic datastreams where to test change-
detection algorithms. Most of the papers in the lit-
erature resort to introducing arbitrary shifts, scal-
ing or swapping few components of the original
dataset [2, 18]. Changes can be also introduced
by rotations and other linear transformations in
multivariate data [13, 18], by mixing different data-
sets [25] or by swapping the classes of labeled data
[3, 26]. Unfortunately, none of these approaches
control the magnitude of the introduced changes,
namely to which extent φ1 differs from φ0.

To the best of authors knowledge, the problem
of determining, given φ0, a suitable distribution
φ1 such that the change φ0 → φ1 achieves a de-
sired magnitude, has never been considered in the
change-detection literature before our studies. Ex-
cept [14], all the experimental studies seem to ig-
nore the magnitude of injected changes and none of
the existing testbed includes datastreams affected
by changes having a desired magnitude. As we will
we show in our experiments (Section 6) most of
these experimental practices yield changes having
a magnitude that increases with data dimension,
and prevent a correct assessment of the change-
detection performance in high-dimensional data.

The problem of generating datastreams for
change-detection purposes has also been addressed
in the classification literature, where changes in the
data distribution are typically referred to as con-
cept drifts [9]. Here, changes are typically intro-
duced by modifying labels associated to test data
[8, 11, 12, 27] and few software frameworks for gen-
erating datasets have been developed [19, 20, 21],
mainly for online classification purposes. In the
concept drift literature, even when changes are in-
jected by manipulating the covariates or raw data
as in [13, 28], the impact of the change is only as-
sessed in terms of classification performance, and
the distance between φ0 and φ1, i.e. the change
magnitude, is ignored. It is also worth mention-
ing that the research on concept-drift detection and
adaptation often considers drifts manifesting in dif-
ferent forms over time, namely: abrupt, gradual,
intermittent, transient or recurrent (see the taxon-
omy in [9]). Studying the change-detection perfor-
mance in these cases is certainly interesting, even

though CCM does not explicitly address the tempo-
ral evolution of post-change data. However, these
variants can be introduced in our framework by
properly modifying the roto-translation parameters
computed through CCM.

3. Problem Formulation

Let us consider a dataset S containing stationary
data, which we assume are d-dimensional random
vectors s ∈ Rd that are independent and identi-
cally distributed (i.i.d.). We assume that S is gen-
erated by φ0, a probability density function (pdf)
that most often is unknown. We manipulate S to
generate a datastream X = {x(t), t = 1, . . . ,T} af-
fected by an abrupt change at location t = τ as
follows:

x(t) ∼

{
φ0 t < τ

φ1 t ≥ τ
, being φ1(x) := φ0(Qx+v) ,

(1)
where x(t) are independent ∀t, v ∈ Rd and Q ∈
Rd×d is an orthogonal matrix, i.e. QTQ = QQT =
I. We denote changes in (1) as φ0 → φ1.

Our goal is to identify suitable Q and v such that
the change φ0 → φ1 features a specific magnitude,
that we measure by the symmetric Kullback-Leibler
divergence (sKL) between φ0 and φ1 (also known as
Jeffreys’ divergence):

sKL(φ0, φ1) := KL(φ0, φ1) + KL(φ1, φ0)

=

∫
Rd

log
φ0(x)

φ1(x)
φ0(x)dx +

∫
Rd

log
φ1(x)

φ0(x)
φ1(x)dx .

(2)
In practice, given φ0 and the desired magnitude κ,
our goal is to compute Q ∈ Rd×d and v ∈ Rd such
that

sKL (φ0, φ1) = sKL (φ0, φ0(Q ·+ v)) = κ . (3)

3.1. Rationale behind our design choice

There are three major choices underlying our
problem formulation that need to be discussed: i)
the i.i.d. assumption for stationary data, ii) intro-
ducing changes by roto-translation in (1), and iii)
using the symmetric Kullback-Leibler divergence to
measure the change magnitude in (3).

Independence of samples x(t) generated in sta-
tionary conditions is typically assumed in the
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Table 1: Notation used in the paper

S Stationary dataset
X Datastream affected by a change
T Number of samples in the datas-

tream X
τ Location of the change in X
φ0 pdf generating S
φ1 pdf of the post-change data

φ̃0 Gaussian Mixture fitted on S
KL(φ0, φ1) Kullback-Leibler divergence be-

tween φ0 and φ1

sKL(φ0, φ1) Symmetric Kullback-Leibler di-
vergence between φ0 and φ1

v = ρu Vector defining a translation in
Rd, whose direction and extent
are specified by u ∈ Rd and ρ ∈ R,
respectively

Q Orthogonal matrix defining a ro-
tation in Rd

P Orthogonal matrix specifying the
planes of rotation of Q

θ Angles of rotation of Q

ψ0, ψ1 Upper bound of log φ̃0 and log φ̃1

X0, X1 Sets of samples used to estimate
sKL(φ0, φ1) in CCM

S0, S1 Sets of samples used to estimate
sKL(φ0, φ1) in NP-CCM

T , V Training and validation sets used
in the experiments

change-detection literature [1]. When this assump-
tion is violated, as sometimes it happens in real-
world scenario, the datastream needs to undergo a
preprocessing phase [5, 6, 29, 30], to extract fea-
tures that describe the datastream and that meet
the assumption in (1). Changes are then detected
by monitoring the stream of extracted features. Ex-
amples of features typically employed are residuals
w.r.t. to an approximation model [16, 29, 31, 32]
and indicators computed on representation learned
from data [17, 33, 34, 35]. Feature extraction can
be also used to reduce the data dimensionality [18].

Choosing roto-translations in our change-model
(1) is particularly advantageous first of all because
the datastream X can be assembled without hav-
ing to synthetically generate any sample from φ1.
In fact, stationary data (i.e. x(t), t < τ) can be
randomly selected from S, while changed data can
be obtained by directly roto-translating other ran-
domly selected samples s ∈ S, i.e. x(t) = QT (s−v)

Algorithm 1 CCM: an overview

Input: S the stationary dataset, κ the desired
change magnitude, ε the tolerance for the
change magnitude, N the number of datas-
treams to generate, T the length of the gen-
erated datastreams, τ the change location.

Output: X1, . . . , XN, generated datastreams.
1: Fit a GM φ̃0 to S
2: for i = 1, . . . ,N do

// Estimation of roto-translation parameters
3: Run Algorithm 2 to initialize Q(0) and v(0),

yielding sKL(φ0, φ0(Q(0) ·+v(0))) > κ
4: Run Algorithm 3 to compute Q and v yield-

ing |sKL(φ̃0, φ̃0(Q ·+v))− κ| < ε
// Generation of the datastream

5: for t = 1, . . . ,T do
6: Randomly draw s from S.
7: if t < τ then
8: Set x(t) = s.
9: else

10: Set x(t) = QT (s− v).
11: end if
12: end for
13: Set Xi = {x(t), t = 1, . . . ,T}.
14: end for

for t ≥ τ . Second, assuming φ1(·) = φ0(Q · + v)
is quite a general change model, which encom-
passes changes in the mean as well in the corre-
lation among the data components. As we will
show in Section 6, changes obtained by “component
swap” or “adding an offset”, which are typically
encountered in the change-detection literature, cor-
respond to particular roto-tranlations. Third, the
matrix Q and the vector v themselves can be eas-
ily parametrized with respect to planes / angles of
rotation, and to vector length and direction, respec-
tively.

The symmetric Kullback-Leibler divergence is
quite a natural choice in the change-detection sce-
nario, as discussed in [14]. In particular, the Stein’s
Lemma [36] states that KL(φ0, φ1) yields an upper-
bound to the power of parametric hypothesis tests
that determine whether a given sample population
is generated from φ0 (null hypothesis) or φ1 (alter-
native hypothesis). As a consequence: large values
of sKL(φ0, φ1) indicate that tests designed to detect
either φ0 → φ1 or φ1 → φ0 can be very powerful,
thus that these changes are very apparent. We ob-
serve that (2) is defined (though possibly infinite)
if and only if the supports of φ0 and φ1 coincide.
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x ∼ φ̃0

Stationary data

(a)

Q(0)

x ∼ φ̃0(Q(0)·)

(b)

u

x ∼ φ̃0(Q(0) ·+u)

Initialization

(c)

v(0)

x ∼ φ̃0(Q(0) ·+v(0))

(d)

x ∼ φ̃0(Q(j) ·+v(j))

Iterations

(e)

Figure 1: An illustration of the overall CCM procedure, solid blue dots and shaded gray dots indicate the output and the input
of each step, respectively. (a) At first, a Gaussian Mixture φ̃0 is fitted on the stationary dataset S. Then, Algorithm 2 is used
to initialize CCM by (b) randomly choosing a matrix Q(0) that defines an arbitrary rotation of Rd, (c) computing random
translation direction u and (d) doubling the length of the translation vector v(0) until sKL(φ0, φ0(Q(0) · +v(0))) > κ. The
value of Q and v are then adjusted by the bisection method in Algorithm 3 until the corresponding roto-translation yields a
change having the desired magnitude.

This is the reason why we assume that φ0 is strictly
positive on Rd.

4. The CCM Method

In this section we first provide an overview of
CCM and then describe in detail the algorithms and
techniques used to generate datastreams affected
by changes φ0 → φ1 having a desired magnitude
κ. An important issue in CCM is that to compute
sKL(φ0, φ1) in (2) we need φ0, which is typically
unknown when manipulating real-world datasets S.
We solve this issue by replacing φ0 with an empiri-
cal estimate, and in particular we adopt a Gaussian
mixture (GM) φ̃0 to approximate φ0. Table 1 sum-
marizes the notation adopted for the most relevant
elements of CCM.

Figure 1 illustrates the data manipulation per-
formed by CCM, which is overviewed in Algorithm
1. At first, we start by fitting a GM φ̃0 to station-
ary data S (line 1 and Section 4.1), which is used

for computing our target function sKL(φ̃0, φ̃0(Q ·
+v)). The same GM φ̃0 is used to generate an
arbitrary number N of datastreams X as in (1),
each corresponding to a different roto-translation.
The parametrization adopted to define the roto-
translation is described in Section 4.3. For each
datastream to be generated we initialize the values
of Q(0) and v(0) by Algorithm 2 (described in Sec-
tion 4.4). Such initialization is meant to yield a
change having a magnitude larger than the target
value κ and is illustrated in Figure 1(b-d). Then,

the bisection method described in Algorithm 3 and
in Section 4.5 is used to iteratively adjust Q(0) and
v(0) to achieve the desired change-magnitude κ with
an approximation error smaller than a given ε > 0.
Finally, the computed Q and v are used to gen-
erate the datastream X (lines 5-13) by randomly
sampling data from S, and transforming those to
be placed after the change location τ .

4.1. Fitting Pre-Change Distribution:

The pdf φ̃0 of a GM is a convex combination of
k Gaussian functions, which we express as

φ̃0(x) =

k∑
i=1

λ0,i · e−
1
2 (x−µ0,i)

T Σ−1
0,i (x−µ0,i)

(2π)d/2det(Σ0,i)1/2
, (4)

where
∑k
i=1 λ0,i = 1 and λ0,i ≥ 0, i ∈ 1, . . . , k is

the weight of the Gaussian having mean µ0,i and
covariance Σ0,i.

We fit the GM to S by traditional statistical
techniques. In particular, we test different values
of k and select the best number of Gaussians by
5-fold cross-validation, by analyzing the distribu-
tion of the average likelihood over the test sets.
Once having defined k, we estimate the parame-
ters {λ0,i}, {µ0,i} and {Σ0,i} using the Expectation-
Maximization (EM) algorithm [37].

We have adopted GMs since these are rather
flexible models that can approximate skewed
and multimodal distributions. Most importantly,
sKL(φ̃0, φ̃0(Q · +v)) is always defined and finite

when φ̃0 is a GM, and there exist approximated and
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fast expressions for computing the log-likelihood
w.r.t. a GM, which we describe next.

4.2. Computing sKL

When running CCM, we have to repeatedly com-
pute sKL(φ̃0, φ̃1), where both φ̃0 and φ̃1(·) = φ̃0(Q ·
+v) are Gaussian mixtures. Since there are no
analytical expressions to compute the symmetric
Kullback-Leibler divergence between two GMs, we
approximate the integrals in (2) via Montecarlo
simulations.

More precisely, we synthetically generate two sets
X0 and X1 containing a sufficient number of i.i.d.
realizations drawn from φ̃0 and φ̃1, respectively, and
compute the following approximation:

sKL(φ̃0, φ̃1) ≈ 1

|X0|
∑
x∈X0

log
φ̃0(x)

φ̃1(x)
+

+
1

|X1|
∑
x∈X1

log
φ̃1(x)

φ̃0(x)
,

(5)

where |X0| and |X1| denote the cardinality of X0

and X1, respectively.
Since the computation of φ̃0(x) (resp. of φ̃1(x))

and of its logarithm in (5) might rise severe nu-
merical issues when d is large, we further approxi-
mate the likelihood of a GM by considering only the
Gaussian of the mixture yielding the largest likeli-
hood, as in [2, 14]. In particular, this yield to the
following upper bound of log φ0(x)

ψ0(x) = −1

2

[
log
(
(2π)d det(Σ0,i∗)

)
+

+ (x− µ0,i∗)TΣ−1
0,i∗(x− µ0,i∗)

]
+ log(kλ0,i∗),

(6)
where i∗ is defined as

i∗ = argmax
i=1,...,k

λ0,i · e−
1
2 (x−µ0,i)

T Σ−1
0,i (x−µ0,i)

(2π)d/2det(Σ0,i)1/2
. (7)

The upperbound of log φ̃1(x), namely ψ1(x), is sim-
ilarly defined. Then, the Montecarlo estimate of
sKL(φ̃0, φ̃1) is obtained by computing

sKL(φ̃0, φ̃1) ≈ 1

|X0|
∑
x∈X0

(ψ0(x)− ψ1(x)) +

+
1

|X1|
∑
x∈X1

(ψ1(x)− ψ0(x)) .

(8)

4.3. Parametrization

To ease calculations, we express Q with respect
to its planes and angles of rotation. We store m :=
bd/2c angles θ1, . . . , θm in a vector θ, and define the
matrix T (θ) ∈ Rd×d as

T (θ) =


R(θ1) · · · 0 0

...
. . .

...
...

0 · · · R(θm) 0
0 · · · 0 1

 ,
R(θi) =

[
cos θi − sin θi
sin θi cos θi

]
.

(9)

where R(θi) defines a counterclockwise rotation of
angle θi around the origin in R2. When d is
even, the last column and the last row of T (θ) are
dropped. The matrix T (θ) defines a rotation in Rd
whose planes of rotation are generated by the co-
ordinate axes: rotation matrices Q referring to dif-
ferent coordinate axes can be obtained by multiply-
ing T (θ) against an orthogonal matrix P ∈ Rd×d.
Thus, we parametrize the rotation matrix Q as

Q(θ, P ) = PT (θ)PT . (10)

The translation vector v is parameterized by its
norm and direction:

v(ρ,u) = ρu, where ‖u‖2 = 1, ρ = ‖v‖2 . (11)

4.4. Initialization

CCM initialization is described in Algorithm 2
and it is meant to set Q(0) and v(0) yielding
sKL(φ0, φ0(Q(0) · +v(0))) > κ. This is a necessary
condition for the bisection procedure described in
Section 4.5 to work. Given a stationary dataset
(Figure 1a), we randomly define the angles of ro-
tation θ(0) in [−π/2, π/2]m (line 2) and randomly
select an orthogonal matrix P (lines 3-4). The rota-
tions angles are drawn from a multivariate uniform
distribution, and the matrix P is conveniently de-
fined by computing the QR decomposition [38] of
a matrix A having random Gaussian entries. The
rotation matrix Q(0) is defined according to (10) as
Q(0) = Q(0)(θ(0), P ) = PT (θ(0))PT (line 5), being
T (θ) as in (9). This is a very general procedure,
that can generate any rotation preserving the ori-
entation of the coordinate system. The matrix Q(0)

defines the rotation around the origin of the data-
set, as show in Figure 1b.
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Algorithm 2 CCM: initialization

Input: φ̃0 and κ, the target value of sKL(φ̃0, φ̃1).
Output: Initial roto-translation parameters

θ(0), P, ρ(0), u.
1: Set ρ(0) = 1.
2: Randomly generate m angles θ(0) in

[−π/2, π/2]m and a unitary vector u.
3: Generate a matrix A ∈ Rd×d having Gaussian

entries.
4: Set P as the orthogonal matrix of the QR de-

composition of A.
5: Set Q(0)(θ(0), P ) = PT (θ(0))PT and

v(ρ(0),u) = ρ(0)u.
6: repeat
7: Compute s(0) = sKL(φ̃0, φ̃1), where φ̃1 =

φ̃0(Q(0) ·+v(0)).
8: ρ(0) = 2ρ(0).
9: until s(0) > κ

Then, we randomly generate a vector u having
unitary norm (line 2) as described in [39, Algo-
rithm 11]. The vector u actually defines the trans-
lation direction, as illustrated in Figure 1c. If the
corresponding sKL(φ̃0, φ̃0(Q(0) ·+u)) is larger than
κ, the algorithm terminates and returns Q(0) and
v(0) = u. Otherwise, the length of v(0) is increased
by doubling ρ(0) (Figure 1d), which controls the ex-
tent of the shift in the data (line 8). This procedure
is repeated until the above condition is satisfied.
Convergence of Algorithm 2 is guaranteed by the
following theorem, which is proved in Appendix A.

Theorem 1. Let φ̃0 be a Gaussian mixture. Then,
for any κ > 0 and tolerance ε > 0, Algorithm 2
converges in a finite number of iterations.

4.5. Iterations

The initial values of Q(0) and v(0) are iteratively
adjusted in Algorithm 3 until the corresponding
change achieves the target magnitude κ with the
desired accuracy ε (Figure 1e). In particular Al-
gorithm 3 implements a bisection procedure that
starts from Q(0) = PT (θ(0))PT and v(0) = ρ(0)u,
and that iteratively adjusts the rotation angles θ
and the translation extent ρ. The rotation planes
defined by P and the translation direction u are
instead kept fixed.

In what follows, we use the subscripts l and u
to denote the parameters yielding change magni-
tudes that are smaller and larger than κ, respec-
tively. Initially, we set both θl and ρl to 0 (line 1),

Algorithm 3 CCM: iterations to compute the
roto-translation yielding the desired change mag-
nitude

Input: θ(0), P , ρ(0), u from Algorithm 2, φ̃0, κ,
and the tolerance ε.

Output: Q and v defining the roto-translation
yielding sKL(φ̃0, φ̃0(Q ·+v)) ≈ κ.

1: Set the lower bounds θ
(1)
l = 0, ρ

(1)
l = 0.

2: Set the upper bounds θ
(1)
u = θ(0), ρ

(1)
u = ρ(0).

3: Set j = 1.
4: repeat

5: Compute θ(j) = (θ
(j)
l + θ

(j)
u )/2, and

Q(j)(θ(j), P ) as in (10).

6: Compute ρ(j) = (ρ
(j)
l + ρ

(j)
u )/2, and

v(j)(ρ(j),u) as in (11).

7: Compute s(j) = sKL(φ̃0, φ̃
(j)
1 ), where

φ
(j)
1 (·) = φ̃0(Q(j) ·+v(j)).

8: if s(j) < κ then
9: θ

(j+1)
l = θ(j), ρ

(j+1)
l = ρ(j).

10: else
11: θ

(j+1)
u = θ(j), ρ

(j+1)
u = ρ(j).

12: end if
13: j = j + 1.
14: until

∣∣s(j) − κ
∣∣ < ε

while θu = θ(0) and ρu = ρ(0) (line 2). As typical
in bisection methods, we set θ(j) to the average of

θ
(j)
l and θ

(j)
u (line 5), and ρ(j) to the average of ρ

(j)
l

and ρ
(j)
u (line 6).

We denote by s(j) the change magnitude induced
by a roto-tranlsation parametrized by θ(j) and ρ(j)

(line 7), which we compute as described in Section
4.2. When s(j) < κ, we replace both θl and ρl
with θ(j) and ρ(j), respectively (line 9), otherwise
we similarly update θu and ρu (line 11).

These steps are iterated until the sKL achieves
the target value κ up to the desired tolerance ε.
Convergence of Algorithm 3 is guaranteed by the
following theorem, whose proof is given in Ap-
pendix A.

Theorem 2. Let φ̃0 be a Gaussian mixture. Then,
for any κ > 0 and tolerance ε > 0, Algorithm 3
converges in a finite number of iterations.

4.6. Computational Complexity

The computational complexity of CCM is dom-
inated by the cost of estimating the symmetric
Kullback-Leibler divergence, that has to be per-
formed at each iteration of Algorithms 2 and 3. In
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fact, fitting a GM or performing the QR decomposi-
tion (which are invoked in the initial steps of CCM),

are not iterated in CCM. Estimating sKL(φ̃0, φ̃1)
through (8) involves the computation of ψ0(x) and
ψ1(x), which requires computing the Mahalanobis
distance between x and the mean vector of each
Gaussian in φ̃0 for each of the k numerators in
(7). Therefore, computing ψ0(x) and ψ1(x) requires
O(d2k) operations that have to be computed for
each x ∈ X0 ∪ X1. This yields the computational
complexity of (8) to O(d2kn) for each iteration of
Algorithms 2 and 3, being 2n the number of sam-
ples in X0 ∪ X1.

5. Non Parametric CCM (NP-CCM)

The main assumption in CCM is that φ0 can be
well approximated by a Gaussian mixture φ̃0. Al-
though this is quite a reasonable assumption, there
are cases where, e.g. due to the lack of training
data, it is not possible to accurately approximate S
using a GM. However, CCM uses GM only in Algo-
rithms 2 and 3 to estimate the symmetric Kullback-
Leibler divergence, and we can relax this technical
assumption if an alternative method for computing
sKL(φ̃0, φ̃0(Q(0) · +u)) is provided. The rationale
behind Non Parametric CCM (NP-CCM) is that
the parameters Q and v yielding the desired value
of sKL(φ0, φ0(Q ·+v)) can be directly computed by
comparing stationary and transformed data, avoid-
ing fitting any distribution φ̃0.

The problem of estimating the Kullback-Leibler
divergence from two populations have been recently
investigated in the literature [24, 40, 41, 42], and we
adopt the method in [24] that is based on the com-
putation of the k-nearest neighbor (k-nn) distance
(as recommended in [24] we use 1-nn distance). In
particular KL(φ0, φ1) can be estimated as

K̂L(S0,S1) =
d

n0

∑
x∈S0

log
r0(x)

r1(x)
+ log

n1

n0 − 1
, (12)

where S0 and S1 are two sets drawn from φ0 and
φ1 that contain n0 and n1 samples, respectively. In
(12), r0(x) denotes the distance between x and its
nearest neighbor in S0\{x} and similarly r1(x) in

S1. It was shown [24] that K̂L(S0,S1) converges
almost surely to KL(φ0, φ1) as n0, n1 →∞. More-
over, we have experienced that a better estimate
can be obtained by setting n0 < n1.

Algorithm 4 NP-CCM: estimation of the symmet-
ric Kullback-Leibler without fitting φ̃0

Input: Dataset S sampled accordingly to φ0, roto-
translation parameters Q and v.

Output: Estimate of sKL(φ0, φ0(Q ·+v)).
1: Randomly extracts S0 ⊂ S and S1 ⊂ S such

that S0 ∩ S1 = ∅ and |S0| = n0, |S1| = n1.
2: Apply the roto-translation given by Q and v to

each element of S1, obtaining S̃1.
3: Estimate K̂L(φ0, φ0(Q · +v)) = K̂L(S0, S̃1) as

in (12).

4: Repeat 1-3 to estimate K̂L(φ0(Q · +v), φ0) =

K̂L(S̃1,S0).
5: Set the estimate of sKL(φ0, φ0(Q · +v)) to

K̂L(φ0, φ0(Q ·+v)) + K̂L(φ0(Q ·+v), φ0).

Thus, NP-CCM develops as CCM, provided that
the change-magnitude is estimated by approximat-
ing sKL as in (12) rather than (8). In Algo-
rithm 4 we precisely describe how to estimate
sKL(φ0, φ0(Q · +v)) from a stationary dataset S,
provided Q and v. At first, we randomly extract
two subsets S0 and S1 from S (line 1) and we
roto-translate samples in S1 using Q and v (line
2). These sets are used to estimate the Kullback-
Leibler divergence between φ0 and φ0(Q ·+v) using
(12) (line 3). The same procedure is repeated to
estimate the Kullback-Leibler divergence between
φ0(Q·+v) and φ0 (line 4); then sKL(φ0, φ0(Q·+v))
is obtained by summing these two estimates (line
5).

Thus, the differences between CCP and NP-CCM
are in Algorithm 2 line 7, and Algorithm 3 line 7,
where sKL is estimated by using Algorithm 4. Ob-
viously, in NP-CCM there is also no need to esti-
mate the GM φ̃0 in Algorithm 1 line 1. We com-
ment that removing the Gaussian-mixture assump-
tion implies that Theorems 1 and 2 do not hold,
thus the convergence of Algorithms 2 and 3 cannot
be guaranteed. This has to be taken into account in
the implementation of NP-CCM, which should han-
dle cases where the algorithm does not converge.
In Appendix A we discuss which assumptions on
φ0 would guarantee convergence of NP-CCM algo-
rithms.

The computational complexity of NP-CCM is de-
termined by the cost of estimating sKL through
(12). When the 1-nn distances r0 and r1 in (12)
are computed by straightforward comparisons be-
tween all the elements of S0 and S1, the cost of
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estimating sKL is O(d(n0 + n1)2). However, the
complexity can be reduced by adopting advanced
searching techniques, which rely for instance on the
k-d tree structures [43], as we did in our MATLAB
implementation.

6. Experiments

Experiments are meant to demonstrate the effec-
tiveness of CCM and the limitations of the experi-
mental practices adopted in the literature (Section
6.1). More precisely, in our experiments we inject
changes in both synthetically generated and real
world datasets, and then measure the magnitude of
the changes introduced by all the different methods.

We first perform experiments on Gaussian datas-
treams (Section 6.2), where we can exactly measure
the symmetric Kullback-Leibler divergence between
the pre- and post-change distributions. Then, we
introduce changes in two real world datasets (Sec-
tion 6.3), where we also assess the magnitude of the
injected changes by analyzing change-detection per-
formance of hypothesis tests (Section 6.4). Section
6.5 is devoted to the empirical analysis of the con-
vergence of CCM and NP-CCM. To avoid numer-
ical issues, in all our experiments we standardize
the components of each datasets by subtracting the
sample mean and dividing by the sample standard
deviation.

6.1. Considered Methods

We compare CCM and NP-CCM against other
methods that used in the change-detection liter-
ature to introduce changes in real world datasets
[2, 18, 44]:

• CCM is configured to identify roto-translation
parameters yielding sKL(φ̃0, φ̃1) = 1.

• NP-CCM, where sKL is estimated using the
method described in [24], configured to yield
changes of magnitude 1.

• Offset: a 1-sigma offset is added to each com-
ponent of the input data. This change model
corresponds to roto-translations where Q = Id
and v = [σ1, . . . , σd]

T , being σi the sample
standard deviation of the i-th component.

• Normalized Offset: an offset, having mag-
nitude that decreases as d increases, is added
to each component of the input data. This
change model corresponds to roto-translations

1 2 4 8 16 32 64 128

100

101

102

103

104

d
sK

L

Swap

Norm. Offset

Offset

NP-CCM

CCM

Figure 2: Values of sKL(φ0, φ1) obtained on Gaussian data-
sets using different methods to inject changes at dimension
d ∈ {1, 2, 4, 8, 16, 32, 64, 128}. Solid lines represent the me-
dian values, while dashed lines represent the first and the
third quartiles.

having Q = Id and v = [σ1/
√
d, . . . , σd

√
d]T .

When stationary data follows a Gaussian dis-
tribution having independent components, this
change model ensures sKL(φ0, φ1) = 1.

• Swap: two randomly chosen components of
the input data are swapped. This change
model corresponds to a roto-translation where
Q is a permutation matrix and v = 0.

While these are the most commonly adopted
methods, the literature presents other solutions,
such as mixing different datasets [25] or swapping
classes of labeled datasets [3, 26]. These meth-
ods, however, depend on many degrees of freedom,
which would yield a large variance in the results,
and as such have not been considered in our analy-
sis.

6.2. Gaussian Datastreams

We consider Gaussian datastreams generated
by φ0 = N (µ0,Σ0). The post-change distribu-
tion φ1(·) = φ0(Q · +v) is still a Gaussian hav-
ing mean µ1 = QT (µ0 − v) and covariance ma-
trix Σ1 = QTΣ0Q. For each dimension d ∈
{1, 2, 4, 8, 16, 32, 64, 128} we generate 1000 datasets
containing 20000 i.i.d. realizations of φ0 each,
where the values of µ0 and Σ0 have been randomly
defined in each dataset. From each dataset, we
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Figure 3: Values of sKL(φ0, φ1) obtained on (a) Particle dataset and (b) Protein dataset using different methods to introduce
changes in datastreams having different dimension d. Solid lines represent the median values, while the dashed lines represent
the first and the third quartiles.

generate a datastream as in (1) using the all the
methods described above to introduce a change at
τ = 1000.

On Gaussian datastreams we can exactly com-
pute the magnitude of the introduced changes, since
the sKL is given by

sKL(φ0, φ1) =
1

2

[
tr(Σ−1

1 Σ0) + tr(Σ−1
0 Σ1)+

+ (µ1 − µ0)T (Σ−1
1 + Σ−1

0 )(µ1 − µ0)− 2d
]
.

(13)
This expression is used as a reference to assess the
magnitude of the introduced changes.

Figure 2 shows that CCM generates changes
yielding sKL(φ0, φ1) equals to 1 (the target value)
for each dimension d. This result is not surpris-
ing, since we set k = 1 and the assumption that
φ0 can be well approximated by a GM is here per-
fectly met. In contrast, NP-CCM cannot success-
fully control the change magnitude, which reaches
2 when d = 4. This is due to the fact that 20000
samples are not sufficient to obtain an accurate es-
timate of sKL by (12) when d increases, as noted in
[24]. Other experimental practices can not preserve
the change magnitude, since sKL steadily increases
with d. Remarkably, also the magnitude of nor-
malized offset increases, and this indicates that a
coarse approximation of φ0, which in this case ig-
nores the correlation among components, does not
allow to control the change magnitude. Figure 2
shows that also the dispersion of the change mag-
nitude increases (note the logarithmic scale in the
axis) thus that the introduced changes have consid-

erably different magnitudes when d increases.

Such an increasing magnitude prevents the use
of these techniques to correctly study the change-
detection performance when data dimension scales.
In practical applications, in fact, it is not expected
that the change magnitude necessarily increases
with d. For instance, when the dimension of the
change-detection problem increases because of com-
ponents that i) are not affected by the change, and
ii) are independent from components that change,
the change magnitude does not increase with d.

6.3. Real World Datastreams

In the second experiment we generate datas-
treams from two real world datasets from the UCI
repository [22]. The MiniBooNE Particle data-
set contains measurements from a physical exper-
iment designed to distinguish electron neutrinos
from muon neutrinos. We consider data from the
muon class and obtain a dataset having dimension
dmax = 50. We adopt a mixture of k = 4 Gaus-
sians to approximate φ0. The second dataset is
the Physicochemical Properties of Protein Tertiary
Structure (Protein) dataset, which has dimension
dmax = 9. By analyzing the marginal distribution
over components and pairs of components, we con-
clude that a GM seems not to properly fit this latter
dataset, and we have adopt NP-CCM with a maxi-
mum of d = 4 components. Larger values of d would
have required too many samples for correctly esti-
mating the symmetric Kullback-Leibler divergence
by (12).
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Figure 4: Estimated powers of the Lepage (a) and t-test (b) used to detect changes by comparing the log-likelihood values over
WP and WR extracted from the Particle dataset. The samples in WR are affected by different types of changes, and among
them only CCM can preserve the change magnitude. In contrast, the other methods inject changes that are more apparent in
higher dimensions, as confirmed by the power of both tests, that increases as d increases.

In this experiment we cannot exactly compute
the symmetric Kullback-Leibler divergence between
the pre- and post- change distributions, since φ0

is unknown. Therefore, we resort to estimating
the change magnitude as follows. We split each
dataset S in two set T (training) and V (valida-
tion): the set T contains approximately one third
of the samples of S and it is used for estimating
the roto-translation parameters by all the methods,
while V is exclusively used for estimate the sKL
corresponding to the identified changes. From T
we generate 1000 datastreams for each dimension
d = 1, . . . , dmax by randomly choosing d compo-
nents out of the dmax available and compute Q and
v using the considered methods2. Then we estimate
the corresponding sKL(φ̃0, φ̃0(Q·+v)) over V. More
precisely, in the experiments on the Particle dataset
we fit φ̃0 on T , and we split the set V in two sub-
sets X0 and X1. Then we estimate the symmetric
Kullback-Leibler divergence using (8), where the ψ0

and ψ1 are defined from φ̃0 (which is fitted on T )

and φ̃0(Q · +v), respectively. In the experiments
on the Protein dataset, the symmetric Kullback-
Leibler divergence is estimated using Algorithm 4,
where S0 and S1 in (12) are extracted exclusively
from V.

Figures 3 shows the values sKL obtained when
increasing d, and demonstrates that CCM and NP-
CCM can generate changes having controlled mag-

2Note that the swap method does not need training data
to define the permutation matrix.

nitude. The Swap, Offset and Normalized Offset
do not preserve the change magnitude, and yield
changes that are more apparent when d increases.
These results are consistent with those emerging
from the experiments on the Gaussian dataset, and
further indicate that controlling the change mag-
nitude is very important when manipulating real-
world datasets.

6.4. Change-Detection Performance

The procedure used in Section 6.3 to assess the
performance of all the methods is somehow biased
towards CCM and NP-CCM. In fact, as far as
CCM is concerned, the performance in term fo the
change-magnitude is computed by fitting a GM over
the whole dataset, and CCM also fits a GM over
the training set T to determine the change mag-
nitude. Similar concerns hold for NP-CCM, which
uses the same expression (12) to estimate sKL but
on different datasets. To provide an unbiased as-
sessment, in the following experiments we measure
the change-detection performance of a simple al-
gorithm over the generated datastreams, to show
that CCM and NP-CCM can better control of the
change-magnitude. As a meaningful example of
change-detection algorithms, we consider the mon-
itoring of the log-likelihood w.r.t. φ̃0, as a typical
approach to perform change detection on multivari-
ate datastreams, see [2, 3, 14].

We use the Particle dataset and for each d =
1, . . . , dmax we generate 1000 datastreams affected
by changes introduced from those roto-translations
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Figure 5: Number of iterations required for the convergence of Algorithm 3 for (a) CCM and (b) NP-CCM, in case of the
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convergence, with a tolerance ε = 0.01, i.e. 1% of the target sKL. The solid lines represent the median computed over 50
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the target functional sKL(φ̃0, φ̃
(j)
1 ) in Algorithm 3 of CCM. The horizontal red line indicates the target value κ = 1 of the

symmetric Kullback-Leibler divergence.

computed in Section 6.3. Each sequence contains
a training set of 200d stationary samples, which is
used to estimate a Gaussian mixture φ̂0. Test data
are divided in two windows WP and WR containing
50 pre- and post-change samples, respectively. The

log-likelihood, i.e. log
(
φ̂0(·)

)
, computed over WP

and WR is compared by a Lepage [45] and a t-test.
This experimental framework is consistent with the
one in [14].

Figure 4 reports the estimated power of both
hypothesis tests, when changes are introduced by
different methods and for different dimensions d.
Changes introduced by CCM yield a decreasing
power of the test and this is coherent with the
study in [14] which analytically demonstrates the
detectability-loss problem when monitoring the log-
likelihood of Gaussians and Gaussians Mixtures.
In contrast, the power of hypothesis tests used
to detect changes introduced by other experimen-
tal practices increases with d. This is due to the
fact that the magnitude of the introduced changes
is actually increasing and indeed prevents to cor-
rectly study how the data dimension influences the
change-detection performance.

6.5. Execution times

To estimate the execution times of CCM and NP-
CCM, we count the number of iterations that are
required to CCM and NP-CCM to converge on the
Particle and Protein datasets, respectively. These

numbers are shown in Figure 5(a) and 5(b) as func-
tion of d. We observe that, in general, less than
20 iterations are enough to converge to the target
value κ = 1 with a tolerance of ε = 0.01. An ex-
ample of how the value of sKL(φ̃0, φ̃0(Q(j) ·+v(j)))
changes through all the iterations j is shown in Fig-
ure 5(c): in this case, after 18 iterations CCM con-
verges. This translates in execution times that are
reported in Figure 6 and show that CCM can be
used to generate a large number of datastreams for
the evaluation of change-detection algorithms. This
times are measured using our MATLAB implemen-
tation of CCM and NP-CCM on a PC mounting
an Intel Core i5 2.30 GHz CPU and 12 GB RAM.
Computational times of the other approaches are
not reported even though these are substantially
smaller since the Swap and Offset methods do not
require any computation, while Normalized Offset
method has only to compute the standard deviation
of each components over the entire dataset.

7. MATLAB Framework

We have implemented CCM in a MATLAB pack-
age that is publicly available for download3. This
package allows to import any numerical dataset
S and generates an arbitrarily number of datas-
treams of the same length, containing a change

3home.deib.polimi.it/carrerad
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of a desired magnitude at a given location. The
main class of the framework is CCMframework,
which implements all the functionalities used in
Algorithm 1, namely: fitting of the GM φ̃0 to
the whole dataset S, computation of the roto-
translation, and preparation of the datastreams.
The CCMframework class has two methods: the con-
structor and generateDatastreams.

The constructor of CCMframework takes as input
the dataset S and a flag parameter that specifies
which version of the framework to use (CCM or
NP-CCM). In case of CCM, the constructor fits a
GM to the dataset (Algorithm 1, line 1) for a given
number k of Gaussians, which has to be defined
by the user, for instance through the procedure de-
scribed in in Section 4.1. Then an object of the class
gmDistr is accordingly instantiated. When the flag
parameter indicates NP-CCM, the constructor in-
stantiates an object of the class empiricalDistr,
which relies on an KDTreeSearcher MATLAB ob-
ject to efficiently compute the 1-nn distance in (12).
Both of gmDistr and empiricalDistr implement
the method symmetricKullbackLeibler, which is
used to estimate the symmetric Kullback-Leibler di-
vergence between the pre- and post-change distri-
butions. The gmDistr class implements the pro-
cedure described in Section 4.2, while the class
empiricalDistr implements Algorithm 4.

The method generateDatastreams implements
Algorithm 2 to initialize the roto-transalation pa-
rameters, and then runs the bisection method in

Algorithm 3 until the matrix Q and the vector v
provide the desired change magnitude or when the
number of iterations reaches a maximum value. Fi-
nally, the datastream is assembled by randomly se-
lecting samples from S and by applying the com-
puted roto-translation to samples that are located
after the specified change-point location.

8. Conclusions

We present CCM (Controlling Change Magni-
tude), a rigorous method to introduce changes in
real-world datastreams by roto-translating station-
ary data. We prove that CCM can successfully
control the magnitude of the introduced changes
when data can be approximated by a Gaussian
mixture. Our experiments show that experimental
practices commonly adopted in the literature for in-
troducing changes cannot control the change mag-
nitude, which typically increases with d. This fact
prevents a fair performance assessment of change-
detection algorithms, especially when data become
high-dimensional. Our experiments also show that
the simplistic approach that aim at preserving the
change magnitude approximating φ0 by ignoring
correlations among data-component is not success-
ful, and that CCM, which adopts GM as a more
general model to describe stationary data, is indeed
necessary to control the change magnitude.

CCM is flexible and can be extended using non-
parametric techniques to estimate the density of the
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data or the sKL between the pre- and post-change
distributions. However, the presented NP-CCM in-
herits the limitations of techniques used to mea-
sure the sKL, and in particular the need for large
amount of data when d increases. Thus, when d
is large, it is necessary to resort to CCM and fit
parametric models on data.

Ongoing work concerns the extension of CCM to
other change models, such as changes in the disper-
sion of the original data. We will also investigate
how to handle categorical data, which would neces-
sarily require a different change model.

Appendix A.

Proofs of Convergence for CCM

To prove the convergence of CCM (Algorithm 1)
we demonstrate first that Algorithm 2 terminates
after a finite number of iterations, and then that
Algorithm 3 actually converges. This is what The-
orem 1 and Theorem 2 respectively show.

Theorem 1. Let φ̃0 be a Gaussian mixture. Then,
for any κ > 0 and tolerance ε > 0, Algorithm 3
converges in a finite number of iterations.

Proof. It is enough to show that sKL(φ̃0, φ̃0(Q(0) ·
+v))→∞ as ‖v‖2 →∞, or that it admits a lower
bound that diverges as ‖v‖2 →∞. We here pursue
the latter approach and define the lower bound as
follows

sKL(φ̃0, φ̃0(Q(0) ·+v)) ≥ KL(φ̃0, φ̃0(Q(0) ·+v))

=

∫
Rd

φ̃0(x) log

(
φ̃0(x)

φ̃0(Q(0)x + v)

)
dx

=

∫
Rd

φ̃0(x) log(φ̃0(x))dx+

−
∫
Rd

φ̃0(x) log(φ̃0(Q(0)x + v))dx

≥
∫
Rd

φ̃0(x) log(φ̃0(x))dx+

− log

(∫
Rd

φ̃0(x)φ̃0(Q(0)x + v)dx

)
.

(A.1)
which follows from the fact that the KL is nonneg-
ative and from the Jensen’s inequality.

The first term
∫
Rd φ̃0(x) log(φ̃0(x))dx is finite,

since the following upper bound4∣∣∣log(φ̃0(x))
∣∣∣ ≤ c1 + c2 ‖x‖22 , ∀x s.t. ‖x‖2 > r.

(A.2)
holds for suitable constants c1, c2, r > 0.

Then, we have to prove that the second term in
the last row of (A.1) diverges. To this purpose we
define f(v) as

f(v) :=

∫
Rd

φ̃0(x)φ̃0(Q(0)x + v)dx, (A.3)

and we observe that f is a continuous positive func-
tion. The integrand in (A.3) in fact admits as dom-
inant function

φ̃0(x)φ̃0(Q(0)x + v) ≤ φ̃0(x) sup
y∈Rd

φ̃0(y), (A.4)

which is integrable and independent from v (see

Lemma 16.1 of [46]), since supy∈Rd φ̃0(y) is finite

and φ̃0 is a Gaussian Mixture. We now demonstrate
that f ∈ L1(Rd), as this implies that f(v) → 0
when ‖v‖2 →∞, thus that the lower bound (A.1),
which is equal to − log f(v), diverges. From basic
calculus it follows that:∫

Rd

|f(v)| dv =

∫
Rd

f(v)dv

=

∫
Rd

∫
Rd

φ̃0(x)φ̃0(Q(0)x + v)dxdv =

=

∫
Rd

φ̃0(x)

[∫
Rd

φ̃0(Q(0)x + v)dv

]
dx = 1

(A.5)
and this implies f ∈ L1(Rd), which proves the the-
orem.

Theorem 2. Let φ̃0 be a Gaussian mixture. Then,
for any κ > 0, Algorithm 3 converges in a finite
number of iterations.

Proof. The thesis follows from the Intermediate
Value Theorem [47] (Theorem 4.23) applied to the
function used in the bisection procedure, i.e.

skl(a) := sKL(φ̃0, φ̃0(Q(θ(a), P ) ·+ρ(a)u)), (A.6)

where θ(s) = (1 − s)θ
(1)
l + sθ

(1)
u and ρ(s) =

(1 − s)ρ(1)
l + sρ

(1)
u are convex combinations of the

initialization parameters (defined in Algorithm 3,

4This bound is trivial for Gaussian pdfs and follows from
basic algebra in case of GM.

14



lines 1-2). We observe that skl(0) = 0 < κ since

θ
(1)
l = 0 and ρ

(1)
l = 0, thus the corresponding

roto-translation is the identity transformation and
sKL(φ̃0, φ̃0) = 0. Moreover, skl(1) > κ, thus it is
enough to show that skl(·) is continuous in [0, 1] to
prove that the bisection method converges (see [48],
Theorem 2.1) to a value of s̄ such that skl(s̄) = κ.

Thus, θ(s̄) and ρ(s̄) yield sKL(φ̃0, φ̃1) equal to κ.
To show that skl(·) in (A.6) is continuous, we

show that both summands of sKL are continuous,
which can be proved by defining

kl(·) =

∫
Rd

g(·,x)dx (A.7)

where

g(a,x) := φ̃0(x) log

(
φ̃0(x)

φ̃0(Q(θ(a), P )x + v(ρ(a),u))

)
.

(A.8)
The function g(·, ·) in (A.7) is continuous in [0, 1]×
Rd, thus g(·,x) is continuous in [0, 1]. Then, to
prove that kl(·) is also continuous, we leverage
Lemma 16.1 in [46] and prove that |g(a,x)| admits
a dominant integrable function that does not de-
pend on s. To this purpose, we exploit (A.2) and,
for a sufficiently large r,

|g(a,x)| = φ̃0(x)
∣∣∣log

(
φ̃0(x)

)
+

− log
(
φ̃0(Q(θ(a), P )x + v(ρ(a),u))

)∣∣∣
≤ φ̃0(x)

(
c1 + c2 ‖x‖22 + c1 + c2

∥∥Q(θ(a), P )x+

+ v(ρ(a),u)
∥∥2

2

)
.

(A.9)
The exponential decay of GM implies that√

φ̃0(x)

(
2c1 + c2

(
‖x‖22 +

+
∥∥∥Q(sθ(0), P )x + v(sρ(0),u)

∥∥∥2

2
)

)
< c

for some c > 0. Thus, the function that dominates

|g(·,x)| for ‖x‖2 > r is c

√
φ̃0(x) which obviously

belongs5 to L1(Rd) .

Convergence of NP-CCM
Theorems 1 and 2 do not guarantee the conver-

gence of Algorithms 2 and 3 when adopting a non-
parametric formula to estimate the change magni-
tude like (12). In fact, both theorems rely on the

5There is no need to find a dominant function for ‖x‖2 ≤
r since there g(·,x) is bounded.

assumption that φ̃0 is a GM. When using (12), we
need additional assumptions on φ0 to prove CCM
convergence. More precisely, Theorem 1 holds if
we assume that φ0 is bounded over Rd. In fact, in
this case the integrand in (A.3) admits a dominant
function independent from v, thus f is continuous,
proving Theorem 1. In case of Theorem 2, we have
to assume the existence of a function h ∈ L1(Rd)
such that for every rotation matrix Q and transla-
tion vector v, the following condition holds:∣∣∣∣φ0(x) log

φ0(x)

φ0(Qx + v)

∣∣∣∣ ≤ h(x). (A.10)

In this case the g(a,x) in (A.8) is dominated by
h(x) and the function kl(·) in (A.7) is continuous.
The assumption in (A.10) holds when the data-
generating distribution is a GM, but it is difficult
to verify for a more general class of distributions.
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[24] F. Pérez-Cruz, Estimation of information theoretic
measures for continuous random variables, in: Ad-
vances in Neural Information Processing Systems
(NIPS), 2009, pp. 1257–1264.

[25] G. Boracchi, M. Roveri, Exploiting self-similarity for
change detection, in: Proceedings of the IEEE Interna-
tional Joint Conference onNeural Networks (IJCNN),
2014, pp. 3339–3346.

[26] H.-V. Nguyen, J. Vreeken, Linear-time detection of non-
linear changes in massively high dimensional time se-
ries, in: Proceedings of the 2016 SIAM International
Conference on Data Mining, 2016, pp. 828–836.

[27] W. N. Street, Y. Kim, A streaming ensemble algorithm
(sea) for large-scale classification, in: Proceedings of the
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), 2001, pp. 377–382.

[28] K. B. Dyer, R. Capo, R. Polikar, Compose: A semisu-
pervised learning framework for initially labeled nonsta-
tionary streaming data, IEEE Transactions on Neural
Networks and Learning Systems 25 (1) (2014) 12–26.

[29] F. Gustafsson, F. Gustafsson, Adaptive filtering and
change detection, Wiley New York, 2000.

[30] C. Alippi, G. Boracchi, M. Roveri, An effective just-in-
time adaptive classifier for gradual concept drifts, in:
Proceedings of the IEEE International Joint Conference
on Neural Networks (IJCNN), 2011, pp. 1675–1682.

[31] L. Ljung, System identification, in: Signal analysis and
prediction, Springer, 1998, pp. 163–173.

[32] C. Alippi, G. Boracchi, B. Wohlberg, Change detec-
tion in streams of signals with sparse representations,
in: Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
2014, pp. 5252–5256.

[33] B. Zhao, L. Fei-Fei, E. P. Xing, Online detection of un-
usual events in videos via dynamic sparse coding, in:
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2011, pp. 3313–
3320.

[34] D. Carrera, G. Boracchi, A. Foi, B. Wohlberg, Scale-
invariant anomaly detection with multiscale group-
sparse models, in: Proceedings of the IEEE Interna-
tional Conference on Image Processing (ICIP), 2016,
pp. 3892–3896.

[35] D. Carrera, G. Boracchi, A. Foi, B. Wohlberg, Detecting
anomalous structures by convolutional sparse models,
in: Proceedings of the IEEE-INNS International Joint
Conference on Neural Networks (IJCNN), 2015, pp. 1–
8.

[36] T. M. Cover, J. A. Thomas, Elements of information
theory, John Wiley & Sons, 2012.

[37] G. McLachlan, D. Peel, Finite mixture models, John
Wiley & Sons, 2004.

[38] L. Trefethen, D. Bau, Numerical linear algebra, Siam,
1997.

[39] C. Alippi, Intelligence for Embedded Systems: A
Methodological Approach, Springer, 2014.

[40] N. Leonenko, L. Pronzato, V. Savani, et al., A class of
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