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N ... A CHANGE-DETECTION PROBLEM

Environmental monitoring: a
Sensor network for monitoring
rockfaces and detect changes
waveforms recorded by MEMS
Sensors in these units.
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C. Alippi, G. Boracchi, B. Wohlberg "Change Detection in Streams of Signals with Sparse Representations" in Proceedings of
IEEE ICASSP 2014, pp 5252 - 5256



.. A CHANGE-DETECTION PROBLEM

Learning problems related to predicting user preferences /
interests, such as:

e Recommendation systems
e Spam / email filtering

Changes arise when users change their own preferences.

Changes have to be detected to update the system accordingly

Trash

Spam Classification

Alippi, C., Boracchi, G., Roveri, M. “Just-in-time classifiers for recurrent concepts”. IEEE TNNLS, 24(4), 620-634 (2013).

Gama, )., Zliobaite, 1., Bifet, A., Pechenizkiy, M., Bouchachia, A. "A survey on concept drift adaptation". ACM Computing
Surveys (CSUR), 46(a), 44. (2014)




... AN ANOMALY-DETECTION PROBLEM

Fraud detection in streams of credit card transactions
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Dal Pozzolo A., Boracchi G., Caelen 0., Alippi C. and Bontempi G., “Credit Card Fraud Detection and Concept-Drift Adaptation
with Delayed Supervised Information”, Proceedings of IJCNN 2015, 8 pages
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| ... AN ANOMALY-DETECTION PROBLEM

Quallty Inspectlon Systems: monitoring the nanofiber productlon
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G. Boracchi, D. Carrera and B. Wohlberg “Novelty Detection in Images by Sparse R tations" in Proceedings of Intelligent
Embedded Systems at SSCI 2014
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| ... AN ANOMALY-DETECTION PROBLEM

Quality Inspection Systems: monitoring the nanofiber production
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G. Boracchi, D. Carrera and B. Wohlberg “Novelty Detection in Images by Sparse Representations” in Proceedings of Intelligent
Embedded Systems at SSCI 2014




.. AN ANOMALY-DETECTION PROBLEM

||
Health monitoring / wearable
devices:

Automatically analyze EGC
tracings to detect arrhythmias
or device mispositioning

This is important to provide
user-specific monitoring
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D. Carrera, B. Rossi, D. Zambon, P. Fragneto, and G. Boracchi "ECG Monitoring in Wearable Devices by Sparse Models" in
Proceedings of ECML-PKDD 2016, 16 pages
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| PRESENTATION OUTLINE

= Problem formulation (in a statistical framework)

= Solutions in the ideal conditions

= Solutions when data-distributions are unknown
= Solutions when data are not random variables
= Big data challenges related to change detection
= Detectability Loss

= Conclusions
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DISCLAIMER
| L I

| am focused on datastreams, which do not have a fixed length
and that have to be analyzed while data are received. | am not
considering retrospective / offline analysis tools

| am mainly considering numerical data. In some cases,
extensions apply to categorical or ordinal ones.

| refer to either changes/anomalies according to my personal
experience in the applications | have considered

For complete survey on change/anomaly detection please refer to
the very good surveys reported below

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (July 2009), 58 pages.
Pimentel, M. A., Clifton, D. A., Clifton, L., Tarassenko, L. “A review of novelty detection” Signal Processing, 99, 215-249 (2014)

A. Zimek, E. Schubert, H.P. Kriegel. “A survey on unsupervised outlier detection in high-dimensional numerical data”
Statistical Analysis and Data Mining: The ASA Data Science Journal, 5(5), 2012.
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THE PROBLEM FORMULATION

Anomaly / Change Detection Problems in a Statistical
Framework
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| ANOMALY-DETECTION IN A STATISTICAL FRAMEWORK

Often, the anomaly-detection problem boils down to:
Monitor a datastream
{x(t), t =1ty ..}, x(t) e R?

where x(t) are realizations of a random variable having pdf ¢,
and detect those points that are outliers i.e.,

¢o normal data
N x(t) {c/)l anomalies ’
bo b1 do
, : i
So ‘ ® O o @ ® ¢
= ® ® ® ®

Nl 4



| ANOMALY-DETECTION IN A STATISTICAL FRAMEWORK

Often, the anomaly-detection problem boils down to:
Monitor a datastream
{x(t), t=1ty, ..}, x(t) eR?

where x(t) are realizations of a random variable having pdf ¢,
and detect those points that are outliers i.e.,

¢o normal data
x(t) {qbl anomalies
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| CHANGE-DETECTION IN A STATISTICAL FRAMEWORK

Often, the change-detection problem boils down to:

Monitor a stream {x(t),t = 1,..}, x(t) € R? of realizations of a

random variable, and detect the change-point 7,

¢ t<rt
O~ {3 S

where {x(t), t < t} arei.i.d. and ¢y # ¢,

We denote such change as: ¢, = ¢4

Nl 4
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| CHANGE-DETECTION IN A STATISTICAL FRAMEWORK

Often, the change-detection problem boils down to:

Monitor a stream {x(t),t = 1,..}, x(t) € R? of realizations of a
random variable, and detect the change-point 7,

() {qbo t<Tt in control state
¢1 t=71’ outof control state

where {x(t), t < t} arei.i.d. and ¢y + ¢,

We denote such change as: ¢, = ¢4
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CHANGE-DETECTION IN A STATISTICAL FRAMEWORK

Here are data from an X-ray monitoring apparatus.

There are 4 changes ¢, = ¢1 = ¢, = ¢P3 = @, corresponding to
different monitoring conditions/materials
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| PROCESS CHANGES VS ANOMALIES

Not all anomalies are due to process changes

bo $1  do
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B
| PROCESS CHANGES VS ANOMALIES

Not all process changes result in anomalies

N 4
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THE TWO PROBLEMS

Anomaly-detection problem:

Locate those samples that do not conform the normal ones or a
model explaining normal ones

Anomalies in data translate to significant information

Change-detection problem:

Given the previously estimated model, the arrival of new data

invites the question: “is yesterday’s model capable of explaining
today’s data?’”

Detecting process changes important to understand the monitored
phenomenon

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.
C. J. Chu, M. Stinchcombe, H. White "Monitoring Structural Change" Econometrica Vol. 64, No. 5 (Sep., 1996), pp. 1045-1065.



B
| THE TYPICAL SOLUTIONS

Most algorithms are composed of:

e A statistic that has a known response to normal data (e.g.,
the average, the sample variance, the log-likelihood, the
confidence of a classifier, an “anomaly score”...)

A decision rule to analyze the statistic (e.g., an adaptive
threshold, a confidence region)

Anomaly-detection problem:

Statistics and decision rules are “one-shot”, analyzing a set of
historical data or each new data (or chunk) independently

Change-detection problem:

Statistics and decision rules are “sequential”, as they make a
decision considering all the data received so far

- I POLITECNICO DI MILANO
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SOLUTIONS IN THE IDEAL CONDITIONS

.. when ¢, and ¢4 are known

- I POLITECNICO DI MILANO




I
| ONE-SHOT DETECTOR: NEWMAN PEARSON TEST

Assume data are generated from a parametric distribution ¢g and
formulate the following hypothesis test
HO:H — 80 VS Hl: 9 — 91

According to the Neumann Pearson lemma the most powerful
statistic to detect changes is the log-likelihood ratio

$1(x)
$o(x)

and the detection rule being A(x) > y, where y is set to control
the false alarm rate (type | errors of the test).

Ax) =
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| CUSUM TEST

Outliers can be detected by a threshold on A(x)
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| THE CUSUM TEST ON THE LIKELIHOOD RATIO

CUSUM involves the calculation of a CUmulative SUM, which
makes it a sequential monitoring scheme.

It can be applied to the log-likelihood ratio:

. $1(x)\ (<0 when ¢y(x) > ¢;(x)
log(A(x)) = log (gbo(x)> B {> 0 otheorwise :

The CUSUM statistic is:
S(t) = max (o, S(t—1) + log(A(x(t))))

And the decision rule is

St)>vy

M. Basseville, I. V. Nikiforov, "Detection of Abrupt Changes - Theory and Application", Prentice-Hall, Inc. April 1993

Page, E. S. "Continuous Inspection Scheme". Biometrika. 41 (1/2): 100-115 (June 1954).
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| ONE-SHOT DETECTOR: NEWMAN PEARSON TEST

Outliers can be detected by a threshold on A(x)
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ANOMALY-DETECTION WHEN ¢, AND
¢4, ARE UNKNOWN
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| DATA DISTRIBUTION IS UNKNOWN

Most often, only a training set TR is provided:

There are three scenarios:

e Supervised: Both normal and anomalous training data are
provided in TR.

e Semi-Supervised: Only normal training data are provided, i.e.
no anomalies in TR.

e Unsupervised: TR is provided without label.

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.
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| SUPERVISED ANOMALY DETECTION - SOLUTIONS

In supervised methods the training data are divided in normal
(+) and anomalous (—) ones:

TR = {(x(t),y(®)), t < to,x ER%y € {+,—}}
Solution:
e Use a classifier to distinguish normal vs anomalous data
During training:
e Learn a classifier X from TR.
During testing:

e compute the classifier output K (x) or set a threshold on
the posterior ps (—|x)
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| SUPERVISED ANOMALY DETECTION - CHALLENGES

The problem is challenging because of:
e Class Imbalance: Normal data far outnumber anomalies
e Concept Drift: Anomalies might evolve over time
e Selection Bias: Training samples are typically selected
through a biased procedure
This is what typically happens in fraud detection:
e Frauds are typically less than 1% of transactions
e New Fraudulent strategies are always devised

e Supervised samples are provided in the form of feedbacks
for the alerted transactions

Dal Pozzolo A., Boracchi G., Caelen 0., Alippi C. and Bontempi G., “Credit Card Fraud Detection and Concept-Drift Adaptation
with Delayed Supervised Information”, Proceedings of IJCNN 2015, 8 pages
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| SEMI-SUPERVISED ANOMALY DETECTION

In semi-supervised methods the TR composed of normal data
TR = {x(t),t < ty,x ~ Py}

Very practical assumptions:
e Normal data are often easy to gather

e Anomalous data are difficult/costly to gather and it would
be difficult to have a representative training set

e Anomalies might also evolve over time

All in all, it is often safer to detect any data departing from the
normal conditions

Semi-supervised anomaly-detection methods are also referred to
as novelty-detection methods

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.
Pimentel, M. A., Clifton, D. A., Clifton, L., Tarassenko, L. “A review of novelty detection” Signal Processing, 99, 215-249 (2014)
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| DENSITY-BASED METHODS

Density-Based Methods: Normal data occur in high probability
regions of a stochastic model, while anomalies occur in the low
probability regions of the model

During training: ¢, can be estimated from the training set
TR = {x(t),t < ty,x ~ Py}
o parametric models (e.g., Gaussian mixture models)
e nonparametric models (e.g. KDE, histograms)
During testing:
 Anomalies are detected as data having ¢,(x) <n

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.



DOMAIN-BASED METHODS

|| L I
Domain-based methods: Estimate a boundary around normal
data, rather than the density of normal data.

A drawback of density-estimation methods is that they are meant
to be accurate in high-density regions, while anomalies live in
low-density ones.

One-Class SVM are domain-based methods defined by the normal
samples at the periphery of the distribution.

Schaolkopf, B., Williamson, R. C., Smola, A. ., Shawe-Taylor, J., Platt, ]. C. "Support Vector Method for Novelty Detection". In
NIPS 1999 (Vol. 12, pp. 582-588).

Tax, D. M., Duin, R. P. "Support vector domain description". Pattern recognition letters, 20(11), 1191-1199 (1999)
Pimentel, M. A., Clifton, D. A., Clifton, L., Tarassenko, L. “A review of novelty detection” Signal Processing, 99, 215-249 (2014)
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| UNSUPERVISED ANOMALY-DETECTION

The training set TR might contain both normal and anomalous
data. However, no labels are provided

TR = {x(t),t < t,}
Underlying assumption: Anomalies are rare w.r.t. normal data TR

Remarks:

e Density/Domain based methods that are robust to outliers
can be applied in an unsupervised scenario

e Unsupervised methods can be improved whenever labels
are available

- I POLITECNICO DI MILANO




DISTANCE-BASED METHODS

Distance-based methods: Normal data instances occur in dense

neighborhoods, while anomalies occur far from their closest
neighbors.

A critical aspect is the choice of the similarity measure to use.

Anomalies are detected by monitoring:
o distance between each data and its k —nearest neighbor

L5

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.

Zhao, M., Saligrama, V. (2009). Anomaly detection with score functions based on nearest neighbor graphs. In Advances in
neural information processing systems (pp. 2250-2258).



| DISTANCE-BASED METHODS

Distance-based methods: Normal data instances occur in dense
neighborhoods, while anomalies occur far from their closest
neighbors.

A critical aspect is the choice of the similarity measure to use.

Anomalies are detected by monitoring:
o distance between each data and its k —nearest neighbor
e the density of each data relatively to its neighbors

,',‘,0: oo

@ 0 Q
® k“

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.
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| DISTANCE-BASED METHODS

Distance-based methods: Normal data instances occur in dense
neighborhoods, while anomalies occur far from their closest
neighbors.

A critical aspect is the choice of the similarity measure to use.

Anomalies are detected by monitoring:
o distance between each data and its k —nearest neighbor
o the density of each data relatively to its neighbors

o whether they do not belong to clusters, or are at the cluster

periphery, or belong to small and sparse clusters

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.
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CHANGE-DETECTION WHEN ¢, AND ¢4
ARE UNKNOWN
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PARAMETRIC SETTINGS

Parametric settings:

®o and ¢, are known up to their parameters, thus the change
¢o — ¢4 corresponds to a change 6, — 6,

Change-Point Methods (CPM) are sequential monitoring schemes
that extend traditional parametric hypothesis tests

These assumptions typically hold in quality control applications,
but not in applications where the change is unpredictable (e.g. it
is not known which parameter will be affected)

Hawkins, D. M., and Zamba, K. D. “Statistical process control for shifts in mean or variance using a changepoint
formulation” Technometrics 2005

Ross, G. J. “Sequential change detection in the presence of unknown parameters”. Statistics and Computing, 24(6), 1017-
1030, 2014



NONPARAMETRIC SETTINGS

Both ¢, and ¢, are unknown, thus the change ¢, — ¢4 is
completely unpredictable

Typical statistics:

e Nonparametric statistics, like the Mann-Whitney, Mood,
Lepage, Cramer von Mises, Kolmogorov-Smirnov

o Feature-extraction to bring stationary data to some known
distribution (e.g. the Box-Cox Transform)

Ross, G. J., Tasoulis, D. K., Adams, N. M. "Nonparametric monitoring of data streams for changes in location and scale"
Technometrics, 53(4), 379-389, 2012.

Alippi, C., Boracchi, G., Roveri, M. “Change detection tests using the ICI rule” Proceedings of IJCNN 2010 (pp. 1-7).



NONPARAMETRIC SETTINGS

Both ¢, and ¢, are unknown, thus the change ¢, — ¢4 is
completely unpredictable

Typical decision rules like:
e CPM which can control the ARL,
e CUSUM to detect changes in the expectation of the statistic

e |ICl rule or other critieria to yield a sequential decision

Unfortunately most nonparametric statistics and the decision rules
do not natively apply to multivariate data.

Ross, G. )., Tasoulis, D. K., Adams, N. M. "Nonparametric monitoring of data streams for changes in location and scale"

Technometrics, 53(4), 379-389, 2012.
Alippi, C., Boracchi, G., Roveri, M. “Change detection tests using the ICI rule” Proceedings of IJCNN 2010 (pp. 1-7).

Tartakovsky, A. G., Veeravalli, V. V. "Change-point detection in multichannel and distributed systems". Applied Sequential
Methodologies: Real-World Examples with Data Analysis, 173, 339-370, 2004
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| MONITORING THE LOG-LIKELIHOOD

A typical approach is to reduce data dimension by monitoring the
log-likelihood of normal data (as in density-based methods)

1. During training, estimate ¢, from TR

2. During testing, compute
L(x()) = 10g($o(x(t)))
3. Monitor {£(x(¢)), t =1,.

x(t)

(x(®)
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MONITORING THE LOG-LIKELIHOOD

A typical approach is to reduce data dimension by monitoring the
log-likelihood of normal data (as in density-based methods)

1. During training, estimate ¢, from TR
2. During testing, compute

£(x(1)) = log(o(x(t)))
3. Monitor {£(x(¢)), t=1,...}

This is quite a popular approach in sequential monitoring and in
anomaly detection

L. I. Kuncheva, “Change detection in streaming multivariate data using likelihood detectors," IEEE Transactions on Knowledge
and Data Engineering, vol. 25, no. 5, 2013.

X. Song, M. Wu, C. Jermaine, and S. Ranka, “Statistical change detection for multidimensional data," in Proceedings of
International Conference on Knowledge Discovery and Data Mining (KDD), 2007.

J. H. Sullivan and W. H. Woodall, “Change-point detection of mean vector or covariance matrix shifts using multivariate
individual observations," lIE transactions, vol. 32, no. 6, 2000.

C. Alippi, G. Boracchi, D. Carrera, M. Roveri, "Change Detection in Multivariate Datastreams: Likelihood and Detectability
Loss" 1JCAIl 2016, New York, USA, July 9 - 13



| HIERARCHICAL CHANGE-DETECTION TESTS

In nonparametric sequential monitoring it is convenient to
e online sequential CDTs for detection purposes
o offline hypothesis tests for validation purposes.

Alippi, C., Boracchi, G., Roveri, M. "Hierarchical Change-Detection Tests" TNNLS 2016 pp 1- 13




HIERARCHICAL CHANGE-DETECTION TESTS

In nonparametric sequential monitoring it is convenient to
e online sequential CDTs for detection purposes
o offline hypothesis tests for validation purposes.

This results in two-layered (hierarchical) CDTs

Hierarchical Change-Detection Test

Offline HT is activated to validate [ J Estimated Change Point 7
. Validation Qutcome (Y/N)
any detection

Reconfiguration
Online CDT detects process New Training Set | X

changes in the input datastream

Change Indicators | x(t)

[

Ly

Datastream | s(t) The Hierarchical CDT is
automatically reconfigured
Alippi, C., Boracchi, G., Roveri, M. "Hierarchical Change-Detection Tests" TNNLS 2016 pp 1- 13




HIERARCHICAL CHANGE-DETECTION TESTS

| I
Hierarchical CDTs can achieve a far more advantageous trade-off
between false-positive rate and detection delay than their single-
layered, more traditional, counterpart.

FPR vs DD
2500
-= HCDT
=3 Single-layered CDT
2000 R e 25th 75th percentiles HCDT
>
% \:'\ rzos5 |~ 25th, 75th percentiles CDT
- :". i i
= 1500 [+\=:
2
L
©
O 1000
500 5 5 5 '
0 0.2 04 0.6 0.8

False alarm rate

Alippi, C., Boracchi, G., Roveri, M. "Hierarchical Change-Detection Tests" TNNLS 2016 pp 1- 13
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CHANGE/ANOMALY DETECTION OUT OF
THE RANDOM VARIABLE WORLD

.. monitoring signals, images, ..
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| THE LIMITATIONS OF THE RANDOM VARIABLE MODEL

Often data are in the form of time series, and are not i.i.d
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Changes in the data correlation are the most important ones
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| THE LIMITATIONS OF THE RANDOM VARIABLE MODEL

Random variable model does not apply on signal / images

L
AT
A
I *m';u,-.r.llm
f.-'r I|.|I"' W i,

Stacking each signal in a vector is not convenient:
o Data dimension becomes huge
e Correlation among components is difficult to model

Often normal data exhibit some form of structure. Thus,
e Normal data live in a low-dimensional space
e Dimensionality reduction can be applied

We are interested in changes/anomalies affecting structures

- I POLITECNICO DI MILANO
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| .. OUT OF RANDOM VARIABLE WORLD

Typical approach: Fit a statistical model to the observation to
model dependence, apply change-detection on the independent
residuals.

The change/anomaly detection methods will tell whether incoming
data fit or not the normal model
This can be done by

o Detrending/Filtering: remove the deterministic and
correlated components of the data

o Feature extraction: meaningful indicators to be monitored
which have a known / controlled response to normal data

- I POLITECNICO DI MILANO




| FEATURE EXTRACTION FOR CHANGE-ANOMALY DETECTION

Features can be either:
e Expert-driven, or manually crafted
e Data-driven, or learned from data

And can be used in one-shot/sequential monitoring schemes

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.




| FEATURE EXTRACTION FOR CHANGE-ANOMALY DETECTION

Features can be either:
e Expert-driven, or manually crafted

e Data-driven, or learned from data

And can be used in one-shot/sequential monitoring schemes

Data-driven features are typically obtained form a model M which
represents normal data

e During training: learn the model M from TR

e During testing: assess whether x conforms or not M

Dictionary learned from normal ECG signal (sparse representations)

L

A

e

-

A

ue

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.



RECONSTRUCTION-BASED APPROACHES

The most widely adopted features are the residuals, which involve
computing a, the coefficients of the representation of x w.r.t M

r(t) = llx = M(a)ll,
Very popular models are: autoregressive models, neural networks
(auto-encoders), sparse representations
Example of reconstruction based on sparse representations
Normal data: good reconstruction Anomalous data: poor reconstruction

(e) R

dotted line: M«

02f solid line : x

0

-0.25 0 0.25
V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.

ool s

C. Alippi, G. Boracchi, B. Wohlberg, “Change Detection in Streams of Signals with Sparse Representations “ IEEE ICASSP 2014



SUBSPACE METHODS

Learn a model describing normal data and project test data into it.

e PCA / Robust PCA / kernel PCA : learn a linear subspace
where normal data live

e Sparse representations: learn a union of low-dimensional
subspaces where normal data live

e Kernel methods

Normal
Data Data

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.

C. Alippi, G. Boracchi, B. Wohlberg, “Change Detection in Streams of Signals with Sparse Representations “ IEEE ICASSP 2014
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BIG DATA CHALLENGES

When performing change/anomaly in the random-
variable word
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|WHEN DATA DIMENSION GROWS

When n (or the data throughput) grows:
e Memory issues: not feasible to store all the data in memory
o Computational issues: algorithms should be 0(1), and
single-pass
e Having a lot of training samples is good!
Thus, there is need for
e approximated statistics
e Incremental formulas, dataset pruning

=
—
d =




WHEN DATA DIMENSION GROWS

When d grows:

Memory issues: not feasible to store many data in memory
Difficult to find a model ¢,, many training samples needed
Number of irrelevant component might increase
Distance-based methods are difficult to tune

Combinatorial growth of the number of subspaces
Data-visualization issues

Detectability loss

A 4

=
—
d =

A. Zimek, E. Schubert, H.P. Kriegel. “A survey on unsupervised outlier detection in high-dimensional numerical data”
Statistical Analysis and Data Mining: The ASA Data Science Journal, 5(5), 2012.



S _

DETECTABILITY LOSS IN HIGH-
DIMENSIONAL DATA

How data dimension affects monitoring the Log-
likelihood

- C. Alippi, G. Boracchi, D. Carrera, M. Roveri, "Change Detection in Multivariate Datastreams: Likelihood and Detectability
Loss" 1JCAIl 2016, New York, USA, July 9 - 13
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| OUR GOAL

Study how the data dimension d influences the
change detectability, i.e., how difficult is to solve
change/anomaly detection problems
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Study how the data dimension d influences the
change detectability, i.e., how difficult is to solve
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B
| OUR APPROACH

To study the impact of the sole data dimension d in change-
detection problems we need to:

1. Consider a change-detection approach

2. Define a measure of change detectability that well
correlates with traditional performance measures

3. Define a measure of change magnitude that refers only to
differences between ¢, and ¢4

POLITECNICO DI MILANO




B
| OUR APPROACH

To study the impact of the sole data dimension d in change-
detection problems we need to:

1. Consider a change-detection approach

2. Define a measure of change detectability that well
correlates with traditional performance measures

3. Define a measure of change magnitude that refers only to
differences between ¢, and ¢4

Our goal (reformulated):

Studying how the change detectability varies in change-detection
problems that have

o different data dimensions d
e constant change magnitude
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| OUR RESULT

We show there is a detectability loss problem, i.e. that change
detectability steadily decreases when d increases.

Detectability loss is shown by:
e Analytical derivations: when ¢, and ¢, are Gaussians

e Empirical analysis: measuring the power of hypothesis tests
in change-detection problems on real data
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I
| ROADMAP TO DETECTABILITY LOSS

= Preliminaries:

The change-detection approach

e The measure of change detectability
e The change magnitude

= The detectability loss
e Analytical results
e Empirical analysis
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| HOW? MONITORING THE LOG-LIKELIHOOD

A typical approach to monitor the log-likelihood

1. During training, estimate ¢, from TR

2. During testing, compute
L(x(t)) = log(do(x(t)))
3. Monitor {£(x(¢)), t=1,...}

25

x(t)

#

(x(®)

s
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I
| ROADMAP TO DETECTABILITY LOSS

= Preliminaries:
e The change-detection approach

The measure of change detectability
e The change magnitude

= The detectability loss
e Analytical results
e Empirical analysis
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I
| THE CHANGE DETECTABILITY
|

The Signal to Noise Ratio Of the Change
2
E [L(x)] — E |[L(x
( 50[ ( )] 51[ ( )])

var [L(x)] + Jar [£(x)]

bo

SNR(¢o = ¢1) =

measures the extent to which ¢, — ¢, is detectable by statistical
tools designed to detect changes in E[L(x)]
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| ROADMAP TO DETECTABILITY LOSS

= Preliminaries:
e The change-detection approach
e The measure of change detectability
e |The change magnitude

= The detectability loss
e Analytical results
e Empirical analysis
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| THE CHANGE MAGNITUDE
|

We measure the magnitude of a change ¢, — ¢, by the
symmetric Kullback-Leibler divergence

SKL(¢g, ¢1) = KL(¢pg, d1) + KL(¢1, o) =

_ bo(x) ¢1(x)
_ f log ( 5 (x)) o (x)dx + f log ( 0 m) b, (x)dx

In practice, large values of sKL(¢,, ¢,) correspond to changes
¢, = ¢, that are very apparent, since sKL(¢,, ¢,) identifies an
upperbound of the power of hypothesis tests designed to detect

either ¢y = ¢, or o1 = Py

T. Dasu, K. Shankar, S. Venkatasubramanian, K. Yi, “An information-theoretic approach to detecting
changes in multi-dimensional data streams” In Proc. Symp. on the Interface of Statistics, Computing
Science, and Applications, 2006
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| ROADMAP TO DETECTABILITY LOSS

= Preliminaries:
e The change-detection approach
e The measure of change detectability
e The change magnitude

= The detectability loss

e |Analytical results

e Empirical analysis
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| THE DETECTABILITY LOSS

Theorem

Let py = N (g, Zo) and let ¢p,(x) = ¢py(Qx + v) where
Q € R4 and orthogonal , v € R%, then

C
SNR(¢pg = ¢4) < ]

Where C is a constant that depends only on sKL(¢q, )

- C. Alippi, G. Boracchi, D. Carrera, M. Roveri, "Change Detection in Multivariate Datastreams: Likelihood and Detectability
Loss" 1JCAIl 2016, New York, USA, July 9 - 13
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| THE DETECTABILITY LOSS: REMARKS

Theorem

Let py = N (g, Zo) and let ¢p,(x) = ¢py(Qx + v) where
Q € R4 and orthogonal , v € R%, then

C
SNR($o > ¢1) < -

Where C is a constant that depends only on sKL(¢q, )

Remarks:

e Changes of a given magnitude, sKL(¢,, ¢;), become more
difficult to detect when d increases

e DL does not depend on how ¢, changes
e DL does not depend on the specific detection rule
« DL does not depend on estimation errors on ¢,
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| THE DETECTABILITY LOSS: THE CHANGE MODEL

Theorem

Let o = N (U, Zo) and let|p,(x) = ¢o(Qx + v) Where
Q € R4 and orthogonal , v € R%, then

C
SNR($o > ¢1) < -

Where C is a constant that depends only on sKL(¢q, 1)

- I POLITECNICO DI MILANO




| THE DETECTABILITY LOSS: THE CHANGE MODEL

The change model ¢; (x) = ¢o(Qx + v) includes:
o Changes in the location of ¢, (i.e, +v)
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| THE DETECTABILITY LOSS: THE CHANGE MODEL

The change model ¢; (x) = ¢o(Qx + v) includes:
o Changes in the location of ¢, (i.e, +v)
e Changes in the correlation of x (i.e, Qx)

It does not include changes in the scale of ¢, that can be
however detected monitoring ||x||




I
| THE DETECTABILITY LOSS: THE GAUSSIAN ASSUMPTION

Theorem

Let|po = N (Uo, Zo)|and let ¢, (x) = Ppo(@x + v) where
Q € R**% and orthogonal , v € R%, then

C
SNR($o > ¢1) < -

Where C is a constant that depends only on sKL(¢q, 1)
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| THE DETECTABILITY LOSS: THE GAUSSIAN ASSUMPTION

Assuming ¢o = N (ug, Zg) looks like a severe limitation.
e Other distributions are not easy to handle analytically

e We can prove that DL occurs also in random variables
having independent components

e The result can be empirically extended to approximations of
L(+) typically used for Gaussian mixtures
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| ROADMAP TO DETECTABILITY LOSS

= Preliminaries:
e The change-detection approach
e The measure of change detectability
e The change magnitude

= The detectability loss
e Analytical results

e |[Empirical analysis
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| THE DETECTABILITY LOSS: EMPIRICAL ANALYSIS

The data
e Synthetically generate streams having different dimension d

x(t)

o Estimate ¢, by GM from a stationary training set

e In each stream we introduce ¢, — ¢, such that

¢1 (x) = ¢po(Qx + v) and sKL(g, ¢1) = 1

o Test data: two windows V,, and V; (500 samples each)

selected before and after the change.

Vo

Vq

N 4



E_—
| THE DETECTABILITY LOSS: EMPIRICAL ANALYSIS

The change-detectability measure:
e Compute L(po(x)) from V, and V;, obtaining W, and W,
e Compute a test statistic T (W, W;) to compare the two
e Detect a change by an hypothesis test
TWo,W1) s h
where h controls the amount of false positives
e Use the power of this test to assess change detectability

(x(®)

Iz
o
o
o
o
o
o

N 4



Power

DL: THE POWER OF HTS ON GAUSSIAN STREAMS

||
Gaussians Remarks:
10— « ¢4 is defined analytically

5 e The t-test detects changes in
0.8 - expectation

- e The Lepage test detects changes in
0.6 the location and scale

- Results
0.4

e The HT power decays with d: DL does
- ttest log(Bo()) not only concern the upperbound of

u SNR.
== Lepage log(¢py(-)) oL i q fimati but
B Lepage log(c,lA)O(-)) ° IS not due to estimation errors, ou

0 il I RN these make things worst.
109 101 102

e t-test log (o ()

0.2

The power of the Lepage HT also

d decreases, which indicates that the
change is more difficult to detect also
monitoring the variance
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RESULTS: THE POWER OF THE HYPOTHESIS TESTS

Particle Wine

e {_test on Eu
— A= {_test on Eg
== [ epage test on Lo

—B- Lepage test on f,;
0.6 |

Power
Power

0.4

0.2 -




RESULTS: THE POWER OF THE HYPOTHESIS TESTS

||
Particle Remarks:
. o is defined through a numerical
e {_test on L, ¢1 . &
I procedure to yield sKL(¢q, 1) = 1
08l — A= {_test on L; ~ . . 1 o
S B Lopage test on £y ¢o IS a Gaussian !\/let.ure where IS
A . selected by cross-validation
—B Lepage test on £ ' .
. 0.6} e Approximated expression of L(:) to
)] . . N
z ll prevent numerical approximations
a¥
0.4 [y Results:
—‘\ e DL occurs also in non-Gaussian data
0.2 approximated by GM

e DL is clearly visible at quite a low
0 | | | | | dimensions

C. Alippi, G. Boracchi, D. Carrera “CCM: Controlling the Change Magnitude in High Dimensional Data”, INNS
Conference on Big Data, 10 pages, 2016 https://home.deib.polimi.it/carrerad/projects.htmi
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B
| FEW CONCLUDING REMARKS

Change/Anomaly detection problems are very popular nowadays
in engineering applications.

Most of the algorithms in the literature refer to the presented
framework and often boil down to applying statistics and decision
rules to a stream of random variables.

When designing/learning features, one should consider the
detectability loss: irrelevant components are harmful!

To rigorously investigate change-detection problems when d
increases it is necessary to control the change magnitude.
Interesting research direction are:

e Designing statistics / feature extraction methods specifically
designed for anomaly/change detection

e Rigorously combining change and anomaly detection
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THANKS, QUESTIONS?
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