CCM: Controlling the Change Magnitude in High Dimensional Data

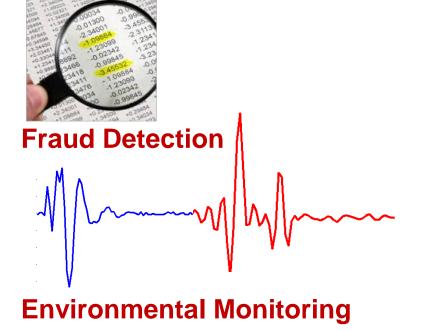
C. Alippi, <u>G. Boracchi</u>, D. Carrera October, 25th, 2016 <u>giacomo.boracchi@polimi.it</u> INNS Big Data 2016

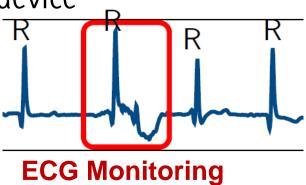
Examples of Change-Detection Applications

Stream mining: online classification systems, fraud-detection systems

Environmental/Industrial monitoring: quality inspection systems, fault-detection systems

Health monitoring: arrhythmias detection, detection of mispositioning of monitoring device





Motivations

- The trend is to address change-detection problems in increasingly high-dimensional spaces.
- To reliable assess algorithm performance, a large number of dataset is needed
- Unfortunately, there are not many suitable real-world datasets
- In practice, researchers typically resort to:
 - **Synthetically** generating datasets (**pros**: stable performance measures, **cons**: simplistic distributions and changes)

Motivations

- The trend is to address change-detection problems in increasingly high-dimensional spaces.
- To reliable assess algorithm performance, a large number of dataset is needed
- Unfortunately, there are not many suitable real-world datasets
- In practice, researchers typically resort to:
 - **Synthetically** generating datasets (**pros**: stable performance measures, **cons**: simplistic distributions and changes)
 - Manipulating real world dataset (pros: realistic data, stable performance, cons: changes are arbitrarily introduced)

Our Contributions

- CCM: Controlling change magnitude a framework to:
 - Manipulate real-world datasets of arbitrary dimension
 - Make experiments reproducible
 - Allow to study the impact of data-dimension on changedetection performance
- The framework relies on two iterative algorithms whose convergence is analytically proved
- Our experiments show that common approaches considerably increase the change magnitude when data dimension scales

PROBLEM FORMULATION

Introduce changes in real-world datasets

Let $S \subset \mathbb{R}^d$ be a **dataset** of **stationary data** containing i.i.d. samples from an unknown distribution ϕ_0 .

We want to generate a datastream $X = \{x(t), t = 1, ... \tau, ...\}$ affected by a change at $t = \tau$ such that

$$x(t) \sim \begin{cases} \phi_0 & t < \tau \\ \phi_1 & t \ge \tau \end{cases}$$
 where $\phi_1(x) = \phi_0(Qx + v)$

where $Q \in \mathbb{R}^{d \times d}$ is an orthogonal matrix and $v \in \mathbb{R}^d$

Let $S \subset \mathbb{R}^d$ be a **dataset** of **stationary data** containing i.i.d. samples from an unknown distribution ϕ_0 .

We want to generate a datastream $X = \{x(t), t = 1, ... \tau, ...\}$ affected by a change at $t = \tau$ such that

$$\mathbf{x}(t) \sim \begin{cases} \phi_0 & t < \tau \\ \phi_1 & t \ge \tau \end{cases}$$
 where $\phi_1(\mathbf{x}) = \phi_0(Q\mathbf{x} + \mathbf{v})$

where $Q \in \mathbb{R}^{d \times d}$ is an orthogonal matrix and $v \in \mathbb{R}^d$

In particular, $X = \{x(t), t = 1, ..., \tau, ...\}$ is obtained as

- When $t < \tau$, x(t) is randomly selected from S
- When $t \geq \tau$, x(t) is obtained by roto-translating remaining samples in S according to ϕ_1

We reshuffle S, repeat the process, obtain another datastream

Our goal: define Q and v such that the change $\phi_0 \to \phi_1$ has a magnitude equal (or arbitrarily close) to κ

Our goal: define Q and v such that the change $\phi_0 \to \phi_1$ has a magnitude equal (or arbitrarily close) to κ

We define the **change magnitude** as the symmetric **Kullback-Leibler divergence**

$$sKL(\phi_0, \phi_1) = KL(\phi_0, \phi_1) + KL(\phi_1, \phi_0) =$$

$$= \int \log \left(\frac{\phi_0(x)}{\phi_1(x)}\right) \phi_0(x) dx + \int \log \left(\frac{\phi_1(x)}{\phi_0(x)}\right) \phi_1(x) dx$$

T. Dasu, K. Shankar, S. Venkatasubramanian, K. Yi, "An information-theoretic approach to detecting changes in multidimensional data streams". In Proc. Symp. on the Interface of Statistics, Computing Science, and Applications, 2006

Our goal: define Q and v such that the change $\phi_0 \to \phi_1$ has a magnitude equal (or arbitrarily close) to κ

We define the **change magnitude** as the symmetric **Kullback-Leibler divergence**

$$sKL(\phi_0, \phi_1) = KL(\phi_0, \phi_1) + KL(\phi_1, \phi_0) =$$

$$= \int \log \left(\frac{\phi_0(x)}{\phi_1(x)}\right) \phi_0(x) dx + \int \log \left(\frac{\phi_1(x)}{\phi_0(x)}\right) \phi_1(x) dx$$

Our goal: define Q and v such that

$$\mathrm{sKL}(\phi_0, \phi_1) = \mathrm{sKL}(\phi_0, \phi_0(Q \cdot + v)) \approx \kappa$$

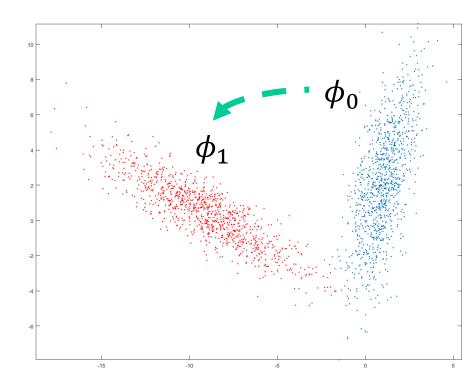
T. Dasu, K. Shankar, S. Venkatasubramanian, K. Yi, "An information-theoretic approach to detecting changes in multidimensional data streams". In Proc. Symp. on the Interface of Statistics, Computing Science, and Applications, 2006

Manipulating Real-World Dataset: The change model

Assuming $\phi_1(x) = \phi_0(Qx + v)$ is quite a general change model which includes

- shifts in the mean
- ullet changes in the correlation among components of $oldsymbol{x}$

Thus, it requires a multivariate monitoring scheme!



CCM: CONTROLLING THE CHANGE MAGNITUDE

Method description

Main Components of CCM

- Fitting pre-change distribution
- Change parametrization
- Initialization
- Iteration

CCM – Fitting pre-change distribution

Fitting pre-change distribution

Since ϕ_0 is typically **unknown**, we compute an estimate $\tilde{\phi}_0$ by **fitting** a **Gaussian Mixture** on the **whole dataset** S

Parametrization

To ease our developments we parametrize Q and \boldsymbol{v} as follows:

• Q is expressed w.r.t. its rotation angles $\theta \in \mathbb{R}^{\lfloor d/2 \rfloor}$ and a coordinate system $P \in \mathbb{R}^{d \times d}$ (orthogonal matrix)

$$Q(\boldsymbol{\theta}, P) = P S(\boldsymbol{\theta}) P'$$

where $S(\boldsymbol{\theta})$ is the rotation matrix w.r.t. angles in $\boldsymbol{\theta}$

v is expressed as

$$v(\rho, u) = \rho u$$

where $u \in \mathbb{R}^d$, ||u|| = 1 indicates the translation direction and $\rho > 0$ the translation magnitude

1

Initialization: Define Q^0 and v^0 such that

$$\mathrm{sKL}\left(\tilde{\phi}_0, \tilde{\phi}_0(Q^0 \cdot + \boldsymbol{v}^0)\right) \geq \kappa$$

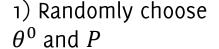
Algorithm 1

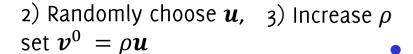
- 1. Input: $\widetilde{\phi}_0$, target value κ of sKL $(\widetilde{\phi}_0, \phi_1)$
- 2. **Output:** Roto-translation parameters $\boldsymbol{\theta}^{(0)}$, P, $\rho^{(0)}$, \mathbf{u}
- 3. Set $\rho^{(0)} = 1$.
- 4. repeat
- 5. Randomly generate m angles $\boldsymbol{\theta}^{(0)}$ in $[-\pi/2, \pi/2]^m$ and a unitary vector **u**.
- 6. Generate a matrix $A \in \mathbb{R}^{d \times d}$ with Gaussian entries.
- 7. Set P as the orthogonal matrix of the QR decomposition of A.
- 8. Set $Q^{(0)}(\boldsymbol{\theta}^{(0)}, P) = PS(\boldsymbol{\theta}^{(0)})P'$ and $\mathbf{v}(\rho^{(0)}, \mathbf{u}) = \rho^{(0)}\mathbf{u}$.
- 9. Compute $s^{(0)} = \text{sKL}(\widetilde{\phi}_0, \phi_1)$, where $\phi_1 = \widetilde{\phi}_0(Q^{(0)} \cdot + \mathbf{v}^{(0)})$
- 10. $\rho^{(0)} = 2\rho^{(0)}.$
- 11. **until** $s^{(0)} > \kappa$;

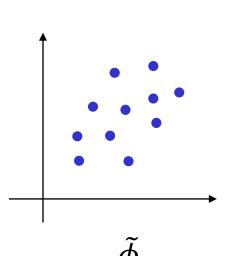
CCM - Algorithm 1

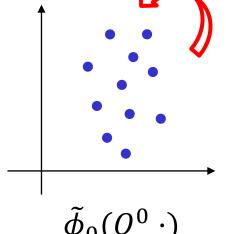
Algorithm1: Define Q^0 and v^0 such that

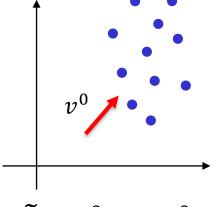
$$\mathrm{sKL}\left(\tilde{\phi}_0,\tilde{\phi}_0(Q^0\cdot + \boldsymbol{v}^0)\right) \geq \kappa$$

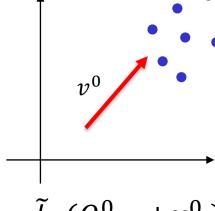












$$\tilde{\phi}_0(Q^0 \cdot)$$
 $\tilde{\phi}_0(Q^0 \cdot + \boldsymbol{v}^0)$ $\tilde{\phi}_0(Q^0 \cdot + \boldsymbol{v}^0)$

$$ilde{\phi}_0(Q^0\cdot + \boldsymbol{v}^0)$$

<u>\</u>

Theorem 1. Let $\widetilde{\phi}_0$ be a Gaussian mixture. Then, for any $\kappa > 0$, Algorithm 1 converges in a finite number of iterations.

To prove Theorem 1 it is enough to show that

$$\mathrm{sKL}\left(\tilde{\phi}_0,\tilde{\phi}_0(Q\cdot + \boldsymbol{v})\right) \to \infty$$

for any Q when $||v|| \to \infty$ or that one it admits a diverging lower bounds

(see the paper for details...)

Iteratively adjust Q and v towards

$$\mathrm{sKL}\left(\tilde{\phi}_0,\tilde{\phi}_0(Q\cdot +\boldsymbol{v})\right) \rightarrow \kappa$$

Algorithm 2

14.

15.

end

j = j + 1;16. until $|s^{(j)} - \kappa| < \varepsilon$; 17. Set $Q = Q^{(j)}$, $\mathbf{v} = \mathbf{v}^{(j)}$.

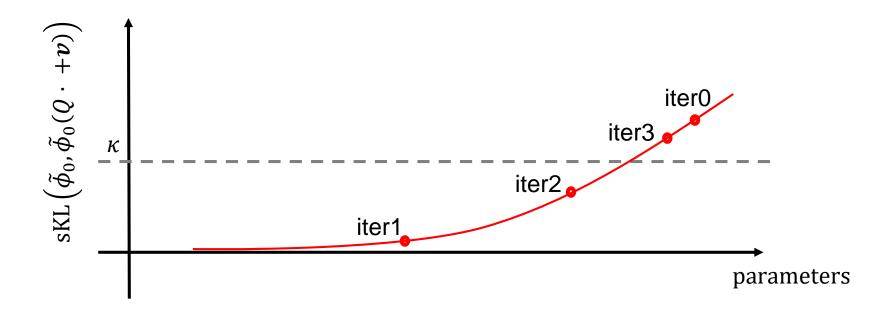
```
1. Input: \theta^{(0)}, P, \rho^{(0)}, u from Algorithm 1, \widetilde{\phi}_0, \kappa and tolerance \varepsilon
 2. Output: Q and v defining the roto-translation yielding desired change magnitude
 3. Set the lower bounds parameters \theta_l^{(1)} = 0, \rho_l^{(1)} = 0.
 4. Set the upper bounds parameters \theta_u^{(1)} = \theta^{(0)}, \rho_u^{(1)} = \rho^{(0)}.
 5. Set j = 1.
 6. repeat
             Compute \theta^{(j)} = (\theta_l^{(j)} + \theta_u^{(j)})/2, and Q^{(j)}(\theta^{(j)}, P) as in (6).
             Compute \rho^{(j)} = (\rho_l^{(j)} + \rho_u^{(j)})/2, and \mathbf{v}^{(j)}(\rho^{(j)}, \mathbf{u}) as in (7).
 8.
             Compute s^{(j)} = \text{sKL}(\widetilde{\phi}_0, \phi_1^{(j)}), where \phi_1^{(j)}(\cdot) = \widetilde{\phi}_0(Q^{(j)} \cdot + \mathbf{v}^{(j)}).
 9.
             if s^{(j)} < \kappa then
10.
                   \theta_{i}^{(j+1)} = \theta^{(j)}, \, \rho_{i}^{(j+1)} = \rho^{(j)}.
11.
12.
             \theta_u^{(j+1)} = \theta^{(j)}, \, \rho_u^{(j+1)} = \rho^{(j)}.
13.
```

CCM - Algorithm 2

Algorithm2: Implements a bisection method to compute θ and ρ yielding the desired sKL value.

Bisection is performed w.r.t. both θ and ρ , and we stop when

$$\left| \text{sKL} \left(\tilde{\phi}_0, \tilde{\phi}_0(Q \cdot + \boldsymbol{v}) \right) - \kappa \right| < \epsilon$$



Theorem 2. Let ϕ_0 be a Gaussian mixture. Then, for any $\kappa > 0$, Algorithm 2 converges in a finite number of iterations.

To prove Theorem 2 it is enough to show that the function used in the bisection is continuous (see the paper for details...)

EXPERIMENTS

Why controlling the change-magnitude is important

Goals:

- Show the limitations of commonly used approaches that are primarily heuristic
- Demonstrate the effectiveness of CCM

Dataset: of MiniBooNE Particle Dataset from the UCI repository

- d = 50, components have been standardized
- 93108 samples (only one class)
- We fit a GMM having 2 degrees of freedom
- We generate multiple datasets

Figures of merit:

- The magnitude of the introduced change
- The change-detection performance (power of HT)

Considered Approaches

Methods to manipulate the dataset:

- CCM: configured to yield $\mathrm{sKL}(\tilde{\phi}_0,\tilde{\phi}_1)=1$, $\forall d$
- offset: add an offset v=1 to each component of the standardized data. This corresponds to $\phi_1 = \phi_0(x + \mathbf{1}_d)$
- Swap: two components, randomly chosen, are swapped. This change model has Q equal to the corresponding permutation matrix and $\boldsymbol{v} = \boldsymbol{0}$

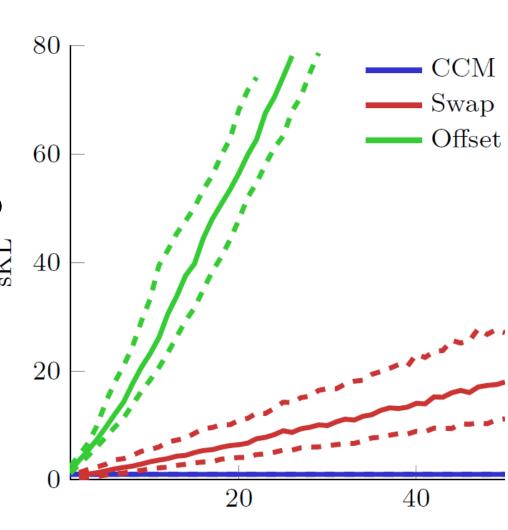
All these approaches are tested by introducing changes in datasets having different dimensions

- L. I. Kuncheva, "Change detection in streaming multivariate data using likelihood detectors," IEEE Transactions on Knowledge and Data Engineering, vol. 25, no. 5, 2013.
- A. Zimek, E. Schubert, H.P. Kriegel. "A survey on unsupervised outlier detection in high-dimensional numerical data" Statistical Analysis and Data Mining: The ASA Data Science Journal, 5(5), 2012.

Experiments on the Change Magnitude

Distribution of sKL $(\tilde{\phi}_0, \tilde{\phi}_1)$ computed from manipulated datasets

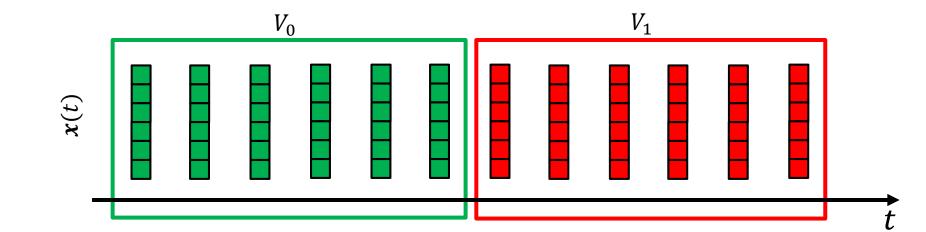
- Only CCM preserves the change magnitude
- Swap and Offset introduce changes increasing with d
- The dispersion of sKL also increases with d



Empirical Analysis on the Change-Detectability

The change-detectability measure:

• Test data: two windows V_0 and V_1 (200 samples each) selected before and after the change.



Empirical Analysis on the Change-Detectability

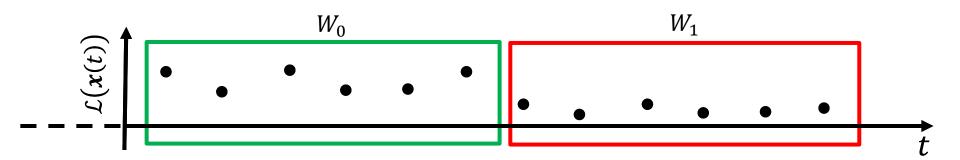
The change-detectability measure:

- Test data: two windows V_0 and V_1 (200 samples each) selected before and after the change.
- Compute $\log(\widehat{\phi}_0(x))$ from V_0 and V_1 , obtaining W_0 and W_1
- Compute the Lepage statistic $\mathcal{T}(W_0, W_1)$ to compare them
- Detect a change by an hypothesis test

$$\mathcal{T}(W_0, W_1) \leq h$$

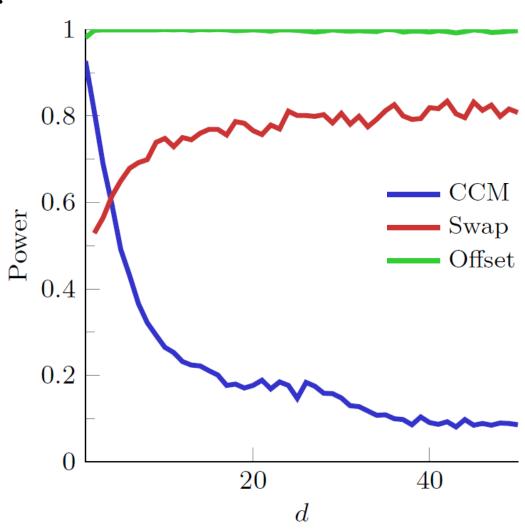
where h controls the amount of false positives

• Use the **power** of this **test** to assess change detectability



The power of HT indicates that:

- Changes introduced by CCM becomes more difficult to detect when d increases.
 This is coherent with our theoretical analysis shown in [IJCAI2016]
- Changes introduced by other methods are more prominent and easier to detect when d grows.



C. Alippi, G. Boracchi, D. Carrera, M. Roveri, "Change Detection in Multivariate Datastreams: Likelihood and Detectability Loss" IJCAI 2016, New York, USA, July 9 - 13

CCM is a rigorous framework to introduce changes having a controlled magnitude in multivariate datasets

The convergence of its algorithms have been proved

CCM is implemented in Matlab and is freely available for download at

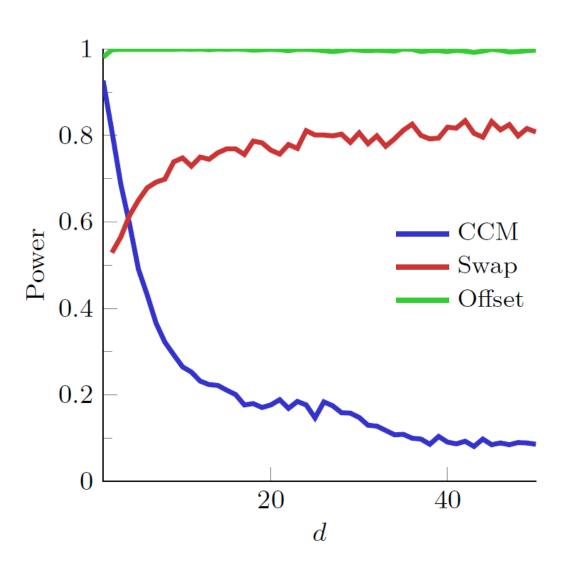
https://home.deib.polimi.it/carrerad/projects.html

Our experiments remark the importance of controlling the change magnitude when manipulating real-world datasets

- to fairly assess detection performance when d increases
- to make experiments more easily reproducible

Ongoing work concerns extending the framework to more general change models

Thanks, Questions?



C. Alippi, G. Boracchi, D. Carrera, M. Roveri, "Change Detection in Multivariate Datastreams: Likelihood and Detectability Loss" IJCAI 2016, New York, USA, July 9 - 13