
International Journal of Computer Vision
http://dx.doi.org/10.1007/s11263-016-0898-1

Foveated Nonlocal Self-Similarity
Alessandro Foi1, Giacomo Boracchi2

1 Department of Signal Processing, Tampere University of Technology, Tampere, Finland
2 Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy

Abstract When we gaze a scene, our visual acuity is max-
imal at the fixation point (imaged by the fovea, the central
part of the retina) and decreases rapidly towards the periphery
of the visual field. This phenomenon is known as foveation.
We investigate the role of foveation in nonlocal image filter-
ing, installing a different form of self-similarity: the foveated
self-similarity. We consider the image denoising problem as
a simple means of assessing the effectiveness of descriptive
models for natural images and we show that, in nonlocal im-
age filtering, the foveated self-similarity is far more effective
than the conventional windowed self-similarity. To facilitate
the use of foveation in nonlocal imaging algorithms, we de-
velop a general framework for designing foveation operators
for patches by means of spatially variant blur. Within this
framework, we construct several parametrized families of op-
erators, including anisotropic ones. Strikingly, the foveation
operators enabling the best denoising performance are the ra-
dial ones, in complete agreement with the orientation prefer-
ence of the human visual system.

1 Introduction

Nonlocal self-similarity is among the most effective regu-
larization priors for natural images (Katkovnik et al., 2010;
Buades et al., 2010). State-of-the-art algorithms for very dif-
ferent imaging tasks often rely on the assumption that natural
images contain a large number of mutually similar patches at
different locations (Dabov et al., 2007b; Arias et al., 2011;
Milanfar, 2013). To exploit the nonlocal self-similarity, simi-
lar and dissimilar patches have to be identified on the basis of
a suitable patch distance, meant as inverse similarity between
the patches. Choosing such distance corresponds to assuming
a specific model for describing natural images and their self-
similarity: the effectiveness of nonlocal algorithms depends
on the validity of such underlying model.

This work was supported by the Academy of Finland (project no.
252547, Academy Research Fellow 2011-2016).

Patch similarity is typically assessed through the Euclid-
ean distance of the pixel intensities, hence it depends on the
patch size. Large patches guarantee stability of the distance
with respect to degradations such as noise; however, the mu-
tual similarity between pairs of patches typically decreases as
the patch size grows. Thus, a windowed Euclidean distance is
commonly used to balance these two conflicting aspects, as-
signing lower weights to pixels far from the patch center.

Inspired by the human visual system (HVS), we design
specific foveation operators to measure the patch similar-
ity. Foveation (Curcio et al., 1990) is a peculiarity of the
HVS, which is characterized by maximal acuity at the fix-
ation point, imaged by the fovea, the central part of the ret-
ina. Acuity rapidly decreases towards the periphery of the vi-
sual field. To reproduce such effect, foveation operators yield
patches blurred by a spatially variant blur, where the blur ker-
nels have standard deviation that increases with the spatial
distance from the patch center.

We measure patch similarity by means of the fovea-
ted distance, i.e. the Euclidean distance between foveated
patches. If we consider the patch center as a fixation point,
the foveated distance mimics the inability of the HVS to per-
ceive details at the periphery of the center of attention. Thus,
foveation becomes an alternative to windowing as a means to
attenuate the influence of periphery pixels to the patch simi-
larity assessment. A constrained design of the foveation op-
erators guarantees that whenever the difference between two
patches can be modelled as white noise, then the foveated
distance is equivalent to the distance induced by any given
windowing kernel. Such is for instance the case when the two
patches do not exhibit structured differences. In presence of
structured differences, such as those arising in the vicinity
of edges, the windowed and foveated distances are instead
shown to be fundamentally distinct, with the latter providing
sharper localized responses.

In the context of nonlocal image modeling, the foveated
distance induces a different form of self-similarity, the fo-
veated self-similarity. To quantitatively validate the foveated
self-similarity as regularization prior for natural images, we
investigate the image denoising problem. Indeed, the removal
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Fig. 1 Cell density and visual acuity vs eccentricy. The visual acu-
ity as well as the cone and ganglion density peak at the fovea and
decrease rapidly as we move toward the periphery of the retina. Plot
based on data from Curcio et al. (1990), Garway-Heath et al. (2000),
and Wertheim (1894).

of additive white Gaussian noise is the most widely used
task for assessing the validity of any descriptive or generative
model of natural images (e.g., Roth and Black, 2005; Weiss
and Freeman, 2007; Li and Huttenlocher, 2008; Lyu and Si-
moncelli, 2009; Ranzato et al., 2013). As a meaningful pro-
totype of nonlocal image filtering algorithms, we specifically
consider the Nonlocal Means (NL-means) (Buades et al.,
2005) and propose Foveated NL-means, where the foveated
distance replaces the conventional windowed distance.

Extensive experiments show that Foveated NL-means can
substantially outperform the standard one, in terms of both
objective criteria and visual appearance: Foveated NL-means
achieves better contrast and sharpness in the denoised images,
particularly at edges and sharp details. We interpret the supe-
rior performance of Foveated NL-means in terms of low-level
vision, as an improved ability of the foveated distance at iden-
tifying similar patches and at distinguishing different ones in
noisy environments. This makes the foveated self-similarity
a far more effective regularization prior for natural images
than the conventional windowed self-similarity. To further in-
vestigate the role that foveation plays in assessing nonlocal
self-similarity, we design a general family of foveation op-
erators, including anisotropic ones, which embed directional
blur kernels. Remarkably, the foveated distance is even more
effective when the blur kernels of foveation operators follow
radial directions, matching the orientation preference in the
HVS (Sasaki et al., 2006; Freeman et al., 2011). Thus, fovea-
ted self-similarity reveals a connection between features of
the HVS and modern imaging algorithms.

This work builds upon our preliminary conference publi-
cations: Foi and Boracchi (2012), where we first introduced
isotropic foveation operators and their constrained designed
for Foveated NL-means; and Foi and Boracchi (2013b,a)
where we described their anisotropic extensions. Here, we
develop these works in the following directions: we provide a
more precise and detailed characterization of the design con-
straints leading to foveation operators (both isotropic and an-
isotropic); introduce self-map foveation operators that share
the same compact support of windowing operators; illustrate
the foveation operators through their singular value decompo-
sition; present a more thorough and extensive experimental

Fig. 2 Lena image foveated at two different fixation points.

validation which includes a detailed analysis and optimiza-
tion of the filter parameters; detail the computational over-
head of replacing the windowed distance with the foveated
distance; discuss several connections between the HVS and
the effectiveness of foveated self-similarity, including a di-
rect analogy between the radial bias in the HVS and the opti-
mal orientation in anisotropic foveation, which we expose by
replicating the outcomes of a recent fMRI study on human
subjects within our image-denoising framework.

The remainder of the paper is structured as follows: Sec-
tion 2 introduces foveation and self-similarity in the HVS and
in the image-processing literature, while Section 3 presents
the observation model and the NL-means algorithm. Sections
4 and 5 introduce the patch foveation and a constrained de-
sign of foveation operators; meaningful examples are then
extensively developed in Section 6, including the anisotropic
operators. Section 7 introduces self-map foveation operators,
while Section 8 describes Foveated NL-means, which will be
extensively used in the experiments of Section 9. Discussions
and concluding remarks follow in Sections 10 and 11.

2 Background

2.1 Foveation

Because of the uneven size and organization of photo-
receptive cells, the retinal image features various spatially
variant properties (Wertheim, 1894; Curcio et al., 1990; Wan-
dell, 1995; Eckstein, 2011; Joselevitch, 2008). Notably, the
visual acuity (and hence the sharpness of the resulting retinal
image) is highest at the middle of the retina, in a depression
termed fovea, where the concentration of cones has its peak.
At the periphery of the retina, vision is instead blurry. Thus,
the retinal image is sharp at the center of gaze (point of fix-
ation) and becomes progressively blurred or confused as the
distance from the center increases. This phenomenon, termed
foveated vision, foveated imaging, or simply foveation, is il-
lustrated in Figures 1 and 2 (Wertheim, 1894; Curcio et al.,
1990; Williams et al., 1996; Jennings and Charman, 1997).

The non-uniformity of the photo-receptive cells is not
the unique cause of foveation. In fact, foveation is the re-
sult of a cascade of various space-variant optical, sampling,
and processing contributors. When the light enters the eye, it
is focused on the retina by the cornea and by the crystalline
lens. This biological optical system is able to provide accu-
rate focusing only in the vicinity of the fovea, thus the per-
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ifoveal image (i.e. the image at the periphery of the visual
field) would be blurry even if the photoreceptor density were
high throughout the retina. Interestingly, this imperfect focus
can be interpreted as an optical low-pass filter that precedes
the coarse sampling operated by the photoreceptive cells, in
order to prevent aliasing. Moreover, also ganglion cells in
the human eye have non-uniform distribution and, most im-
portantly, non-uniform number of connections depending on
their eccentricity with respect to the fovea: far from the fovea
there are fewer ganglions, each of which is connected to more
photoreceptors, thus driving the acuity further down (Duncan
and Boynton, 2003; Joselevitch, 2008). While in our work we
adopt the traditional and simplest characterization of periph-
eral vision as blurry (i.e. low pass), we note that the complex
multi-layer structure of the HVS allows more sophisticated
descriptions (e.g., Strasburger et al., 2011; Balas et al., 2009;
Freeman and Simoncelli, 2011; Rosenholtz et al., 2012).

2.1.1 Radial orientation bias The spatial non-uniformity of
our visual acuity is also characterized by interesting aniso-
tropic features. Several studies have investigated the HVS
sensitivity to differently oriented stimuli at varying eccentric-
ity with respect to the fixation point (such as those in Figure
3): there is consistent evidence of a radial orientation bias
(Sasaki et al., 2006), i.e. our acuity is higher for patterns ori-
ented along radial lines or meridians (i.e. along directions
toward the center of gaze, see Figure 3, left), while lower for
tangential patterns. For instance, we are able to detect and
discriminate patterns such as the radial patterns A and C bet-
ter than the tangential patterns B and D of Figure 3(right).
The radial orientation bias can be found at various levels of
the human and mammal visual system, from the responses of
retinal ganglion cells (Levick and Thibos, 1982), up to the
visual cortex through functional magnetic resonance imaging
(fMRI) measurements (Freeman et al., 2011), as well as in-
directly through various psychophysical discrimination and
detection tasks (e.g., Toet and Levi, 1992).

There are many anatomical and physiological explana-
tions for foveation, including the limited capacity of the optic
nerve and visual cortex as well as improved low-light vision
(Joselevitch, 2008). Analogous grounds have motivated also
the use of foveated imaging in image processing. In partic-
ular, our image-filtering experiments reported in Sections 9
and 10 attest to the advantage of foveation, especially from
anisotropic radial operators, hence corroborating a functional
justification for foveation and the radial bias.

2.2 Foveation in image processing

Foveated images can be acquired by means of specific sen-
sors that sample the visual field along a logarithmic polar
grid (Weiman and Chaikin, 1979; Wodnicki et al., 1995) or
other irregular photosite configurations (Wallace et al., 1994;
Etienne-Cummings et al., 2000). However, in applications,
foveation is most often achieved by digitally post-processing

Fig. 3 Radial orientation bias: the HVS is more sensitive and acute
to patterns that, like A and C, are oriented along radial lines or
meridians (i.e. along directions toward the fixation point, drawn as
solid lines in the diagram on the left), and less to tangential patterns
such as B and D.

images acquired from standard regular-grid sensors. Tech-
niques for a space-variant representation of images include:
averaging the image intensities over areas (super-pixels) de-
fined according to a space-variant grid (Kortum and Geisler,
1996), masking a wavelet decomposition (Wei and Li, 1998;
Chang et al., 2000), and using spatially variant blur (Lee
et al., 2001; Foi and Boracchi, 2012). Other space-variant
techniques inspired by the topological layout of the HVS are
the Reciprocal-Wedge Transform (Tong and Li, 1995) and
variable-resolution models (Basu and Wiebe, 1998).

The most appealing application for foveated imaging is
perhaps compression (Kortum and Geisler, 1996). In fact,
any user gazing a screen would not notice significant differ-
ences between the fully detailed image properly displayed
and the same image foveated with respect to the fixation
point. Therefore, in those application scenarios where the
user’s fixation point can be tracked or reliably estimated (e.g.,
in video conferencing), images and videos can be compressed
by encoding their foveated counterparts, which substantially
reduce the high-frequency content at the periphery of vi-
sual field without degrading perceived quality (Geisler and
Perry, 1998; Basu and Wiebe, 1998; Daly et al., 2001; Lee
et al., 2001). Foveation has also inspired image (Wang and
Bovik, 2001) and video (Wang and Bovik, 2005) coding al-
gorithms, and was used in robotics to actively control cali-
brated binocular vision systems (Wei and Li, 1998), and to
reduce the search range for point matching in uncalibrated
ones (Monaco et al., 2009).

All the above methods apply foveation on the whole im-
age: to the best of our knowledge, beside our preliminary con-
ference publications (Foi and Boracchi, 2012, 2013b,a) and
our recent work on data-driven dictionaries based on fovea-
ted principal components (Foi and Boracchi, 2014), foveation
at the patch level appeared only in the fast retina keypoint de-
scriptor (Alahi et al., 2012), which was designed mimicking
the topology of ganglions in the retina. Each descriptor en-
codes the responses of several pairs of receptive fields, which
are obtained by convolving the image against Gaussian ker-
nels having standard deviation that increases with the dis-
tance from the keypoint.

In contrast, we leverage patch foveation to investigate the
foveated self-similarity in natural images. In particular, ours
is the first study concerning how foveation can improve fil-
tering algorithms based on self-similarity.
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2.3 Narrow visual field and saccadic eye movements

The area imaged by the fovea occupies only a narrow por-
tion of the visual field. In order to form a complete and de-
tailed image of the surrounding environment, the HVS re-
sorts to saccades, i.e. ballistic eye movements that frequently
reposition our gaze. At every saccade the whole retinal image
changes and our eyes experience a different view. In fact, the
eye is under steady motion also because of small fixational
eye-movements such as tremor, slow drift, and microsaccades
(Kowler, 2011). Due to the short duration of visual percep-
tion, the discontinuous input which follows from the motion
must be linked by the brain. Stable and persistent perception
of visual space requires that features in the new retinal im-
age are associated with corresponding features in the previous
retinal image (Brockmole and Irwin, 2005). In a very broad
sense, the HVS operates as a patch-based image-processing
system, with the complete global image described through a
multitude of localized fragments.

The influence of saccadic and microsaccadic eye move-
ments on visual perception are far from being completely un-
derstood and are subject of active investigation, mainly by
the visual neuroscience and psychophysics research commu-
nity. A comprehensive review is provided, e.g., by Desbordes
(2007), Kowler (2011), and Martinez-Conde et al. (2013),
testifying a growing consensus about the functional impor-
tance of saccades and microsaccades. In particular, it was
shown that not only these movements prevent retinal image
fatigue and visual fading, but play also a crucial role in con-
trolling the fixation position (Engbert and Kliegl, 2004). Ex-
periments (see, e.g., Donner and Hemilä, 2007; Rucci et al.,
2007; McCamy et al., 2012; Poletti et al., 2013) reveal that
the retinal responses caused by microsaccadic movements re-
duce aliasing effects in the peripheral retina, lead to improved
spatiotemporal accuracy of the neural responses, and provide
additional information that allows resolving fine spatial de-
tails out of optically blurred images.

It is far beyond the scope of this manuscript to investigate
such intricate models of the eye movements and their inter-
play with low-level vision. However, the works cited above
are suggestive of an intimate functional affinity between non-
local image processing and HVS mechanisms that cause or
leverage saccades and fixational eye movements (see, e.g.,
Olmedo-Payá et al., 2013). Since a patchwise image model-
ing is at the root of nonlocal methods, and because patches
can be put into correspondence with the narrow visual field
during fixations, our motivating idea is to endow the nonlocal
methods with foveation, as this is the key feature character-
izing the narrowness of the human visual field. To the best
of our knowledge, this has never been investigated before,
which is perhaps surprising given the burgeoning of nonlocal
image processing methods during the last decade.

2.4 Nonlocal image processing

The use of nonlocal self-similarity in image processing can
be traced back to fractal models of natural images (Barnsley,

1993) and fractal block coding (Jacquin, 1992), where it was
argued that natural images can be compressed by expressing
their self-similarity as “self-transformability on a blockwise
basis”. Nevertheless, the nonlocal self-similarity gained sig-
nificance later on, with the inspiring works on texture synthe-
sis and completion (Efros and Leung, 1999; Wei and Levoy,
2000), which developed the intuition that natural images con-
tain highly correlated patches at different, possibly far, lo-
cations. In (Zhang and Wang, 2002), the same paradigm is
applied to image filtering and particularly for inpainting. In
particular, it is shown that if the outer portion of two patches
is similar, then the inner portion of one can be used to restore
the inner portion of the other, in case this is missing, saturated
or corrupted. Nonlocal filtering and, more generally, patch-
based algorithms became an established paradigm, success-
fully applied to a broad range of imaging applications.

For the specific task of noise attenuation, nonlocality has
been initially considered in (De Bonet, 1997), and later de-
veloped in (Ghazel et al., 2003; Buades et al., 2005; Awate
and Whitaker, 2005). In particular, the NL-means algorithm
(Buades et al., 2005) represented a breakthrough in image
denoising and inspired several powerful algorithms in the
following years, such as BM3D (Dabov et al., 2007b) and
SAFIR (Kervrann and Boulanger, 2006). For a comprehen-
sive overview on modern denoising approaches and algo-
rithms we refer the reader to the review articles by Katkovnik
et al. (2010) and Milanfar (2013).

Patch-based methods enforcing nonlocal self-similarity
have been developed for video (Dabov et al., 2007a; Buades
et al., 2008; Maggioni et al., 2012), surface (Dong et al.,
2008), and point-cloud (Rosman et al., 2013) denoising, im-
age deblurring (Kindermann et al., 2005; Dabov et al., 2008;
Danielyan et al., 2012), demosaicking (Buades et al., 2009),
inpainting (Arias et al., 2011), zooming (Freeman et al.,
2002; Ebrahimi and Vrscay, 2007) and super-resolution from
a sequence of low-resolution images (Danielyan et al., 2008;
Ebrahimi and Vrscay, 2008b; Elad and Datsenko, 2009; Prot-
ter et al., 2009). The same nonlocal paradigm has been also
applied for the regularization of inverse problems (Peyré,
2009b; Gilboa and Osher, 2009; Danielyan et al., 2012) and
for texture synthesis (Peyré, 2009a).

3 Patch-based self-similarity

3.1 Observation model

We consider observations as noisy grayscale images z : X →
R that can be modeled as

z (x) = y (x) + η (x) , x ∈ X ⊂ Z2, (1)

whereX⊂Z2 is the image domain, which is assumed a regu-
lar pixel grid, y : X → R is the unknown original image, and
η : X → R is i.i.d. Gaussian white noise, η(·)∼N

(
0, σ2

)
.

For the sake of simplicity and notation, we assume that
images can be extended beyond the boundary of X to the
whole Z2 through any standard padding technique1.

1 In our experiments we resort to symmetric padding.
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3.2 Patching

Let U ⊂ Z2 be a neighborhood centered at the origin; we
define the patch centered at a pixel x ∈ X in the noisy obser-
vation z as

zx (u) = z (u+ x) , u ∈ U . (2)

Likewise, we can define the noise-free patch

yx (u) = y (u+ x) , u ∈ U . (3)

Let IX denote the space of images with domainX and IU
denote the space of patches with domain U . The extraction
of patches (2) can be conveniently represented by a patching
operator PU that maps any image/point pair (z, x) ∈ IX×X
to a patch zx ∈ IU :

PU : IX ×X → IU , PU [z, x] = zx. (4)

IndeedPU can be used on any image, thus we can write (3) as
yx=PU [y, x]. Let us also observe that the patching operator

PX : IX ×X → IX (5)

is trivially a translation operator.

3.3 Windowed patch distance

The standard approach for assessing the similarity between
two patches zx1

and zx2
is based on the windowed quadratic

distance

d
WIN

(x1, x2) =
∥∥(zx1

− zx2
)
2
k
∥∥

1
= (6)

=
∑
u∈U

(z(u+ x1)− z(u+ x2))
2
k(u) ,

where k is a non-negative windowing kernel defined over U ,
and ‖·‖1 and ‖·‖2 denote the usual `1 and `2 norms, respec-
tively. The windowing kernel adjusts the contribution of each
summand in (6) depending on the position u∈U .

We refer to the patches zx
√
k = zWIN

x as the windowed
patches. With this notation, (6) can be compactly written as

d
WIN

(x1, x2) =
∥∥zWIN

x1
− z

WIN
x2

∥∥2

2
. (7)

Formally, the windowed patches can be obtained from a win-
dowing operatorWU that maps any image/point pair (z, x) ∈
IX ×X to a windowed patch zx

√
k ∈ IU :

WU : IX ×X → IU , WU [z, x] = zx
√
k = z

WIN
x . (8)

Naturally,WU can be seen as the left composition “◦” of PU
(4) with an operator K : IU → IU that multiples zx by

√
k:

WU = PU ◦ K, K : zx 7→ zx
√
k = z

WIN
x .

3.3.1 Expectation of windowed distance The mathematical
expectation of (6) can be expressed as

E
{
d

WIN
(x1, x2)

}
=

=
∑
u∈U

(E {z(u+ x1)− z(u+ x2)})2
k(u) +

+
∑
u∈U

var{z(u+ x1)− z(u+ x2)}k(u) =

=
∥∥(E{zx1

− zx2
})2

k
∥∥

1
+ ‖var{zx1

− zx2
}k‖1 , (9)

where E and “var” denote the expectation and variance with
respect to different realizations of the noise at a fixed spatial
position. In the remainder, unless otherwise stated, we restrict
ourselves to the case x1 6= x2.

If we follow the simple deterministic model for the noise-
free data y, the patch difference may be written as

zx1
− zx2

= yx1
− yx2

+
√

2σn, (10)

where E{zx}=yx and n(·)∼N (0, 1) is standard Gaussian
noise. Hence E{zx1− zx2} = yx1− yx2 , var {zx1− zx2} =
2σ2, and thus (9) becomes

E
{
d

WIN
(x1, x2)

}
=
∥∥(yx1

− yx2
)
2
k
∥∥

1
+ 2σ2 ‖k‖1 .

Further, in the ideal case of perfect nonlocal self-similari-
ty where noise-free patches yx1

and yx2
are identical, i.e.

E{zx1} = E{zx2}, the expectation (9) reduces to

E
{
d

WIN
(x1, x2)

}
= 2σ2 ‖k‖1 . (11)

This simple equality shall play an essential role in the math-
ematical development of the proposed foveation framework.

3.4 Nonlocal means

For the sake of simplicity and to elucidate our contribution,
we focus our attention to the NL-means algorithm (Buades
et al., 2005). In its basic implementation, the NL-means ad-
mits the following simple and elegant formulation. The de-
noised image ŷWIN consists of a weighted average of poten-
tially all the image pixels, i.e.

ŷ
WIN

(x1) =
∑
x2∈X

w
WIN

(x1, x2) z (x2) ∀x1 ∈ X, (12)

where {wWIN (x1, x2)}x2∈X is the set of adaptive weights that
characterize the pixel x1, which are positive and sum to one.
Each weight wWIN (x1, x2) is determined by the similarity be-
tween the two patches zx1

and zx2
as

w
WIN

(x1, x2) = e−
d

WIN
(x1,x2)

h2 /
∑
x∈X

e−
d

WIN
(x1,x)

h2 , (13)

where dWIN (x1, x2) is the windowed distance (6) between im-
age patches centered at x1 and x2, and h > 0 is a filtering
parameter controlling the decay of the exponential function.
Equation (13) assigns larger weights to those z (·) in (12)
that correspond to pixels belonging to similar patches (i.e.
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where the distance between patches dWIN (x1, x2) is small),
regardless of their location within the image. This explains
the nonlocal denomination of the algorithm. Thanks to such
a weighting mechanism, the NL-means enforces the self-
similarity of natural images, which, as discussed in Section
2.4 is an effective regularity prior for suppressing the noise.

Even though the summation (12) is formally over the
whole image domain X , in practice, for each x1, only pixels
x2 belonging to a finite search neighborhood around x1 are
taken into consideration: this simplification is obviously jus-
tified by computational issues, but also – and perhaps most
importantly – by the increased risk of mismatching when
searching similar patches under noisy conditions over larger
areas, as further discussed in Section 9.1.

In their original formulation of NL-means, Buades et al.
(2005) suggest using a Gaussian function as windowing ker-
nel k in (6), while in practice various windowing kernels hav-
ing maximum at the patch center are also adopted (Manjon-
Herrera and Buades, 2008).

The motivating idea of (6) in NL-means is very practi-
cal: the similarity between the unknown y (x1) and y (x2) can
be assessed by computing the similarity of the corresponding
noisy patches zx1

and zx2
. The influence of noise is reduced

by evaluating the similarity over patches, and the decay of
k reflects the extent to which similarity between y (u+x1)
and y (u+x2) at a given u 6= 0 implicates similarity between
y (x1) and y (x2).

NL-means can be seen as a modification of the bi-
lateral filter (Yaroslavsky, 1985; Tomasi and Manduchi,
1998), where the photometric difference between two pix-
els |z (x1)− z (x2)|2 is replaced by the windowed distance
of two patches around them (6), and the spatial distance
|x1 − x2| between the pixels is not taken into account.

The above equations point out that the patches are com-
pared in pixelwise manner, and that all the information from
the full high-resolution image is conveyed into the similarity
test (6), which indeed determines the filtering at the central
pixel only. The likely variations in the high-frequency con-
tent at the patch periphery may therefore prevent the joint
nonlocal filtering of otherwise mutually similar patches.

3.5 Extensions of the basic NL-means algorithm

The literature boasts several modifications to the basic NL-
means algorithm. Here, we mention only the most important
ones that aim at speeding up the computations, at introducing
adaptive mechanisms to define the algorithm parameters, at
enhancing with invariant properties the patch-similarity mea-
sure, or at modifying the filtering stage.

The computational burden of NL-means mainly resides
in the computation of weights wWIN (13). Hence, fast imple-
mentations and variants of NL-means adopt strategies such
as the integral-images method (Wang et al., 2006; Darbon
et al., 2008; Froment, 2014) or criteria for restricting the
computation of weights to the most similar patches only.
For instance, Buades et al. (2005) present a multiscale so-

lution where similar patches are first searched within a sub-
sampled image, and then the weights are refined on the
full-size noisy image, where the filtering is also performed.
Similarly, Mahmoudi and Sapiro (2005) introduce a patch
pre-classification step to exclude completely unrelated pixels
from the search neighborhood. A different acceleration strat-
egy consists in comparing the projections of patches onto a
low-dimensional subspace, e.g., via a singular value decom-
position (Orchard et al., 2008) or principal component analy-
sis (Tasdizen, 2009). Further references concerning fast vari-
ants of NL-means are provided by Froment (2014).

Kervrann and Boulanger (2006) propose an extension of
NL-means where the filtering parameters as well as the patch
size vary spatially depending on the image content, while
Salmon (2010) presents a numerical study on the selection
of the search-neighborhood size, and a new criterion to set
the weight wWIN(x1, x1) for the central pixel. These issues are
addressed also by Grewenig et al. (2011). Jin et al. (2011) de-
fine adaptive weights wWIN to minimize a tight upper bound
on the mean squared error (MSE). Maleki et al. (2013) pro-
pose an “Anisotropic NL-means” that adaptively steers and
elongates the patch support U along image edges.

The NL-means algorithm understands image self-simi-
larity in a strict translational sense. This can be relaxed by
introducing more general self-similarity measures. For in-
stance, patches could be considered similar up to a constant
additive shift or multiplicative scaling of their intensities, as
to compensate different illumination in the scene. In addi-
tion, akin to fractal techniques, similar content may be sought
among patches of different size. Models encompassing these
forms of patch similarity were introduced by Alexander et al.
(2008) and La Torre et al. (2009), showing that natural im-
ages in general contain a considerable degree of such self-
similarity. Ebrahimi and Vrscay (2008a) analyzed the per-
formance of NL-means when patches are taken at differ-
ent scales. Lou et al. (2009) extended the patch similarity
up to rigid transformations and scaling, by leveraging SIFT
descriptors (Lowe, 2004) to preliminarily map patches in a
canonical form independent of scale and orientation. Modi-
fied similarity measures that handle rotated patches were also
presented by Thaipanich et al. (2010), exploiting patch clus-
tering, by Grewenig et al. (2011), aligning rotated patches
with the aid of patch centroids or structure tensors, and by
Ji et al. (2009), replacing the windowed patch distance by
the Euclidean difference of rotationally invariant Zernike mo-
ments of the patches. Alternative measures of patch similarity
satisfying certain optimality properties under non-Gaussian
noise were developed by Deledalle et al. (2012).

A generalization of the filtering stage in NL-means was
introduced by Chatterjee and Milanfar (2008); in their work,
the sum in (12) is replaced by a high-order kernel regres-
sion, improving the denoising in texture regions. Patchwise
variants, where the pixelwise estimate (12) is replaced by
the weighted sum of the whole patches, were presented by
Buades et al. (2005, 2011) and Kervrann et al. (2007).

The BM3D family of algorithms (Dabov et al., 2007b,
2009) combined synergistically the use of nonlocal self-
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similarity, patch-based estimates and transform domain pro-
cessing, achieving the ultimate denoising performance (Chat-
terjee and Milanfar, 2010; Katkovnik et al., 2010; Levin et al.,
2012; Milanfar, 2013).

4 Foveated patch distance

As a direct way of endowing nonlocal methods with fovea-
tion, we replace the windowed distance dWIN (x1, x2) (7), by
the foveated distance

d
FOV

(x1, x2) =
∥∥zFOV

x1
− z

FOV
x2

∥∥2

2
, (14)

where zFOV
x : U → R is a foveated patch obtained by foveat-

ing the image z at the fixation point x. This foveation is ac-
complished through a specially designed patch foveation op-
erator F : IX ×X → IU that maps any image/fixation-point
pair (z, x) ∈ IX ×X to a patch zFOV

x ∈ IU :

z
FOV
x (u) = F [z, x] (u) , u ∈ U . (15)

To reproduce the foveation properties of the HVS when fixat-
ing a point x ∈ X , F [ · , x] is expected to work as a spatially
variant blurring operator with increasing blur (i.e. decreasing
bandwidth) as we leave x. This means that zFOV

x (u) is, com-
pared to zx (u), progressively blurrier as |u| grows.

5 Constrained design of the foveation operator

Formally, the foveated distance dFOV (14) can replace the win-
dowed distance dWIN in any nonlocal method that relies on
such a pairwise patch comparison. However, without a care-
ful design of the operator F , replacing dWIN with dFOV would
end up being ad-hoc, subject to many arbitrary parameters,
and hence its impact hard to interpret. Therefore, we propose
a constrained design, which associates to any windowing ker-
nel k a specific foveation operator2 F . In particular, we re-
quest that the windowed patch distance dWIN corresponding to
k and the foveated patch distance dFOV induced by the associ-
ated F are equivalent when comparing patches whose differ-
ence can be treated as white noise. Conversely, in presence of
structured differences, such as those arising in the vicinity of
edges, the two distances dWIN and dFOV depart from each other.

The following five3 constraints are imposed on F to meet
the above goal through a practical and rigorous design. First,
we introduce the constraints as properties the operator F
must fulfill, and then, in Section 5.2, we characterize F as
a spatially variant blur operator, and reformulate each con-
straint in terms of the blur kernels that constitute F . This
leads to a transparent construction of the foveation operators,
which is summarized in Section 5.3.

2 Because our foveation operators are always designed upon a
given windowing kernel k, a more precise symbol would be Fk.
However, not to overload the notation, we omit the subscript k and
leave room to other decorations that are used in the later sections.

3 These five requirements include the four requirements described
in our preliminary conference publications (Foi and Boracchi, 2012,
2013b,a), plus a non-negativity requirement, which had been always
tacitly assumed but never mentioned explicitly.

5.1 The five constraints

5.1.1 Linearity F : IX ×X → IU is linear with respect to
IX and translation invariant with respect to X , i.e.

F [λ1z1 + λ2z2 , x− τ ] =

= λ1F [z1 ( · + τ) , x] + λ2F [z2 ( · + τ) , x] , (16)

for any λ1, λ2 ∈ R, and τ ∈ Z2, where z1, z2 ∈ IX is an
arbitrary pair of images and x ∈ X is any fixation point. This
translation invariance is very natural and it simply means that
if we translate of the same shift τ both the image and the
fixation point, then the foveated patch does not change.

5.1.2 Non-negativity For any non-negative image the fo-
veated patches are always non-negative, i.e.

if z (x) ≥ 0 ∀x ∈ X , then
F [z, x] (u) ≥ 0 ∀u ∈ U , ∀x ∈ X . (17)

5.1.3 Central acuity Foveated patches are fully sharp at
their center, i.e.

∃α > 0 : F [z, x] (0) = αz (x) ∀x ∈ X. (18)

This property aims at mimicking the peak of the visual acuity
at the fovea, illustrated in Figure 1. The constant α is a cru-
cial design parameter of the foveation operator and its precise
value will be determined in Section 5.2.5.

5.1.4 Flat-field preservation F maps a flat image into flat
patches, i.e.

∃α > 0 : ∀c > 0 if z (x) = c ∀x ∈ X, then
F [z, x] (u) = αc ∀u ∈ U, ∀x ∈ X. (19)

While this property might appear as rather natural, it is per-
haps striking that it is actually verified only seldom in the
inner computations of image processing algorithms. For in-
stance, any multiplication against a non-uniform windowing
kernel k such as in (6) prevents this property. Of course, the
constant α appearing in (18) and (19) must be the same.

5.1.5 Compatibility Let zFOV
x1

, zFOV
x2

be two foveated patches
and E

{
zFOV
x1

}
, E
{
zFOV
x2

}
their respective expectations. In the

ideal case where the expectations are perfectly identical,
E
{
zFOV
x1

}
= E

{
zFOV
x2

}
, the expectation of the foveated dis-

tance dFOV (14), should match the ideal one of dWIN (11), i.e.

if E
{
zFOV
x1

}
= E

{
zFOV
x2

}
, then

E
{∥∥zFOV

x1
− zFOV

x2

∥∥2

2

}
= 2σ2 ‖k‖1 . (20)

For a linearF , (20) means that for any pair of identical fovea-
ted noise-free patches F [y, x1] = F [y, x2], the expectation
of the corresponding foveated distance dFOV (x1, x2) should
be equal to the expectation (11) of the windowed distance (6)
when the noise-free patches coincide, yx1

=yx2
.
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Compatibility can be formulated also in the following
stricter pixelwise form:

if E
{
zFOV
x1

}
= E

{
zFOV
x2

}
, then

E
{(

zFOV
x1

(u)− zFOV
x2

(u)
)2}

= 2σ2k(u) ∀u ∈ U. (21)

From the very definition of the `2 norm, i.e. by summation of
(21) over all u ∈ U , it is clear that (21) implies (20).

As we shall see, this stricter form of compatibility indi-
rectly installs in the foveated patches the progressive decay
of visual acuity from the center towards the periphery of the
fovea illustrated in Figure 1.

From a technical point of view, compatibility allows using
dFOV as a direct replacement of the usual windowed distance
dWIN in (13), without need, e.g., of adjusting the tuning pa-
rameter h, since both distances output on comparable ranges.

5.2 Defining the foveation operator through its blur kernels

Let us analyze the implications of the above requirements.

5.2.1–2 Linearity and non-negativity (Blurring operator)
An operator F satisfies the linearity requirement if and only
if it can be expressed in the form

F [z, x] (u) =
∑
ξ∈Z2

z(ξ+x) vu(ξ−u) ∀u∈U. (22)

It means that the pixel at position u in the foveated patch
zFOV
x =F [z, x] is obtained by applying a specific kernel vu to
z over a neighborhood of x+u. To satisfy (17), these kernels
must be non-negative, vu≥0 ∀u∈U . Thus, {vu}u∈U are blur
kernels.F clearly satisfies translation-invariance with respect
to x (16); however, for a fixed x, F [·, x] corresponds to a
blur that is space-variant with respect to u, since F [z, x] (u)
is computed from an individual blur kernel vu, which can be
different from kernels vu′ with u′ 6=u.

As a consequence of (22), the foveation operator F
is completely determined by the collection of blur kernels
{vu}u∈U ; hence, the remainder of our analysis shall be based
on (22) and expressed in terms of the blur kernels {vu}u∈U .

5.2.3 Central acuity (Central Dirac impulse) Central acu-
ity holds if and only if v0 is a scaled discrete Dirac impulse
of mass α > 0:

v0 (0) = α, v0 (x) = 0 ∀x 6= 0. (23)

5.2.4 Flat-field preservation (Constant `1 norm) From (19)
and (22) we obtain

α =
∑
ξ∈Z2

vu(ξ−u) =
∑
ξ∈Z2

vu(ξ) = ‖vu‖1 ∀u ∈ U , (24)

i.e. all the blur kernels have same `1 norm equal to α.

5.2.5 Compatibility We consider first the general compati-
bility requirement (20), and then turn to the pixelwise com-
patibility (21). The latter and stricter form of compatibility is
the one used for the construction of all foveation operators
presented in this work.

Total `2-norm condition The following analysis proceeds
along the lines of Section 3.3.1. Analogous to (9),

E
{(

zFOV
x1

(u)− zFOV
x2

(u)
)2 }

= (25)

= E
{
zFOV
x1

(u)− zFOV
x2

(u)
}2

+ var
{
zFOV
x1

(u)− zFOV
x2

(u)
}
.

Further, similar to (10), let

z(ξ + x1)− z(ξ + x2) = E{z(ξ + x1)− z(ξ + x2)}+

+ std{z(ξ + x1)− z(ξ + x2)}n(ξ) =

= (y(ξ + x1)− y(ξ + x2)) +
√

2σ2n(ξ) , (26)

where n (ξ) ∼ N (0, 1) is standard Gaussian noise. Hence,

var
{
zFOV
x1

(u)− zFOV
x2

(u)
}

=

= var
{∑

ξ∈Z2
(z(ξ+x1)− z(ξ+x2)) vu(ξ−u)

}
=

= var
{∑

ξ∈Z2

√
2σ2n(ξ) vu(ξ−u)

}
. (27)

Treating n as uncorrelated noise, which is a safe assump-
tion provided that x1 is sufficiently far from x2, we can
interchange summation and variance in (27). Finally, if
E
{
zFOV
x1

}
= E

{
zFOV
x2

}
, (25) reduces to

E
{(

zFOV
x1

(u)− zFOV
x2

(u)
)2 }

=

= 2σ2
∑
ξ∈Z2

var{n(ξ)} v2
u(ξ−u) = 2σ2 ‖vu‖22 . (28)

Therefore, the compatibility requirement (20) is satisfied
whenever the sum of the squared `2 norms of all blur kernels
of F equals the `1 norm of the windowing kernel:∑

u∈U
‖vu‖22 = ‖k‖1 =

∑
u∈U

k(u) . (29)

Kernel-wise `2-norm condition Equality (28) also shows
that the stricter pixelwise compatibility (21) holds provided
that the squared `2 norm of each blur kernel coincides with
the corresponding value of the windowing kernel:

‖vu‖22 = k(u) ∀u∈U . (30)

When u= 0, (30) and (23) imply that ‖v0‖22 = α2 = k(0),
which determines the value of the constant α appearing in the
central acuity and flat-field preservation requirements:

α =
√

k(0).
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5.3 Summary

We can summarize Sections 5.2.1–5.2.5 as follows.
A foveation operator F satisfies the five requirements 5.1.1–
5.1.5 with the strict pixelwise compatibility if and only if it
can be written as

F [z, x] (u) =
∑
ξ∈Z2

z(ξ+x) vu(ξ−u) ∀u ∈ U , (31)

with non-negative blur kernels vu ≥ 0, u ∈ U , such that

‖vu‖1 =
√
k(0) ∀u ∈ U, (32)

‖vu‖2 =
√

k(u) ∀u ∈ U, (33)

v0 is a discrete Dirac impulse of mass
√
k(0). (34)

The foveation operators constructed in the next sections and
used throughout our experiments are all based on the above
design (31)–(34).

5.4 Singular value decomposition of the foveation operator

Due to the translation invariance with respect toX (16), many
properties of F : IX × X → IU can be studied, with-
out loss of generality, on the corresponding marginal oper-
ator F [·, 0] : IX → IU . Indeed, F = PX ◦ F [·, 0], where
PX : IX × X → IX is the translation operator (5). Specif-
ically, we consider the singular value decomposition (SVD)
of the foveation operator in the form

F = PX ◦ LF ◦ SF ◦ RF , (35)

where LF : IX → IU is the partial isometry given by the in-
ner product with an orthonormal system of left singular func-
tions lu : X → R, u ∈ U,

LF [z] = 〈z, lu〉u∈U ,

LF [z] (u) =
∑
ξ∈X

z (ξ) lu (ξ) , u ∈ U,

SF : IU → IU is a pointwise multiplication against non-
negative singular values s : U → R,

SF [zx] = zxs,

SF [zx] (u) = zx (u) s (u) , u ∈ U,
and RF : IU → IU is a change of coordinates (global
isometry) to the orthonormal basis of right singular functions
ru : U → R, u ∈ U,

RF [zx] = 〈zx, ru〉u∈U ,

RF [zx] (u) =
∑
ξ∈U

zx (ξ) ru (ξ) , u ∈ U.

In practice, LF , SF , RF can of course be all obtained from
the thin SVD of the matrix form of F [·, 0].

In the following sections, we will adopt the SVD (35) as
an effective means for analyzing and illustrating the foveation
operators. Specifically, the left singular functions lu that cor-
respond to the largest singular values s (u) describe the image
structures that are best captured by the foveation operator.

6 Construction of Gaussian foveation operators

As explained in Section 2.1, foveation is the result of sev-
eral cascaded space-variant processes. Taking a central-limit
principle into consideration, we argue that Gaussian distribu-
tions may well approximate the final combined blurring effect
of these processes, thus providing a legitimate model for the
blur kernels {vu}u∈U .

Here we present the direct construction of foveation op-
erators based on families of Gaussian blur kernels. The idea
is to leverage suitable dilation and scaling so that all the blur
kernels share the same `1 norm given by (32) and have `2

norms given by (33).
For the sake of generality and mathematical simplicity,

this construction uses a continuous-domain variable ξ ∈ R2;
any natural discretization to the integers Z2 is to be employed
in the implementation. Due to such discretization, marginal
numerical imprecision may eventually affect the equalities
(32)–(33). While in practice the errors are negligible, in Sec-
tion 7 we present a general scheme that can be used to design
discrete Gaussian or non-Gaussian {vu}u∈U meeting (32)–
(33) accurate up to machine precision.

6.1 Isotropic foveation operators

Let us begin from the case where all blur kernels vu, u ∈ U ,
are circularly symmetric. Such foveation is said to be isotro-
pic because the blur kernels attenuate image features regard-
less of the features orientation and, provided also a circularly-
symmetric windowing kernel k (as it is customary), the at-
tenuation strength depends only on the distance |u| from the
patch center.

We define gς as the circularly-symmetric bivariate Gauss-
ian probability density function (PDF) with mean zero and
diagonal covariance matrix Σς =

[
ς2 0
0 ς2

]
:

gς (ξ) =
1

2πς2
e
−
|ξ|2
2ς2 , ξ ∈ R2. (36)

The standard-deviation parameter ς determines the spread of
this Gaussian PDF. Basic calculus shows that

‖gς‖1 = 1, ‖gς‖22 =
1

4πς2
. (37)

Therefore, to obtain a blur kernel vu that satisfies (32) and
(33) it is enough to first scale gς by multiplication by α =√
k(0) and then dilate it and scale it again by choosing ς that

solves
∥∥√k(0)gς

∥∥2

2
= k(u), i.e.

ς∗u =
1

2
√
π

√
k(0)

k(u)
. (38)

Hence, we define

vu(ξ) =
√
k(0)gς∗u(ξ) = 2k(u)√

k(0)
e
−2π|ξ|2

k(u)
k(0) ξ∈R2. (39)



10 Alessandro Foi, Giacomo Boracchi

Fig. 4 Left: The scaled discrete Dirac impulse of mass
√

k (0) cor-
responds to a uniform kernel over the unit square which the Gauss-
ian kernel v0 (40) can at best only approximate. Interestingly, the
standard deviations of these two kernels nearly coincide. Due to
separability we can consider the 1-D components of the PDFs: for
u = 0 (38) yields ς = 1/

√
4π ' 0.282, while the standard devi-

ation of the uniform PDF on the unit interval is 1/
√

12 ' 0.289.
Right: after discretization (sampling and `1 renormalization), v0 is
in all practical respects equivalent to a Dirac impulse.

k k(u) = 0.0384

k(u) = 0.0162

k(u) = 0.0082

k(u) = 0.0041

k(u) = 0.0017

Fig. 5 A windowing kernel k of size 11×11 used for computing
the similarity weights in the NL-means implementation by Manjon-
Herrera and Buades (2008) and the five unique values it takes over
the neighborhood U .

Observe that (38) installs a direct link between the width of
the blur kernel vu and the value of the windowing kernel
k(u). This is a consequence of the pixelwise-compatibility
requirement and operates in such a way that, when k(u) is
small (i.e. at the periphery of the patch), the blur caused by
the kernel vu is large, thus mimicking the foveation effects
illustrated in Figure 1.

Finally, we need to address the central-acuity requirement
(34). As a matter of fact, as illustrated in Figure 4(left), nei-
ther the central blur kernel

v0 (ξ) = 2
√

k(0)e−2π|ξ|2 , ξ ∈ X , (40)

nor any other Gaussian function can satisfy (34) exactly. In
principle, it is a mere technicality to “manually” re-define
v0 according to (23) with α =

√
k(0) (thus meeting (34)

exactly), as an exception from the general form (39) for
u = 0 only. However, the discrepancy between the discrete
Dirac impulse and the discrete representation of the Gaussian
v0 (40) is in fact numerically negligible, as Figure 4(right)
shows. Therefore, the central acuity requirement is satisfied
in all practical respects by the foveation operator composed
of blur kernels defined by (39) for all u∈U , including u=0.

6.1.1 Illustration Let us give a concrete illustration of the
construction of a foveation operator and particularly of its
blur kernels for a given windowing kernel k. For this exam-
ple, we take the windowing kernel k used in the NL-means
implementation by Manjon-Herrera and Buades (2008) for
a neighborhood U of size 11×11 pixels, shown in Figure

5. Due to its symmetries, k takes only a very limited num-
ber of distinct values k(u), u ∈ U , as reported in the figure.
For each distinct value of k(u), (38) yields a distinct value
of the standard-deviation parameter ς∗u and correspondingly
(39) defines a distinct blur kernel vu. These blur kernels are
shown in Figure 6 along with their frequency response. Each
of these blur kernels is based on a discrete Gaussian PDF gς∗u
of size (2 d3ς∗ue+ 1) × (2 d3ς∗ue+ 1), d·e being the ceiling
function, where radius d3ς∗ue is based on a three-sigma rule.
Observe that v0 is practically a scaled Dirac impulse, con-
firming central acuity. The bandwidth of vu decreases with
k(u), as clearly visualized. Also note that the frequency re-
sponses of the five blur kernels all attain their maximum at the
origin and that the value of this maximum is

√
k(0)=0.196,

as implied by (32). The squared `2-norm values ‖vu‖22 for
these five kernels are 0.0379, 0.0231, 0.0090, 0.0041, 0.0017,
respectively, which are nearly equal to the corresponding val-
ues of k(u), as by (33). The minor differences are due to the
discretization of the Gaussian PDF gς used in our implemen-
tation, while the `2-norm condition in (37) assumes continu-
ous domain variables. In Section 7 we present a method that
delivers discrete blur kernels whose `1 and `2 norms satisfy
(32)–(33) with perfect accuracy.

Figure 7 compares the foveated patches zFOV
x (15) against

the windowed patches zx
√
k (8). Observe how zFOV

x exhibit
effective smoothing at their periphery while not altering the
main structures in the patch. Because of (8) and (30), the cor-
responding pixels in a foveated and windowed patch have ex-
actly the same noise variance:

var
{
z

FOV
x (u)

}
= var

{
z

WIN
x (u)

}
= σ2k(u) ∀u∈U. (41)

Thus, foveated patches typically enjoy an intrinsically higher
signal-to-noise ratio (SNR) (e.g., in the sense of Mosseri
et al., 2013) than their windowed counterparts.

6.1.2 Limiting cases It is interesting to consider the limiting
cases where the window k becomes a Dirac impulse or a uni-
form kernel over the patch domain. Curiously, in either case,
the foveated distance approaches the windowed distance.

Dirac window When k is scaled Dirac impulse (i.e. k(0)>
0 and k(u) = 0 ∀u 6= 0), by (38) the standard deviation ς
of the Gaussian PDFs gς should be infinite for any u 6= 0.
Hence, they can be treated as uniform distributions over any
image domainX . For a finiteX with area |X|<∞, assuming
symmetric padding of z outside of X , we obtain

z
FOV
x (u) =

√
k(0)

1

|X|
∑
ξ∈X

z(ξ) , ∀u 6=0, ∀x∈X,

with 1
|X|
∑
ξ∈X z(ξ) being the mean of z over X . Therefore,

zFOV
x1

(u)−zFOV
x2

(u) = 0 ∀x1, x2 and ∀u 6= 0. Hence, due to (31)
and (34), dFOV (x1, x2) depends solely on pixels at x1 and x2,
exactly like dWIN (x1, x2), and thus the two distances coincide:

d
FOV

(x1, x2) =k(0) (z(x1)− z(x2))
2

= d
WIN

(x1, x2).
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k(u) = 0.0384 k(u) = 0.0162 k(u) = 0.0082 k(u) = 0.0041 k(u) = 0.0017

k

ς∗u = 0.282 ς∗u = 0.434 ς∗u = 0.611 ς∗u = 0.861 ς∗u = 1.360

vu

Fig. 6 The five blur kernels vu, u ∈ U , (middle row) corresponding to the five unique values of the windowing kernel k (top row) and their
respective frequency response (bottom row).

yx zx zWIN
x√
k(0)

zFOV
x√
k(0)

Fig. 7 Two illustrative examples of how patches are transformed
when computing the windowed distance dWIN (6) and the foveated
distance dFOV (14): zx denotes the patch in the noisy image, while
zx
√
k = zWIN

x and z
FOV
x denote, respectively, the patches used for

computing the quadratic windowed distance and foveated distance,
for the same image and fixation point. The patch yx, i.e. the noise-
free counterpart of zx, is also shown for reference. Dividing zWIN

x

and z
FOV
x by

√
k(0) ensures that these patches are displayed on the

same intensity range of zx and yx. In both examples the standard
deviation of the noise in zx is σ = 20.

Uniform window When k is uniform over the patch domain
U (i.e. k(u) = k(0) ∀u ∈U), again by (38) we have that all
the blur kernels vu (39) coincide with the central one v0 (40):

vu = v0, ∀u ∈ U.

Hence, based on the arguments at the end of Section 6.1,
all blur kernels vu are practically Dirac impulses scaled by√
k(0). Then, any foveated patch zFOV

x coincides with the
corresponding scaled patch zx

√
k(0); further, since k is uni-

form, they also coincide with the windowed patch zx
√
k (8):

z
FOV
x =

√
k(0)zx =

√
kzx = z

WIN
x .

Therefore, also in this limiting case, the foveated distance co-
incides with the corresponding windowed distance.

6.2 Anisotropic foveation operators

Anisotropic foveation operators generalize the isotropic ones
described in Section 6.1 by utilizing, in place of the
circularly-symmetric Gaussian PDF gς (36), an elliptical
Gaussian PDF gρ,ϑς whose covariance matrix depends not
only on ς > 0, but also on a parameter ρ > 0 that deter-
mines the elongation of the PDF, and on an angular parameter
ϑ ∈ R that controls the orientation of the axes of the ellipti-
cal PDF. Specifically, gρ,ϑς is the elliptical Gaussian PDF with
covariance matrix

ΣΣΣρ,ϑς = ς2ϑRRRϑDDDρ RRR
T
ϑ ,

where the DDDρ=
[
ρ 0
0 1/ρ

]
determines the PDF elongation and

RRRϑ=
[

cos (ϑ) − sin (ϑ)
sin (ϑ) cos (ϑ)

]
is a rotation of angle ϑ. Therefore

gρ,ϑς (ξ) =
1

2πς2
e−

1
2 ξξξξ
T (ΣΣΣρ,ϑς )

−1
ξξξξ, ξ ∈ R2,

where ξξξξ in the exponential is a column-vector representation
of ξ. Clearly, ρ = 1 corresponds to the circularly-symmetric
case considered in Section 6.1 and it follows that g1,ϑ

ς = gς
for any ϑ ∈ R and any ς > 0. Thus, DDDρ and RRRϑ determine the
deformation of gς into gρ,ϑς . Because det RRRϑ = det DDDρ = 1,
any integral of gρ,ϑς (including Minkowski norms) is invariant
with respect to any such rotation and elliptical elongation,
which means that gρ,ϑς conforms to the same norms as the
circularly symmetric gς (37):∥∥gρ,ϑς ∥∥

1
= 1,

∥∥gρ,ϑς ∥∥2

2
=

1

4πς2
∀ρ > 0, ∀ϑ ∈ R. (42)

Hence, like in the isotropic case, to satisfy (32) and (33) it
suffices to multiply gρ,ϑς∗u by

√
k(0) and set ς = ς∗u exactly as

in (38), which gives∥∥∥√k(0)gρ,ϑς∗u

∥∥∥2

2
= k(u) . (43)
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blur-kernel mosaic blur kernel vρ,θu (·−u), u=(2, 5) left singular functions singular values right singular functions

(a) ISOTROPIC ρ = 1, θ = “any”

‘
(b) RADIAL ρ= 2, θ = 0

(c) RADIAL ρ= 4, θ = 0

(d) CHIRAL ρ= 4, θ = π
4

(e) TANGENTIAL ρ = 4, θ = π/2

Fig. 8 Illustration of an isotropic foveation operator F (a), and four anisotropic foveation operators Fρ,θ (b)−(e) for different values of the
parameters ρ and θ. Each operator is displayed (leftmost column) by the mosaic of the 25 blur kernels vρ,θu (· − u) that produce the pixels of
a 5×5 foveated patch. The subimages in each mosaic are placed at the corresponding position u ∈ U of the pixels in the foveated patch. Note
the relative displacement of the kernels due to the −u shift in their argument. For the sake of visualization, blur kernels in the mosaic are
displayed after intensity normalization; in reality, the peak of the kernels gets lower as the spread increases, because of the `1 condition (42).
Next to each mosaic, we depict one of its blur kernels vρ,θu (· − u), as indicated by the arrow. Here one can visualize the angle ϑ = ∠u + θ.
In the right half of the figure, we show the decomposition (35) of the foveation operator into left singular functions, singular values, and right
singular functions. The singular functions are sorted columnwise according to the decreasing magnitude of the corresponding singular value,
and are displayed after intensity normalization. The 5×5 support of the right singular functions coincides with that of the patch and it is hence
smaller than that of the blur kernels and of the left singular functions.

Both (42) and (43) hold for any ρ and ϑ. Thus, one can ar-
bitrarily assign different combinations of these parameters to
different u ∈ U , without invalidating the `1 (32) and `2 (33)
conditions. In fact, sophisticated models of HVS acuity sug-
gest that ρ ought depend on |u| and ϑ on ∠u. However, we
focus on a specific simplified design, where ρ is constant and
ϑ = ∠u + θ, being θ ∈ R an angular offset. These choices

lead to a class of anisotropic foveation operators

Fρ,θ [z, x] (u) =
∑
ξ∈Z2

z(ξ+x) vρ,θu (ξ−u) , ∀u ∈ U (44)

defined through the blur kernels

vρ,θu =


√
k(0)gρ,∠u+θ

1
2
√
π

√
k(0)
k(u)

, u 6= 0,√
k(0)g 1

2
√
π

u = 0.
(45)
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The bottom equality in (45) addresses the special case u= 0
for which ∠u cannot be defined, consequently enforcing
the circularly-symmetric v0 (40). By construction, the ani-
sotropic foveation operators Fρ,θ (44) satisfy the constraints
set in Section 5 for any combination of ρ>0 and θ∈R.

Specific choices of θ and ρ yield different operators that
can be classified as follows. When θ= 0 and ρ > 1, the ma-
jor axes of the blur kernels are directed along the meridians
toward the patch center, yielding radial foveation operators.
Conversely, if θ = π/2 and ρ > 1, it is the minor axes of the
blur kernels that are directed towards the patch center and
we obtain tangential foveation operators. Intermediate cases
0<θ< π/2 yield (right-hand) chiral foveation operators. Due
to elliptical symmetry of the blur kernels, the operators Fρ,θ,
F1/ρ,θ+π/2+jπ and Fρ,θ+jπ coincide for any j∈Z. The larger
max

{
ρ,1/ρ

}
is, the more elongated the kernels are along their

major axis, while when ρ=1, Fρ,θ coincides with the isotro-
pic foveation operator of Section 6.1.

Figure 8 shows the blur kernels that constitute a few an-
isotropic foveation operators corresponding to a same win-
dowing kernel k of size 5×5 for different combinations of
ρ and θ values. In the right half of the figure we illustrate
the SVD of Fρ,θ, showing left singular (analysis) functions,
singular values, and right singular (synthesis) functions. The
functions are sorted columnwise, according to the decreas-
ing magnitude of the corresponding singular value. Thus, the
first few left singular functions visualize the specific image
patterns that are best captured in the foveated patch.

In Figure 8 we also see that left and right singular func-
tions have supports of different size. Right singular functions
synthesize the foveated patch, hence they have the same size
as the windowing kernel k. Left singular functions have a
larger support, since they embed the analysis offered by the
blur kernels vρ,θu (·−u), whose centers range within U but
take non-zero values beyond this set. The next section inves-
tigates a special construction of the foveation operator that
ensures that blur kernels, as well as both left and right singu-
lar functions, are defined on the same support of k.

7 Foveation operators with self-mapping in patch space

7.1 Motivation

For any given u 6= 0, the Gaussian kernel vρ,θu is strictly pos-
itive everywhere, i.e. vρ,θu (ξ) > 0 for any ξ ∈ R2 (or, upon
discretization of the kernel domain, for any ξ ∈ Z2). For-
mally, this implies that for computing zFOV

x (u) one has to sam-
ple the observations z (·+ x) also outside of the set U that
defines the patch zx (2). However, the exponential decay of
vρ,θu (45) means that, in practice, only a small neighborhood
of u is necessary for computing zFOV

x (u): for example, if like
in Section 6.1.1 we follow a three-sigma rule, it suffices to
sample z (·+ x) over a disc Ωu of radius 3

√
max {ρ,1/ρ}ς∗u

around u, which encompasses the three-sigma ellipse for
vρ,θu (· − u). Hence, in (22) and (44) we can replace the sum-
mation domain Z2 with Ωu without affecting the result. This

notwithstanding, it is clear that when u is at the boundary of
U , where k(u) is small and the foveation blur is strong, the
disc Ωu may exceed U , i.e. Ωu\U 6=∅. In other words, the
foveated patch zFOV

x obtained from a Gaussian foveation op-
erator requires more samples of z than does the windowed
patch

√
kzx, for which it suffices to sample z (·+ x) over U .

7.2 Self-map foveation operators

Let us introduce self-map foveation operators that compute
each foveated patch zFOV

x using data exclusively from the
patch zx, without sampling z (·+ x) outside of U . Self-map
foveation operators can be expressed as the left composition
of the patching operator PU : IX×X → IU (4) with a space-
variant anisotropic blur operator Bρ,θ : IU → IU that maps
any patch zx (2) to a foveated patch zFOV

x :

F self
ρ,θ = PU ◦ Bρ,θ, Bρ,θ : zx 7→ zFOV

x . (46)

More precisely, F self
ρ,θ : IX ×X → IU maps any image/fixa-

tion-point pair (z, x) ∈ IX ×X to a patch zFOV
x ∈ IU

zFOV
x = F self

ρ,θ [z, x] = Bρ,θ [PU [z, x]] = Bρ,θ [zx] ,

and such that, for any u ∈ U ,

zFOV
x (u) = F self

ρ,θ [z, x] (u) = Bρ,θ [zx] (u) =

=
∑
ξ∈U

z(ξ+x) v̄ρ,θu (ξ−u) , (47)

where the blur kernels v̄ρ,θu (·−u) are all supported on U , i.e.

ξ /∈ U =⇒ v̄ρ,θu (ξ−u) = 0.

Observe that the summation in (47) is computed over ξ ∈ U
only, as opposed to (44) where the summation is over ξ ∈ Z2.

7.3 Construction of compatible self-map foveation operators

The self-map foveation operatorF self
ρ,θ is constructed by defin-

ing a family of blur kernels
{
v̄ρ,θu

}
u∈U that obey the require-

ments set in Section 5.3 and whose supports are entirely con-
tained in U .

Let ḡρ,ϑς,u , ς > 0, be the truncated PDF supported on U that
is obtained by first restricting the Gaussian PDF gρ,ϑς (·−u)
on U and then by `1 re-normalization:

ḡρ,ϑς,u (ξ−u) =

{
gρ,ϑς (ξ−u) /

∑
ξ∈U

gρ,ϑς (ξ−u) ξ∈U,

0 ξ /∈U.
(48)

For any fixed u ∈ U , the limiting cases of (48) for ς → 0 and
ς → +∞ are, respectively, the Dirac impulse and the uniform
kernel on U . Therefore, we can extend the definition of ḡρ,ϑς,u
to any ς ∈ [0,+∞] by adding these two limiting functions:

ḡρ,ϑ0,u(ξ−u) =

{
1 ξ=u,
0 ξ 6=u,

ḡρ,ϑ∞,u(ξ−u) =

{ 1
|U | ξ∈U,
0 ξ /∈U,
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Fig. 9 Left: a radial blur kernel vρ,θu (· − u) from a radial foveation operator (ρ = 2.5, θ = 0). The neighborhood U is marked by the
inner square. Center: the blur kernel v̄ρ,θu (· − u) from the corresponding self-map operator, which is fully supported on U . By construction,
their `1 and `2 norms coincide:

∥∥v̄ρ,ϑu ∥∥
1

=
∥∥vρ,ϑu ∥∥

1
,
∥∥v̄ρ,ϑu ∥∥

2
=
∥∥vρ,ϑu ∥∥

2
. To compensate the truncation while preserving the norms, the

standard-deviation parameter ∗ς
ρ,ϑ
u of v̄ρ,θu has to be larger than the standard deviation ς∗u of vρ,θu , as exposed by a direct comparison (right).

where |U | =
∑
u∈U 1 denotes the size of the patch U . From

this definition follows that
∥∥ḡρ,ϑς,u∥∥1

= 1 for any ρ > 0,
ϑ ∈ R, and – most importantly – for any standard-deviation
parameter ς ∈ [0,+∞]. However, because of truncation and
re-normalization, the `2-norm condition in (43) may be not
satisfied by (48) and therefore compatibility would not be
guaranteed if we were to define ς= ς∗u as in (38).

We tackle the pixelwise compatibility through the mini-
mization problems

∗
ς
ρ,ϑ
u = argmin

ς∈[0,+∞]

∣∣∣k(0)
∥∥ḡρ,ϑς,u∥∥2

2
− k(u)

∣∣∣ , ∀u∈U (49)

where, for each u ∈ U , we adjust ς to meet (43). Standard
numerical methods for nonlinear optimization (Conn et al.,
2009) can be used for solving (49)4. Hence, we define the
restricted Gaussian kernels v̄ρ,θu as

v̄ρ,θu =
√

k(0)ḡρ,ϑ∗
ς
ρ,ϑ

u ,u
∀u ∈ U .

Let us observe that
∥∥ḡρ,ϑς,u∥∥2

2
is subject to the inequalities

1 ≥
∥∥ḡρ,ϑς,u∥∥2

2
≥ 1

|U |
∀ς ∈ [0,+∞] , (50)

with the extreme values 1 and 1
|U | attained by ḡρ,ϑ0,u and ḡρ,ϑ∞,u,

respectively. Therefore the problem (49) can be minimized
to zero, i.e. exactly fulfilling (43), only provided that 1

|U | ≤
k(u)
k(0) ≤ 1, that is if k(u) does not decay too fast as |u| grows
and if k(0) is the maximum of k over U .

The optimization (49) is directly applicable also to
generic blur kernels of (non self-map) isotropic and aniso-
tropic foveation operators, resolving the possible discrepan-
cies between the continuous and discrete formulation of the
Gaussian PDFs gρ,ϑς , so that (32)–(33) hold accurately up to
machine precision.

4 In particular, the recursive sequence {ςn}+∞n=0 defined by

ς0 = 1
2
√
π

√
k(0)
k(u)

, ςn+1 = ςn

∥∥∥ḡρ,ϑςn,u∥∥∥
2

√
k(0)
k(u)

converges monotonically to the solution ∗ς
ρ,ϑ
u of (49), with geometric

rate for any k(u) < k(0) (contraction mapping).

7.3.1 Singular value decomposition of self-map operators
Due to (46), the SVD (35) of self-map operators can be sim-
plified into

F self
ρ,θ = PU ◦ LF ◦ SF ◦ RF ,

where LF : IU → IU is a change of coordinates (global
isometry) to the orthonormal basis of left singular functions
lu : U → R, u ∈ U,

LF [zx] = 〈zx, lu〉u∈U ,

LF [zx] (u) =
∑
ξ∈U

zx (ξ) lu (ξ) , u ∈ U,

and SF and RF are defined as in Section 5.4. Thus, both
the left and the right singular functions are defined over U
and it is natural to wonder whether they coincide. The an-
swer is negative, since the operator Bρ,θ is not self-adjoint.
This is a direct consequence of the space-variant blur in-
herent to foveation, i.e. that the foveation operator embeds
blur kernels that can be different one from the other. Indeed,
we can always find a pair of points u1, u2 ∈ U such that5

v̄ρ,ϑu1
(u2) 6= v̄ρ,ϑu2

(u1).

7.3.2 Illustration Figure 9 shows a blur kernel vρ,θu from a
radial foveation operator F

ρ,θ
(left) and the blur kernel v̄ρ,θu

from the corresponding self-map operator F self
ρ,θ (center), ρ=

2.5, θ = 0. By construction, the two blur kernels share the
same `1 and `2 norms:∥∥vρ,ϑu ∥∥

1
=
∥∥v̄ρ,ϑu ∥∥

1
=
√

k(0),∥∥vρ,ϑu ∥∥
2

=
∥∥v̄ρ,ϑu ∥∥

2
=
√
k(u).

To compensate truncation while preserving the norms, the
standard-deviation parameter of v̄ρ,ϑu is adjusted through (49)
and is eventually larger than that of vρ,ϑu , as can be observed
in the figure (right).

Figure 10 compares a radial foveation operator F
ρ,θ

(top),
ρ = 4.0, θ = 0, with the corresponding self-map operator
F self
ρ,θ (bottom). Both operators are constructed from the same

windowing kernel k visualized in Figure 11. In the center
and right of Figure 10 we show the left and right singular
functions from the SVD of the operators F

ρ,θ
and F self

ρ,θ . The

5 Note that v̄ρ,ϑui (uj) is nothing but the inner product between a
Dirac patch at ui and Bρ,θ applied to another Dirac patch at uj :
v̄ρ,ϑui (uj) =

〈
δui ,Bρ,θ

[
δuj
]〉

.
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blur-kernel mosaic (bottom-left quadrant) left singular functions right singular functions

(a) RADIAL ρ= 4, θ = 0

(b) RADIAL SELF-MAP ρ= 4, θ = 0

Fig. 10 Radial anisotropic foveation operators F4,0 (a) and the self-map F self
4,0 (b) constructed from the 13×13 windowing kernel k in Figure

11. At the left, we illustrate only the lower-left quadrant of the blur-kernel mosaic: due to symmetry, this effectively represents all blur kernels,
since all four quadrants are identical upon rotation of 90 degrees. The central kernel v̄0 is at the top-left corner of the shown quadrant. Please
see also Figure 9, when comparing blur kernels v4,0

u (· − u) from F4,0 with blur kernels v̄4,0
u (· − u) from F self

4,0 . The first 49 (out of 169)
left and right singular functions of these two foveation operators are shown at the center and right. The functions are sorted columnwise,
according to the decreasing amplitude of the respective singular values shown in Figure 11. Observe that there is no essential structural
difference between the functions corresponding to F4,0 or F self

4,0 . Left and right singular functions of F self
4,0 are visually very similar but not

identical, with differences in contrast discernible at the periphery.

Fig. 11 The windowing kernel k of size 13×13 used in the con-
struction of the operators F4,0 and F self

4,0 in Figure 10 (left), and the
respective singular values of these operators (right).

functions are sorted columnwise according to the decreasing
amplitude of the respective singular values, which are plotted
in Figure 11. The faster decay of the singular values of the
self-map operator is likely due to ∗ς

ρ,ϑ
u (49) being larger than

ς∗u (38) (see also Figure 9). In the case of the self-map op-
erator F self

ρ,θ , we have that k, the blur kernels v̄ρ,θu (·−u), the
left singular functions, and the right singular functions, all
share the same support U . This is in contrast with the case of
the operator F

ρ,θ
, for which only the right singular functions

have the same support of the windowing kernel k, and blur
kernels and left singular functions are defined on larger sup-

ports. However, as can be seen in Figure 10, when adopting
the self-map construction, the main structural features of blur
kernels and singular functions is maintained.

8 Foveated NL-means

We refer to Foveated NL-means as the modified NL-means al-
gorithm where the windowed distance dWIN (7) is replaced by
a foveated distance dFOV (14) computed by means of a fovea-
tion operator. Accordingly, instead of {wWIN (x1, x2)}x2∈X
(13), Foveated NL-means uses adaptive weights determined
by the similarity between the foveated patches zFOV

x :

w
FOV

(x1, x2) = e−
d

FOV
(x1,x2)

h2 /
∑
x∈X

e−
d

FOV
(x1,x)

h2 . (51)

This is the only difference between Foveated and standard
NL-means, all other parts of these algorithms are the same.
The output of the Foveated NL-means, computed as in (12)
using weights (51), is denoted by ŷFOV :

ŷ
FOV

(x1) =
∑
x2∈X

w
FOV

(x1, x2) z (x2) , ∀x1 ∈ X. (52)
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Fig. 12 Details of five 15×15 patches extracted from the noisy Lena image (σ = 50). For each of the five center points x (blue dots) we
show the noisy patch zx (solid red line), the corresponding 21×21 search neighborhood (dashed green line), the windowed patch zWIN

x , and
the foveated patch z

FOV
x . The last two are scaled by 1/

√
k(0) for visualization, like in Figure 7. These patches are used for computing the

displayed NL-means weights wWIN and wFOV over the search neighborhood. These weights give the pixelwise denoised estimates ŷWIN (x) and
ŷ

FOV
(x); for the sake of visualization, we display also all such estimates ŷWIN (x′) and ŷFOV

(x′) for x′ over the whole search neighborhood.
The weights from foveated distance are better localized around edges, details, and textures and, as a result, foveation preserves better than
windowing the original image structures. The foveated and windowed distances provide very different weights in the off-the-edge patch
(middle example) since the foveated patch still features the nearby edge that is instead barely detectable in the windowed patch. In contrast,
in areas where the difference between distinct patches is unstructured (white noise, as in the fourth example from left), the weights are quite
similar and consequently the two denoised estimates are similar too.

We refer to it as the Anisotropic Foveated NL-means when
the weights (51) are computed using anisotropic foveation
operators such as those of Section 6.2.

A Matlab implementation of the Foveated and Aniso-
tropic Foveated NL-means is available online6. Our software
follows the Matlab codes by Manjon-Herrera and Buades
(2008), as a reference of the original NL-means algorithm.

Figure 12 illustrates the behavior of the two algorithms
at five selected locations x. The windowed and foveated
patches are shown together with the corresponding weights,
which have been computed over the whole search neighbor-
hood around x. These weights determine the denoised out-
puts ŷWIN (x) and ŷFOV (x). For the sake of visualization, we
show the denoised outputs not only at the center x, but also
at other locations within the search neighborhood. It clearly
emerges that weights computed from the foveated distance
(51) feature a sharper response around image edges, details,
and textures than do the weights computed from the win-
dowed distance (13). Thus, foveation is better than window-
ing at discriminating image structures and, in Section 9, we
show that Foveated NL-means indeed yields denoised out-
puts with better sharpness, contrast, and higher overall visual
quality. However, such an improved localization of weights
might represent a drawback in some rare cases. For example,
in the off-the-edge patch (middle example), the weights of
the Foveated and standard NL-means are very different, and
the latter provide stronger noise attenuation. This happens be-
cause the foveated patch still features the nearby edge, which
is instead barely visible in the windowed patch. Therefore,
the wFOV weights for the off-the-edge patch are qualitatively
similar to those for the over-the-edge patch (second example
from left) and, as such, do not take full advantage the dark
background in the vicinity of the bright edge.

Whenever the difference between distinct patches is un-
structured so that it can be treated as white noise, we can
leverage the compatibility requirement (20), and conclude
that the windowed and foveated distances should coincide

6 http://www.cs.tut.fi/˜foi/FoveatedNL

in expectation. Assuming that the differences in the higher-
order moments of the distributions of dFOV and dWIN are small
compared to the fluctuations in the unstructured differences
between patches, it follows that the weights wFOV are quite
similar to wWIN , and therefore the two denoised estimates
ŷFOV (x) and ŷWIN (x) are similar too. This situation can be ob-
served in the fourth example from left in Figure 12. Thus, the
constrained design of foveation operators allowed us to avoid
any adjustment of the tuning parameter h, and use instead the
same value for both Foveated and standard NL-means.

Hence, we expect the Foveated and the standard NL-
means to perform comparably in any region characterized by
ubiquity of structurally identical patches. Where such ideal
assumption is met to a weaker extent, or not met at all, dFOV

diverges from dWIN , typically leading to an effective advantage
of foveation, as we shall see in the next section.

9 Experiments

To quantitatively assess the effectiveness of foveated self-
similarity as a regularization prior for natural images, we con-
sider the removal of additive white Gaussian noise and the
NL-means algorithm (Buades et al., 2005). In fact, the de-
noising performance summarizes at once the ability to iden-
tify similar patches and to distinguish between different ones
in a noisy environment.

First, we demonstrate a clear advantage of the isotro-
pic foveated self-similarity over the windowed self-similarity,
given the superior denoising performance of Foveated NL-
means and its ability to operate effectively over larger search
neighborhoods (Section 9.1). Next, we dedicate several ex-
periments to anisotropic foveation, demonstrating that radial
operators can further improve the denoising, particularly at
edges (Section 9.2). We then show that the same advantage
holds when using compactly supported self-map foveation
operators (Section 9.3) and that it is not a mere consequence
of a noise attenuation operated by foveation (Section 9.4). Fo-
veated self-similarity is shown to yield better results also on

http://www.cs.tut.fi/~foi/FoveatedNL
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PSNR (dB) comparison SSIM comparison

Fig. 13 Scatterplots of PSNR (left) and SSIM (right) of standard NL-means (horizontal axis) vs Foveated NL-means (vertical axis). Each
point represents the PSNR or SSIM for a specific combination of patch size and search-neighborhood size. Values are averaged over the Hill,
Lena, Boats, Barbara, Man, and Peppers images, each corrupted by 5 independent noise realizations. Each color indicates a separate noise
level. When σ > 10, Foveated NL-means outperforms standard NL-means in all considered configurations, while when σ = 10, the best
configuration of Foveated NL-means and standard NL-means yield the same performance. For the sake of visualization, we do not plot results
corresponding to patch size 3×3 and search neighborhood 3×3 and 5×5, which are very low (see Figure 14).

textures that are especially challenging for nonlocal methods
(Section 9.5). Finally, we analyze the complexity and demon-
strate that adopting foveation instead of windowing induces
only a negligible computational overhead to NL-means (Sec-
tion 9.6).

In our experiments we consider grayscale test images
in the intensity range [0, 255], that have been corrupted by
additive white Gaussian noise with standard deviation σ ∈
{10, 20, 30, 50, 70}, according to the observation model (1).

We measure the objective denoising performance in terms
of peak signal-to-noise ratio (PSNR, dB) and SSIM quality
index (Wang et al., 2004), while for a subjective visual as-
sessment we show a few image fragments (Fig. 15 and 16).
A comparison in terms of method noise (Buades et al., 2005)
is provided in Section Suppl.6.

9.1 Windowed vs isotropic foveation

To enable a fair and direct comparison between the standard
NL-means (Buades et al., 2005) and the Foveated NL-means
(8), we consider several combinations of patch size (ranging
from 3×3 to 19×19) and search-neighborhood size (ranging
from 3×3 to 44×44), and set the tuning parameter h equal
to σ, as this choice is found to yield the best results for stan-
dard NL-means, as well as for the Foveated NL-means, con-
sistently with the compatibility requirement. Therefore, the
two algorithms differ only in the employed patch distance.
Yet, the foveated distance is computed using the isotropic fo-
veation operator F (Section 6.1) constructed from the same
windowing kernel k of the windowed distance.

Comparison results are reported in Figure 13: in these
scatterplots each point indicates the denoising performance
in terms of either PSNR or SSIM index for a specific (patch

size, search-neighborhood size) combination and for a spe-
cific value of σ. The denoising performance is averaged over
six standard test images, namely Hill, Lena, Boats, Barbara,
Man, and Peppers (see Figure Suppl.1), each corrupted by
five independent noise realizations. These values are also re-
ported in Figure 14, arranged according to patch size, search-
neighborhood size, and σ. In particular, each cloud in Figure
13 corresponds to a subfigure in Figure 14.

The scatterplots in Figure 13 show that the Foveated
NL-means substantially outperforms the standard NL-means,
with the only exception of low noise levels, where the two al-
gorithms perform comparably.

When σ > 10, the PSNR achieved by the Foveated NL-
means is significantly higher than the standard NL-means for
all the settings, since the point clouds lie clearly above the
diagonal. Furthermore, using the foveated distance guaran-
tees improvements over the standard NL-means even with
settings optimized for the latter (since the rightmost point in
each cloud is well above the diagonal). Similarly, the high-
est point of each cloud, which corresponds to the best pa-
rameter combination for Foveated NL-means, indicates a re-
markable improvement over standard NL-means. In particu-
lar, under heavy noise (σ ≥ 50), foveation substantially out-
performs windowing (about 1 dB). At σ=10, the uppermost
and rightmost point of the cloud lies on the diagonal, i.e. the
best PSNR values from the two algorithms coincide and are
obtained for the same combination of patch size and search-
neighborhood size, as shown in Figure 14.

In terms of SSIM scores (Figure 13,right), foveation is al-
ways beneficial, at low noise levels too. As can be seen from
the various fragments shown in Figures 15 and 16, there is
a considerable visual difference between the outputs of stan-
dard NL-means and those of Foveated NL-means, with those
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PSNR (dB) Foveated NL-means
σ = 10 σ = 20 σ = 30 σ = 50 σ = 70

SSIM Foveated NL-means
σ = 10 σ = 20 σ = 30 σ = 50 σ = 70

PSNR (dB) NL-means
σ = 10 σ = 20 σ = 30 σ = 50 σ = 70

SSIM NL-means
σ = 10 σ = 20 σ = 30 σ = 50 σ = 70

Fig. 14 PSNR (dB) and SSIM score of Foveated and standard NL-means as function of patch size and search-neighborhood size. Average
results over the Hill, Lena, Boats, Barbara, Man, and Peppers images, each corrupted by 5 different noise realizations. Throughout the
paper we use these results to set patch size and search-neighborhood size so to maximize the respective denoising quality of each algorithm.
Specifically, for σ=10, 20, 30, 50, 70 respectively: in standard NL-means the patch size is set to 5×5, 11×11, 11×11, 13×13, 15×15 and
the search-neighborhood size is set to 11×11, 9×9, 9×9, 11×11, 13×13; in Foveated NL-means the patch size is set to 7×7, 11×11,
13×13, 17×17, 19×19, while the search-neighborhood size is set to 17×17 irrespective of σ.

.

by the latter characterized by a better contrast, sharper ap-
pearance, and increased detail preservation.

In the remainder, the sizes of patch and of search neigh-
borhood are chosen so to maximize the respective denoising
quality of each algorithm according to Figure 14 and as spec-
ified in its caption.

9.1.1 Local analysis To identify in which image regions
dFOV yields the largest improvement over dWIN , we process
100 independent realizations of Lena corrupted by noise hav-
ing σ = 50 with both Foveated and standard NL-means. We
compute the pixelwise RMSE for both algorithms, namely
rFOV (x) and rWIN (x), by averaging the squared errors of each
algorithm over the 100 realizations. The image displayed in
Figure 17 is built in the hue-saturation-value (HSV) col-
orspace and each pixel x is drawn red (hue H(x) = 1) where
the Foveated outperforms standard NL-means, i.e. rFOV (x) <
rWIN (x), or blue (H(x) = 2/3) otherwise. To highlight the
pixels where the performance gap is larger, the saturation
S(x) proportional to |rFOV (x)−rWIN (x) |. The value V is fixed
equal to 1, yielding white pixels where there is no substantial
difference between rFOV (x) and rWIN (x). Consequently, the
color in each pixel indicates the best performing algorithm,

with the color getting stronger at locations where the perfor-
mance gap between the two algorithms gets larger.

The color that dominates Figure 17 is red, confirming that
Foveated NL-means outperforms the standard NL-means in
terms of global quality indexes. Furthermore, red pixels indi-
cate that dFOV is remarkably more effective than dWIN at im-
age edges and at fine details, corroborating the conclusions
one can draw from Figures 15 and 16. Flat areas of Figure
17 are instead white, because the difference between distinct
patches is unstructured, and the two algorithms perform simi-
larly. Near T-junctions and at off-the-edge regions we can see
some blue pixels, indicating that there windowing is better
that foveation. These are instances of the so-called rare-patch
effect (see Louchet and Moisan, 2011, and particularly Fig-
ure 7 therein), an issue common to the NL-means and other
nonlocal methods. The increased discrimination provided by
the foveated distance (that can be deduced also from the dis-
tribution of weights of Foveated NL-means in Figure 12 at
patches close to the image edges), as well as the larger patch
size used in Foveated NL-means, make this effect slightly
more prominent. Several adaptive methods for dealing with
this phenomenon exist Sutour et al. (2014, and references
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Fig. 17 Red color indicates pixels where Foveated NL-means out-
performs (i.e. has lower RMSE) the standard NL-means, and blue
otherwise. The color saturation is proportional to the pixelwise ab-
solute RMSE difference between the two algorithms; at white pixels
this difference is negligible. Saturated red pixels indicate that fo-
veation is better at edges and fine details, while blue pixels indicate
that windowing is better in few other regions like T-junctions and
off-the-edge regions. These results are consistent with the distribu-
tion of NL-means weights shown in Figure 12. However, red pixels
are more frequent and more saturated than the blue ones. This means
that not only foveation is most often more effective than windowing,
but also that this advantage is consistently large.

therein) and are arguably valid for the Foveated NL-means
also.

More experiments with comparable outcome are reported
by us in (Foi and Boracchi, 2012) and by Postec (2012).

Overall, the experiments show that the foveated distance
is remarkably better than the windowed distance, and that it
can be seamlessly plugged into the NL-means to improve the
denoising, particularly at high noise levels. The superior re-
sults achieved through patch foveation are not a consequence
of some sort of parameter adjustment, but rather indicate to-
wards the foveated distance being a more effective measure
for assessing the nonlocal self-similarity in images. In par-
ticular, the PSNR and SSIM values reported in Figure 14
show that Foveated NL-means is able to effectively operate
on larger search neighborhoods than the standard NL-means.
In general, increasing the search-neighborhood size brings
more potentially similar patches, but also more potentially
irrelevant patches; moreover, the probability of finding re-
peated noise patterns grows with the size of the search neigh-
borhood. Thus, since typically the most similar patches are
found near the neighborhood center, large search neighbor-
hoods are hardly beneficial unless the distance measure can
effectively discriminate which patches are truly similar and
which not. Therefore, the results in Figure 14 confirm that
foveation allows gathering more similar patches farther from
the center of the search neighborhood while it enables a more
effective rejection of the many dissimilar patches that can be
found far from the center of the search neighborhood, thus
better coping with the increased probability of false positives.

PSNR (dB) Anis. Foveated NL-means

Fig. 18 Denoising performance of Anisotropic Foveated NL-means
for various combinations of the θ and ρ parameters, measured as
average PSNR (dB) over the Hill, Lena, Boats, Barbara, Man, and
Peppers images, each corrupted by 5 independent noise realizations.
The best results can be achieved by anisotropic foveation operators
characterized by blur kernels elongated along the meridians toward
the patch center (i.e. θ = 0, ρ > 0). In contrast, operators with tan-
gential blur kernels (i.e. θ=π/2, ρ> 0) are particularly ineffective
and even lead to a performance loss with respect to the isotropic
ones. SSIM results are similar and are reported in Figure Suppl.5.

9.2 Anisotropic foveation

We here evaluate how the denoising performance of Ani-
sotropic Foveated NL-means depends on the kernels elon-
gation and orientation parameters. Specifically, we consider
Fρ,θ , ρ ∈ [1, 8] and θ ∈ [0, π/2], thus including both radial,
tangential and isotropic operators.7

Figure 18 reports the average PSNR scores as a function
of ρ and θ, for separate levels of noise standard deviation σ.
For each value of σ, we select the best patch size and search-
neighborhood size for the isotropic Foveated NL-means as
reported in Section 9.1. These results indicate that patch sim-
ilarity is more effectively measured by radial anisotropic fo-
veation operators (θ= 0, ρ> 1), which outperform isotropic
(ρ = 1), chiral (0 < θ < π/2, ρ > 1), and tangential ones
(θ=π/2, ρ>1). The corresponding SSIM results support the
same conclusions and are reported in Figure Suppl.5.

9.2.1 Local analysis To further investigate this point, we
generate 50 noisy realizations of Lena (σ = 50) and we
denoise them using the Foveated NL-means with patch dis-
tance defined by means of 13 foveation operators {Fρ,0, ρ =
1/8, . . . , 1, . . . , 8}, including radial (ρ>1), isotropic (ρ=1),
and tangential (ρ < 1) ones8. For each value of ρ, we com-
pute rFOV

ρ (x), namely the pixelwise RMSE (as average over
different noise realizations), and we report in Figure 19 the
value of ρ of the operator that yields the lowest rFOV

ρ (x) at an
individual pixel x. We adopt a HSV color coding similar to
that of Figure 17. Specifically, the hue is set to red (H(x)=1)
at those pixels where the lowest restoration error is achieved
by the most radially elongated foveation operator (ρ = 8),
while it is blue (H(x) = 2/3) where the best operator is tan-
gential with ρ = 1/8; the hue for 1/8 < ρ < 8 is defined
by logarithmic interpolation, therefore a pixel x is magenta

7 The selected parameter range is general enough since on natural
images the denoising performance of left-hand chiral operators (ρ≥
1, −π/2 < θ < 0) is practically identical to those of right-hand
chiral operators (ρ≥1, 0< θ< π/2), as shown in Section Suppl.4.

8 For Gaussian blur kernels, Fρ,0 = F1/ρ,π/2.
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Fig. 19 The colors indicate the foveation operator yielding the low-
est RMSE in denoising the current pixel: red corresponds to radial,
magenta to isotropic, and blue to tangential foveation. Colors are
more saturated where the RMSE difference between different oper-
ators is larger; pixels are white where all operators yield the same
RMSE. Radial foveation is the best one at capturing edges and con-
tours, which are mainly red. Isotropic foveation is instead better
than others in irregular textures, like the feathers attached to the
hat, which are mostly magenta. Pale blue pixels can be observed
where levels sets are parallel to a flanking edge, as the blur kernels
at the periphery align with the edge, thus focusing the weights along
the levels sets. The improvement remains however marginal. In flat
areas the image is basically white, as there all the operators are prac-
tically equivalent.

(H(x)=5/6) when the best operator is the isotropic one. The
saturation S(x) reflects the pixelwise standard deviation of
{rFOV
ρ (x) , ρ = 1/8, . . . , 1, . . . , 8}, while the value V is fixed

equal to 1 (V (x)=1). Thus, like in Figure 17, colors are more
saturated (hence better visible) where the denoising perfor-
mance varies more with respect to ρ, and the image is instead
white where all operators perform similarly. It emerges that
along edges and fine details, patch similarity is more effec-
tively assessed by means of radial foveation operators. This
can be explained by the fact that radial foveation preserves
the substantial edge structure, since it blurs along rather than
across the edges. Similar arguments have driven the develop-
ment of the “Anisotropic NL-means” (Maleki et al., 2013),
where the patch domain U (or equivalently the windowing
kernel k) is elongated along the edge orientation, to empha-
size such structure in the patch comparison.

9.2.2 Analysis on images dominated by sharp edges As an
additional test to demonstrate that radial foveation is more
effective in measuring self-similarity at edges, we consider
the MIT and Cameraman test images (see Fig. Suppl.2),
which are characterized by a large amount of sharp edges. In-
deed, the corresponding PSNR analysis in Figure 20 shows a
more marked advantage of radial foveation than in Figure 18.
SSIM results (see Fig. Suppl.6) conform to this trend. This
enhanced noise suppression at edges can be observed, upon
careful inspection, in Figure 16.

PSNR (dB) Anis. Foveated NL-means

Fig. 20 Denoising performance of Anisotropic Foveated NL-means
computed as in Figure 18 but over Cameraman and MIT. These
images, which are characterized by a large amount of sharp edges,
show a marked improvement of radial operators over the others. The
better ability of radial foveation operators to denoise sharp edges is
consistent with the local analysis reported in Figure 19. SSIM results
are similar and are reported in Figure Suppl.6.

Although the performance gap between radial and isotro-
pic foveation reported in Figure 18 and 20 is small in compar-
ison with the gap between (isotropic) foveation and window-
ing shown in Section 9.1, such improvement is consistently
found in all our experiments on complex natural images, and
indicates that radial foveation yields a stronger prior for mea-
suring the nonlocal similarity with structured content (e.g.,
objects, edges, contours).

9.3 Self-map foveation operators

Because the support of some blur kernels of the foveation
operator (22) exceed the patch neighborhood U , one might
legitimately speculate whether this is the reason of the per-
formance gap between the Foveated and standard NL-means.
In fact, computing dFOV involves also pixels outside U , and
this could bring an advantage to the Foveated over the stan-
dard NL-means, since dWIN is instead computed exclusively
from pixels within U . To further investigate the reason of
such performance gap, we have compared the Foveated NL-
means of Section 9.1 against the Foveated NL-means given
by the self-map foveation operator F self

1,0 of Section 7. To en-
able a meaningful comparison, both operators F = F1,0 and
F self

1,0 are isotropic (ρ= 1, θ= 0) and obtained from the same
windowing kernel k. The two mainly differ in the pixels con-
sidered for computing the patch distance: F uses also pix-
els outside U , while F self

1,0 does not. PSNR and SSIM results
are reported in Section Suppl.2, and show that F self

1,0 is only
marginally less effective than its counterpart F , with PSNR
differences of at most 0.1 dB and typically well below 0.05
dB, and SSIM differences of at most 0.005, over the Lena
image and 10 ≤ σ ≤ 70. Such differences appear insignif-
icant especially in comparison with those between the Fo-
veated and standard NL-means. Indeed, the direct numerical
comparison between standard NL-means and self-map Fo-
veated NL-means reported in the second and third columns
of Table 1 reaffirms for the self-map operators the same ap-
praisal expressed in Section 9.1 on the non-self map opera-
tors. Hence, the advantage provided by the foveated distance
cannot be explained by the supports of the blur kernels ex-
ceeding U . Therefore, the source of such advantage should



Foveated Nonlocal Self-Similarity 23

PSNR (dB) and SSIM comparison

w
WIN and wFOV computed from z oracle wWIN,Oracle and wFOV,Oracle computed from y

σ noisy NLM Fov. NLM Anis. Fov. NLM NLM Fov. NLM Anis. Fov. NLM

10 28.13dB 0.668 33.60dB 0.886 33.52dB 0.887 33.62dB 0.890 34.14dB 0.888 33.75dB 0.884 33.96dB 0.889

20 22.11dB 0.401 30.53dB 0.805 30.79dB 0.820 30.87dB 0.822 30.81dB 0.806 30.99dB 0.818 31.16dB 0.823

30 18.59dB 0.265 28.51dB 0.736 29.00dB 0.766 29.08dB 0.768 28.84dB 0.751 29.16dB 0.768 29.34dB 0.774

50 14.15dB 0.140 25.93dB 0.634 26.71dB 0.682 26.80dB 0.685 26.14dB 0.664 26.77dB 0.696 26.95dB 0.702

70 11.23dB 0.085 24.37dB 0.562 25.25dB 0.616 25.34dB 0.620 24.52dB 0.607 25.29dB 0.645 25.48dB 0.652

Table 1 Denoising performance of standard, Foveated, and Anisotropic Foveated NL-means (ρ= 4), reported in terms of mean PSNR(dB)
and SSIM over the Hill, Lena, Boats, Barbara, Man, and Peppers images, each corrupted by five independent noise realizations. The three
columns at the right refer to the special experiment with oracle weights wWIN and wFOV computed from the noise-free image, as described in
Section 9.3. In these experiments, foveation is always produced by self-map foveation operators.

be traced back to an enhanced capability of the foveated dis-
tance to assess the nonlocal self-similarity in natural images.

In the third and fourth column of Table 1 we compare
self-map isotropic and self-map radial anisotropic operators
with ρ=4, and confirm a limited but consistent gain of radial
over isotropic foveation for the self-map operators also.

9.4 Oracle weights

Patch foveation can be interpreted as special smoothing ap-
plied to noisy patches. This is well described by the decay-
ing spectra of foveation operators shown in Figure 8(right)
and Figure 11, with the first few singular functions being
smoother than the rest. One might even legitimately doubt
whether the advantage of foveation over windowing follows
mainly from the attenuation of noise operated by the blur ker-
nels, rather than from a better representation of the patch. In-
deed, as we observed in Section 6.1.1, although correspond-
ing pixels of windowed and foveated patches are subject to
the same noise variance (41), the windowed patches suffer
from an inferior SNR. We address this issue through a sim-
ulation where both windowed and foveated patches are not
degraded by noise and enjoy ideal infinite SNR. Specifically,
in the following experiment, we replace the windowed patch
distance dWIN (6) with its oracle counterpart dWIN,Oracle ,

d
WIN,Oracle

(x1, x2) =
∥∥yWIN

x1
− y

WIN
x2

∥∥2

2
,

i.e. the Euclidean difference between noise-free windowed
patches yWIN

x = yx
√
k. This oracle windowed patch distance

can be used in place of dWIN when computing weights (13),
yielding oracle weights wWIN,Oracle for NL-means:

ŷ
WIN,Oracle

(x1) =
∑
x2∈X

w
WIN,Oracle

(x1, x2) z (x2) ∀x1 ∈ X.

Here the only modification concerns the weights and the es-
timate is still given as a weighted average of noisy pixels. In
the same manner, oracle weights wFOV,Oracle can be computed
for the Foveated NL-means, substituting dFOV in (51) with the
oracle foveated patch distance

d
FOV,Oracle

(x1, x2) =
∥∥yFOV

x1
− y

FOV
x2

∥∥2

2
,

where yFOV
x =F [y, x]. Neither wWIN,Oracle nor wFOV,Oracle should

be interpreted as the best weights one can possibly use in (12)
or (52) to, e.g., maximize PSNR (e.g., Jin et al., 2011). These
weights simply remove the impact of noise from the patch
distance, hence allowing a more direct comparison of the ef-
fectiveness of the underlying self-similarity models.

Results in Table 1 show that oracle weights (fifth to sev-
enth column) provide a marginal improvement over the usual
weights wWIN and wFOV (second to fourth column), and that
the performance gaps between foveation and windowing is
substantially unaltered. As a matter of fact, and perhaps sur-
prisingly, when σ ≥ 20, the standard NL-means with oracle
weights wWIN,Oracle is even outperformed by the Foveated NL-
means with usual weights wFOV computed from noisy fovea-
ted patches. We can therefore conclude that foveation works
better not simply because foveated patches feature a higher
SNR, but essentially because it enables a more effective mea-
sure of the nonlocal self-similarity.

9.5 Texture

Although very regular periodic textures possibly represent
the ideal conditions for nonlocal algorithms, in some prac-
tical cases textures are characterized by sporadic patterns and
thin random details that make very difficult to find a close
matching replica of a sufficiently large patch. In these cases,
textures can prove very challenging for nonlocal algorithms.
Therefore, it is important to benchmark the windowed and
the foveated distance separately on such textural patterns. To
this purpose, we selected six images from the Brodatz dataset
(USC-SIPI) as a challenging dataset for nonlocal denoising
(Fig. Suppl.3), repeating the experimental study with multi-
ple combinations of patch and neighborhood sizes from Sec-
tion 9.1. The results (see Section Suppl.5) conform to those
on natural images in Figure 13 and demonstrate that fovea-
ted self-similarity is effective also on challenging textures.
In particular, the quality of the filtered images (see Figure
16(bottom) and Figures Suppl.10 and Suppl.11) confirms that
foveation can be substantially more convenient than window-
ing also without any specific parameter adjustment to match
the content of the processed images.
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PSNR (dB) vs compute time (sec.) Matlab single-threaded on Intel Mobile T8300 @ 2.6GHz
patch size = 11×11, search-neighb. size = 9×9 patch size = 13×13, search-neighb. size = 17×17

NLM Fov. NLM Anis. Fov. NLM NLM Fov. NLM Anis. Fov. NLM

Lena

Man

Peppers

29.85dB

27.84dB

30.18dB

2.8s
+

139.9s

30.24dB

28.34dB

30.17dB

6.5s
+

140.1s

30.26dB

28.40dB

30.26dB

6.0s
+

140.0s

29.39dB

27.06dB

29.83dB

3.4s
+

288.1s

30.65dB

28.26dB

30.60dB

9.6s
+

288.1s

30.68dB

28.34dB

30.74dB

9.0s
+

288.0s

Table 2 PSNR vs compute time of NL-means, Foveated NL-means, and Anisotropic Foveated NL-means (noise σ = 30, image size
512×512). The patch and search-neighborhood sizes of the first three columns are those that yield best overall results for NL-means, while
those of the last three columns are optimal for (isotropic) Foveated NL-means (see Fig. 14). For each image and algorithm we report the
average PSNR over five noise realizations. For each algorithm we report the average compute times in seconds over the three images and five
noise realizations, separating the time needed for either windowing or foveating the patches (top) from that needed for computing weights
and averaging (bottom).

9.6 Computational complexity

Table 2 shows that the computation times of Foveated NL-
means are marginally higher than those of the standard NL-
means. The overhead is due to the computation of the fovea-
ted patches (in lieu of windowing), which is nevertheless ex-
ecuted only once on the whole image, before computing dFOV .
Once either patch windowing or patch foveation are com-
puted, calculation of dWIN or dFOV have identical complexity.
These pairwise patch comparisons in (13) are the most time
consuming operation in the algorithm. Thus, the overhead is
negligible with respect to the overall computation time.

Foveated patches can be conveniently computed by con-
volving the whole image z against the distinct blur kernels
(modulo translations) vu of the foveation operator (22). The
foveated patches can be then assembled by suitably select-
ing values from these convolved images, as will be also illus-
trated in Section 10.3. This is a particularly efficient strategy
in case of isotropic foveation operators, where the number of
distinct blur kernels can be much smaller than the number of
pixels in the patch: in particular, there is one distinct blur ker-
nel for each distinct value that the windowing kernel k takes
over U . As an illustrative example, the kernel k reported in
Figure 5 takes only 5 distinct values, thus all foveated patches
can be obtained by convolving z against the 5 distinct blur
kernels shown in Figure 6(second row). However, the number
of distinct blur kernels in an anisotropic foveation operator is
typically (|U |+ 1) /2, where |U | is the number of pixels in
the patch, as can be observed in Figure 8.

10 Discussion

The superior sharpness and contrast achieved by the Fovea-
ted NL-means come perhaps unexpected, because the self-
similarity is assessed by means of foveated patches that
are indeed blurry (see foveated patches in Figures 7 and
12). This paradox is however only apparent, because what
actually matters in the weighted average (12) is that the
weight wWIN (x1, x2) or wFOV (x1, x2) is kept small when
|y(x1)− y(x2)| is large and vice versa. The superior denois-
ing performance achieved through foveation suggests that
the distance between y(x1) and y(x2) correlates better with

the foveated patch distance dFOV (x1, x2) than with the win-
dowed patch distance dWIN (x1, x2). This should not surprise,
since high frequencies enjoy a much shorter-range correla-
tion than the low frequencies. In particular, when making in-
ference about the patch center, the high-frequency content at
the patch periphery is not as relevant as the low-frequency
content. It follows that foveation, which attenuates the high-
frequency content at the periphery of the patch, indeed em-
phasizes the information useful for the purpose of nonlocal
denoising of the patch center.

10.1 Comparison with other nonlocal denoising methods

In spite of the notable improvement achieved when introduc-
ing foveation in NL-means, the performances of both Fo-
veated and Anisotropic Foveated NL-means are still infe-
rior to that of more sophisticated nonlocal filters, such as,
e.g., BM3D (Dabov et al., 2007b), BM3D-SAPCA (Dabov
et al., 2009), NL-Bayes (Lebrun et al., 2013) or SAFIR
(Kervrann and Boulanger, 2006). As a figure of merit, when
denoising Lena corrupted by noise with σ = 30, Fovea-
ted NL-means and Anisotropic Foveated NL-means achieve
a PSNR of 30.62dB and 30.65dB, respectively, versus
29.82dB of NL-means (see Figure 15), while BM3D achieves
31.26dB, BM3D-SAPCA 31.42dB, NL-Bayes 31.19dB, and
SAFIR 31.16dB. Nevertheless, Foveated NL-means outper-
forms many other variants of NL-means that leverage al-
ternative patch-similarity measures, such as the NL-means
variant presented by Thaipanich et al. (2010) (30.04dB on
Lena with σ = 30), the NL-means measuring patch similar-
ity by means of Zernike moments (Ji et al., 2009) (30.35dB
on Lena with σ=30), the NL-means using rotation-invariant
block-matching by Grewenig et al. (2011) (PSNR of 31.84dB
on Lena with σ = 20, while Foveated NL-means achieves
32.45dB), the “Anisotropic NL-means” by Maleki et al.
(2013) (PSNR of 26.45dB and 23.88dB on Boats with σ =
38.25=0.15×255 and σ=63.75=0.25×255, while Fovea-
ted NL-means achieves 27.24dB and 24.99dB, respectively),
and the patchwise NL-means (Buades et al., 2011) (29.51dB
on Lena with σ=30). However, our contribution is not to be
intended as the development of yet another denoising algo-
rithm, but rather as the exploration of a new form of nonlocal
self-similarity.
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fine Scale-space layers coarse Foveation

Fig. 21 Isotropic foveation can be interpreted as conical sectioning of a scale-space representation of the image, i.e. the foveated image is
composed by pixels that are extracted from concentric subset in different layers of the scale-space, each layer portraying a different degree of
coarseness. Each of these concentric subset is found as the intersection of the layer with a cone stemming from the fixation point in the finest
layer. In the illustration, the bottom and finest layer is the fully sharp original image; as we move to the higher and coarser layers the image
is progressively blurred, with the top and coarsest layer being the limiting case of the average of the whole image.

10.2 Other applications

Since our first work on the subject (Foi and Boracchi, 2012),
the foveated patch self-similarity has been employed for a
diverse range of imaging applications, which go well be-
yond our basic denoising examples. We wish to mention the
works by Chierchia et al., where the foveated self-similarity
defines the weights in nonlocal total-variation for recover-
ing images from blurred, noisy, and incomplete observations
(most samples missing due to random decimation) (Chierchia
et al., 2014a; Chierchia et al., 2014), and later also com-
bined with a nonlocal structure tensor for restoring multi-
component (color and multi/hyper-spectral) images (Chier-
chia et al., 2014b). The use of patch foveation is not even
limited to image restoration, but can be relevant also for var-
ious image analysis problems. Ciresan et al. (2012) success-
fully addressed the segmentation of electron microscopy im-
age stacks in neuroanatomy by a deep neural network that
takes as input foveated patches, winning a challenge at the
IEEE ISBI conference. Similarly, patch foveation is used by
Haloi (2015) for preprocessing the input of a deep neural net-
work trained for the automatic detection of retinopathic mi-
croaneurysm in fundus images.

We provide an open-source implementation of our fo-
veation operators6, and encourage researchers to experiment
adopting patch foveation within their patch-based algorithms.

10.3 Multiscale patch descriptors

In contrast with the conventional windowing, which is only
spatially selective and attenuates in an equal way sharp details
and smooth areas, patch foveation provides selectivity in both
space and frequency domain. In fact, foveated patches embed
pixels from fine-scale (the fixation point) to coarse-scale (pix-
els at the patch periphery) representations of patches, and, re-

markably, such a space/frequency selectivity is achieved by
means of a single, non-adaptive operator. Foveation opera-
tors therefore provide a compact and non redundant multi-
scale representation of each image patch. In particular, fo-
veation can be interpreted as a conical sectioning of the scale-
space representation of an image, as illustrated in Figure 21.
The central-acuity and the pixelwise-compatibility require-
ments can be directly interpreted in terms of such scale-space
sectioning. In particular, the central acuity implies that the
central pixel is extracted from the lowest layer z, while the
pixelwise compatibility implies that upper and coarser layers
are progressively selected as the distance from the center in-
creases. The actual shape of the cone depends directly on the
windowing kernel k, and in particular on its decay rate and
on whether it is circularly symmetric or not.

To investigate the importance of such a regularity in the
scale-space sectioning, Section Suppl.7 presents an experi-
ment using modified “foveation” operators that violate the
central-acuity and pixelwise-compatibility requirements.

10.4 Extension to patchwise multipoint estimators

The foveated self-similarity framework and the Foveated NL-
means algorithm developed in the previous sections are fo-
cused on a nonlocal pointwise estimation (see, e.g., Katkov-
nik et al., 2010) where a single pixel is estimated at a time.
Specifically, in the Foveated NL-means algorithm, the par-
ticular adaptive weighted average (52) produces the estimate
ŷFOV (x1) only; any other estimate at a position x3 6= x1 has
to be computed separately from a different set of weights
wFOV (x3, x2), x2 ∈ X . Further, the blurred pixels at the pe-
riphery of the patches zFOV

x2
, x2∈X , although essential for de-

termining the weightswFOV (x1, x2) (51), do not enter directly
into the summation (52), which instead combines noisy sam-
ples z(x2). What matters here is that z(x2) are, apart from a
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trivial scaling by
√
k(0), the central pixels of the patches zFOV

x2

because of the central acuity requirement. This implies that
the foveated patch model that underpins the self-similarity is
completely transparent with respect to the data samples that
enter the weighted average. When this is violated the estima-
tion may degenerate, as exemplified in Section Suppl.7.

Different from the pointwise estimators, many of the
abovementioned competitive denoising methods are in fact
nonlocal multipoint estimators (see, e.g., Katkovnik et al.,
2010), which typically produce simultaneously estimates for
each pixel in a patch. For example, the BM3D achieves its
efficiency by pushing the concept to the extremes: at once,
it produces an individual estimate for each and every pixel
belonging to any of the mutually similar patches that are in-
volved in the estimation (this is the so-called collaborative
filtering, Dabov et al., 2007b).

Extending the foveated self-similarity to the class of non-
local multipoint estimators requires special care. In fact,
patch foveation not only affects the selection of patches or the
calculation of relative weights used in filtering, but bears also
structural changes to the patch regularity model leveraged in
multipoint estimation. Specifically, substituting in a multi-
point filter its native patch distance with the foveated patch
distance, installs a similarity model between the patches zFOV

x

that can substantially deviate from the canonical similarity
between the patches zx. It means that a modification of the
distance must be accompanied by a modification of the way
mutual regularity is exploited for noise attenuation and signal
recovery. These are additional technical challenges specific
to multipoint methods which were not met in the straightfor-
ward transition from NL-means to Foveated NL-means.

We recently made some preliminary steps toward the use
of foveation in multipoint estimators. One such instance are
the Foveated Nonlocal Principal Components (Foi and Borac-
chi, 2014), where we applied the foveated distance to iden-
tify suitable patch clusters for adaptive dictionary learning
and low-rank patch approximation in noisy conditions. While
we refer the reader to (Foi and Boracchi, 2014) for addi-
tional details, we mention here some of the key elements of
this method, so to provide an intuition how far the change
of the similarity metric impacts on the baseline method. In
this case, the baseline method is a similarity-weighted prin-
cipal component analysis (PCA) where weights are given by
the Euclidean distance with respect to a given “centroid” or
“reference” patch; patches close to the centroid can thus be
projected on a low-rank subspace given by the first few PCs.
Similar archetypal approximations are at the core of state-of-
the-art methods such as BM3D-SAPCA (Dabov et al., 2009).
In contrast with NL-means, where we are able to replace the
patch distance with a suitably constrained foveated distance
without need of further changes to the algorithm, with the
nonlocal principal components foveation must spread also to
many other elements of the algorithm. Firstly, the weights
(51) that are used for weighted PCA are relevant for the fo-
veated patches zFOV

x and not the patches zx, therefore the PCA
has to be computed for a cluster of foveated patches. While
the found eigenvectors are in principle able to approximate

any patch, their construction guarantees good approximation
for foveated patches only. Being orthonormal, the PCA corre-
sponds to a rotation of the coordinates and alone it cannot in-
corporate foveation, which is a more general non-symmetric
linear transformation. Hence, we endow the analysis and syn-
thesis operators with respect to this eigendecomposition with,
respectively, the foveation operator and its de-foveating in-
verse9. In spite of the obvious burden due to the additional
foveation and de-foveation steps, the overall procedure is suc-
cessful, in the sense that if we perform low-rank approxima-
tion using clusters of mutually similar foveated patches, the
approximation of the patches zx is closer to the noise-free
patches yx than what one would obtain using an approxima-
tion of same low rank originated from the Euclidean or win-
dowed distance (Foi and Boracchi, 2014).

10.5 Connection with HVS orientation preference

The improvement attained by radial foveation surprisingly
recalls the radial orientation bias of the HVS (see Section
2.1.1), which is the enhanced sensitivity to radial orientations
in the visual field, i.e. orientations collinear with the merid-
ians intersecting the center of the gaze. The layout of blur
kernels in radial foveation operators (see the examples in Fig-
ure 8) agrees with such orientation preference. Furthermore,
we observe that patches blurred by radial foveation operators
actually preserve edges and sharp details that are oriented to-
wards the patch center. In this sense, radial foveation induces
a patch similarity measure that mimics the HVS sensitivity.
To further inspect the connection between radial foveation
and the radial orientation bias of the HVS, we designed the
following experiment.

The orientation preference of the HVS has been also in-
vestigated by means of functional Magnetic Resonance Imag-
ing (fMRI). In a recent experiment (Freeman et al., 2011),
an annular region in the human primary visual cortex (V1)
was monitored, and the fMRI responses to a visual stimu-
lus consisting in a rotating sinusoidal grating were recorded.
This experiment revealed a strong response to stimuli that are
oriented along the angular direction of the retinally mapped
V1 voxel, and the resulting topographic map of orientation
preference was characterized by radial orientations, congru-
ent with previous studies on the radial bias.

To investigate whether a similar topographic map can be
also found in anisotropic foveation, we run an experiment
where a specific foveated distance mimics the sensitivity of
a single directional receptor. Let us consider anisotropic fo-
veation operators ρ>1 and define

dρ,θ,ū (x1, x2) =

= (Fρ,θ[z, x1](ū)−Fρ,θ[z, x2](ū))
2 ‖k‖1
k(ū)

, (53)

9 Invertibility is feasible with self-map operators F self
ρ,θ provided

that the inequality (50) is met with a strict lower bound. As a matter
of fact, the greatest advantage of self-map operators is that they can
be represented through Bρ,θ (46) as square matrices of size |U |×|U |.
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Fig. 22 Human visual system and Anisotropic Foveated NL-means
share exactly the same orientation preference. Patch similarity here
is measured by (53) which mimics the sensitivity of a single receptor
placed at a pixel ū within the patch. The average standardized MSE
of the denoised images is reported as a function of the angular po-
sition (∠ū) and orientation (∠ū+ θ), which in fact characterize the
blur kernel vū. The best denoising performance is achieved when the
angular position and orientation coincide, i.e. when the blur kernels
are oriented radially towards the patch center. This plot is strikingly
similar to Figure 3A in (Freeman et al., 2011), which investigated the
orientation preference of the HVS by means of fMRI recordings.

which corresponds to measuring the patch distance as the dif-
ference between two foveated patches in the specific pixel ū,
where the blur kernel yielding foveation was oriented towards
∠ū+ θ10. The scaling factor ‖k‖1/k(ū) guarantees that (53)
satisfies the compatibility requirement (20).

Of course, a lot of information is ignored when com-
paring patches using (53), and we expect a substantial loss
in the quality of the denoised image if we replace dFOV or
dWIN (6) with dρ,θ,ū. Nevertheless, the denoising performance
achieved when using (53) indicates how a single receptor
with angular position ∠ū and orientation ∠ū+ θ is effective
at assessing the nonlocal self-similarity. Hence, through (53),
we can determine, for any given angular position, whether
there exist any particular receptor orientation that is better
than others at measuring patch similarity.

To this purpose, we take the Hill, Lena, Boats, Barbara,
Man, Peppers, Cameraman, and MIT images, generate six
noisy realizations of each image with σ = 30, and process
each such realization by Foveated NL-means using the spe-
cial distance (53) with ρ= 6 and varying θ and ū in the fol-
lowing sets:

θ ∈ {kπ/10, k = −4,−3,−2,−1, 0, 1, 2, 3, 4, 5} ,
ū ∈ {u ∈ U , s.t. ‖u‖∞ = 5} . (54)

The set (54) corresponds to the peripheral annular region of
interest from (Freeman et al., 2011). We then standardize the
MSE separately for each individual angular position ∠ū, and
report this standardized MSE values as function of angular
position and orientation in Figure 22, where a fitting surface
is also displayed for the sake of visualization. The standard-
ization is essential in order for the orientation preference to
emerge from the data: without standardization, the angular

10 In fact, Fρ,θ[z, x1](ū) is proportional to the value in ū of the
convolution between z and the blur kernel vū, and this latter has a
main axis oriented as ∠ū+ θ

positions corresponding to the most pronounced directions in
the image content (typically vertical and horizontal, see, e.g.,
van der Schaaf and van Hateren, 1996; Baddeley, 1997; Tor-
ralba and Oliva, 2003) would otherwise dominate, making
data from different angular positions inconsistent one with
each other.

Figure 22 indicates a clear analogy with the orientation
preference in the HVS, since the best performance is achieved
when angular position and orientation of the receptor coin-
cide, i.e. θ=0. Thus the best receptor in assessing the nonlo-
cal self-similarity is often the one following a radial direction,
and radial foveation operators are built upon such blur ker-
nels. Remarkably, Figure 22 is actually very close to Figure
3A in (Freeman et al., 2011), which displays the preferred ori-
entations against the preferred angular positions determined
from the fMRI experiment, with a measure of the SNR of
the cortical responses to oriented stimuli. This is a striking
relation between anisotropic foveation in digital images and
features of the HVS, which well substantiates the use of ra-
dial foveation operators. Most importantly, it uncovers an ap-
parent functional justification for the orientation bias, exclu-
sively leveraging the nonlocal statistics of natural images.

11 Conclusions

Exploiting foveation, an essential principle of the HVS, we
have proposed a direct modification of the way self-similarity
is assessed within nonlocal imaging filters. Instead of mea-
suring the patch similarity through a windowed Euclidean
distance, we employ foveation operators, and measure the
Euclidean distance between foveated patches. Thanks to a
general, constrained, design of foveation operators, we have
installed a simple – yet fully explicit – connection between
traditional windowed self-similarity and the foveated self-
similarity. We have also constructed families of isotropic
and anisotropic operators characterized by possibly elongated
and oriented blur kernels. Through extensive experiments,
mainly within a nonlocal image denoising framework, we
have shown that foveated self-similarity is a far more effec-
tive regularization prior for natural images than the conven-
tional windowed self-similarity. We have also pointed out that
radial anisotropic foveation operators exhibit an enhanced
ability at recovering edges and structures. Strikingly, such ra-
dial design is consistent with HVS features, and this study
might provide a functional justification in terms of natural
image statistics for the radial bias of HVS.

Ongoing research considers foveated self-similarity
within multiscale nonlocal transform-domain algorithms.
Furthermore, we find particularly relevant examining the
connections between foveation and transsaccadic integration
(Demeyer et al., 2009; Herwig and Schneider, 2014; Krishna
et al., 2014) and exploring their joint applications in image
filtering.
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Contents:
This supplementary material is organized as follows:

– Section Suppl.1 presents the considered image datasets;
– Section Suppl.2 concerns self-map operators and compares the denoising performance of Foveated NL-means based on either self-maps

or non self-map foveation operators;
– Section Suppl.3 provides additional results on anisotropic foveation operators;
– Section Suppl.4 investigates chiral foveation operator;
– Section Suppl.5 provides additional experiments on texture denoising by means of Foveated NL-means;
– Section Suppl.6 compares the standard NL-means against the anisotropic Foveated NL-means in terms of method noise;
– Section Suppl.7 presents an experiment to stress the importance of the constrained design of foveation operators. In particular, we show

that operators that violate the design constraints are less effective at estimating the nonlocal self-similarity.

Suppl.1 Test images

In our experiments we use three different sets of grayscale
images. The first set consists of six standard test images of
size 512×512, namely Hill, Lena, Boats, Barbara, Man, Pep-
pers (see Figure Suppl.1), which were selected to assess the
foveated self-similarity on natural images featuring complex
structures. The second set is composed of two images of size
256×256 dominated by sharp edges, namely Cameraman and
MIT (see Figure Suppl.2), through which we can better ex-
pose the link between denoising performance at edges and
anisotropy of the foveation operator. Finally, the third set
comprises six texture image of size 512×512 from the Bro-
datz database (USC-SIPI) (see Figure Suppl.3); these images,
because of their sporadic patterns and random details, are par-
ticularly challenging for nonlocal algorithms and have thus
been separately considered to compare the foveated and the
windowed distance in this difficult scenario.

Hill Lena

Boats Barbara

Man Peppers
Fig. Suppl.1 The six 512×512 grayscale test images used in the
denoising experiments reported in Figures 13, 14, 15, 16, 18, 22,
Figures Suppl.4, Suppl.5, and Suppl.14, and Table 1.
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Cameraman MIT

Fig. Suppl.2 Cameraman and MIT are two 256×256 grayscale im-
ages characterized by a large amount of sharp edges. These test im-
ages are used for the experiments reported in Figures 16, 20, 22 and
Figure Suppl.6.

1.1.01 1.1.03
Grass (D9) Straw (D15)

1.1.06 1.1.07
Pressed calf leather (D24) Beach sand (D29)

1.1.08 1.1.13
Water (D38) Plastic bubbles (D112)

Fig. Suppl.3 The six 512×512 grayscale textures from the Brodatz
dataset (USC-SIPI), used for the experiments reported in Figures
Suppl.9, Suppl.10, and Suppl.11.

PSNR (dB) comparison (Lena)

SSIM comparison (Lena)

Fig. Suppl.4 PSNR and SSIM scatterplots of isotropic Foveated
NL-means F = F1,0 (horizontal axis) vs isotropic Foveated NL-
means using self-map operator F self

1,0
(vertical axis). Each point rep-

resents the PSNR or SSIM value for a specific parameter pair (patch
size, search neighborhood size) for the Lena image. Each color cor-
responds to a separate noise level. The two algorithms yield nearly
the same performance, with only negligible differences in favor of
the Foveated NL-means.

Suppl.2 Relative performance of self-map operators

We compare the Foveated NL-means of Section 9.1 against
the Foveated NL-means given by the corresponding self-map
foveation operator F self

1,0 of Section 7. To enable a meaningful
comparison, both operators F = F1,0 and F self

1,0 are isotropic
(ρ= 1, θ= 0) and obtained from the same windowing kernel
k. The scatterplots in Figure Suppl.4 report the PSNR and
SSIM values obtained for the Lena image over the same pa-
rameters pairs and noise levels as in the plots in Figure 13.
These results demonstrate that there is no significant loss of
performance from using of self-map foveation operators.
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PSNR (dB) Anisotropic Foveated NL-means (avg. Fig. Suppl.1)

SSIM Anisotropic Foveated NL-means (avg. Fig. Suppl.1)

Fig. Suppl.5 Denoising performance of Anisotropic Foveated NL-means for various combinations of the θ and ρ parameters, measured
as the average PSNR (dB) (top) and SSIM score (bottom) over the six images in Figure Suppl.1, each corrupted by 5 independent noise
realizations. The best restoration performance can be achieved by anisotropic foveation operators characterized by blur kernels elongated
along the meridians toward the patch center (i.e. θ = 0, ρ > 0). In contrast, operators with tangential blur kernels (i.e. θ = π/2, ρ > 0) are
particularly ineffective and even lead to a performance loss with respect to the isotropic ones.

PSNR (dB) Anisotropic Foveated NL-means (avg. Fig. Suppl.2)

SSIM Anisotropic Foveated NL-means (avg. Fig. Suppl.2)

Fig. Suppl.6 Denoising performance of Anisotropic Foveated NL-means computed as in Figure Suppl.5 but over the two images in Figure
Suppl.2, which are characterized by plenty of sharp edges. Note the more marked improvement from radial operators compared to Figure
Suppl.5. The better ability of radial foveation operators to denoise sharp edges is consistent with the local analysis reported in Figure 19.

Suppl.3 Advantage of radial anisotropic foveation

We here provide the complete results from the comparative
analysis of denoising with anisotropic foveation operators
Fρ,θ for different combinations of elongation and orientation
parameters, ρ∈ [1, 8] , θ∈ [0, π/2].

First, in Figure Suppl.5, we report PSNR and SSIM re-
sults averaged over the six test images in Figure Suppl.1 and
five noise realizations. These results complete those included
in Section 9.2 (Figure 18).

Next, in Figure Suppl.6, we report PSNR and SSIM re-
sults averaged over the two images with plenty of sharp edges
(Figure Suppl.2) and five noise realizations. These results
complete those included in Section 9.2.2 (Figure 20). A com-
parison with Figure Suppl.5 exposes the more marked im-
provement from using well elongated radially oriented ker-

nels when denoising images characterized by edges, in agree-
ment with the analysis in Section 9.2.1.
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Left singular functions of various foveation operators Fρ,0 (k as in Figure 11)

ISOTROPIC ρ= 1 RADIAL ρ= 4, θ = 0 CHIRAL ρ= 4, θ =π/8 CHIRAL ρ= 4, θ =−π/8

TANGENTIAL ρ= 4, θ =π/2 CHIRAL ρ= 4, θ = 3π/8 CHIRAL ρ= 4, θ =π/4 CHIRAL ρ= 4, θ =−π/4

Fig. Suppl.7 The first 35 left singular functions of foveation operators Fρ,θ constructed from the 13×13 windowing kernel k in Figure 11,
for various combinations of ρ and θ, encompassing isotropic, radial, right-hand chiral, left-hand chiral, as well as tangential operators. The
singular functions are sorted columnwise, according to the decreasing magnitude of the respective singular value. Chiral operators capture
spiral patterns that coil progressively faster as we transit from θ = 0 (radial) to θ = π/2 (tangential). Note the reversal of orientation that
results from a change of sign of θ.

Suppl.4 Chirality

Throughout the experiments of Section 9 and Section Suppl.3
we have considered θ ∈ [0, π/2], which when 0 < θ < π/2
yields right-hand chiral operators, such as that in Figure 8(d).
Right-hand chiral operators capture spiral pinwheel patterns
along inward-twisting clockwise trajectories. Such patterns
may be noticed among the singular functions as well as in the
overall blur-kernel mosaic in Figure 8(d). These spirals are
logarithmic, since the angle θ between the meridian and the
orientation ϑ of the blur kernel is constant, as by the definition
of anisotropic foveation operators (44). Figure Suppl.7 illus-
trates the left singular functions associated to various fovea-
tion operators; the different handedness of right-hand chiral
operators (ρ> 0, 0<θ<π/2) and left-hand chiral operators
(ρ> 0, −π/2< θ < 0) can be appreciated, together with the
faster coil rate when approaching the tangential operator. The
coarsest of these spiral patterns bear a resemblance to the cir-
cular harmonic functions by Bigun and Granlund (1986) and
Karlsson and Bigun (2011).

Natural images feature very low overall chirality, with
pinwheel patterns existing as transitional singularities be-
tween iso-oriented regions and with clockwise and counter-
clockwise twists occurring in similar proportions (Geisler

et al., 2001; Sigman et al., 2001; Osindero et al., 2006). It
is therefore not surprising that for any given ρ and θ, the
left-hand operator Fρ,−θ, θ ∈ (0, π/2), yields a denoising
performance on natural images that is practically identical to
that of its right-hand twin Fρ,θ. Figure Suppl.8 illustrates this
fact for the particular case of the Peppers image corrupted by
noise with σ=30.

PSNR (dB) Anisotropic Foveated NL-means (Peppers)

Fig. Suppl.8 Natural images exhibit negligible overall chirality: de-
noising performance (PSNR, dB) of the Anisotropic Foveated NL-
means on the Peppers image corrupted by noise with σ = 30 for
various combinations of θ and ρ. The results by the right-hand op-
erator Fρ,θ and its left-hand twin Fρ,−θ are practically identical.
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PSNR (dB) comparison (avg. Fig. Suppl.3) SSIM comparison (avg. Fig. Suppl.3)

Fig. Suppl.9 Scatterplots of PSNR (left) and SSIM (right) of the standard NL-means (horizontal axis) vs Foveated NL-means (vertical axis)
for the texture images in Figure Suppl.3. As in Figure 13, each point represents the average PSNR value (or SSIM score) achieved for a
specific parameter pair (patch size, search radius) over the six textures corrupted by 5 independent noise realizations. Even though the values
are inferior to those of Figure 13, qualitatively the scatterplots are comparable, and confirm the effectiveness of foveation also on challenging
textures.

Suppl.5 Texture

Although very regular periodic textures possibly represent
the ideal conditions for nonlocal algorithms, in some prac-
tical cases textures are characterized by sporadic patterns
and thin random details that make very difficult to find a
close matching replica of a sufficiently large patch. In these
cases, textures can prove very challenging for nonlocal algo-
rithms. Therefore, it is important to compare the windowed
and the foveated distance separately on a dataset of images
containing this sort of textural patterns. To this purpose, we
selected the six images in Figure Suppl.3 from the Brodatz
dataset (USC-SIPI) as a challenging dataset for denoising.
We consider the same multiple combinations of patch and
neighborhood sizes used in Section 9.1, and we compare
the standard NL-means against Foveated NL-means based on
isotropic and anisotropic self-map operators (ρ= 4). The re-
sults, summarized in Figure Suppl.9, confirm the difficulty
in denoising these images, with a substantial drop in PSNR
and SSIM scores with respect to the analogous experiment
on complex natural images in Figure 13. Nevertheless, the
scatterplots of Figure Suppl.9 and Figure 13 are qualitatively
similar: when σ>10, also on textures foveation leads to a de-
noising performance that is better, or in the worst case com-
parable, to that of windowing for any combination of patch
size and neighborhood size. Likewise, upon choosing the re-
spective combinations of patch and neighborhood size yield-
ing the best performance for each algorithm, Foveated NL-
means outperforms again the standard NL-means for σ>10,
while for σ=10 they achieve the same performance. Figures
Suppl.10 and Suppl.11 report a few fragments of the consid-
ered textures for visual comparison and attest that foveation
leads to the best denoising performance also in terms of vi-
sual quality. In particular, isotropic Foveated NL-means pro-
vides reconstructed images that are sharper and better con-
trasted than those by the standard NL-means, and that, at least

numerically, are also marginally better than the images pro-
duced by the Anisotropic Foveated NL-means. This agrees
with our analysis of Figure 19, where we already noted that
on irregular textures isotropic foveation is more effective than
the anisotropic one. The latter instead excels at regular and
well structured edges and details, as confirmed by the exper-
iments on MIT and Cameraman reported in Figure Suppl.6
and 16; indeed, on the relatively more structured 1.1.13 tex-
ture in Figure Suppl.11, isotropic and anisotropic foveation
are on par. Images in Figures Suppl.10 and Suppl.11 are com-
puted using the same general-purpose parameters appropriate
for natural images with mixed content (such as those in Fig-
ure 13). The quality of the filtered images confirms that, in
practice, foveation can be substantially more convenient than
windowing also without any specific parameter adjustment to
match the content of the processed images. These results are
consistent with the experiment on natural images in Section
9.1, and demonstrate that foveated self-similarity is an effec-
tive prior also on challenging textures.
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Suppl.6 Method noise

For any given denoising method, the so-called method noise
(Buades et al., 2005) can be computed as the difference be-
tween an image and its denoised version. Typically, this is
done without addition of noise to the image, so the method
noise corresponds to what the denoising filter has removed
from the image as if it were noise. In our notation, it corre-
sponds to applying the denoising filter directly to the noise-
free image y while assuming this were corrupted by noise
having a given standard deviation σ. As the practical goal
of any denoising filter is to remove noise without damaging
the underlying unknown noise-free image, the method noise
should ideally appear as white noise, without featuring struc-
tures or any recognizable details of the image. Visual inspec-
tion of the method noise can thus be a reasonable qualita-
tive criterion for judging the properties of a denoising filter,
and we specifically use the method noise for comparing NL-
means and Foveated NL-means.

In Figure Suppl.12, we report the method noise for the
standard (first and third column) and Foveated (second and
fourth column) NL-means, where these methods have been
tuned to operate on images corrupted by noise having a given
standard deviation σ. A larger σ makes the filtering more
aggressive. To enable a direct as well as fair comparison,
we again apply each filter according to two combinations
of patch size and neighborhood size, one combination con-
sidered optimal for the standard NL-means (first and second
column), and another combination optimal for the Foveated
NL-means (third and fourth column). These optimal parame-
ters have been determined based on the analysis of Figure 14,
and are reported at the end of Section 9.1.

The visual inspection of Figure Suppl.12 suggests that
the method noise of Foveated NL-means contains fewer and
fainter structured details than the method noise of the stan-
dard NL-means. Expectedly, the differences between the two
algorithms increase when these are tuned to suppress stronger
noise or operate with larger patches (see Section 6.1.2).
For instance, in the bottom row of the figure (σ = 30),
the method noise of standard NL-means contains prominent
edges and details. In contrast, for small values of σ, and
hence small patch size, the differences become less notice-
able. Thus, the method noise analysis attests favorably to fo-
veation, and agrees with the results from the traditional de-
noising experiments reported in the earlier sections.
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Method noise (noise-free Lena image)

σ = 5 patch size = 3×3, search neighb. size = 13×13 σ = 5 patch size = 5×5, search neighb. size = 17×17

NL-means Anis. Fov. NL-means NL-means Anis. Fov. NL-means

σ = 10 patch size = 5×5, search neighb. size = 11×11 σ = 10 patch size = 7×7, search neighb. size = 17×17

NL-means Anis. Fov. NL-means NL-means Anis. Fov. NL-means

σ = 30 patch size = 11×11, search neighb. size = 9×9 σ = 30 patch size = 13×13, search neighb. size = 17×17

NL-means Anis. Fov. NL-means NL-means Anis. Fov. NL-means

Fig. Suppl.12 The method noise of the standard (first and third columns) and Foveated (second and fourth columns) NL-means when
processing the noise-free Lena at different configurations of patch size, neighborhood size, and assumed noise standard deviation σ. A larger
σ makes the filtering more aggressive and thus more features of the image emerge in the method noise. The differences between the two
algorithms also increase with the value of σ, and the method noise for standard NL-means contains always more edges and image structures
than the method noise of the Foveated NL-means. Images are scaled to a common range of intensities, separately for each value of σ.

Suppl.7 Irregular design

As a further confirmation of the practical importance of the
central-acuity and pixelwise-compatibility requirements, thus
of a certain regularity in the above scale-space sectioning, we
consider modified “foveation” operators that disobey the de-
creasing acuity towards the periphery of the patch. Specif-
ically, we construct operators from either randomly per-
muted windowing kernels (i.e. randomized windowing ker-
nels) or from windowing kernels that attain their minimum
at the center of the patch and increase towards the periphery
(i.e. inside-out windowing kernels), as illustrated in Figure
Suppl.13. In the randomized case, any blur kernel vu, u ∈ U ,
composingF can be narrow or wide regardless of the position
of u with respect to the center of the patch. In the inside-out
case, the wider blur kernels correspond to smaller |u| and the
most narrow ones are found near the boundary of the patch,

i.e. in completely reversed positions compared to the regular
design of a foveation operator. Figure Suppl.14 reports the
denoising performance obtained from such irregular “fovea-
tion” operators over the natural images in Figure Suppl.1: the
performance is notably inferior to that obtained from the reg-
ular design. The reversed inside-out case is particularly unfor-
tunate. In the same figure, we report also the corresponding
results obtained by the standard NL-means, which is found to
be impaired even further by the use of irregular windowing
kernels. Note however that as the noise gets heavier (σ≥50),
the gap between regular and irregular design gets narrower,
possibly highlighting a limit in the resolvability of finer de-
tails, which hinders all these operators.
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k randomized inside-out

Fig. Suppl.13 A windowing kernel k of size 11×11 (left) and two
windowing kernels obtained by permutation of k: a completely ran-
domized windowing kernel (center) and a reversed inside-out win-
dowing kernel (right), which is increasing from the center towards
the periphery. These two kernels were obtained by shuffling k, thus
they attain the same values with same proportions (i.e., their his-
tograms coincide), hence also their norms are the same.
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Fig. Suppl.14 Comparison between the Foveated NL-means (based
on F1,0) and the Foveated and standard NL-means based on ran-
domized and inside-out versions of the windowing kernel k, as
shown in Figure Suppl.13. The reported value (∆PSNR) is the dif-
ference between the PSNR achieved by Foveated NL-means and the
PSNR achieved by other denoising algorithms. This substantial per-
formance gap emphasizes the importance of designing foveator op-
erators according to the constrained construction presented in Sec-
tion 5, and in particular the relevance of central acuity and pixelwise
compatibility requirements.
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