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Examples of Change-Detection Applications

Stream mining: online classification systems, fraud-detection
systems

Environmental/Industrial monitoring: quality inspection systems,
fault-detection systems

Health monitoring: arrhythmias detection, detection of
mispositioning of monitoring device
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J_Motivations
|

= The trend is to address change-detection problems in
increasingly high-dimensional spaces.

= To reliable assess algorithm performance, a large number of
dataset is needed

= Unfortunately, there are not many suitable real-world datasets

= |n practice, researchers typically resort to:

 Synthetically generating datasets (pros: stable performance
measures, cons: simplistic distributions and changes)
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= The trend is to address change-detection problems in
increasingly high-dimensional spaces.

= To reliable assess algorithm performance, a large number of
dataset is needed

= Unfortunately, there are not many suitable real-world datasets

= |n practice, researchers typically resort to:

 Synthetically generating datasets (pros: stable performance
measures, cons: simplistic distributions and changes)

e Manipulating real world dataset (pros: realistic data, stable
performance,|cons: changes are arbitrarily introduced|)
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| Our Contributions

= CCM: Controlling change magnitude a framework to:

e Manipulate real-world datasets of arbitrary dimension

e Make experiments reproducible

e Allow to study the impact of data-dimension on change-
detection performance

= The framework relies on two iterative algorithms whose
convergence is analytically proved

= Qur experiments show that common approaches considerably
increase the change magnitude when data dimension scales
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PROBLEM FORMULATION

Introduce changes in real-world datasets
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| Manipulating Real-World Dataset: Problem Formulation

Let S € R? be a dataset of stationary data containing i.i.d.
samples from an unknown distribution ¢,.

We want to generate a datastream X = {x(¢t),t=1,..1,..}
affected by a change at t = 7 such that

x(t) ~ {i‘l’ ST, where ¢y(x) = ho(Qx +)

where Q € R%*4 is an orthogonal matrix and v € R%
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| Manipulating Real-World Dataset: Problem Formulation

Let S € R? be a dataset of stationary data containing i.i.d.
samples from an unknown distribution ¢,.

We want to generate a datastream X = {x(¢t),t=1,..1,..}
affected by a change at t = 7 such that

x(t) ~ {i‘l’ ST, where ¢y(x) = ho(Qx +)

where Q € R%*4 is an orthogonal matrix and v € R%

In particular, X = {x(t),t =1,..1,...} is obtained as
e Whent < t, x(t) is randomly selected from S

e When t = 1, x(t) is obtained by roto-translating remaining
samples in S according to ¢4

We reshuffle S, repeat the process, obtain another datastream
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Manipulating Real-World Dataset: Problem Formulation

Our goal: define Q and v such that the change ¢, = ¢, has a
magnitude equal (or arbitrarily close) to
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| Manipulating Real-World Dataset: Problem Formulation

Our goal: define Q and v such that the change ¢, = ¢, has a
magnitude equal (or arbitrarily close) to

We define the change magnitude as the symmetric Kullback-
Leibler divergence

SKL(¢O' ¢1) = KL((PO' ¢1) + KL(¢1, ¢0) =

_ $o(x) ¢1(x)
_ f log ( 5 (x)) o (x)dx + f log ( 0 (x)) b, (x)dx

T. Dasu, K. Shankar, S. Venkatasubramanian, K. Yi, “An information-theoretic approach to detecting changes in multi-
dimensional data streams” In Proc. Symp. on the Interface of Statistics, Computing Science, and Applications, 2006
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| Manipulating Real-World Dataset: Problem Formulation

Our goal: define Q and v such that the change ¢, = ¢, has a
magnitude equal (or arbitrarily close) to

We define the change magnitude as the symmetric Kullback-
Leibler divergence

sKL(¢g, 1) = KL(¢po, $1) + KL(¢p1,¢o) =
_ f log ((/)0(")) bo(X)dx + f log <¢1(x)> b, (x)dx

¢1(x) Po(x)

Our goal: define Q and v such that

SKL(d)O' ¢1) = SKL(¢O' ¢O(Q ) +U)) ~ K

T. Dasu, K. Shankar, S. Venkatasubramanian, K. Yi, “An information-theoretic approach to detecting changes in multi-
dimensional data streams” In Proc. Symp. on the Interface of Statistics, Computing Science, and Applications, 2006




Manipulating Real-World Dataset: The change model

Assuming ¢ (x) = ¢o(Qx + v) is quite a general change model
which includes

e shifts in the mean
e changes in the correlation among components of x

Thus, it requires a multivariate monitoring scheme!
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CCM: CONTROLLING THE CHANGE
MAGNITUDE

Method description
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| Main Components of CCM

= Fitting pre-change distribution

= Change parametrization
= |nitialization

= |teration
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| CCM - Fitting pre-change distribution

Fitting pre-change distribution

Since ¢, is typically unknown, we compute an estimate ¢, by
fitting a Gaussian Mixture on the whole dataset S
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J_CCM - Parametrization
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Parametrization

To ease our developments we parametrize Q and v as follows:

. Q is expressed w.r.t. its rotation angles 8 € Rl4/2] and a
coordinate system P € R%*4 (orthogonal matrix)

0(0,P) =P S(0) P’
where S(0) is the rotation matrix w.r.t. angles in @
e VIS expressed as
v(p,u) = pu

where u € RY, ||u|| = 1 indicates the translation direction
and p > 0 the translation magnitude
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CCM - Algorithm 1

Initialization: Define Q° and v° such that

KL (o, $o(Q° - +v%)) 2

Algorithm 1

1. Input: ;50, target value k of sKL(qgo, ?1)
2. Output: Roto-translation parameters 87, P, p(9) u
3. Set p(O) =1.
4. repeat
5. Randomly generate m angles 8(9) in [—7/2,7/2]™ and a unitary vector u.
6. Generate a matrix A € R¥¥? with Gaussian entries.
7. Set P as the orthogonal matrix of the QR decomposition of A.
8. Set Q) (0, P) = PS(89)P" and v(p®),u) = p(Ou.
9. Compute s(0) = SKL(%[), ¢1), where ¢1 = &50(69(0) : —|—V(O))
10. pl0) = 2p(),
11. until s(©) > &;
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| CCM - Algorithm 1

Algorithm1: Define QY and v° such that
SKL (o, §o(Q° - +v°)) = k

1) Randomly choose  2) Randomly choose u, 3) Increase p
6% and P set v° = pu o o

v
v
v
v

(ﬁo QBO(QO ) QBO(QO - +v°) $0(Q0 - +v?)
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CCM - Theorem 1

Theorem 1. Let o be a Gaussian mairture. Then, for any v > 0, Algorithm
1 converges in a finite number of iterations.

To prove Theorem 1 it is enough to show that
SKL (o, $o(Q - +v)) > oo

for any Q when ||v|| = oo or that one it admits a diverging lower
bounds

(see the paper for details...)
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CCM - Algorithm 2

Iteratively adjust Q and v towards

SKL (o, $o(Q - +v)) - x

Algorithm 2

1. Input: 800 P 59 u from Algorithm 1, 8;0, + and tolerance =
2. Output: @ and v defining the roto-translation yielding desired change magnitude
3. Set the lower bounds parameters 95(1) =0, pglj = 0.
4. Set the upper bounds parameters 9&1) =0, pg,,l) = pl0),
5. Set j =1.
6. repeat
7. Compute 8U) = (QF} + 9&?‘))/2, and QU) (81, P) as in (6).
8. Compute pl7) = (pl(j) +pg})/2, and v(9) (p(7) u) as in (7).
9. Compute st7) = SKL(&U,@?)), where (ﬁ(lj)(~) = &;}(QU) - 4v9)),
10. if sU) < k then
11. | et — g, pUT — p0),
12. else
13. | oY — ), pIHY — pla),
14. end
15. J=i+1L
16. until {s(j) — ﬁ,{ < &
17. Set Q = QU v = vi),




| CCM - Algorithm 2

Algorithm2: Implements a bisection method to compute @ and p
yielding the desired sKL value.

Bisection is performed w.r.t. both 8 and p, and we stop when

‘SKL (éo, $0(0 - +v)) — K‘ <e€

~

QEOI ¢O(Q ) +v)

sKL(

parameters
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CCM - Algorithm 2

—

Theorem 2. Let ¢g be a Gaussian mixture. Then, for any v > 0, Algorithm
2 converges in a finite number of iterations.

To prove Theorem 2 it is enough to show that the function used in
the bisection is continuous (see the paper for details...)
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EXPERIMENTS

Why controlling the change-magnitude is important
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| Experiments
|

Goals:
e Show the limitations of commonly used approaches that are

primarily heuristic
o Demonstrate the effectiveness of CCM
Dataset: of MiniBooNE Particle Dataset from the UCI repository
« d =50, components have been standardized
e 93108 samples (only one class)
o We fit a GMM having 2 degrees of freedom
o We generate multiple datasets

Figures of merit:
e The magnitude of the introduced change
e The change-detection performance (power of HT)



Considered Approaches

Methods to manipulate the dataset:
= CCM: configured to yield sKL(¢o, ¢1) = 1, Vd

= offset: add an offset v = 1 to each component of the
standardized data. This corresponds to ¢; = ¢o(x + 1)

= Swap: two components, randomly chosen, are swapped. This
change model has Q equal to the corresponding permutation
matrix and v = 0

All these approaches are tested by introducing changes in
datasets having different dimensions

L. I. Kuncheva, “Change detection in streaming multivariate data using likelihood detectors," IEEE Transactions on Knowledge
and Data Engineering, vol. 25, no. 5, 2013.

A. Zimek, E. Schubert, H.P. Kriegel. “A survey on unsupervised outlier detection in high-dimensional numerical data”
Statistical Analysis and Data Mining: The ASA Data Science Journal, 5(5), 2012.
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| Experiments on the Change Magnitude

Distribution of sKL( ¢, ¢1) computed from manipulated datasets

= Only CCM preserves the

. 80 -
change magnitude ) COM
rs ’
= Swap and Offset introduce of, T Swap
changes increasing with d 60| Y = Ofiset
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= The dispersion of sKL also S/
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| Empirical Analysis on the Change-Detectability

The change-detectabiltity measure:

x(t)

o Test data: two windows V,, and V; (200 samples each)

selected before and after the change.

Vo
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| Empirical Analysis on the Change-Detectability

The change-detectabiltity measure:

o Test data: two windows V, and V; (200 samples each)
selected before and after the change.

e Compute log( o (x)) from V, and V4, obtaining W, and W,
e Compute the Lepage statistic T (W,, W;) to compare them
e Detect a change by an hypothesis test
T(Wo,W1) s h
where h controls the amount of false positives
e Use the power of this test to assess change detectability

(x(®)

s
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o
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Results

The power of HT indicates that:

= Changes introduced by CCM
becomes more difficult to
detect when d increases. 0.8
This is coherent with our
theoretical analysis shown . 0.6

in [1JCAI2016] %
. a¥
= Changes introduced by 0.4
other methods are more
prominent and easier to 0.2

detect when d grows.
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C. Alippi, G. Boracchi, D. Carrera, M. Roveri, "Change Detection in Multivariate Datastreams: LiRelihood and Detectability
Loss" 1JCAl 2016, New York, USA, July 9 - 13
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CCM is a rigorous framework to introduce changes having a
controlled magnitude in multivariate datasets

The convergence of its algorithms have been proved

CCM is implemented in Matlab and is freely available for
download at

https://home.deib.polimi.it/carrerad/projects.html

Our experiments remark the importance of controlling the change
magnitude when manipulating real-world datasets

o to fairly assess detection performance when d increases
e to make experiments more easily reproducible

Ongoing work concerns extending the framework to more general
change models
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Thanks, Questions?

Power
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C. Alippi, G. Boracchi, D. Carrera, M. Roveri, "Change Detection in Multivariate Datastreams: Likelihood and Detectability
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