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A cognitive monitoring system for
detecting and isolating contaminants and faults

in intelligent buildings
Giacomo Boracchi, Michalis Michaelides, Manuel Roveri

Abstract—Intelligent buildings are typically endowed with
sensing devices that are able to measure the concentration of spe-
cific contaminants in relevant zones. The collected measurements
are subsequently processed by intelligent algorithms in order to
enable the prompt detection and isolation of contaminant sources
inside the building. Unfortunately, in real-world conditions, these
sensing devices may suffer from faults affecting the sensors or the
embedded electronics. Such faults, generally result in perturbed
or missed data in the acquired data-stream, that can induce
false alarms (or possibly missed alarms) and compromise the
contaminant detection and isolation ability. This paper proposes
a three-layer cognitive monitoring system for the detection and
isolation of both contaminants and sensor faults in intelligent
buildings. The first two layers are designed for the prompt
detection of small variations in the concentration of a specific
contaminant, while reducing the possible occurrence of false
alarms. At the third layer, a cognitive mechanism employing
a propagation model for the contaminant, which is based on the
airflows between the building zones, allows to isolate the source
zone and discriminate between sensor faults and the presence of
a contaminant source. The proposed method is validated using
a realistic 14-zone building scenario.

I. INTRODUCTION

Advances in sensing devices and embedded systems are
transforming our homes and work environments into intelli-
gent buildings. These systems have the ability to adapt and
control the building environment in order to save energy and
create more comfortable, healthy and safe living conditions for
their occupants [1], [2]. The safety of the occupants is directly
associated with the Indoor Air Quality which can be easily
compromised by an accident (e.g., CO leakage from a faulty
furnace) or a terrorist attack. In particular, recent terrorist
events and alarms to potential hostile attacks with airborne
Chemical and Biological Agents (CBA) have created a crucial
and world-wide concern for building and occupant safety,
e.g. see [3]. Most CBAs are highly poisonous and a small
amount of CBA can cause morbidity and mortality. Under
these safety-critical conditions, data collected in real-time from
sensors monitoring the concentration of a CBA can be used
to alert the occupants and determine appropriate solutions like
indicating safe spaces, or isolating and cleaning contaminated
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areas. Therefore, the prompt detection and accurate isolation
of contaminant sources is an essential task in the design of
intelligent buildings.

The development of near real-time biological and chemical
agent sensors (see [3], [4] and references therein) has re-
cently enabled effective protective measures against such CBA
threats. These measures can be low-disruption actions in re-
sponse to the sensors’ readings, e.g., automatically modifying
the operational mode of a building’s Heating Ventilation and
Air Conditioning (HVAC) system, or high-disruptive actions,
e.g., the building’s complete evacuation. Highlights of this new
sensor technology include inexpensive, moderately sensitive
remote and point-trigger sensors and rapid identifiers which
can be exploited for quickly covering wide areas. At their
current state, however, these trigger sensors can only support
low-disruption actions because they can suffer from high false
positive rates [3] (i.e., false alarms induced by noise causing
the incorrect detection of the contaminant). Note that frequent
false positives can make the protection system useless because
of the reluctance of the occupants to cooperate with the
required protective actions (cry-wolf effect).

In the real world, data gathered by sensors are corrupted by
noise. In addition, sensors and the embedded electronics can
suffer from a wide range of faults. These faults can induce
incorrect or missed data in the acquired data-stream, which can
heavily affect the contaminant detection and isolation abilities
of the monitoring system (inducing either missed or false
alarms). Moreover, the correct operation of the monitoring
system relies on the ability to discriminate between sensor
faults and the real presence of a contaminant source.

In this paper we propose a novel cognitive monitoring
system that can be combined with real-time point-trigger
sensors for performing contaminant and sensor-fault diagnosis,
namely detection and isolation, in intelligent buildings. The
proposed system reduces the occurrence of false alarms (and
of consequent disruptive actions) by means of a three-layered
architecture for detection and isolation and employs cognitive
mechanisms to discriminate sensor faults from the presence
of a real contaminant source in the building. At the first
layer, we rely on Change-Detection Tests (CDTs) for promptly
detecting small amounts of the monitored contaminant. CDTs
are statistical techniques able to sequentially analyse the
gathered contaminant measurements to inspect for changes in
their distribution. The second layer performs a validation of
the changes detected at the first layer by means of Change-
Point Methods (CPMs) to reduce the possible occurrence of
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false alarms. These CPMs are statistical hypothesis tests that,
operating on a fixed length sequence, are able to confirm (or
not) the presence of a change-point in the sequence (by also
providing an estimate of the change-point position in the data
sequence). Finally, the third (cognitive) layer aims at isolating
the zone where the contaminant source has been inserted or
the sensor fault has occurred. In addition, it identifies whether
the detection can be associated to the true presence of a
contaminant source or to a fault affecting a sensor. This is
achieved by taking into account the expected propagation of
the contaminant within the intelligent building by considering
the building topology and the direction of the airflows.

In summary, the proposed three-layer cognitive monitoring
system constitutes the main contribution of this work and
offers the following advantages:
• change-detection tests at the first layer that are able to

promptly detect the presence of a specific contaminant,
even at small concentrations;

• change-point methods at the second layer that validate
each detection raised by the first layer to reduce false
alarms;

• a cognitive layer on top of the architecture able to isolate
the zone of the building in which either the contaminant
has been released or the sensor fault has occurred and
discriminate between the two.

The paper extends our preliminary results on contaminant
detection in smart buildings [5] by introducing the cognitive
layer, which analyses in an aggregated manner sensor mea-
surements in different zones of the building, to discriminate
between sensor faults and contaminants, as well as isolate the
zone in which the contaminant source has been inserted (or
the sensor fault has occurred).

The paper is organized as follows: Section II presents the
related literature and Section III formulates the addressed
problem. The proposed cognitive monitoring system is detailed
in Section IV, while experiments are presented in V and,
finally, conclusions are drawn in Section VI.

II. RELATED LITERATURE

A. Fault and Contaminant Diagnosis in Buildings

During the last four decades, a lot of important results
have been achieved in the area of fault diagnosis for a
variety of engineering systems. In a recent two-part survey [6],
[7], fault-diagnosis methods and their applications are com-
prehensively reviewed and classified as model-based, signal-
based, knowledge-based, hybrid (which combine at least two
methods) and active (where a suitably designed input signal is
injected in order to enhance detectability of potential faults). In
another recent survey [8], the various fault diagnosis methods
are reviewed from a data-driven perspective based on the type
of data and how these are processed. The proposed cognitive
monitoring system can be considered a hybrid method as it
combines signal-based methods with a qualitative model of
the building airflows. In fact, the statistical tools employed at
the first and second layers (CDTs and CPMs, respectively) are
signal-based methods that analyze the stream of contaminant
measures in the various building zones, while the qualitative,

physics-based model of the building airflows is used in the
cognitive layer for differentiating between the presence of a
contaminant event and a sensor fault. With respect to fault
diagnosis in building scenarios, a two-part survey [9], [10]
reviews methods for fault detection, diagnostics and prog-
nostics with particular emphasis on Heating, Ventilation, Air-
Conditioning and Refrigeration (HVAC & R) systems.

The problem of contaminant event monitoring (or con-
taminant diagnosis) has received considerable attention in
the literature over the last decade. A detailed report on the
literature related to the inverse tracking of pollutants in both
groundwater and air fields is presented in [11]. Two methods
that have been successfully applied to isolate contaminant
sources in building environments are the Bayesian updating
method [12] and the adjoint probability method [13]. However,
both methods require some form of prior knowledge about
the considered scenario, either in the form of a constructed
scenario database before the event or concerning one of the
source characteristics during the event (location or the time of
contaminant release). More recently, the state space method
[14] has been proposed for contaminant event monitoring.
In the developed multi-zone formulation, the presence of a
contaminant source is modeled as a fault in the process, which
enables the contaminant detection and isolation by means of
advanced fault-diagnosis tools. This method is appropriate for
situations where a model of the building airflows is available
and bounds on the modeling uncertainty can be calculated. In
principle, this method can completely eliminate the presence
of false alarms in the system; the main challenge involved
is the design of tight, adaptive thresholds for bounding the
modeling uncertainty. We emphasize that the use of conserva-
tive thresholds can lead to missed detections, especially under
low signal-to-noise conditions. Note that this, as well as other
fault diagnosis methods involving state observers and Kalman
Filters are not directly comparable to this work as they are
model-based, requiring the existence of a state-space or input-
output model of the system.

Differently, [4] suggests the design of contaminant detection
systems based on the Scalar Trigger Algorithm (STA). In
such systems, a detection threshold is dynamically adapted to
compensate for the effects of measurement noise in order to
guarantee a pre-specified false alarm probability when applied
to a fixed sequence of data. Of course, reducing false alarms
can be done at the expense of increasing detection delay
and false negative rate (i.e., the percentage of missed alarms
when the contaminant is present), especially in situations
characterized by high noise or low contaminant concentration.

Compared to existing methods in the literature, the solution
here proposed does not require a detailed model of the building
airflows, bounds on modeling uncertainty or any prior informa-
tion about the source characteristics (onset time, location and
generation rate). It employs a layered architecture to reduce
the presence of false alarms and, at the same time, it ensures
the detection of even small quantities of contaminants inside
the building thanks to the sequential monitoring technique
adopted. At the cognitive layer, the proposed system constructs
a conceptual model based on the wind direction and the topo-
logical relations between the different zones of the building to
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isolate the source zone (without requiring a priori knowledge
of the actual values of the building airflows) and discriminate
between sensor faults and the presence of a contaminant source
in the monitored area. To the best of our knowledge, this is the
first method proposed in the literature that jointly addresses the
problem of contaminant and sensor-fault diagnosis (detection
and isolation) in intelligent buildings. It is also worth pointing
out that the algorithms and results of this paper, although
custom-designed for the specific application of intelligent
buildings, may find applicability to many other domains. In
fact, the issue of differentiating between process and sensor
faults in a system remains an important challenge for the fault
diagnosis community.

B. Contaminant Transport Simulation Software

The evaluation and testing of contaminant monitoring sys-
tems require the release of contaminants in the building
interior which is often prohibited due to safety regulations
or difficult to implement in practice. Due to the difficulty in
obtaining real datasets, researchers often resort to simulation
tools. For the indoor air and contaminant transport simulation
there are two main modeling approaches: Computational Fluid
Dynamics (CFD) and multi-zone modeling. On the one hand,
CFD modeling involves the numerical solution of the con-
servation equations of mass, momentum, energy and species
concentrations by dividing the space into a finite number of
discrete cells and then by using an iterative procedure to
achieve a converged solution. This approach can provide the
spatial distributions and temporal evolutions of air pressure,
velocity, temperature, humidity, contaminants, and turbulence
intensity. However, the degree of accuracy comes at the
expense of high computational cost. On the other hand, multi-
zone models provide a computational efficient solution by
representing a building as a network of well-mixed zones.
Temperature, humidity, air velocity and pollutant concentration
are assumed uniform within each zone. Different zones are
connected by discrete flow paths such as doors, windows,
wall cracks, ducts and hallways. In this multi-zone model,
a zone may correspond to an entire room or to a part of
it. The model predicts the flow parameters based on mass
conservation and component interaction. The most popular
multi-zone simulation programs are COMIS [15] by Lawrence
Berkeley National Laboratory (LBNL) and CONTAM [16]
by the US National Institute of Standards and Technology
(NIST). In this paper, we rely on the Matlab-CONTAM
Toolbox described in [17] for creating the datasets used for
the evaluation of our proposed algorithms in a realistic 14-
zone building scenario.

In particular, we consider the Holmes house as a building
case study [18], whose layout is shown in Figure 1(a). Such a
well-known case study comprises of 14 zones: a garage (Z1),
a storage room (Z2), a utility room (Z3), a living room (Z4),
a kitchen (Z5), two bathrooms (Z6 and Z13), a corridor (Z8),
three bedrooms (Z7, Z9 and Z14) and three closets (Z10, Z11
and Z12); as well as 30 leakage path openings corresponding
to windows and doors (P1–P30).

III. THE PROBLEM FORMULATION

In this section we formulate the addressed problem, intro-
duce the models we employ and state our assumptions. We
conclude with the problem statement.

A. Sensor Measurement and Fault Model

Let us consider an intelligent building composed of N
zones. Each zone is equipped with a sensor measuring the
concentration of a specific contaminant. Let mi(t) (with
i = 1, . . . , N ) denote the measurement provided by the sensor
of the i-th zone at time t, which can be modelled as

ci(t) = xi(t) + ∆i(t), (1)
mi(t) = φ(ci(t)) + ηi(t), (2)

where ci (1) describes the true contaminant concentration
inside the i-th zone, while (2) models the output of the
corresponding i-th sensor that can be affected by noise and
possibly faults. More specifically, ci(t) represents the true
concentration of the contaminant at time t, which is the
sum of the natural concentration xi(t), and the additional
concentration ∆i(t) of the anomalous source (i.e., what needs
to be detected by the sensing system). Note that xi(t) can
be zero when no contaminant is naturally present in the i-th
zone (e.g., for toxic gases or CO), or constant (e.g. for CO2

under steady state airflow conditions) or may follow a dynamic
behaviour like xi(t) = f(xi(t− 1), xi(t− 2), ...) in the more
general case. In this paper, we assume xi(t) = 0 , but the
proposed monitoring system can be straightforwardly applied
to scenarios where xi(t) = ζ > 0. The more general case
where the contaminant follows a dynamic behavior requires
some prediction mechanism like the one described in [19].

Next, in (2), φ(·) represents the (possibly nonlinear) fault
function and ηi(t) is the independent and identically dis-
tributed (i.i.d.) random noise that affects the measurement
of the sensor in the i-th zone at time t. The fault function
φ(·) is characterized by a time profile of the fault and a fault
signature. With respect to the time profile, the fault can be
classified based on the time duration (as permanent, transient
or intermittent) and the evolution mode of appearance and/or
disappearance (as abrupt or incipient). Furthermore, based on
the signature, we can have different types of faults including
offset, drift or precision degradation. In our experiments we
consider permanent, abrupt and offset sensor-faults. In other
words, the fault function is given by the following equation,

φ(ci(t)) =

{
ci(t), t < τ

ci(t) + δ, t ≥ τ
(3)

where τ represents the onset time of the fault while δ > 0 is
the offset amount.

Let us denote by τ also the time instant when a contam-
inant source is inserted into the building and let i∗ (with
1 ≤ i∗ ≤ N ) be the zone where this source is inserted,
i.e., the source zone. Let τi be the time instant in which the
contaminant concentration appears in the i-th zone, i.e.,{

∆i(t) = 0, t < τi

∆i(t) > 0, t ≥ τi
. (4)
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Note that, because of propagation delays, τi > τ when i 6= i∗.

B. Contaminant-Propagation Model

The contaminant propagation through the building zones
depends on a number of factors affecting the internal airflows
including (i) the building structure (e.g., the interconnections
of the various zones through doors and openings), (ii) envi-
ronmental conditions (e.g., temperature, wind direction and
velocity), (iii) HVAC operational mode (or any other type of
fan causing a forced flow).

In particular, the direction of the wind influences the direc-
tion of the flows among the different zones within the building,
i.e., zone i is connected to zone j if there exists an airflow from
i to j. Note that this connection is not symmetric. Interestingly,
wind is not the only source of flows between zones since
such a physical phenomenon could also be induced by the
thermal gradient (i.e., the difference in temperature between
two zones).

The relationships among the measurements in different
zones of the building at a given time instant, which are induced
by the airflows, are represented by the flow matrix

Z(t) =

z1,1(t) · · · z1,N (t)
...

. . .
...

zN,1(t) · · · zN,N (t)

 , (5)

where zi,j(t) equals to 1 if there is flow at time t from the
j-th zone to the i-th zone and 0 otherwise; while zi,i(t) =
0, i = 1, . . . , N .

We assume that updated estimates of Z(t) are regularly
provided, as these depend on the wind direction and velocity,
the HVAC operating mode, and the opening status of the doors
and windows: information that is typically available in smart
buildings. In general, the flow matrix Z(t) as specified in (5)
is time-dependent. However, under steady-state airflow condi-
tions, the time dependence can be dropped (i.e., Z(t) = Z) as
the flows remain constant between the various building zones.
In what follows, we will be assuming steady-state airflow
conditions. This simplifying assumption is well justified under
forced-ventilation, where the flows are dictated by the HVAC
and no big variations are expected in the flows.

Under natural-ventilation conditions, the airflows can often
change as they depend on the wind direction and velocity.
Even for this case, however, it is possible to assume the system
is in a near-steady-state condition for a short time, and thus
break-up the monitoring problem in short time intervals and
apply the proposed solution in each of these intervals. It is
also worth pointing out that in the proposed formulation we do
not use the actual values of the flows, but only the existence
of a flow between pairs of zones. So, as long as the flow
directions remain the same, the proposed solution is robust
to non steady-state conditions. When the flow directions do
change (e.g. when a door opens), the flow matrix has to be re-
estimated inside the cognitive layer of the monitoring system.

As an example, consider the Holmes house case study
(presented in Section II-B) with wind coming from the North,
as shown in Figure 1(b). Note that the induced airflows
between the various zones are portrayed with green lines with

Fig. 1. The reference intelligent building case study. (a) The Holmes house.
It comprises of 14 zones (Z1-Z14) and 30 leakage path openings (P1-P30);
(b) The induced airflows (i.e., the green lines) between zones of the house
when wind blows from North to South (the length of the lines is proportional
to the flow magnitude).

Fig. 2. The flow matrix Z of the reference building case study shown
in Figure 1. Here, we are assuming steady airflow conditions and time
dependence has been dropped.

the length of the lines indicating the flow magnitude. The
corresponding flow matrix Z for the specific example is shown
in Figure 2, where flow conditions are assumed to be steady
(hence, time dependence has been dropped).

C. Problem Statement

At time τ , either a single contaminant source or a single
sensor fault is introduced in the building zone i∗. The aim
of the proposed monitoring system is to promptly detect and
accurately diagnose the specific event based on the sensor
measurements. This involves three distinct phases: (i) detection
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1- Each unit: Train the ICI-based CDT from
mi(t), t = 1, . . . , L;

while (1) do
2- Each unit: acquire mi(t);
3- Each unit: run the ICI-based CDT on mi(t)
4- At unit i:
5- if CDT (mi(t)) == 1 then
6- î = i;
7- T̂ = t;
8- if CPM({mi(t), t = 1, . . . , T̂}) == 1 then
9- Run Cognitive Layer:

10- Compute AD and BD as described in Section
IV-C;

11- Compute WAD
and WBD

with Eq. (12) and
(15) ;

12- if CPM(WAD
) == 1 then

13- Compute i0 with Eq. (14);
14- Detection = “Contaminant”;

else
15- i0 = î;
16- if CPM(WBD

) == 1 then
17- Detection = “Contaminant”;

else
18- Detection = “Fault”;

end
end

end
end

end
Algorithm 1: The proposed cognitive monitoring system for
intelligent buildings.

(a binary yes/no decision about whether the event has oc-
curred), (ii) isolation (locate the zone i∗ where the contaminant
source or the fault has been introduced) and (iii) identification
(determine whether the alert was due to a contaminant source
or a sensor fault). The detection/diagnosis of multiple or
simultaneous events is out of the scope of this work and part
of our future research.

IV. THE PROPOSED COGNITIVE MONITORING SYSTEM
FOR INTELLIGENT BUILDINGS

The proposed cognitive monitoring system, which is sum-
marized in Figure 3, is characterized by a hierarchical archi-
tecture composed of the following three layers:

1) the change-detection layer, which involves a sequential
and on-line CDT running at each of the N sensors of
the intelligent building, is responsible for monitoring the
concentration of the contaminant. The goal of this layer
is to guarantee the prompt detection of any anomalous
concentration of the contaminant by monitoring the
statistical behaviour of {mi(t), 1 ≤ i ≤ N}. This layer
relies on measurements coming from a single sensor,
hence, it can be directly executed at the sensor level,
provided that there are enough computational resources.

Fig. 3. The three-layer hierarchical architecture of the proposed cognitive
monitoring system.

The zone where the CDT detects a change is referred to
as the detection zone and denoted by î.

2) The validation layer is meant to reduce the false posi-
tives raised by the change-detection layer and, to this
purpose, it employs a CPM. The CPM analyses the
concentration measurements acquired at the detection
zone to confirm whether any detection raised by the
CDT at the first layer actually corresponds to a change in
the statistical behaviour of the acquired measurements.
Since this operation relies on measurements coming
from a single sensor, it can be also directly executed
at the sensor level, as long as enough computational
resources are available.

3) The cognitive layer addresses two relevant tasks: first,
isolating the zone where either the contaminant has been
released (which in principle might not be î) or the sensor
fault has occurred and, second, determining whether
the validated detection is due to a contaminant source,
or to a fault affecting the sensing apparatus. The core
idea is that a contaminant would propagate through the
building zones according to the flow matrix Z, while a
fault would not. To perform such analysis, the cognitive
layer builds two propagation trees to arrange the zones
according to the expected contaminant propagation. The
measurements from the relevant zones of the propaga-
tion trees are then aggregated, and analyzed through a
CPM to determine if the contaminant has propagated
therein. Since this layer involves the measurements
coming from different zones of the building, it has to
be executed in a centralized manner.

In practice, the first two layers implement in each sen-
sor a hierarchical CDT [20] that has been customized for
contaminant-detection purposes. The third layer, instead, has
been specifically designed for addressing diagnosis and iden-
tification issues in a smart building environment. The three
layers are detailed in what follows, while the algorithm of the
proposed cognitive monitoring system is detailed in Algorithm
1.
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A. The Change-Detection Layer

The aim of this layer is to provide prompt detection of
changes in the statistical behaviour of sensor measurements.
To achieve this goal, we opted for CDTs that are statistical
techniques able to operate on data-streams to detect perturba-
tions in the statistical distribution of the data.

CDTs in the literature are divided into parametric and
nonparametric ones: the former [21], [22], like the CUSUM
test [23], assume the distribution of the data before and after
the change to be known. In contrast, nonparametric CDTs
[24]–[28] operate without knowing the distribution of the
observations either before or after the change. In real world
applications, non-parametric CDTs are often preferred, mainly
because of the unpredictability of the change. Sequential CDTs
have been originally developed as rigorous statistical tools
for quality-control applications [29]. Since then, CDTs have
been used in a plethora of applications, including intrusion
detection in computer networks [25] and fault detection in
sensing/control apparatus [5], as the primary tools for detecting
a change. Other relevant application scenarios are the environ-
mental monitoring scenario, where CDTs can be used to detect
evolutions in the micro-acoustic recordings to monitor a rock
face [30], or in critical infrastructure monitoring, where CDTs
can be used to detect leaks in a water distribution network
[31].

Among the several sequential and on-line CDTs present
in the literature, we focused on the ICI-based CDT [24]. A
distinguishing feature of this CDT is the use of the Intersection
of Confidence Intervals (ICI) rule, which is an adaptation tech-
nique for defining supports for polynomial regression. The ICI-
based CDT is characterized by low computational complexity
and this is a very important feature for analyzing streaming
data. In addition, the ICI-based CDT operates without any a-
priori information about the distribution of the data-generating
process (either before or after the change).

In our previous work [5], we considered an ICI-based
CDT monitoring two features extracted from the measurement
stream: the sample mean and the sample variance computed on
non-overlapping windows of ν observations. In this work, we
replace the sample mean on non-overlapping data windows,
used in [24], with the Manly transform [32], which yields
approximately Gaussian distributed output and is defined as
follows,

yi(t) =

{(
eλmi(t) − 1

)
/λ; λ 6= 0

mi(t); λ = 0
, (6)

where λ ∈ R is a transform parameter. The Manly transform
allows us to perform element-wise monitoring, thus possibly
reducing the detection delay of relevant changes with respect
to the window-wise operational modality. This is particularly
relevant in critical application scenarios, like contaminant
detection, where the detection delay has to be reduced as
much as possible. Other transformations yielding output that
are approximatively Gaussian distributed (e.g., the Box-Cox
transform) could be considered as well; further details about
element-wise ICI-based CDTs can be found in [33].

Besides the element-wise monitoring of the expected value
of yi(t), the ICI-based CDT monitors the variance of mi(t)
[5], by means of a power-law transformation of the sample
variance computed on nonoverlapping windows. The trans-
formed sample variance Vi(s) for the s-th subsequence is
defined as

Vi(s) =

(
Si(s)

ν − 1

)γ
,where (7)

Si(s) =

νs∑
t=(s−1)ν+1

(
mi(t)−Mi(s)

)2

and

Mi(s) =
1

ν

νs∑
t=(s−1)ν+1

mi(t).

In these equations, Mi(s) and Si(s) are the sample mean
and the sample variance of the contaminant measurements in
the s-th data window containing ν observations, respectively,
while γ > 0 is the parameter of the power-law transformation
which yields values of Vi(s) that are approximatively Gaussian
distributed [34].

The stationarity of yi(t) and Vi(s) is then monitored over
time through the ICI rule [35], [36] as described in [24]:
changes in the feature distribution would indicate changes in
the measurement streams that could be associated to either a
contaminant source or a sensor fault. The detection phase of
the ICI-based CDT is reported at line 3 of Algorithm 1, where
CDT(mi(t)) is equal to 1 when the ICI-based CDT detects a
change in either in yi(t) or Vi(s) (computed from the window
containing mi(t)), and 0 otherwise. In what follows, we denote
by î the detection zone, i.e., the first zone where the ICI-based
CDT detects a change in the stream of sensor measurements,
and we denote by T̂ the time instant when this change has
been detected.

As mentioned above, the ICI-based CDT does not require
any a priori information about the data distribution but, for
each sensor to be monitored, it requires an initial training
sequence {mi(t), t = 1, . . . , L} of L measurements acquired
assuming the i-th sensor is fault-free and no contaminant
sources are present. A first portion of the training sequence
is used to estimate the CDT parameters (line 1 of Algorithm
1), in particular, λ of the Manly transform (6) and the power-
law transform parameter γ in (7). The λ parameter is estimated
via the maximum likelihood approach described in [32], while
γ = 1 − (κ1κ3)/3κ22 with κj representing the j-th cumulant
of mi(t) defined in [34]. The remaining part of the training
sequence is used to compute the sample mean and the standard
deviations of the feature values, which are used by the ICI-
based CDT to detect changes. The ICI-based CDT is also
characterized by a user-defined parameter Γ, which regulates
the responsiveness of the CDT.

B. The Validation Layer

Every time the first layer raises a detection, it activates
the validation layer which assesses whether this could be
associated to a false positive of the CDT, and in this case
prevents the activation of unnecessary emergency procedures.
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To achieve this goal we resort on a CPM [37], namely a
hypothesis test aiming at determining whether all the data
within the analyzed sequence are i.i.d. samples (thus generated
from the same distribution), or if there exists a change point,
namely a point that separates these data in two sequences that
have been generated by two different distributions.

Thus, CPMs operate on a fixed-length sequence and when
they validate the change, they also estimate the position of the
change point in the sequence. Like CDTs, CPMs can be also
divided into parametric and non-parametric ones, depending
on the assumptions made on the considered measurement
sequence. Recently, optimized and approximated implementa-
tions of CPMs have been proposed to operate on data-streams
[38], [39], and an ensemble of CPMs [40] was proposed
to handle residuals from approximating models which might
exhibit some form of correlation in stationary conditions.
Estimating the position of a change point is of paramount
importance in several application domains [41], [42], [43], but
CPMs have never been applied to contaminant and sensor-fault
diagnosis in intelligent buildings.

In more detail, the CPM is applied to a sequence of
measurements coming from the detection zone î before the
detection time T̂ . We denote this sequence as Ĉi = {mî(t), t =

1, . . . , T̂}1, while the CPM on this sequence is executed on
line 8 of Algorithm 1. The CPM operates as follows (to
simplify the notation we omit î where not necessary): for each
time instant 1 ≤ u ≤ T̂ , the set Ĉi is split into two parts,

Au = {mî(t), t = 1, . . . , u},
Bu = {mî(t), t = u+ 1, . . . , T̂},

and a specific test statistic T is used to compute

Tu = T (Au, Bu),

which is used to determine whether the set Au and Bu contain
data following different distributions.

The values of Tu are computed for all the samples 1 ≤
u ≤ T̂ , yielding {Tu, u = 1, . . . , T̂}. Let TM be the maximum
value of the statistic T over all the possible splits, i.e.,

TM = max
u=1,...,T̂

(Tu − 1) (8)

and let τ̂ be the sample for which T is maximum, i.e.,

τ̂ = argmax
u=1,...,T̂

(Tu − 1) .

The value of TM is then compared with a predefined threshold
hT̂ ,αv

, which is a function of the statistic T , the cardinality T̂
of Cî and a given confidence level αv that sets the percentage
of type I errors (i.e., false positives) of the CPM operating
at the validation layer. When TM is larger than hT̂ ,αv

, there
is enough statistical evidence for the CPM to confirm the
presence of a change in the measurements. On the other hand,
when the test statistic does not exceed the threshold, there is
not enough statistical evidence for claiming that the sequence
Ĉi contains a change point. Hence (line 8 of Algorithm 1), the

1Note that other memory-efficient solutions could also be considered, e.g.,
by considering the training set and a buffer over the latest samples.

outcome of the CPM can be defined by the following binary
variable:

CPM({mi(t), t = 1, . . . , T̂}) =

{
1 if TM ≥ hT̂ ,αv

0, if TM < hT̂ ,αv

. (9)

When the outcome of the CPM is equal to 1, the detection
raised by the CDT is validated and τ̂ is identified as the time
instant when the contaminant (or the fault) first appeared in
the î-th zone. Otherwise, the detection is not validated and the
CDT at the change-detection layer is newly configured from
the training sequence {mî(t), t = 1, . . . , L}.

Choosing the right test statistic T is crucial to effectively
validate changes detected by the change-detection layer. In our
case, among the wide range of test statistics in the literature
(e.g., see [37] and reference therein), we opted for a non-
parametric statistic, hence not requiring any a priori informa-
tion about the distribution of measurements to be analyzed. In
particular, we focused on the Lepage test statistic [44], which
corresponds to the sum of the Mann-Whitney [45] and the
Mood [46] statistics. The Mann-Whitney statistic is able to
detect changes in the location and the Mood statistic detects
changes in the scale of a distribution. Thus, for all practical
purposes, the Lepage statistic can be used to detect changes
in the mean and variance of data belonging to Ĉi, without any
a priori assumption on the measurement distribution.

One of the most critical aspects when dealing with CPMs
is the computation of the threshold hT̂ ,αv

. In fact, the statistic
of the CPM is indeed the maximum of all the test statistics
(8), and it is typically not possible to analytically compute
values of threshold that would yield a controlled amount of
type-I errors (this is particularly true for statistics like the
Lepage one which are not easily tractable by calculations).
So, in practice, thresholds hT̂ ,αv

are numerically computed
by means of Monte-Carlo simulations, as described in [37],
[38], by generating sequences having different length. In this
regard it’s worth mentioning that, since the test statistic is
nonparametric, it is possible to compute these thresholds using
i.i.d. data generated from any arbitrary distribution and, of
course, these do not depend on the change amount. We also
emphasize that αv , which sets the probability of type-I errors
(i.e. false positives), is a user-defined parameter and can be
set the same for all the sensors.

The solution presented in [5] computes, after each detection
at the first layer, the p-values of both the Mann-Whitney
and the Mood statistic to determine whether the detection
was most likely due to an anomalous concentration of a
contaminant (when the p-value of the Mann-Whitney test was
lower than the one of the Mood) or to a sensor degradation
fault (when the p-value of the Mood test was lower than that
of the Mann-Whitney). This strategy, which was originally
suggested in [38], was meant for a simplified observation
and fault scenario like the one in [5]. Unfortunately, this
simplified approach might not be effective when more general
changes affect the distribution of measurements. In the more
general model described by (1) and (2), the presence of
contaminant sources and sensor faults have to be discriminated
by analysing the contaminant propagation by means of the
cognitive mechanisms described in what follows.
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C. The Cognitive Layer

Once the detection raised at the CDT at the first layer
has been confirmed by the CPM at the second layer (line
8 of Algorithm 1), the cognitive layer is activated (line 9
of Algorithm 1) to isolate the zone within the building in
which either the contaminant has been released or the fault
has occurred (isolation phase) and then distinguish between
the two (identification phase). It is worth noting that the
analysis at the cognitive layer is performed at the building
level, by aggregating information coming from sensors placed
in selected zones of the building.

1) Propagation Trees: The isolation and identification
phases rely on the analysis of the contaminant concentration in
those zones of the building that induce flow to, or receive flow
from the detection zone î, according to the flow matrix Z, de-
fined in Section III. To inspect the contaminant concentration
in zones providing/receiving flow to/from î, we organize the
zones of the building in two different trees: an isolation tree
and an identification tree. These two trees, which represent the
core ingredients of the cognitive layer, form the basis of the
proposed cognitive monitoring system.

Without loss of generality, we are here assuming that î and
T̂ are unique, namely there are no simultaneous detections
in different zones. The proposed method could be easily
extended to manage simultaneous detections, by activating
multiple executions of the three layers (detection-validation-
cognitive), provided that the corresponding propagation and
isolation trees do not overlap (possibly by relying on an ad-
hoc mechanism for tree-generation able to force such a non-
overlapping property).

The isolation tree A =< VA, EA > is constructed by
considering the set of zones providing flow to the detection
zone î, where VA is the set of vertices of A and EA is the
set of edges connecting VA. The isolation tree is constructed
as follows: the root is the zone î and the vertices of the first
level represent those zones directly providing flow to the zone
î according to the flow matrix Z, i.e., the j-th zone is a zone
of the first level if ẑi,j = 1. Next, the vertices of the second
level represent those zones that, according to the flow matrix
Z, induce positive flow to the vertices of the first level, and
the construction proceeds iteratively until all the reachable
zones are included. An example of an isolation tree for the
considered building case study is portrayed in Figure 4, where
the detection zone is î = 3.

Similarly, the expected propagation path from the detection
zone î to the rest of the building is analysed by constructing
the identification tree B =< VB, EB >, where VB is the set of
vertices of B and EB is the set of edges connecting VB. The
identification tree is defined as follows: the root is the zone
î; the vertices of the first level are those zones that directly
receive a flow from the zone î according to the flow matrix
Z, i.e., the j-th zone is a zone of the first level if zj,̂i = 1.
Similarly, the vertices of the second level represent the zones
that are directly connected to the vertices of the first level
and the construction proceeds iteratively until all the reachable
zones are included. An example of an identification tree for
the considered case study is portrayed in Figure 4, where the

detection zone is î = 3.
We emphasize that, while the isolation tree A indicates

whether or how the contaminant has propagated before its
detection in î (in this sense A provides a possible view of
the “incoming” contaminant to î), the identification tree B
provides a description of the expected propagation of the
contaminant within the building from î to the other zones (in
this sense, B provides a view of the “outgoing” contaminant
from the detection zone).

For both the isolation and identification tree, we fix a
maximum depth D of the tree and, to ease the description, we
consider the same value of D for both trees but, in practice,
we could consider different maximum depths. The effect of
different values of D on the proposed cognitive monitoring
system will be evaluated in Section V. We also comment that,
in principle, D could be adapted based on the airflows and the
amount of contaminant measured in the detection zone: the
larger the flows and the measured amount, the larger the D
used (since the contaminant is expected to quickly propagate
to the rest of the building). On the other hand, small values
of D, thus small propagation trees, would be preferable when
dealing with multiple sources simultaneously.

When creating the propagation trees we assume that flows
in Z do not to form cycles but, when this assumption does
not hold, we can always use dummy, duplicate nodes in order
to break-up the cycles, so as to be able to apply the proposed
method.

Given D, we define AD and BD representing the sets of
pairs (zone, depth) corresponding to vertices of A and B
respectively, having distance from the root larger than zero
and smaller than D+ 1. More formally, the sets AD and BD
are defined as follows (line 10 of Algorithm 1):

AD = {(i, di) |i ∈ VA, di ∈ {1, . . . , D}} (10)

and
BD = {(i, di) |i ∈ VB, di ∈ {1, . . . , D}} (11)

where i identifies the zone and di its distance from the root in
the tree. In the example demonstrated in Figure 4 and using
D = 3, A3 = {(1, 1), (2, 1)} and B3 = {(5, 1), (4, 2), (8, 3)}.

2) Isolation and Identification Phases: We approach the
isolation and identification phases by assessing the presence
of contaminant within the zones of AD and BD, respectively.
The core statistical tool for assessing the contaminant in these
zones is again a CPM, whose goal here is to detect variations
even in those zones where the change-detection layer was
not able to detect a contaminant. This is reasonable since
the CPM, which operates in an off-line manner on a fixed-
length measurement sequence, is characterized more powerful
than the on-line change-detection mechanism operating at the
change-detection layer. This means than the CPM might be
able to detect changes even when the corresponding detection
layer was not.

To effectively assess the contaminant propagation within the
building we aggregate the sequence of measurements acquired
from all the zones of AD (and similarly of BD) and apply a
single CPM on the aggregated measurement sequence.
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Fig. 4. The Holmes house layout and the corresponding isolation tree A and identification tree B when the detection zone is î = 3. The directions of the
airflows between the various building zones are indicated with thick blue arrows on the building layout.

(i) Isolation Phase: The measurement sequences from all
the zones in AD are aggregated into a weighted-average
measurement sequence:

WAD
(t) =

∑
(j,dj)∈AD

wAD
j mj(t), t ∈ {1, . . . , T̂}, (12)

where the aggregation weights {wAD
j } are set inversely pro-

portional to the distance from the detection zone î along AD,
namely,

wAD
j =

1/dj∑
(j,dj)∈AD

1/dj
, ∀(j, dj) ∈ AD, (13)

where j is the zone index and dj its distance from the
root zone in the tree AD (line 11 of Algorithm 1). Setting
weights inversely proportional to the distance from î follows
from the implicit assumption that the detection zone is close
(possibly equal) to the source zone i∗, thus measurements
from zones closer to î yield a larger contribution in the
aggregated measurements. Of course, other solutions where
weights decrease with the distance from the detection zone
could be considered as well. Note that the weights in (13) are
normalized.

A CPM based on the Mann-Whitney test statistic (described
in Section IV-B) is here considered since we are interested in
detecting changes in the average contaminant concentration.
The CPM is applied with a confidence level αc to the aggre-
gated measurement sequence WAD

, i.e., CPM(WAD
) at line

12 of Algorithm 1: when the outcome of the CPM is equal to
1, the presence of the contaminant is validated in the isolation
tree meaning that the detection in î is most likely the result of
incoming flow from a zone of AD. Consequently, the estimated
source zone io becomes the zone in AD characterized by the

largest amount of contaminant acquired from t = 1 to t = T̂
(line 13 of Algorithm 1), i.e.,

io = argmax
(j,dj)∈AD

T̂∑
t=1

mj(t). (14)

Note that, in this case the detection in î can be safely
associated to the presence of a contaminant (line 14 of
Algorithm 1), hence there is no need to execute the subsequent
identification phase. On the contrary, when the outcome of the
CPM is equal to 0, no contaminant is detected in AD, hence
the estimated source zone io becomes î and the subsequent
identification phase must be executed to distinguish between
the presence of a contaminant (whose source zone is î) and a
possible sensor fault.

(ii) Identification Phase: The measurement sequences from
all the zones in BD are aggregated into a weighted average
measurement sequence

WBD
(t) =

∑
(j,dj)∈BD

wBD
j mj(t), t ∈ {1, . . . , T̂}, (15)

where the aggregation weights {wBD
j } are defined as in (13),

by replacing AD with BD (line 11 of Algorithm 1). The CPM
based on the Mann-Whitney test statistic is then applied, with
a confidence level αc, to the aggregated measurements WBD

as in line 16 of Algorithm 1.
When CPM(WBD

) = 1, the contaminant propagation is
validated and the detection in zone î is associated to the
real presence of a contaminant in the building (line 17 of
Algorithm 1). On the contrary, when CPM(WBD

) = 0, no
propagation of contaminant has been detected in BD, hence
corroborating the idea of having a fault affecting the sensor in
zone î (line 18 of Algorithm 1). We also take into consideration
the extreme cases where BD = ∅, a situation that occurs when
the source zone is not connected to any other building zone. In
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such a case, the cognitive layer cannot make any propagation
analysis and the most conservative decision should be made,
i.e., the change is considered to be a real contaminant.

Summing up, a CPM is used both for the isolation and
the identification phases. Their confidence levels, αc and
αv , which regulate the percentage of false positives, could
be equal. We emphasize that, here at the cognitive layer,
thresholds refer to the Mann-Whitney statistic, while the ones
used in the validation phase referred to the Lepage statistic.

We also emphasize that, once the contaminant propagation
has been confirmed by the cognitive layer, the proposed
cognitive monitoring system could be temporarily suspended
in those zones belonging to the propagation tree of î to avoid
consecutive activations/detections due to the propagation of the
contaminant through the building. In this case, small values of
D are preferable so as to reduce the number of zones in which
the contaminant detection is suspended during the cognitive
analysis.

3) Other Solutions: Except from the proposed solution, a
variety of other simpler solutions using CPMs could be also
considered for detecting contaminant variations in AD or BD.
We detail two such solutions below.

(i) Nearest Neighbour: The most straightforward solution
would be to analyse the sequence of measurements only in the
nearest zones (one hop away) of the detection zone î and to
detect the contaminant propagation by means of CPMs applied
to measurements coming from these zones. In particular, for
this solution a CPM is separately applied to the sequences
of measurements in all the zones at the first level of either
the isolation or the identification tree. This solution, however,
is not able to exploit the full contaminant propagation path
through the zones of the building, hence reducing its ability
to identify it.

(ii) K over N analysis: Another straightforward solution
consists in executing CPMs independently in all the zones of
either AD or BD, and in assessing that the contaminant has
propagated as soon as K of these CPMs reveal a change.
This solution allows to fully exploit the natural propagation
of the contaminant within the building but it has two main
drawbacks. First, it is very difficult to set K, since it actually
depends on the contaminant propagation which is a-priori
unknown; for this reason, the most conservative choice of
K = 1 is often made [47]. Second, in situations where the
detection at the first layer is due to a fault and there is no
contaminant propagation, there is a substantial risk of having
false positives by running several CPMs in parallel (the risk
increases with the number of considered zones) leading to the
erroneous identification of faults as contaminants.

V. EXPERIMENTAL RESULTS

The aim of this section is to evaluate the proposed solution
on a wide experimental campaign encompassing both contam-
inant sources and sensor fault scenarios.

A. The considered scenarios

As mentioned in Section II-A, in our analysis we considered
datasets generated by the Matlab-CONTAM toolbox [17]

Scenario Type Characteristics
S1 Contaminant Source at constant emission rate 50 g/h
S2 Contaminant Source with step change every 2 hours be-

tween 25 and 50 g/h
S3 Contaminant Source at constant emission rate 33 g/h
S4 Contaminant Source with step change every 2 hours be-

tween 13 and 33 g/h
S5 Fault Abrupt permanent additive fault of magni-

tude δ = 1
S6 Fault Abrupt permanent additive fault of magni-

tude δ = 0.5

TABLE I
THE SIX CONSIDERED SCENARIOS.

referring to the Holmes house case study. More specifically,
through the Matlab-CONTAM toolbox, we generated datasets
according to 6 different scenarios: 4 scenarios with actual
contaminant sources of different emission rates and 2 scenarios
of sensor faults. For the sensor faults, we are here assuming
permanent abrupt additive faults whose effect is to add a
permanent bias δ to the acquired measurements. Note that
in the considered scenarios the contaminant source and the
sensor fault do not occur at the same time. The six considered
scenarios are detailed in Table I. In all these scenarios, the
simulation time is 48 hours while the sampling time is 1 sam-
ple per minute: thus, each sensor acquires 2880 measurements.

It is assumed that natural ventilation is the dominant cause
of air flows in the building with wind coming from the north
(0◦) at a speed of 10 m/s. All the openings (doors or windows)
are assumed to be in the fully open position. We assume that
at time τ = 25 hours, a contaminant source or a sensor fault
is activated in the utility room (Z3), i.e., i∗ = 3, as shown
in Figure 4. There is one sensor in each zone able to record
the concentration of the contaminant at regular intervals at
its own location but the sensor measurements are corrupted
by noise following the model in (2). Noise is assumed to
be i.i.d. following a Gaussian distribution N (0, σ2). In our
experiments we considered five different values of σ, i.e.,
σ = {1, 1.5, 2, 2.5, 3}.

Note that, to ease the comparison in all the displayed
scenarios, we report results for a fixed source zone, i.e. i∗ = 3,
and wind direction, i.e., 0o. However, additional experiments
have been performed with different configurations of source
zones and wind directions obtaining similar results.

B. Figures of merits

The proposed cognitive monitoring system for contaminant
and sensor fault diagnosis has been evaluated from two differ-
ent perspectives: (i) detection and (ii) isolation/identification.
For this purpose we defined two different sets of figures of
merit.

Regarding detection, the following three figures of merit
have been considered:
• False Positive Rate (FPR), the percentage of experi-

ments in which the change has been detected before τ ;
• False Negative Rate (FNR), the percentage of experi-

ments in which the change has not been detected;
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• Detection Delay DD (in samples), that is the average
value of T̂ − τ ;

With respect to isolation/identification, we considered the
following two figures of merit:
• εiso, the percentage of experiments in which the source

zone has not been correctly recognized;
• εid, the percentage of experiments in which the validated

change has not been correctly identified (i.e., the presence
of a contaminant is associated to a sensor fault or vice
versa).

We computed the above figures of merit over 250 runs for
each scenario.

C. The Configuration of the Proposed Cognitive Monitoring
System

The proposed cognitive monitoring system has been config-
ured as follows. The ICI-based CDT at the change-detection
layer is trained on the first L = 400 samples, while the
parameter Γ that regulates the CDT responsiveness was set
to Γ = 2. At the validation layer, the confidence αv of the
CPM based on the Lepage statistics has been fixed at 0.05.
This configuration yielded successful detection performance
when used in a hierarchical CDTs based on ICI-based CDT,
as in [20]. Differently, at the cognitive layer, we considered
two different values for the maximum depth D, i.e., D = 3 and
D = 5, for both the isolation and identification trees. We also
considered two different confidence values for the CPM used
in the cognitive layer (the one based on the Mann-Whitney
statistic), i.e., αc = 0.05 and αc = 0.01.

D. Alternative solutions

The detection ability of the proposed cognitive monitoring
system is compared against that of the Scalar Trigger Algo-
rithm (STA) described in [4]. As mentioned in II-A, STA does
not require a priori information about the considered scenario
and is dynamically able to deal with noisy measurements. In
order to operate, STA requires to set several parameters related
to the sizes of three windows obtained over the acquired
measurements (i.e., the background, the guard and the present
window) and a threshold. To allow a fair comparison, the STA
parameters have been experimentally fixed to guarantee FPRs
in line with those provided by the proposed solution, i.e., the
size of the three windows mentioned above were set to 400,
20 and 100, respectively, while the threshold was set to 4.5.

We should stress at this point that STA is based on thresh-
olding mechanisms, while the proposed solution does not use a
threshold but relies instead on a sequential statistical analysis
of the datastreams (using ICI-based CDTs). This allows the
detection of any variations in the contaminant concentration
(even small ones).

The isolation performance of the proposed cognitive mon-
itoring system has been compared with the straightforward
solution where the detection zone î is considered as the
estimated source zone. This “naive” solution is supported by
the idea that the first zone detecting a change (either sensor
fault or contaminant presence) can be reasonably assumed to

Proposed Solution STA
Scenario σ FPR FNR DD FPR FNR DD

1.0 0.000 0.000 191.4 0.02 0.95 105.38
1.5 0.000 0.000 279.8 0.00 0.98 244.40

S1 2.0 0.000 0.000 378.0 0.00 0.99 89.00
2.5 0.000 0.000 489.2 0.00 0.98 234.33
3.0 0.000 0.008 590.9 0.01 0.99 259.00
1.0 0.000 0.000 262.3 0.02 0.96 195.43
1.5 0.000 0.000 401.5 0.00 0.98 322.75

S2 2.0 0.000 0.000 538.3 0.00 1.00 74.00
2.5 0.000 0.020 702.2 0.00 0.98 288.33
3.0 0.000 0.096 840.1 0.01 0.98 493.50
1.0 0.000 0.000 281.2 0.02 0.96 156.20
1.5 0.000 0.000 429.6 0.00 0.98 357.00

S3 2.0 0.000 0.004 597.9 0.00 1.00 74.00
2.5 0.000 0.076 790.9 0.00 0.99 336.00
3.0 0.000 0.228 950.0 0.01 0.99 259.00
1.0 0.000 0.000 401.5 0.02 0.98 216.00
1.5 0.000 0.000 622.0 0.00 0.98 357.00

S4 2.0 0.000 0.108 845.0 0.00 1.00 74.00
2.5 0.000 0.472 1005.3 0.00 0.99 336.00
3.0 0.000 0.712 1078.8 0.01 0.99 259.00
1.0 0.000 0.000 188.3 0.02 0.96 54.14
1.5 0.000 0.000 301.4 0.00 0.98 282.75

S5 2.0 0.000 0.000 424.6 0.00 0.99 89.00
2.5 0.000 0.012 571.3 0.00 0.98 234.33
3.0 0.000 0.052 700.7 0.01 0.99 259.00
1.0 0.000 0.000 421.4 0.02 0.98 201.50
1.5 0.000 0.096 693.5 0.00 0.98 357.00

S6 2.0 0.000 0.296 924.7 0.00 1.00 74.00
2.5 0.000 0.716 1029.6 0.00 0.99 336.00
3.0 0.000 0.856 1151.1 0.01 0.99 259.00

TABLE II
DETECTION: COMPARISON BETWEEN THE PROPOSED SOLUTION AND

STA ON THE CONSIDERED SCENARIOS.

be the source zone. However, as described below, this choice
might not provide satisfactory performance, in particular when
sensors are affected by heavy noise and the contaminant
concentration is low.

Finally, the identification ability of the proposed cognitive
monitoring system has been compared with the nearest neigh-
bour (NN ) approach and the K over N analysis (K/N )
described in Section IV-C with K = 1 (as suggested in [47]).

E. Discussion

1) Detection: The comparison between the detection ability
of the proposed cognitive monitoring system and STA is
detailed in Table II. Several comments arise.

First, the proposed solution is very effective and yields
prompt detection of both contaminants (scenarios S1 to S4)
and sensor faults (scenarios S5 and S6). Results in Table
II show that the proposed solution is able to keep under
control the false positives (in all the configurations of the
noise the FPR is 0%), while providing a very good detection
performance both in terms of false negatives and detection
delay. At the same time, STA achieves similar FPR (since this
is the criteria we used for tuning it), but at the expense of very
high FNRs leading to an ineffective detection system. Note
that even though STA provides lower DDs, this advantage is
negligible since most of the changes are not detected.

Second, as expected, both the FNR and DD increase with
σ. This is due to the fact that the signal-to-noise ratio (SNR)
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decreases as σ increases. In the scenarios affected by contami-
nant (i.e., S1 - S4), the SNR is defined as the ratio between ∆2

i∗

and σ2. If we estimate ∆i∗ in (1) as the average of contaminant
measurements after τi∗ in zone i∗, we obtain 1.19, 0.87, 0.78
and 0.57 for scenarios S1, S2, S3 and S4, respectively. Then,
the resulting SNR for scenario S1 ranges from 1.41 to 0.15
(depending on the value of σ), while for scenario S4 the SNR
ranges from 0.32 to 0.03. This justifies the performance loss
of the proposed solution in scenario S4 when σ > 2. Similarly,
for the sensor fault scenarios (i.e., scenarios S5 and S6) the
SNR can be measured as the ratio between δ2 and σ2. Hence,
for scenarios S5 and S6, the SNR ranges from 1 to 0.11 and
from 0.25 to 0.03, respectively. Thus, by looking at the results
in Table II we could conclude that, in order to guarantee a
FNR less than 0.1, the SNR should be larger than 0.01 in both
the contaminant and sensor-fault scenarios. Examples of the
acquired measurements in the source zone for scenarios S1 and
S5 can be found in Figure 5. Note from this figure how difficult
the problem becomes under low SNR conditions, making the
detection task impossible with the naked eye and without
using sophisticated detection solutions as the one proposed
in this paper. Another interesting thing to observe from the
figure is that by just looking at the source zone alone, it is
impossible to tell whether the increased concentration is due
to a contaminant source (S1) or a sensor fault (S4), which
motivates the proposed cognitive identification solution.

2) Isolation: The isolation ability of the proposed cognitive
monitoring system compared to the one of the naive solution
are shown in Table III - Columns 3 and 4.

As expected, the naive solution does not provide satisfactory
performance, in particular when σ is large and the contaminant
concentration is low. In these situations, the source zone i∗

might not be the first one to detect the presence of the con-
taminant and often the first detection of contaminant might be
provided by different zones receiving flow from i∗. Differently,
the proposed cognitive isolation phase (described in Section
IV-C) is able to better deal with measurement noise by relying
on the analysis of the isolation tree and the propagation of
contaminant up to î. Consequently, in scenarios S5 and S6
where there is no contaminant propagation (these are the
sensor-fault scenarios) the proposed and the naive solution
achieve similar results.

This corroborates the idea that the proposed analysis of the
expected propagation of the contaminant up to the detection
zone improves the isolation performance of the monitoring
system.

3) Identification: The last three columns of Table III show
the comparison among the proposed, the NN and the K over
N solutions. Results are particularly interesting and two main
comments arise.

First, for the first three contaminant scenarios (i.e., scenarios
S1, S2 and S3) the identification ability of the proposed
solution is quite impressive. In fact, for almost all the σ values
considered, the value of εid does not exceed 0.01 indicating
that the proposed solution is extremely good in recognizing
the presence of a contaminant. In scenario S4 the results
slightly worsen (recall this is scenario characterized by the
lowest SNR), while maintaining values of εid smaller than

0.08. Similarly, the proposed solution is able to effectively
identify the presence of faulty sensors. In fact, in Scenarios S5
and S6 the values of εid are generally less than 0.06 meaning
that in most of the cases the change is correctly associated to
a fault affecting the sensor.

Second, the proposed solution provides better performance
than the two alternative solutions. As expected, the NN so-
lution is not able to fully exploit the contaminant propagation
through all the zones of the building since it analyses only the
zones at the first level of the BD. This results in high values of
εid especially in cases of low contaminant concentration and
high values of σ (e.g., Scenario S4). Differently, the K over
N analysis is able to fully exploit the natural propagation
of the contaminant within the building since it analyses all
the zones of BD. This results in very low values of εid in
all the contaminant scenarios (S1-S4), but at the expense of
the identification ability in the sensor fault scenarios (S5 and
S6) where the values of εid are considerably higher than the
proposed solution.

In addition, we have tested the robustness of the proposed
solution by varying three of the key parameters involved:
D,αc and L. The experimental results with D = 5 presented
in Table IV, are close to the ones with D = 3 presented in
Table III. This is not surprising since the proposed solution is
able to take into account the distance of each considered zone
from the detection zone thanks to the weighting mechanisms
described in (12) and (15). Similarly, results with αc = 0.01
presented in Table V, are in line with those of αc = 0.05
presented in Table III, meaning that the proposed solution is
effective using both configurations. Finally, with respect to the
training sequence length L, as expected, our results indicate
that smaller values of L would result in a slight increase of
both FPR and FNR, while larger ones would allow to reduce
the FNR. These results have not been included in the paper
due to space limitations, but can be provided upon request.

4) Propagation Trees: As mentioned in Section IV-C, the
isolation and identification trees represent the core of the
cognitive isolation and identification phases of the proposed
monitoring system. The usefulness and effectiveness of these
trees can be evaluated by comparing the experimental results
in Tables III and VI. While the first table has been extensively
commented above, the second one shows the isolation and
identification ability of the considered solutions without the
isolation and identification trees (all the zones of the house are
considered regardless of the distance from the detection zone).
By comparing Tables III and VI, the advantages provided by
the isolation and identification trees become meaningful and
relevant for both the isolation and the identification phase.
As expected, the values of εiso and εid are larger in Table
VI meaning that exploiting the expected propagation path
from and to the detection zone is truly able to improve the
isolation and identification performance. It is interesting to
note from Table VI that without using the propagation trees,
the identification performance of the proposed solution is only
affected for contaminant source scenarios (S1-S4), while the
performance of the other solutions (NN and K/N ) becomes
worse for the sensor fault scenarios (S5-S6).
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(a) Scenario S1 (b) Scenario S5

Fig. 5. Examples of acquired measurements in the source zone without noise and with different levels of σ in Scenarios S1 and S5.

VI. CONCLUSIONS

The prompt detection and isolation of possible contaminants
is a key issue in intelligent buildings to ensure the quality of
life and safety of the occupants. This paper introduces a novel
cognitive monitoring system able to promptly detect variations
in the contaminant concentration, isolate the source zone and
identify whether the change can be safely associated to the
presence of a contaminant source or to a fault affecting a
sensor, which could easily occur in systems operating in real-
world conditions. The proposed cognitive solution relies on a
three-layer hierarchical architecture (the change-detection, the
validation and the cognitive layer) encompassing theoretically-
grounded statistical techniques and the ability to exploit the
expected propagation path of the contaminant within the build-
ing for discriminating between contaminant sources and sensor
faults. It is worth pointing out that the proposed cognitive
monitoring system can be operated on-line with very little a
priori information. The proposed solution was demonstrated
to be particularly effective in a realistic building case study
encompassing scenarios of both contaminant sources as well
as sensor faults.

In the future, we plan to investigate more complex scenarios
involving building case studies with a large number of zones
and a limited number of sensors. Moreover, we will consider
scenarios involving multiple contaminant sources or multiple
sensor faults or even the simultaneous presence of both.
For dealing with these more complex scenarios, we plan to
enhance our cognitive solution by considering other relevant
information for constructing the propagation trees, like the

estimated detection times of the contaminant in the various
building zones and the sequence of detection times.
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