Defect Detection in SEM Images of Nanofibrous
Materials

Diego Carrera®, Fabio Manganini, Giacomo Boracchi, and Ettore Lanzarone

Abstract—Nanoproducts represent a potential growing sector
and nanofibrous materials are widely requested in industrial,
medical and environmental applications. Unfortunately, the pro-
duction processes at the nanoscale are difficult to control, and
nanoproducts often exhibit localized defects that prevent their
functional properties. Therefore, defect detection is a particularly
important feature in smart-manufacturing systems, which aims
at reducing quality-inspection times and production wastes. Here
we present a novel solution to detect defects in nanofibrous
materials by analyzing SEM images. We employ an algorithm
that learns, during a training phase, a model yielding sparse
representations of the structures that characterize correctly
produced nanofiborus materials. Defects are then detected by
analyzing each patch of an input image and extracting features
that quantitatively assess whether the patch conforms or not to
the learned model. The proposed solution has been successfully
validated over 45 images acquired from samples produced by a
prototype electrospinning machine, a promising technology for
producing nanofibrous materials. The low computational times
indicate that the proposed solution can be effectively adopted in
a monitoring system for industrial production.

Index Terms—Defect and Anomaly Detection, Nanofibrous
Materials, Quality Control, Sparse Representations, Smart Man-
ufacturing, SEM Images

I. INTRODUCTION

Nanoproducts demand has steadily increased over the past
few years [1]. In particular, nanofibrous materials are nowa-
days widely requested [2], e.g., in life sciences and medicine
3], [4], filtration and water treatment [5]], [6], [7], surface
coating [8l, [9], and sensors [10].

However, despite the large number of production pro-
cesses and the flourishing of laboratory prototypes [L1]], [12],
nanofibrous materials are not yet industrially produced at
the large scale. They are indeed recognized as one of the
main challenges in high-tech manufacturing [13]], [14], e.g.,
in the Horizon 2020 Program Factory of the Future. In
fact, production processes at the nanoscale are still difficult
to control and, as a result, the nanostructure characterizing
these materials often exhibits local defects, which may impair
their mechanical or filtering properties. Defects also make the
production long and costly, resulting in an increased proportion
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Fig. 1.  Two details from SEM images depicting nanofibrous material
produced by electrospinning. The large area covered by filaments in both
images refer to good quality fibers. The top image contains two sorts of
localized defects: a small speck of dust at the center and two beads, namely
fiber clots. The bottom image contains a films, which is a thin layer of material
among the fibers.

of wasted materials and long time spent in thorough quality-
inspection procedures.

Hence, automated systems for monitoring the quality of
nanostructures are of crucial importance for the development
of nanoproducts industry. On the one hand, these systems
allow to raise alerts as soon as the amount/size of defects
exceeds a given tolerance level, in order to take corrective
actions (including halting the machinery) and guarantee a
satisfactory production quality. On the other hand, automatic
defect-detection solutions provide a quantitative assessment
which can be used to accurately design/tune the production
process to both optimize physical properties and control the
defectiveness of the produced materials [15].

As we will discuss in Section defects in nanofi-
brous materials can be conveniently detected by analyzing
Scanning FElectron Microscopes (SEM) images, since these
instruments have a resolution up to 1 nanometer. However,
despite the relevance of this industrial problem, to the best
of our knowledge, there are no automatic systems able to
provide a comprehensive monitoring of nanofiber production.
In particular, there are no systems able to detect and quanti-
tatively assess localized defects, like beads and films shown
in Figure [I] While humans can easily identify these defects,
thus distinguishing between normal and anomalous/defective
regions, this is not a simple task for a machine. In fact, both
normal and anomalous regions are far from being regular:
fibers follow different orientations and randomly overlap, and



defects can be very different in appearance and shape. Existing
vision-based systems for monitoring nanofiber production only
measure fiber diameter [[16]], [[17] or orientation [[18]], while not
localized defects like those in Figure [Il which is indeed our
goal.

Our contribution is the first solution able to automatically
detect and quantitatively assess localized defects in SEM
images of nanofibrous materials. We successfully solve this
problem by adopting an anomaly-detection algorithm which
can be easily executed on a machinery that embeds a SEM
microscope and all the accessories to prepare samples for spot
checks. We test our solution on SEM images of nanofibrous
materials produced by a prototype electrospinning machine
and show that 7) it achieves excellent detection performance,
and ii) it requires a negligible processing time with respect
to the sample-preparation time. The proposed solution can
thus be employed in a comprehensive monitoring system that
performs spot checks on the produced material and generates
alarms and feedbacks to correct the production process.

We locate defects as regions covered by anomalous patches,
i.e., small portions of the image that do not conform the
structure of normal images. To this end, we use the algorithm
in [19]], which is able to handle patches that (given their large
dimensionality and complex structure) cannot be straightfor-
wardly analyzed by traditional multivariate statistical methods
[20], e.g., maximum likelihood approaches. Patch dimension-
ality/complexity are in fact reduced by extracting features,
namely meaningful indicators with a known response from
normal data. However, manually designing effective features
is difficult, since patches extracted from the considered SEM
images are far from being regular. Hence, we adopt [19]
to extract data-driven features that measure the conformance
of test patches with respect to a learned dictionary, which
provides sparse representations [21] of normal patches. As
typical in the anomaly-detection context, anomalies are then
detected as patches corresponding to outliers with respect to
the features distribution [22]]. Another reason for using [19]]
is that this algorithm can be extended to operate at different
magnification levels [23]].

The algorithm in [19] was introduced for detecting anoma-
lies in image textures, and we here introduce specific pre- and
post-processing stages to improve the defect-detection perfor-
mance on SEM images of nanofibrous materials. Moreover,
we perform an experimental campaign that is substantially
larger than that in [19]], as we also include comparisons
against state-of-the-art anomaly-detection methods [24]], [25]],
and quantitative performance assessment over a dataset of
45 SEM images. In contrast, quantitative tests in [19] were
performed on a dataset of texture images [26] and only few
SEM images were considered in a qualitative assessment.

We made our dataset (consisting of 45 SEM images) and the
defect annotations publicly available for downloa(ﬂ These im-
ages were acquired from a prototype electrospinning machine,
developed by the Istituto per lo Studio delle Macromolecole
of the National Research Council of Italy within the Project
NanoTWICE (see Acknowledgments), which aims at equip-

Uhttp://web.mi.imati.cnr.it/ettore/NanoTwice

ping the already existing and fully-functioning prototype with
all the facilities necessary for industrialization.

The paper is structured as follows. Nanofibrous materials
and electrospinning are presented in Section [[I} together with
the methods for monitoring nanofiber production and an
overview of anomaly-detection algorithms for images. The
addressed anomaly-detection problem is formulated in Section
and the proposed solution is illustrated in Section
Experiments are detailed in Section [V} while conclusions and
future research directions are presented in Section

II. BACKGROUND AND RELATED WORKS

Nanofibrous materials are porous materials made of poly-
mer nanofibers, i.e., fibers whose diameter is smaller than
100 nanometers [27], which are embedded together in an
amorphous structure. Thanks to the possibility of tuning the
material properties by modifying nanostructures characteris-
tics, nanofibrous materials are nowadays applied in several
fields, and have generated a lot of innovative applications
in the last few years [2], [28]]. Most of applications concern
medicine, e.g., anti-adhesion materials in surgery, biofunction-
alized materials for biomedical applications, and scaffolds for
tissue engineering [29], [3], [4]. Other important applications
concern the construction of filtration membranes [5], [6], [7],
where nanofibrous materials are inserted in a media to provide
superior filtration capabilities. Finally, nanofibrous materials
are also employed in surface coating [8], [9] and sensors [10].

A. Nanofibrous Materials Production and Electrospinning

Several techniques for producing nanofibers have been
presented in the literature, e.g., self-assembly, templating,
lithography and electrospinning [2], [30]. This latter is per-
haps the most promising and versatile one, since it directly
produces nanofibrous materials whose nanostructure is mainly
in the form of non-woven nanofibers. Moreover, nanofibrous
materials produced through electrospinning typically feature
higher surface-to-volume ratio and a porosity that can be better
controlled than in materials produced by other techniques.
Electrospinning also allows large flexibility in the size and
shape of the produced nanofibers [2], [28]. Electrospinning
was originally studied by Rayleigh in 1897, and patented in
1934 [31]; however, it has only recently gained momentum
thanks to the explosive growth of nanostructured materials [2].

Briefly, the electrospinning process takes place between a
spinning head and a plate. The spinning head has a capillary
opening where a high voltage is applied, and it is connected
with a reservoir of polymer solution under pressure. On
the other side, the static plate (usually grounded) acts as a
counter-electrode that collects nanofibers. The high voltage
difference between the spinning head and the ground results
in a nano- to micron-sized electrically-driven polymer solution
jet, which is drawn out from the apex of a cone (the so-
called Taylor cone) formed at the capillary opening of the
spinning head. The solvent rapidly evaporates from the jet
during the run and, under optimal conditions, a continuous
nano-sized filament is deposited to the collecting electrode in
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a random fashion, forming the non-woven structure. Further
details about electrospinning process can be found in [2]], [28]].

Unfortunately, external environmental variables and process
instabilities (e.g., instabilities in the solution jet [32]], [33]) may
seriously affect the production, introducing high variability
in the fiber characteristics and localized defects like those in
Figure [1] In particular, beads are generated by drops coming
off from the spinning head, which are deposited on the plate
together with the fibers. Similarly, films are caused by larger
drops that, once deposited on the plate, widen and thin; then,
once the solvent evaporates, a film thinner than the fibers
remains. Finally, tiny speck of dust might also get trapped in
the fibers, and this also prevents the functional properties of
the nanofibrous materials. Another issue is the presence of big
holes in the material, i.e., parts of the sample where no fibers
are present. Obviously, a physiological porosity is expected
and desired; however, problems arise when pores are larger
than a reference value. Similarly, problems may arise when
fibers characteristics (e.g., the average fiber diameter and their
distribution) depart from their reference value.

B. Monitoring Nanofibrous Materials Production

Several solutions to monitor nanofibrous material produc-
tion, including electrospinning, have been presented in the
literature. They can be roughly divided into solutions that
continuously control production parameters during the process
(e.g., the current or the pressure in the equipment) and solu-
tions that control the produced materials through spot checks.
Monitoring production parameters is simpler, as it consists of
analyzing signals acquired from the machine; however, the
quality of the produced materials can be affected by several
other stochastic factors and analyzing these signals might not
be sufficient to detect defects in the produced materials. Thus,
it is preferable to inspect samples of the produced material, and
two directions are possible: i) to directly analyze the structure
of the nanofibrous material by SEM imaging, or ii) to assess
some functional properties (e.g., nano-mechanical properties
through atomic force microscopy [34] or filtering behavior in
case of filters [6], [7]). The latter option does not allow to
generate alerts in a short time, thus is less suited for regular
spot checks. As such, the most effective approach consists in
acquiring SEM images of few material samples and directly
analyze their nanostructures.

Of course, visual inspection by human operators is not
a viable option, as large-scale industrial scenarios require
automatic and repeatable solutions that quantitatively assess
defects. So far, the only existing automatic solutions are meant
to measure the fibers diameter and orientation [[16f], [17], [LL&I],
while they are not able to detect defects like those shown in

Figure [1]

C. Anomaly Detection in Images

Algorithms for detecting anomalies [35] in images can
be divided in reference-based and reference-free ones. In
reference-based methods (e.g., [36]]), anomalies are detected
by comparing the test image against a reference one that
does not contain anomalies and can be used as a template.

These methods apply in many industrial scenarios, e.g., in
semiconductor production where wafers correspond, up to
some small misalignment, to a reference template [36].

Reference-free algorithms do not use any template image to
compare with, and they are the only viable option in scenarios
like the one considered here, where normal images depict
filaments that follow pseudo-random rather than geometrical
patterns. Reference-free algorithms detect anomalies by either
computing i) features that are able to discriminate between
normal and anomalous regions, or ii) features that provide
a known response to normal regions. In the latter case, any
region yielding an unusual response is considered anomalous.
Methods implementing this latter strategy are typically re-
ferred as novelty detection [22], [37], [38] (in the machine-
learning community this problem is also known as one-
class classification [39]). In this paper we present a novelty-
detection algorithm, even though we refer to anomaly/defect
since these terms are more appropriate descriptions for the
considered application.

On the one hand, anomaly-detection methods are easy to
use, since they simply require a training set of normal images
(which is often easy to collect) and are in principle able
to detect as anomalous any pattern that does not conform
training images. On the other hand, this problem is more
challenging because it does not rely on any information
about the anomalies to be detected. Overviews of anomaly-
detection algorithms for images can be found in [33]], [22];
not surprisingly, these algorithms have been also proposed for
industrial monitoring purposes [40]], [41], [42].

Here, we adopt an anomaly-detection algorithm based on a
dictionary yielding sparse representations, which are nowadays
one of the leading models in image and signal processing
applications [21]], [43]. In particular, we pursue the approach in
[19] to represent normal data, in which a dictionary is learned
during an initial training phase. Then, test images are analyzed
in a patch-wise manner, computing features which assess the
conformance of each patch with the structures characterizing
normal ones. Anomalies are then identified as outliers in the
feature distribution. This approach proved to be particularly
successful on image texture. A different anomaly-detection
algorithm that uses sparse representations is [24], where the
anomalous data are identified during the sparse-coding stage,
by means of an ad hoc procedure. Convolutional-sparse mod-
els [44] were also shown to be effective in detecting anomalies,
even though they are more computationally demanding than
traditional patch-based models like those described in Section

IV-Al

While several defect-detection algorithms used in industrial
applications (e.g., those in [45], [46], [47], [48]) are very
application-specific and cannot be straightforwardly applied
to nanofibrous materials, anomaly-detection algorithms based
on sparse representation are rather general. In fact, these
have been customized for different monitoring scenarios, like
analyzing MEMS [49] signals in environmental monitoring ap-
plications, or ECG tracings to detect arrhythmias in wearable
devices [50].



Fig. 2. (a) Examples of training patches. (b) Atoms of the dictionary learned
by the ADMM algorithm [51]]. Here we show only 16 atoms.

III. PROBLEM FORMULATION

Let us denote by s : X — R* the SEM image depicting
the nanostructures to analyze for anomaly-detection purposes,
where X C Z2 is the regular pixel grid corresponding to
the image domain. The image intensity| at pixel ¢ € X is
denoted by s(c). Our goal is to locate anomalous regions in
s; as such, the problem can be formulated as estimating the
unknown anomaly mask

Q(c) = {(1)

which has to report as many anomalies as possible, indepen-
dently of their dimension and shape. In particular, we are
interested in estimating an anomaly mask () that i) covers
most of the anomalous regions in s and that ii) reports the
largest number of anomalies, including the smallest ones.

Our only assumption is that, for training purposes, a set
of normal (i.e., anomaly-free) images T is given, while no
training images containing anomalous regions are provided.
This is a reasonable assumption since anomalous regions
might be very different in shape, dimension and appearance,
and a training set might not encompass all possible anomalies
that could occur during operations. In this sense, anomalies
remain unknown and we detect as anomalous any region that
do not conform the structure of normal data.

if ¢ falls inside a normal region 0

if ¢ falls inside an anomalous region

IV. PROPOSED SOLUTION

To better locate anomalies, we process the input image s in
a patch-wise manner. A patch is a small image region having a
given shape and extracted at a specific pixel, denoted as patch
center. In particular, the patch centered in ¢ € & is defined as

sc ={s(c+u),u e}, Vee X (2)

where U is a neighborhood of the origin which defines the
patch shape. While in principle patches s. can be defined

2SEM produces grayscale images, since each pixel reports the number of
electrons received by the detector. However, the proposed algorithm can be
easily extended to color images by jointly analyzing different color bands.

over arbitrary shapes, in practice, we chose U/ as a square
neighborhood of /p x ,/p pixels, where p is the cardinality of
U. Note that s, will be usually considered as a column vector
in RP, and thorough the paper we use bold letters to indicate
vectors. Figure [2(a)| shows examples of patches extracted from
normal images.

A. Normal Patches Model

Our modeling assumption is that patches in normal images
are drawn from a stationary, stochastic process Py and can
be ideally contained in an unknown union of low dimensional
subspaces of R” [52]. Such union of subspaces corresponds to
our model which has to be learned from the training set T. This
model can be expressed in term of a dictionary D € RP*"
[53]] that provides sparse approximation of all normal patches
s. € RP, ie.,

s. ~ Dx, . 3)

In (E[), x. € R™ denotes the coefficient vector which is sparse,
namely only few coefficients are nonzero, thus ||x.|lo, which
is the number of nonzero components of x., is small. Note
that (3) corresponds to the following expression

S¢c & i xc7idi ) (4)
i=1

where z.; denotes the i-th component of x. and d; the i-th
column of D, which is commonly referred to as a dictionary
atom. Sparsity implies that only few x.; in (@) are nonzero
and that each normal patch can be (well) approximated by a
linear combination of few dictionary atoms. The dictionary D
is typically overcomplete, i.e., the number of atoms exceeds
space dimension (n > p): overcompleteness allows more
flexibility in the definition of atoms than in basis expansions,
and this flexibility enables sparsity in (@).

The coefficients of the sparse representation x. are com-
puted by solving the sparse coding problem which is formu-
lated as

X, :arwgmin%HDi—sCH%+)\||i||1, 5)
XER™

where the ¢! regularization term ||X||; promotes sparsity in the
solution [54]]. According to (@) sparsity should be promoted
by the ¢° regularization term ||X||o instead of ||X||;. However,
while the /° regularization makes the sparse coding problem
NP-Hard, the formulation (3)) is convex and can be solved by
standard convex optimization algorithms. The problem () is
theoretically grounded, since it can be shown that under proper
assumptions concerning the dictionary D and the number
of nonzero coefficients of x., the sparse coding problems
involving the ¢° and /' regularizations have the same solution
[55]. The solution of @) corresponds to the maximum a
posteriori (MAP) estimate of x. given the patch s., when the
nonzero coefficients follow a Laplace distribution. This result
can be extended to other /P regularizations, which corresponds
to assuming that the nonzero coefficients of x. follow a Gibbs

distribution [56].
The dictionary learning problem actually corresponds to
learning both the dictionary D € RP*™ and the sparse



representations X € R™*™ for a given training set S € RP*™,
containing m normal patches arranged as the columns of S.
Dictionary learning is then formulated as solving

1 ~~ -
[D, X] = FIDX =S|Iz + AIX,  (©)

arg min

DeRpxn, X Rnxm
where the ¢! regularization is applied to each column of X.
The problem (6) is typically solved by using the Alternating
Direction Method of Multipliers (ADMM) [57]] which alter-
nates the calculation of the dictionary atoms and the sparse
representations X of training patches S with respect to the
current dictionary.

In our experiments we learn the dictionary D solving (6)
by means of the algorithm in [51] based on the ADMM and
solve the sparse coding (3) using the LARS algorithm [58].
Figure 2(b)] reports a few atoms of a dictionary learned from a
normal image, and shows that these atoms actually depict the
peculiar structures of the filaments that characterize normal
patches. It seems quite likely that a linear combination of few
of these atoms can reliably approximate the normal patches
reported in Figure 2(a)]

B. Detection of Anomalous Patches

We assume that anomalous patches come from a process
‘P4 yielding structures that are different from those generated
by Px. Unfortunately, it is not often possible to learn a
dictionary that approximates anomalous patches, since these
are rarely provided in a sufficient amount for training. Thus,
we detect anomalies by determining whether test patches fall
inside/outside of the union of low-dimensional subspaces that
well approximate normal patches.

In practice, each patch in a test image is independently an-
alyzed to determine whether it admits a sparse representation
with respect to D. To this purpose, we compute a feature
consisting in a bivariate indicator which jointly accounts for
the reconstruction error and the sparsity of the representation
(). In particular, given a patch s., we compute x. (sparse
coding) by solving the BPDN problem (5), and we extract as
feature in c¢ the following indicator vector:

) = [wxc - Sc||2] | -

[[xellx

Indicators extracted from normal patches follow a stationary,
albeit unknown, distribution. Anomalous patches are expected
to substantially deviate from normal ones in either their
sparsity or reconstruction error (or possibly both). Thus, the
corresponding indicators would be outliers with respect to the
distribution ¢ of indicators extracted from normal patches.
While in [19] outliers in the indicators are detected by means
of a confidence region built according to the multivariate
Chebyshev inequality, we here model the distribution ¢y by
Kernel Density Estimation (KDE), adopting a kernel based on
linear diffusion with automatic bandwidth selection [59]].

Then, a patch s, is considered anomalous when f(c) falls
in a low-density region of ¢. Therefore, an initial estimate of
the anomaly mask is given by

5(0) = {(1) if 6o (£ (c) <

: 8
if o (£ () > 7 ®)

being v > 0 a parameter that tunes the responsiveness of
the anomaly detector. In particular, the value of v can be
empirically chosen to provide an acceptable false positive rate.

C. Preprocessing

To effectively capture the structure that characterizes normal
filaments, we consider quite small patches; thus, there might
be patches that do not overlap with any filament and are
completely dark. Patches that are entirely zero can be perfectly
reconstructed by any linear model, and achieve a (very) sparse
representation, having all coefficients in (@) equal to zero.
Unfortunately, null indicator vectors can impair the estimation
of ¢y, and it is safer to remove them from both the training
and test patches. Thus, we consider for training only patches
in the set S:

S = {s. | median(s.) > ¢}, 9)

where € > 0 is a manually tuned parameter. The same
operation is applied on test images. The median in (9) was
used to remove also dark patches that marginally overlap with
a filament. It is worth mentioning that nanofibrous materials
having too large holes might yield porosity values that are
far from the reference ones. However, this sort of anomalies
can be detected by straightforward morphological operations
on the whole image and certainly do not require any learning
method.

Another pre-processing operation to perform before dictio-
nary learning and sparse coding is to subtract the average value
from each patch s., which is quite a customary operation in
the sparse-representation literature.

D. Postprocessing

Even though the anomaly detector takes as input the
whole patch s, its final decision concerns only the patch
center ¢ and no other pixels belonging to the same patch.
However, since patches centered in neighboring pixels largely
overlap, it would be better to aggregate the decisions of the
anomaly detector in all those patches that overlap with c.
We perform such aggregation by post-processing the anomaly
mask (8) by majority voting:

0(c) = {(1)

where A. = {u € U|Q(c +u) = 1} denotes the set of
pixels in s, that are considered anomalous and N, = {u €
U | Q(c+u) = 0} the set of pixels that are considered normal.
__ Finally, to smooth the borders of anomalous regions in
Q we perform an additional post-processing by customary
morphological operators [60]. More precisely, we apply an
erosion followed by a dilation, which are nonlinear filters
based on order statistics: the minimum and the maximum over
a given support, respectively. We experienced that adopting
these binary operations over a neighborhood smaller than U/
can improve the coverage of anomalous regions.

if #A, < #N,

1
TV (10)



Algorithm 1 The training phase of the proposed algorithm.

Algorithm 2 The operational phase of the proposed algorithm.

Require: a training set of normal images T.

1: Prepare two training sets of normal patches S and V.
Remove dark patches from S and V' as in (9).
Subtract the average value from each patch in S and V.
Learn the dictionary D solving () from S.
Compute the sparse representation of V' solving (B).
Compute {f (c),Vs. € V} as in (), the indicators of
normal patches.
7: Fit ¢ through KDE, and define a suitable the threshold

7 > 0 to be used in the detector ().

AR A

E. Algorithm Summary

We here describe the training phase (Algorithm ) and detail
all of the steps of the proposed solution during operations
(Algorithm [2). To prevent overfitting, it is convenient to split
T in two sets of patches, S and V, which are both pre-
processed as in Section (Algorithm [1] lines [T}3). We
use patches in S to learn the dictionary D by solving (6) via
the ADMM algorithm [51] (line [), while we compute the
sparse representations (line [5) and the indicators (line [6) for
all the patches in V. Then, we fit the distribution ¢y only to
these latter (line [7), ignoring patches used to learn D. Finally,
a suitable threshold v > 0 is chosen.

During operations, each test image is processed in a patch-
wise manner and each patch s. undergoes the preprocessing
steps described Section (Algorithm [2] line 2}f3). The
sparse representation x. is computed by solving the sparse-
coding problem (line @) and the corresponding indicator vector
f(c) is obtained (line[5). A simple thresholding on ¢(f(c)) as
in provides a preliminary estimate of the anomaly mask,
i.e., 2 (line |6). The anomaly mask is then refined through the
post-processing to obtain Q (line .

V. EXPERIMENTS

We analyze SEM images acquired from samples pro-
duced by the prototype electrospinning machine developed for
the NanoTWICE Project. Electrospinning sessions were per-
formed with experimental conditions (machine parameters and
environmental variables) that typically produce good quality
nanofibrous materials with no macroscopic defects. There is
no point of considering worse production conditions, as these
can be easily detected by other macroscopic approaches (e.g.,
they yield altered current patterns during the process) and do
not require vision-based monitoring.

A. Dataset Description

Our SEM images were acquired with the FE-SEM (Carl
Zeiss Sigma NTS, Gmbh Oberkochen, Germany). A sample
of 4 x4 e¢m from the produced material is placed on a metallic
support, and a thin gold coating of 5 nm is applied on the
sample surface to guarantee satisfactory electrical conduction.
All images are acquired in the same conditions and using
the same parameters, i.e., magnification of 8000x, extra high
tension of 5 kV, working distance of 7 mm, brightness of
45%, and contrast of 52%.

Require: test image s; D, ¢g, v > 0 from Algorithm
1: for all patch s, in s do

2. if s, satisfies (9) then

3: Subtract form s, its average value.

4: Solve (3) to compute x..

5: Compute the indicator f(c) as in (7).

6: Define the anomaly mask value Q(c) as in ().
7: end if

8: end for B

9: for all pixel c of the anomaly mask (2 do

10: Set the anomaly mask © via majority voting (10).
11: end for R

12: Apply erosion and dilatation operators to €.

Our dataset contains 45 SEM images (dimension 1024 x 696
pixels): 5 images are anomaly-free, while 40 images contain
anomalies of different size. For each image, we manually
select all defects, defining the anomaly mask € that is used
as a ground truth in our tests. Overall defects in these images
are very small: on average they cover 1.3% of the image, and
only the 0.5% of the anomalies exceed the 2% of the image
size.

B. Figures of Merit

To assess the performance of the proposed solution we
compute the following figures of merit: False Positive Rate
(FPR), namely the percentage of pixels which are erroneously
identified as anomalous; True Positive Rate (TPR), namely
the percentage of pixels which are correctly identified as
anomalous.

Since both FPR and TPR depend on the threshold v, which
sets the responsiveness of Algorithm [2] and of the alternative
solutions described below, we analyze the Receiver Operating
Characteristic (ROC) curve, which is obtained by plotting the
TPR against the FPR for different values of . Moreover,
the area under the ROC curve (AUC) is used as a single
quantitative performance indicator, which is equal to 1 in the
case of the perfect detector (i.e., TPR = 100% and FPR = 0%).

However, although the AUC is commonly adopted in de-
tection problems, in the considered scenario it is mainly
influenced by large defects, while our goal is to detect all
of them disregarding their size. Therefore, to quantitatively
assess the coverage of all defects, we extract the connected
components [60] of the ground truth €2, thus assigning a blob
to each defect. Then, we measure the Defect Coverage as the
percentage of pixels covered by the output €2 of a detector
yielding FPR = 5%. Of course, each defect yields one Defect
Coverage value, and different solutions have to be contrasted
by comparing the distribution of Defect Coverage values.

C. Alternative Solutions

We compare our algorithm against five anomaly-detection
solutions that, like ours, operate patch-wise without any
anomalous patch for training. All solutions have been tested in
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Fig. 3. Values of the AUC for the considered methods obtained by varying the
patch size. The solid triangles indicate the points where the AUC is maximized
and in the legend the optimal patch size pop is reported.

the same setting: they are trained from a set T of 5 anomaly-
free images, they preliminary remove dark patches as in (9),
and they perform the same postprocessing described in Section
IV-D

The first three (Variance, Gradient, Grad& Var) are baseline
solutions that implement manually designed features to distin-
guish between normal and anomalous patches. In particular,
the indicator vectors associated to these baseline solutions are
suggested by the fact that defects are often flat, whereas normal
regions are characterized by prominent edges (see Figures
[Nl and 2(a)). The fourth solution (STSIM) is based on the
structural texture similarity measure proposed in [25], which
achieves state-of-the-art performance in texture classification.
Finally, the fifth solution (Coding) was proposed in [24] and
also learns a model based on sparse representation, thus it
extracts a data-driven feature like the proposed one.

Baseline solutions follow the same framework of the pro-
posed algorithm: more precisely, during the training phase,
we compute an indicator vector f(c) for all of the patches
extracted from the images in T. Then, we fit the distribution
¢o on the computed indicators by KDE [39] and set a
suitable threshold . During operations, the anomaly mask €2
is computed as in (8). The only difference between the baseline
solutions is the indicator vector f used:

e Variance: the indicator vector f(c¢) corresponds to the
sample variance v(c) computed over the patch s..

o Gradient: the indicator vector f(c¢) corresponds to g(c),
the average magnitude of the gradients in the patch s..
More precisely, we compute at first the image of gradient
magnitude d as

d= /(s ®ds)? + (s®d,)?, (1)
where d, = [—1,1] and d, = [—1;1] are the horizontal
and vertical derivative filters [60], respectively, and &
denotes the 2-dimensional convolution. If we denote by
d. the patch centered at ¢ extracted from d, then g(c) is
the average value of the patch d..

e Grad&Var: this solution stacks the indicators v(c) and

1
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m— Codin
M g
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Gradient
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Fig. 4. ROC curves for all solutions considered in Section [V] with the

corresponding AUC values reported in the legend. Proposed and Coding
solutions use a patch size p = 152, while the others the optimal patch size
Popt selected in Figure The Proposed solution outperforms by far all of the
others.

g(c) in a two-dimensional indicator vector
12)

The STSIM solution is based on structural texture similarity
metric [25], which assesses the similarity between different
textures. More precisely, a texture image s is decomposed
into steerable-filter subbands [61]], and a feature vector h(c)
is obtained by computing subband statistics over s.. In [25]]
this is used for texture classification: each feature vector is
assigned to the closest class in terms of Mahalanobis distance.
In our scenario there is only one texture corresponding to nor-
mal images, and we perform anomaly detection using feature
vectors as follows: during the training phase we compute the
feature vectors from the training images, their mean h and
their covariance. Then, during operations, we compute h(c) for
each patch and consider s. anomalous when the Mahalanobis
distance between h(c) and h exceeds a fixed threshold . This
is equivalent to consider as anomalous any patch having an
indicator falling outside a confidence region around h, defined
by the Chebyshev inequality.

The Coding solution was presented in [24]] and also assumes
that normal data admit sparse representation with respect to
a dictionary D as in (3). Differently from our algorithm, the
anomaly-detection phase in [24] is embedded in a specific
sparse coding procedure. More precisely, for each patch s,
the sparse representation x. is computed together with a term
a., which exhibits a large magnitude when the approximation
(3) is not good enough. Thus, anomalies are detected when
the magnitude of a. exceeds a fixed threshold . To enable a
fair comparison, we use the same dictionary D in the Coding
and Proposed solutions.
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Fig. 5. Box-plots reporting the distribution of the Defect Coverage. All the

considered solutions have been configured to yield at a fixed FPR = 5%. The
proposed algorithm achieves the best performance, as it covers at least 50%
of the anomalies for more than 60% of their area.

Of course, choosing the right patch size is very important,
since small patches might not exhibit the typical structure of
normal data, while large patches might prevent the detection
of small anomalies. To fairly compare different methods, each
one has to be tested using its optimal patch size. Therefore, we
choose the best value of p for baseline and STSIM solutions
by testing p € {42,8%,122,...,120%} over a validation set
of 5 images containing anomalies. Figure [3| shows the average
AUC values obtained for each solution, and reports the optimal
patch sizes pop that are used in our experiments. As far as the
Coding and the Proposed solution are concerned, we manually
set the patch size p = 152, since using larger patches would
require too many training data to avoid overfitting in model (3]
and would substantially increase the computational costs. The
same 5 validation images are used to set the other parameters
for all of the considered solutions, using cross-validation to
maximize the AUC: X in (6) and (), ¢ in (9), as well as the
parameters in the Coding solution. The Defect Coverage is
computed by configuring the parameter -y in each method to
yield FPR = 5% in these 5 validation images. Finally, these 5
images used for validation are not considered for performance
assessment, thus our experiments involve the remaining 35
images.

D. Results

The proposed solution is compared in two experiments
against the five solutions described in Section

At first, we test each solution over the entire dataset, and we
assess the overall anomaly-detection performance by the ROC
curves averaged over 35 images. These curves are reported in
Figure [] together with the corresponding AUC values in the
figure legend. ROC curves clearly indicate that the Proposed
solution outperforms all the others, achieving AUC values that
are at least superior of 0.2. In particular, the proposed solution
outperforms the Coding, which uses the same dictionary D.
Thus, we can conclude that (at least in this specific application)
it is not convenient to embed the anomaly detection into the
sparse-coding stage, while it is better to separately compute the

TABLE 1
COMPUTATIONAL COMPLEXITY OF THE PROPOSED SOLUTION

Operation
Median filter
Mean Subtraction
Sparse Coding
Indicator Vector

Flops per patch Time per image (s)
O(y/plogp) 0.0087 £+ 0.0011

O(p) 0.1522 4 0.0022

O(pnk +nk? + k3) | 51.190 & 1.7717

( 1.6716 £ 0.0411

(

(

(

pn)

1) 0.0273 4+ 0.0012
VP) 0.0159 % 0.0020
/Pl 0.0101 % 0.0005

@]
Density Evaluation O
Majority Voting (@]
Morphological filtering | O

indicators and then identify anomalies as outliers. The STSIM
solution achieves the worse performance, probably because
the anomalies in these images are very small and cannot be
detected when using large patch sizes. However, as observed
in [25] and in Figure [3 the performance of STSIM solution
degrades when considering smaller patches, since the local
subband statistics cannot capture the texture structure.

In the second experiment we compare the Defect Coverage
values of all these solutions, to make sure that the superior
performance achieved by the proposed solution is not due
to a superior coverage of few large defects (like the film in
Figure[I)). The box-plots in Figure [5| confirm that the proposed
solution guarantees a Defect Coverage that is often better than
others, having most of the defects covered more than 60%.
Thus, considering that small anomalies far outnumber the large
ones (as described in Section[V-A) we can safely conclude that
the proposed solution provides superior detection performance
also of small defects. We also provide a visual comparison of
the anomaly-detection performance. Figure[6]reports the masks
Q over three meaningful images for the three most effective
solutions (according to Figures [ and [3), generated by setting
the same values v used to compute the Defect Coverage values.
These masks confirm that the proposed solution provides
a superior coverage of very small anomalies, as it clearly
emerges in the second image. The large film in the first image
is successfully detected by all methods (and in particular by the
Coding solution). However, the tiny anomalies in the second
image are much better detected by the Proposed solution.
Also, the Coding solution completely misses a large bead
in the third image. Finally, most of the false alarms in the
Proposed solution appears at junctions and pairs of filaments
that are very close to each other (see third image), which
however correspond to very few patches.

E. Computational Complexity

We analyze the computational complexity of the Algorithm
to show that our solution can be effectively adopted in a
system monitoring the industrial production of nanofibrous
materials through spot checks. Table [] reports the order of
floating point operations (flops) that each step of the Algorithm
performs to analyze a single patch s, together with the
time (mean value £ standard deviation) required to process
an entire image using our MATLAB implementation of the
algorithm on a PC mounting an Intel Core i7 3.40GHz CPU
and 16GB RAM.

The preprocessing consists of (9), where the computation
of the median is performed in a sliding manner and requires



Grad& Var

!

;ls
SN
b

"
\J
)

\ ‘.:A
»

) .7’4'@1
v, PAN|
A 4

i
]

v
"v‘
[

/ TAY
WI'

f -

oY

Fig. 6.

Proposed

A\ »,
(OWANTA

-~ ¢ 1

—a “‘.\ ‘

7 \/L
.
v

Examples of anomaly detection on three meaningful SEM images. The first column reports the three original images, while the following ones

present the detections obtained from Grad& Var, Proposed and Coding solutions, respectively. These solutions have been chosen as the best performing ones
according to Figuresﬂand The threshold ~y has been set as in Figure|§|, to yield FPR = 5%. Pixels correctly identified as anomalous are marked in green,
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O(y/plogp) flops for each patch. Subtracting the mean re-
quires O(p) operations. The sparse coding is performed using
the implementation of the LARS algorithm provided in the
SPAMS [62] library and requires O(pnk + nk? + k3) flops,
where £ is the maximum number of iterations of the LARS
and is set to 200 in our experiments. Then, the indicators in (7))
are computed at the cost of O(pn) operations. Since the values
of the density ¢, are sampled in a regular grid, the evaluation
of ¢o(f) can be performed retrieving a value in a lookup-table,
at a constant cost O(1). Finally, the mask 2 is computed by
performing the majority voting and applying the morpholog-
ical operators, which require O(/p) and O(,/plogp) flops,
respectively.

The computational times reflect the complexity of each step,
thus are dominated by the sparse coding. However, the time
required to analyze an image is well below the time needed to
prepare the next sample material, thus multiple SEM images
could be analyzed from the same sample. Moreover, the sparse
coding can be easily sped up by considering fewer patches in
the analysis, e.g., skipping every second patch. We experienced
that such a running process does not substantially affect the
resolution of the map 2, while it decreases the time required
by a factor of 4. Finally, it is worth noting that the sparse
coding is embarrassingly parallel, as the solution (3) can be
executed independently over multiple patches. Hence, a GPU
implementation of the proposed solution would dramatically
reduce the computational times.

VI. CONCLUSIONS

We present an anomaly-detection algorithm that can suc-
cessfully detect defects in nanofibrous materials. Experiments
conducted on a large dataset of SEM images show that the
proposed algorithm can effectively detect also tiny defects,
and that it processes images in a reasonable time. Thus,
this algorithm can be implemented in smart manufacturing
systems for nanofibrous material production, to control the
quality of the produced material by spot checks. These checks
allow to adjust the production process parameters and, when
regularly performed, to raise alerts when the production quality
falls below a desired standard, yielding both economical
and environmental advantages. Ongoing work concerns new
dictionary-learning methods to exploit examples of defects
during the training phase.
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