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Abstract. Because of user movements and activities, heartbeats recorded
from wearable devices typically feature a large degree of variability in
their morphology. Learning problems, which in ECG monitoring often
involve learning a user-specific model to describe the heartbeat mor-
phology, become more challenging.
Our study, conducted on ECG tracings acquired from the Pulse Sensor
– a wearable device from our industrial partner – shows that dictio-
naries yielding sparse representations can successfully model heartbeats
acquired in typical wearable-device settings. In particular, we show that
sparse representations allow to effectively detect heartbeats having an
anomalous morphology. Remarkably, the whole ECG monitoring can be
executed online on the device, and the dictionary can be conveniently
reconfigured at each device positioning, possibly relying on an external
host.

1 Introduction

In this paper we deal with the problem of monitoring electrocardiogram (ECG)
tracings through wearable devices like the Pulse Sensor [1], which is shown in
Figure 1 and developed in a joint collaboration between MR&D and STMictro-
electronics. Wearable devices have a huge potential in health and fitness scenar-
ios, and in particular in the transitioning from hospital to home/mobile health
monitoring. However, to make these devices operational in real-world applica-
tions, it is necessary to address relevant machine-learning and data-science chal-
lenges. In particular, to provide prompt interaction with the user and prevent
massive data-transfer which can spoil their battery life, wearable devices have
to autonomously process the sensed data.

In the case of ECG tracings, this processing typically consists in classifying or
detecting anomalies in the heartbeats. These tasks are traditionally performed



Fig. 1. Pulse Sensor. The two external electrodes inject the current, while those in the
middle read the difference in electric potential. The Pulse Sensor can either analyze
onboard, store or transmit the ECG tracings.

by computing expert-based features like those in [6–10], which tend to mimic
the criteria clinicians use to interpret ECG tracings. Examples of these features
are the ECG values in specific locations of the heartbeat, interval features (e.g.,
the duration of the QRS, ST-T or QT complex, or the distance between two
consecutive peaks, namely the RR distance), and the average ECG energy over
these intervals.

Often, expert-based features are combined with data-driven ones, that do not
tend to reproduce some clinical evidence but they are directly learned from data
[11, 12], possibly by clustering heartbeats [13, 14]. In practice, learning data-
driven features boils down to learning a model to represent heartbeats. Since
heartbeats of each user are characterized by their own morphology [3] (see the
examples of Figure 2), global models are not able to properly describe heart-
beats of different users, and lead to poor classification [4] or anomaly detection
performance even when trained on large datasets. Therefore, it is convenient to
make these models user-specific or at least user-adaptable [5, 6].

Here we focus on data-driven models for learning the morphology that charac-
terize each user heartbeats, and to this purpose, we consider dictionaries yielding
sparse representations of heartbeats. Sparse representations are nowadays one
of the leading models in image and signal processing [17, 18], and dictionary
learning has been successfully used for modeling ECG tracings for anomaly-
detection [19, 20] and person-identification [21] purposes. Intuitively, learning
a dictionary yielding sparse representations corresponds to learning a union of
low-dimensional subspaces where user heartbeats live.

ECG tracings acquired by wearable devices are different from those typi-
cally considered in the literature, like the MIT-BIH Arrhythmia Database [15],
which contains relatively short segments of good-quality Holter recordings. In
the Pulse Sensor, for instance, the electrodes are closer than in an Holter device
and these could be mispositioned since they are typically placed by users them-
selves rather than by clinicians. Moreover, during long-term monitoring, user
movements might also cause device displacements. These issues might affect the
morphology of heartbeats [16, 3] and have implications on the model used to
describe the heartbeats of each user, which are better discussed in Section 2.2.



Fig. 2. Examples of heartbeats morphology. The top row (a, b and c) contains heart-
beats acquired from user 1 with the Pulse Sensor placed in position 1. In all these
heartbeats we depict also the P-waves, the QRS-complexes and the T-waves. The
small variations in the morphology of these heartbeats are also due to different heart
rates (72 bpm in a, 93 bpm in b and 77 bpm in c). Note also that the morphology
remains unaltered over time, since c was acquired more than 100 minutes after a and
b. The bottom row (d, e and f) contains heartbeats featuring a different morphology.
In particular, d reports an heartbeat from the user 1 acquired in position 2 (heart
rate of 81 bpm), e reports an heartbeat of user 2 (84 bpm) and c reports an example
of artifact due to movements of user 1. We also report heartbeats reconstructed by
the sparse coding with respect to the dictionary learned from user 1 position 1 (dot-
ted lines). Heartbeats in the top row are properly reconstructed (reconstruction errors
ra � 0.07, rb � 0.15 and rc � 0.10) since these are from the same user and posi-
tion. In contrast, the heartbeats in the bottom row show a poor reconstruction quality
(rd � 0.18, re � 0.50 and rf � 0.63). The reconstruction error can be thus used to
detect anomalous heartbeats, namely heartbeats that do not feature the morphology
characterizing a specific user and electrodes placement.

We here show that dictionaries yielding sparse representations are the right
choice for modeling ECG recordings in wearable devices, and that they allow
to detect anomalies directly on the device. To this purpose, we consider an
anomaly-detection algorithm similar to [22], and study its applicability on the
Pulse Sensor. This algorithm is tested over a large dataset of ECG tracings from
healthy users, where every heartbeat featuring morphology different from the
training ones is considered anomalous. Our experiments show that:

1) Dictionaries yielding sparse representations can successfully describe the over-
all variability in the morphology of heartbeats acquired by wearable devices like
the Pulse Sensor. These models do not seem likewise necessary in more controlled
situations, as for example in the MIT-BIH Arrhythmia Database, where there



is less variability in the normal heartbeats and anomalies are easier to detect
(Section 5).
2) It is possible to detect heartbeats that do not conform the user morphology
(i.e., anomalous heartbeats) directly on the device. Indeed, we analyze in detail
the computational complexity of a very efficient implementation of the consid-
ered anomaly-detection algorithm, and we perform some tests to conclude that
this can be reasonably executed in real-time on the Pulse Sensor (Section 6).
3) Dictionaries embedded on the Pulse Sensor can provide a user-adaptable and
position-adaptable monitoring solution. In fact, the dictionary learning can be
conveniently performed on an external host (e.g., the user’s smartphone), re-
quiring only few minutes of ECG tracings as training set. Our experiments also
show that this learning phase can tolerate small percentages of heartbeats cor-
rupted by user movements, thus that dictionary learning can be autonomously
performed at each device placement (Section 6).

The paper is structured as follows. Section 2 presents the Pulse Sensor and
discusses the main challenges of ECG monitoring on wearable devices. The
anomaly-detection problem is formulated in Section 3, while we present the
considered algorithm in Section 4. Experiments in Section 5, performed on both
ECG tracings acquired from the Pulse Sensor and the MIT-BIH Arrhythmia
Database, show the that dictionaries yielding sparse representation can effec-
tively model heartbeats and detect those having a different morphology. In Sec-
tion 6 we study the overall feasibility of this monitoring solution on the Pulse
Sensor, while in Section 7 we draw conclusions along with future works.

2 The Pulse Sensor

2.1 Device Description

The Pulse Sensor [1] is a wearable device developed by MR&D in collaboration
with STMicroelectronics. It is a battery-powered device, designed for monitoring
ECG tracings correlated to other physiological information. In particular, this
device continuously acquires, stores and periodically transmits: ECG tracings,
measurements of heart rate and breathing rate.

The sensor suite of the Pulse Sensor is made up of one microelectromechanical
systems (MEMS) accelerometer, dedicated to estimate both the physical activity
and the body position, and four electrodes embedded in a patch (see Figure 1).
The outer ones inject AC current with intensity 100 µA and frequency 50 kHz,
while the central ones – placed at a distance of 8 cm – read a single-lead ECG
(thus a single univariate signal) and a bioimpedance signal.

The main block of electronic components comprises a signal amplifier, three
light-emitting diodes (LEDs), a Bluetooth module and a battery. The Bluetooth
module connects the Pulse Sensor with a host device (e.g. a smartphone, tablet or
a computer) in order to periodically transmit all the acquired signals. The inter-
nal battery is a rechargeable Lithium-ion one (3.7 VDC with 350 mAh capacity).
The LEDs provide information on the battery charge-status, on the current op-
erational mode of the device (engage, streaming and monitoring) and warnings



on the incoming signals. The adopted microcontroller is the STM32F103 which
incorporates the ARM R© CortexTM-M3 32-bit RISC core operating at a 72 MHz
and embeds up to 32 Kbytes of flash memory and up to 10 Kbytes of SRAM.

A peculiarity of this device is modularity, which allows to tailor the sensor
suite around specific application requirements. In fact, it is very easy to add new
types of electrodes, scaling the software or replacing the microcontroller with a
more powerful one as far as this is compatible with the firmware and pinout.

2.2 Issues of ECG monitoring on wearable devices

We here discuss the main issues that makes real-time monitoring of physiological
signals particularly challenging in wearable devices like the Pulse Sensor.

Variety of ECG morphology. First of all, during long-time monitoring, the
heartbeat morphology might be subject to variations due to changes in the heart
rate. This makes ECG tracings acquired by the Pulse Sensor more heterogeneous
than ECG tracings acquired in more controlled situations, as for example those
of MIT-BIH Arrhythmia Database, which refer to relatively short time intervals.
Moreover, the sensing capabilities of the Pulse Sensor are lower than those of
devices typically used in clinical trials, since a single ECG tracing is acquired
from two electrodes placed at a relatively close distance. The overall variability
in the morphology of heartbeats acquired by wearable devices is thus quite large,
and difficult to describe.

Computational Constraints. In wearable devices meant for real-time moni-
toring of physiological signals, sensors continuously acquire data, producing a
massive amount of information to be analyzed and possibly stored or transmit-
ted. Needless to say, if the device were periodically transmitting the whole ECG
tracings to an host, its battery would be spoiled soon. Data transmission between
the wearable and the host can be reduced by enabling the device to autonomously
process the sensed data, thus transmitting only the most relevant information,
like heartbeats having an anomalous morphology. As such, algorithms used to
analyze heartbeats should be compliant with the device computing-capabilities.

Changes in user and device position. ECG tracings do not only depend on
the specific user, but also on the specific placement of the ECG electrodes [16,
3]. While this is not an issue when electrodes are placed by clinicians (that at
the meantime analyze the ECG tracings) this represents a serious problem in
the typical application scenario of wearable devices. In fact, the Pulse Sensor is
meant to be positioned by users themselves and, as such, electrodes could be
mispositioned, making the model used for automatic analysis unreliable since
the heartbeats morphology has changed (see Figure 2.d). The same problem
happens during long-term monitoring, when user movements might cause device
displacements. Therefore, the model learned on the device has to be easily re-
trainable every time the device is positioned, without requiring any supervision
by an expert clinician. Also, the device configuration should tolerate at least a
small fraction of heartbeats affected by user movements.



3 Problem Formulation

We denote by s : N Ñ R the ECG tracing which has been uniformly sampled in
time, and we assume that the heartbeats have been already segmented e.g., by
[29]. We define the i-th heartbeat si P Rp as

si � tspti � uq : u P Uu, (1)

where U is a neighborhood of the origin containing p samples, and ti denotes
the sample in the ECG tracing corresponding to the i-th R peak of the ECG
tracing. We assume that the normal heartbeats of each wearable-device user are
generated by a stochastic process PN , which characterizes the heartbeats’ mor-
phology. Our goal is to learn a model representing the heartbeats morphology;
to quantitatively assess the effectiveness of the learned model, we consider the
anomaly-detection problem, which is itself of primary concern in ECG monitor-
ing. More precisely, anomalous heartbeats are generated by a process PA � PN

and exhibits different morphology than heartbeats generated by PN . Anomalies
might be due, for instance, to arrhythmias (as those in the MIT-BIH Arrhyth-
mia Database), movements (as it typically happens in long-term monitoring,
e.g. see Figure 2), acquisition errors (which might occur in consumer devices),
or simply because these have been acquired from a different user or by changing
the electrodes placement (see Figure 2). Anomalies are detected by analyzing
each heartbeat si and determining whether it conforms or not the morphology
characterizing PN . When this is not the case, we consider the beat si as anoma-
lous. Since we analyze each beat independently we ignore anomalies that affect,
for instance, the heart-rate or that require inspecting multiple heartbeats. We
assume only that a training set TR of normal heartbeats is provided, as this
allows us to learn a model approximating PN . We do not require any example of
anomalous heartbeats, thus PA remains completely unknown. This is a reason-
able assumption since normal heartbeats are quite easy to collect and, at least in
healthy users, it is enough to record few minutes after having placed the device;
in contrast, anomalies are rare and difficult to gather thus the wide range of
signals covered by PA cannot be properly characterized.

4 The Considered Anomaly-Detection Algorithm

We consider a simple, yet effective, anomaly-detection algorithm that leverages
a dictionary yielding sparse representations of the normal heartbeats. In prac-
tice, this follows the approach in [22], where a change-detection algorithm was
used to monitor rock faces and detect structural changes in fixed-length signals
acquired by triaxial MEMS accelerometer. While we use the same model for de-
scribing normal data and we analyze the reconstruction error as in [22], we adopt
an outlier-detection technique rather than a sequential change-point method for
monitoring ECG. This choice better conforms the considered scenario, since the
ECG tracings are typically affected by sporadic anomalies rather than perma-
nent changes. In what follows we describe the two main steps of the considered
algorithm.



Fig. 3. Atoms of the dictionary learned from the user yielding normal heartbeats in
Figure 2. The parameters adopted for the training are n � 3, κ � 8 and m � 500.

4.1 Modeling Normal Heartbeats

Our modeling assumption is that the normal heartbeats si P Rp of a user are
generated from the process PN and can be well approximated by the following
linear model

si � Dxi , (2)

where D P Rp�n is a matrix called dictionary and the coefficient vector xi P Rn

is sparse [23]. Sparsity means that xi P Rn has few of nonzero components, thus
in practice that the `0 “norm” of xi is bounded, i.e., }xi}0 ¤ κ, where κ ¡ 0 is
the maximum number of nonzero coefficients allowed in these representations.

The dictionary D is learned from a training set containing normal heartbeats
of a single user. We stack the m heartbeats provided for training in the columns
of a matrix S P Rp�m. Dictionary learning consists in solving:

rD,Xs � arg min
rDPRp�n,�XPRn�m

} rD rX � S}2, such that }rxi}0 ¤ κ, i � 1, . . . , n (3)

where the sparsity constraint applies to each column of the matrix X P Rn�m,
which stacks the coefficient vectors of all the heartbeats in S. In practice, (3)
can be solved by the KSVD algorithm [24], which alternates the calculation of
the dictionary D and the sparse representations of the training heartbeats X.

Thus, the dictionary D is user-specific: its columns, which are referred to
as dictionary atoms, depict the most relevant morphologies characterizing user
heartbeats, as shown in Figure 3. Equation (2) implies that each heartbeat si is
approximated by a linear combination of at most κ dictionary atoms.

4.2 Detecting Anomalous Heartbeats

Learning D such that (2) holds for normal heartbeats corresponds to learning
a union of low-dimensional subspaces of Rp where normal heartbeats live. In
particular, since the κ atoms can be arbitrarily chosen among the n columns
of D, these subspaces can be at most κ-dimensional. The sparse representation
xi of an heartbeat si can be computed by projecting si on the closest of such
subspaces. This problem is referred to as sparse coding and it is formulated as

xi � arg min
rxPRn

}Drx� si}2 such that }rx}0 ¤ κ. (4)



The problem (4) is NP-Hard, and it is typically addressed by greedy algorithms.
In particular we here adopt the Orthogonal Matching Pursuit [25], an iterative
algorithm which selects the best column of D at each iteration. The OMP can
be well implemented in the Pulse Sensor, as discussed in Section 6.

We detect anomalies by assessing whether each heartbeat si to be tested falls
in the union of low-dimensional subspaces that characterizes normal heartbeats
for a specific user. In particular, we solve (4) and obtain xi, the coefficients of
the closest projection over subspaces of D. Then, we measure the reconstruction
error as

ri � }Dxi � si}2, (5)

where Dxi denotes the linear combination of dictionary atoms that best recon-
struct si (the reconstruction of the examples in Figure 2 is reported with dashed
lines). The reconstruction error ri is used to discriminate if si is generated by PN
or PA. In fact, large values of ri indicate heartbeats that are far from subspaces
spanned by columns of D and that as such have a different morphology. There-
fore, anomalous heartbeats are detected by determining whether ri exceeds a
suitable threshold γ ¡ 0, which has to be defined experimentally.

We remark that ri is a data-driven and user-specific feature, as it is entirely
defined from the dictionary D that is learned from the training set without any
a-priori information about the heartbeat morphology. Finally, other dictionary-
learning and sparse-coding algorithms have been proposed in the literature, and
in particular, some of them replace the constrained problems (3) and (4) with
their convex relaxation where sparsity is measured by the `1 norm of the coeffi-
cient vectors. These lead to basis pursuit denoising (BPDN) formulation [26]. In
the considered settings (see Section 5) these are however more computationally
demanding than the OMP, which can be reliably embedded on the Pulse Sen-
sor. It is also worth commenting that, when changing the problems (3) and (4),
monitoring the reconstruction error might not be the best option [27].

5 Experiments

In this section we consider two different datasets of ECG tracings: the former was
acquired using the Pulse Sensor, the latter is the MIT-BIH Arrhythmia Database
[15] that is commonly used in the literature. We consider the algorithm described
in Section 4 in a few anomaly-detection scenarios, as a way to quantitatively
assess the effectiveness of sparse representations in modeling heartbeats.

5.1 Datasets Description

The Pulse dataset contains 20 ECG tracings recorded from 10 healthy users3

(two tracings per user). The two acquisitions from each user have been per-
formed in different times, repositioning the Pulse Sensor such that the mor-
phology of heartbeats changes. Each ECG tracing lasts from 40 minutes up to 2

3 The dataset can be made available upon request.



hours and is acquired during normal-life activities, thus the heart rate can signif-
icantly vary along the same tracing. Due to motion artifacts or temporary device
detachments, these tracings sometimes contain low-quality segments (depicting
heartbeats as in Figure 2.e), which have been discarded by an experienced car-
diologist with the aid of a commercial software. While these heartbeats are not
anomalous from a clinical point-of-view, we exclude them as they do not show
the same morphology of others. Possibly, these heartbeats could be removed
directly on the Pulse Sensor by monitoring the MEMS recordings. Each ECG
tracing is preprocessed as in [7] in order to remove the baseline wander and
unwanted power-line and to attenuate high-frequency noise.

The MIT-BIH Arrhythmia Database [15] contains 48 ECG tracings lasting
around 30 minutes each, that have been extracted from long-term Holter record-
ings. These segments have been selected by expert cardiologists which discarded
the low-quality parts of these traces. Each ECG tracing contains a few arrhyth-
mias, and every heartbeat is provided with annotations by the cardiologists.
Both the heart rate and the morphology of normal heartbeats in this dataset
are characterized by less variability than in the Pulse dataset.

In all our experiments, we extract heartbeats using a temporal window U �
r�0.3, 0.3s centered in each R-peak, which yield heartbeats having p � 155 and
p � 216 samples in the Pulse Sensor and MIT-BIH dataset, respectively4.

5.2 Figures of Merit

We consider figures of merit traditionally used to assess the anomaly-detection
performance: i) False Positive Rate (FPR), namely the percentage of normal
heartbeats identified as anomalous and ii) True Positive Rate (TPR), namely the
percentage of heartbeats correctly identified as anomalous. Since both FPR and
TPR depend on the threshold γ ¡ 0 (see Section 4.2), we consider the Receiving
Operating Characteristic (ROC) curve, which are obtained by varying γ and
plotting the corresponding TPR against the FPR. An example of ROC curve is
provided in Figure 5: the closer the curve to the point (0,1), the better. To get a
quantitative assessment of the anomaly-detection performance, we measure the
area under the curve (AUC), which for the ideal detector (namely the one having
no false positives and no false negatives) is 1.

5.3 Experiments on the Pulse Dataset

Even though ECG recordings from the Pulse dataset were acquired from healthy
users and contain no clinical anomalies, we design two anomaly-detection exper-
iments to show that the considered algorithm can effectively detect heartbeats
having a different morphology. In particular, we consider as normal (i.e., gen-
erated from PN ) heartbeats acquired form a specific user with a specific po-
sitioning of the Pulse Sensor. Anomalous heartbeats (i.e., generated from PA)

4 Pulse Sensor has a sampling frequency of 256 Hz, while the sampling frequency in
the MIT-BIH Arrhythmia Database is 360 Hz.



Fig. 4. Performance of several configurations of the considered algorithm in the inter-
user anomaly detection. The three figures report the first quartile, the median and the
third quartile of the AUC values computed on the Pulse dataset. The best configuration
corresponds to n � 8, and κ � 3, as the performance degrades when considering simpler
models (small n, κ) and more flexible ones (large n, κ). The intensity ranges in the
three images are different for visualization sake.

are acquired from a different user or from a different device position. We use
the KSVD algorithm [24] to learn a dictionary D from each of these 20 ECG
tracing, using 500 randomly selected heartbeats5. Thus, for each dictionary D
we consider normal those heartbeats belonging to the same tracing used to learn
D (namely the same pair user-position), and anomalous those heartbeats from
any different tracing.

We test the following number of atoms n P t1, 2, 4, 8, 16, 32, 64u in D and
levels of sparsity κ P t1, 2, 3, . . . , rn1{2su. These settings are quite different from
those traditionally used in image and signal processing, where n ¡ p, yielding
redundant dictionaries. However, we experienced heartbeats can be properly
described by fewer atoms.

Figure 4 shows the performance on inter-user anomalies, where the anoma-
lous heartbeats come from different users. More precisely, we report the three
quartiles of the AUC values computed over the 20 � 18 � 360 combinations of
ECG tracings from different users. Overall, the AUC values are quite large and
this indicates that the considered algorithm can effectively discriminate between
users. The best performance are achieved when n � 8 and κ � 3. Observe that
the single-atom configuration (n � 1 and κ � 1) which reconstructs heartbeat by
scaling a single atom to match at best the heartbeats, achieves significantly lower
performance, as confirmed by a Wilcoxon signed-rank test (p-value � 10�16).

Figure 5(a) shows the ROC curves on intra-user anomalies, where we con-
sider as anomalous heartbeats acquired from the same user but with the device
in a different position. These curves are averaged over all the possible 20 combi-
nations of the ECG tracings, and we report only the best and single-atom con-

5 We have observed that larger training sets do not lead to an improvement in the
anomaly-detection performance.



Fig. 5. ROC curves computed on Pulse dataset (a), (b), and on MIT-BIH Arrhythmia
Database (c). In (a) two different configurations of parameters n and κ are considered
in the intra-user anomaly detection. The best configuration clearly outperforms the
single-atom one, confirming that a too simple model can not properly represent the
structure of normal heartbeats. In (b) we consider the inter-user anomaly detection
problem when the training set is corrupted by different percentages of outliers. This
algorithm can tolerate small percentages of outliers, as its performance clearly degrades
when the outliers reach 8% of training data. In (c) we compare the best and single-
atom configuration in the arrhythmia detection problem. The Wilcoxon signed-rank
test reveals no statistical evidence between the performance of the two configurations
(p-value � 0.13), and both achieve very high performance.

figurations. Still, changes in the device positioning can be better detected when
using multiple atoms than a single one. The AUC values are typically lower than
in the inter-user case (the median AUC here 0.81 and 0.77 in the best and single-
atom settings, respectively), and this indicates that in this dataset, intra-user
differences are more subtle than inter-user differences.

These experiments confirm that it is necessary to use a quite flexible model
to properly characterize the variety of normal heartbeats acquired by the Pulse
Sensor and that dictionaries yielding sparse representations can successfully learn
the heartbeat morphology of each user.

Finally, we remark that in ECG tracings acquired from wearable devices,
user’s movements can introduce low quality heartbeats, i.e., outliers, that might
impair dictionary learning. Thus, we repeat the inter-user anomaly-detection
experiment to assess whether the considered algorithm can tolerate small per-
centage of outliers in the training data. In particular, we consider the best con-
figuration and introduce in the training sets of 500 heartbeats, 1%, 2%, 4%, 8% of
outliers, which are selected among those heartbeats that were initially discarded.
This experiment is repeated 15 times, and the average ROC curves are reported
in Figure 5(b). It can be seen that the performance of the anomaly detection are
stable when including only 1% and 2% of outliers, but dramatically decreases
when outliers are 8%. This suggests that it is necessary to reduce the number of



Fig. 6. Performance of several configurations of the considered algorithm for inter-user
anomaly detection. The three figures reports the first quartile, the median and the
third quartile of the AUC values computed on the MIT-BIH Arrhythmia Database.
The best configuration corresponds to n � 8, κ � 3, as for the experiment in Figure 4.
The intensity ranges in the three images are different for visualization sake.

outliers from the training set, e.g., by some prescreening method that analyzes
MEMS recordings that are embedded on the Pulse Sensor.

5.4 Experiments on MIT-BIH Arrhythmia Database

We design two experiments also on the MIT-BIH Arrhythmia Database. In the
first one, we show that our method can successfully detect inter-users changes
also in this dataset, and that the performance are higher than in the Pulse
dataset. As in the previous experiment we learn a dictionary D from 500 normal
heartbeats of each tracing, considering the same range of parameters as in the
Pulse dataset. AUC values are reported in Figure 6 and indicate that the best
settings are the same (κ � 3 and n � 8). The Wilcoxon signed-rank test confirms
that these parameters yield significantly superior performance than the single-
atom settings (p-value � 10�16). However, in all these settings, the median AUC
is very close to 1, indicating very good detection performance independently
of the parameters adopted. This suggests that the ECG tracings in the Pulse
dataset are more difficult to model than in the MIT-BIH Arrhythmia Database,
and we speculate that this is due to the fact that the heartbeats from MIT-BIH
Arrhythmia Database present a low variability than in the Pulse dataset.

Finally, we assess the performance of the considered algorithm in an arrhythmia-
detection task, using the annotations provided in the MIT-BIH Arrhythmia
Database. In particular, we consider as anomalous the arrhythmias from the
same patient used for dictionary learning. The ROC curves averaged over the
entire dataset, for the best and single-atom configuration are very similar, and
are reported in Figure 5(c). The Wilcoxon signed-rank test on the corresponding
AUC values confirms that there is not a clear statistical evidence to claim that
one configuration is better than the other (p-value � 0.13). This results can be
explained by the fact that the arrhythmias show a very different morphology



with respect to normal heartbeats, which allows these two methods to perform
equally good.

6 Feasibility on the Pulse Sensor

We now investigate the overall feasibility of the considered anomaly-detection
solution on the Pulse Sensor. In particular, we study both the requirements of
dictionary learning, which is conveniently performed at each device positioning
on an external host, and the computational complexity of the sparse coding,
which has to executed in real time on the Pulse Sensor.

6.1 Dictoinary Learning and Device Configuration

Figures 4 and 5 confirm the need of learning the dictionary D every time the
device is positioned, and at the same time indicate that 500 heartbeats are
enough for this purpose. At an average heart rate, 500 heartbeats correspond to
7 minutes of ECG tracings, which can be conveniently transmitted via Bluetooth
to an external host, e.g., the user smartphone, where the KSVD algorithm [24]
can be executed6 to learn the dictionary D, which is then sent back to the Pulse
Sensor.

In the Pulse dataset these 7 minutes for training were acquired from users
that were typically working in their office, thus performing normal actions and
movements, while not in a rest state. In particular, experiments with outliers in
the training set indicate that the dictionary learning in our specific settings (i.e.,
n � 8, κ � 3), can well tolerate a small percentage of heartbeats affected by user
movements. Whenever higher robustness is requested, it is possible to leverage
robust dictionary-learning algorithms that adopt an `1 norm for the data-fidelity
term in (3), as in [28]. Alternatively, some form of pre-screening of the training
set could be performed analyzing the MEMS recordings.

Let us finally remark that even if the device would provide sufficient com-
puting power and memory for running the KSVD algorithm, it is nevertheless
convenient to keep track of the training sets and learned dictionaries on an ex-
ternal host. It is in fact desirable to assess the quality of the recent acquisitions,
for instance, by testing them with dictionaries previously learned.

6.2 Anomaly Detection on the Pulse Sensor

The ECG preprocessing we performed is the same as in [7], which consists in
two median and a low-pass, convolutional, filter. Heartbeats are then segmented
by locating the R-peaks using the Pan-Tompkins algorithm [29] and extracting
a suitable temporal window centered in the R-peaks as in Section 5.1. All these
operations are definitively compliant with computational capabilities of the Pulse
Sensor.

6 In the considered settings, the KSVD algorithm takes only few seconds on an ordi-
nary laptop.



Anomalous heartbeats are then detected by solving the sparse coding problem
(4), which represents the most time-demanding operation to be executed on
the device. For this task, we adopt the OMP algorithm [25]: other anomaly-
detection solutions based on sparse representations, like those in [19] and [27],
are way more computationally demanding and cannot be implemented on the
Pulse Sensor. The OMP is a greedy algorithm that solves (4) iteratively. In
what follows we briefly illustrate the main steps of the OMP in its efficient
implementation described in [30] (the same we used in our experiments), and
we describe its computational complexity in terms of floating point operations
(flop). At the very beginning z � DT s is computed at the cost of ¤ 2pn flop
and the residual vector is defined as rp0q � s. Then, the OMP iterates at most
κ times the following steps, where l is used as an iteration index:

Correlation compute the inner product of the residual with each atom, i.e.,
dT
k rpl�1q, k � 1, . . . , n with an overall cost of 2pn flop.

Maximum select the atoms that is most correlated with rpl�1q, thus maximiz-
ing |dT

k rpl�1q|, k � 1, . . . , n which costs ¤ 2n flop.

Projection compute the coefficients xplq by orthogonal projection of s on the
subspace spanned by the l atoms selected so far. This involves solving the
linear system z � DT

l Dlx, where Dl denotes the matrix containing all the
selected atoms. Exploiting Cholesky factorization of DT

l Dl, xplq can be com-
puted at a cost ¤ 2pl � 3l2 flop.

Update update the residual rplq � s�Dxplq at a cost of ¤ 2lp� p flop.

Considering the best parameters identified in our experiments (i.e., p �
155, n � 8, and κ � 3), a full execution of the OMP algorithm requires ap-
proximately 16K flop, which seems to be compliant with real-time operations
on the Pulse Sensor. However, to make sure that the overall Pulse Sensor com-
puting capabilities can guarantee real-time operation, we have performed some
tests (with the same parameter values) directly on the device. In particular,
thanks to the sensor suite modularity, we measured the execution times on the
STM32F401 processor embedding a CortexTM-M4F CPU with floating point
unit (FPU). Tests were conducted using two versions of the CMSIS DSP li-
brary7: disabling/enabling the FPU optimization. The execution times when
disabling the FPU optimization are a good estimate of the execution times on
the STM32F103 processor that is actually used on the Pulse Sensor (which em-
beds a CortexTM-M3 CPU without FPU). In this case, the OMP algorithm
took 58.13ms allowing 17 executions per second at the maximum frequency of
72MHz, confirming the concrete possibility of executing the algorithm on this de-
vice within the period of an heartbeat. When enabling the optimization for FPU
the OMP algorithm took only 6.58ms allowing 152 executions per second. These
results are particularly encouraging since, realistically, a STM32F401 processor
with FPU is going to be adopted in future embodiments of the Pulse Sensor.

7 CMSIS DSP Software Library,
https://www.keil.com/pack/doc/CMSIS/DSP/html/index.html



7 Conclusions

In this paper we investigate the problem of learning models to represent heart-
beat morphology, in particular for monitoring ECG tracings acquired from wear-
able devices. Our study, conducted on ECG tracings form the Pulse Sensor,
shows that dictionaries yielding sparse representations can effectively model the
heterogeneous morphology of these heartbeats. In particular, we show that dic-
tionaries can be successfully used to detect heartbeats having a morphology that
is different from the training ones, and that this model can be effectively used
in online monitoring schemes, implemented directly on the Pulse Sensor. Dic-
tionary learning instead can be conveniently performed on an external host as
it requires a limited amount of data to be transferred. Ongoing work concerns
techniques to make the device configuration robust to user movements during the
acquisition of the training set, which can be reasonably performed by pre-screen
outliers in the MEMS recordings.
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