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Other Examples of CD Problems

ECG monitoring: Detect arrhythmias / device mispositioning

Environmental monitoring: detect changes in signals 

monitoring a rockface

Stream mining: Fraud Detection

Stream mining: Online Classification Systems

Spam Classification Fraud Detection



The Change-Detection Problem

Often, these problems boil down to:

a) Monitor a stream 𝒙 𝑡 , 𝑡 = 1,… , 𝒙 𝑡 ∈ ℝ𝑑 of 

realizations of a random variable, and detect the 

change-point 𝜏, 

𝒙 𝑡 ∼ ൜
𝜙0 𝑡 < 𝜏
𝜙1 𝑡 ≥ 𝜏

,

where {𝒙 𝑡 , 𝑡 < 𝜏} are i.i.d. and 𝜙0 ≠ 𝜙1, 𝜙1 is unknown and 

𝜙0 can be possibly estimated from training data 
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The Change-Detection Problem

Often, these problems boil down to:

b) Determining whether a set of data 𝒙 𝑡 , 𝑡 = 𝑡0, … , 𝑡1 is

generated from 𝝓𝒐 and detect possible outliers

We refer to 

• 𝜙0 pre-change distribution / normal (can be estimated)

• 𝜙1 post-change distribution / anomalous  (unknown)
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The Change-Detection Problem

Often, these problems boil down to:

b) Determining whether a set of data 𝒙 𝑡 , 𝑡 = 𝑡0, … , 𝑡1 is

generated from 𝝓𝒐 and detect possible outliers
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Anomaly Detection Problem



THE ADDRESSED PROBLEM



Our Goal

Study how the data dimension 𝑑 influences

the change detectability, i.e., how difficult is

to solve these two problems
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Our Approach

To study the impact of the sole data dimension 𝑑 in 

change-detection problems we need to:

1. Consider a change-detection approach

2. Define a measure of change detectability that well

correlates with traditional performance measures

3. Define a measure of change magnitude that refers

only to differences between 𝜙0 and 𝜙1



Our Approach

To study the impact of the sole data dimension 𝑑 in 

change-detection problems we need to:

1. Consider a change-detection approach

2. Define a measure of change detectability that well

correlates with traditional performance measures

3. Define a measure of change magnitude that refers

only to differences between 𝜙0 and 𝜙1

Our goal (reformulated): 

Studing how the change detectability varies in change-

detection problems that have

• different data dimensions 𝑑

• constant change magnitude



Our Result

We show there is a detectability loss problem, i.e. that

change detectability steadily decreases when 𝑑 increases.

Detectability loss is shown by:

• Analytical derivations: when 𝜙0 and 𝜙1 are Gaussians

• Empirical analysis: measuring the the power of 

hypothesis tests in change-detection problems on 

real data
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Our Assumptions

To detect the change 𝜙0 → 𝜙1 we assume that

• 𝜙0 is unknown, can be estimated from a training set 

𝑇𝑅 = 𝑥 𝑡 , 𝑡 < 𝑡0, 𝑥 ∼ 𝜙0
• 𝜙1 is unknown, no training data are provided

We refer to 

• 𝜙0 as stationary / normal / pre-change distribution

• ෠𝜙0 as the estimate of 𝜙0 from a training set

• 𝜙1 as nonstationary / anomalous / post-change 

distribution



Presentation Outline

 Preliminaries:

• Assumptions 

• The change-detection approach

• The change magnitude 

• The measure of change detectability

 The detectability loss

 Detectability loss and anomaly detection in images



How? Monitoring the Log-likelihood

A typical approach to monitor the log-likelohood

1. During training, estimate ෠𝜙0 from 𝑇𝑅

2. During testing, compute 

ℒ 𝒙 𝑡 = log( ෠𝜙0(𝒙(𝑡)))

3. Monitor ℒ 𝒙 𝑡 , 𝑡 = 1,…
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How? Monitoring the Log-likelihood

A typical approach to monitor the log-likelohood

1. During training, estimate ෠𝜙0 from 𝑇𝑅

2. During testing, compute 

ℒ 𝒙 𝑡 = log( ෠𝜙0(𝒙(𝑡)))

3. Monitor ℒ 𝒙 𝑡 , 𝑡 = 1,…

This is quite a popular approach in sequential monitoring

and in anomaly detection

L. I. Kuncheva, “Change detection in streaming multivariate data using likelihood detectors," IEEE

Transactions on Knowledge and Data Engineering, vol. 25, no. 5, 2013.

X. Song, M. Wu, C. Jermaine, and S. Ranka, “Statistical change detection for multidimensional data," in

Proceedings of International Conference on Knowledge Discovery and Data Mining (KDD), 2007.

J. H. Sullivan and W. H. Woodall, “Change-point detection of mean vector or covariance matrix shifts

using multivariate individual observations," IIE transactions, vol. 32, no. 6, 2000.
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The Change Magnitude

We measure the magnitude of a change 𝜙0 → 𝜙1 by the 

symmetric Kullback-Leibler divergence

sKL 𝜙0, 𝜙1 = KL 𝜙0, 𝜙1 + KL 𝜙1, 𝜙0 =

= න log
𝜙0 𝒙

𝜙1 𝒙
𝜙0 𝒙 𝑑𝒙 + න log

𝜙1 𝒙

𝜙0 𝒙
𝜙1 𝒙 𝑑𝒙

In practice, large values of sKL 𝜙0, 𝜙1 correspond to 

changes 𝜙0 → 𝜙1that are very apparent, since sKL 𝜙0, 𝜙1
is related to the power of hypothesis tests designed to detect 

either 𝜙0 → 𝜙1 or 𝜙1 → 𝜙0 (Stein Lemma)

T. Dasu, K. Shankar, S. Venkatasubramanian, K. Yi, “An information-theoretic approach to detecting

changes in multi-dimensional data streams” In Proc. Symp. on the Interface of Statistics, Computing

Science, and Applications, 2006
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The Change Detectability

The Signal to Noise Ratio of the change

SNR 𝜙0 → 𝜙1 =

E
𝒙∼𝜙0

ℒ(𝒙) − E
𝒙∼𝜙1

ℒ(𝒙)
2

var
𝒙∼𝜙0

ℒ(𝒙) + var
𝒙∼𝜙1

ℒ(𝒙)

The SNR 𝜙0 → 𝜙1
• Measures the extent to which 𝜙0 → 𝜙1 is detectable by 

monitoring E ℒ(𝒙)

• If we replace E[⋅] and var[⋅] by the sample estimators 

we get the t-test statistic



DETECTABILITY LOSS



The Detectability Loss

Theorem

Let 𝜙0 = 𝒩(𝜇0, Σ0) and let 𝜙1 𝒙 = 𝜙0(𝑄𝒙 + 𝒗) where

𝑄 ∈ ℝ𝑑×𝑑 and orthogonal , 𝒗 ∈ ℝ𝑑, then

SNR 𝜙0 → 𝜙1 <
𝐶

𝑑

Where 𝐶 is a constant that depends only on sKL 𝜙0, 𝜙1

C. Alippi, G. Boracchi, D. Carrera, M. Roveri, "Change Detection in Multivariate 

Datastreams: Likelihood and Detectability Loss"  IJCAI 2016, New York, USA, July 9 - 13 



The Detectability Loss: Remarks

Theorem

Let 𝜙0 = 𝒩(𝜇0, Σ0) and let 𝜙1 𝒙 = 𝜙0(𝑄𝒙 + 𝒗) where

𝑄 ∈ ℝ𝑑×𝑑 and orthogonal , 𝒗 ∈ ℝ𝑑, then

SNR 𝜙0 → 𝜙1 <
𝐶

𝑑

Where 𝐶 is a constant that depends only on sKL 𝜙0, 𝜙1

Remarks:

• Changes of a given magnitude, sKL 𝜙0, 𝜙1 , become

more difficult to detect when 𝑑 increases

• DL does not depend on how 𝜙0 changes

• DL does not depend on the specific detection rule

• DL does not depend on estimation errors on ෠𝜙0



The Detectability Loss: The Change Model

Theorem

Let 𝜙0 = 𝒩(𝜇0, Σ0) and let 𝜙1 𝒙 = 𝜙0(𝑄𝒙 + 𝒗) where

𝑄 ∈ ℝ𝑑×𝑑 and orthogonal , 𝒗 ∈ ℝ𝑑, then

SNR 𝜙0 → 𝜙1 <
𝐶

𝑑

Where 𝐶 is a constant that depends only on sKL 𝜙0, 𝜙1



The Detectability Loss: The Change Model

The change model 𝜙1 𝒙 = 𝜙0(𝑄𝒙 + 𝒗) includes:

• Changes in the location of 𝜙0 (i.e, +𝒗)

𝜙0

𝜙1
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The Detectability Loss: The Change Model

The change model 𝜙1 𝒙 = 𝜙0(𝑄𝒙 + 𝒗) includes:

• Changes in the location of 𝜙0 (i.e, +𝒗)

• Changes in the correlation of 𝒙 (i.e, 𝑄𝒙)

It does not include changes in the scale of 𝜙0 that can be 

however detected monitoring | 𝒙 |

𝜙0

𝜙1



The Detectability Loss: The Gaussian Assumption

Theorem

Let 𝜙0 = 𝒩(𝜇0, Σ0) and let 𝜙1 𝒙 = 𝜙0(𝑄𝒙 + 𝒗) where

𝑄 ∈ ℝ𝑑×𝑑 and orthogonal , 𝒗 ∈ ℝ𝑑, then

SNR 𝜙0 → 𝜙1 <
𝐶

𝑑

Where 𝐶 is a constant that depends only on sKL 𝜙0, 𝜙1



The Detectability Loss: The Gaussian Assumption

Assuming 𝜙0 = 𝒩(𝜇0, Σ0) looks like a severe limitation.

• Other distributions are not easy to handle analytically

• We can prove that DL occurs also in random variables

having independent components

• The result can be empirically extended to the 

apprimations of ℒ ⋅ typically used for Gaussian

mixtures



The Detectability Loss: Empirical Analysis

The data

• Two datsets from UCI database (Particle, Wine)

• Synthetically generate streams of different dimension 𝑑

• Estimate ෠𝜙0 by GM from a stationary training set

• In each stream we introduce 𝜙0 → 𝜙1 such that

𝜙1 𝒙 = 𝜙0 𝑄𝒙 + 𝒗 and sKL 𝜙0, 𝜙1 = 1

• Test data: two windows 𝑉0 and 𝑉1 (500 samples

each) selected before and after the change. 

𝑡𝑡

𝒙
(𝑡
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The Detectability Loss: Empirical Analysis

The change-detectabiltity measure:

• Compute ℒ ෠𝜙0(𝒙) from 𝑉0 and 𝑉1, obtaining 𝑊0 and 𝑊1

• Compute a test statistic 𝒯(𝑊0,𝑊1) to compare the two

• Detect a change by an hypothesis test

𝒯 𝑊0,𝑊1 ≶ ℎ

where ℎ controls the amount of false positives

• Use the power of this test to assess change

detectability

𝑡

ℒ
𝒙
𝑡

𝑊1𝑊0

𝑡

ℒ
𝒙
𝑡



DL: the Power of HTs on Gaussian Streams

Gaussians Remarks:

• 𝜙1 is defined analytically

• The t-test detects changes in

expectation

• The Lepage test detects changes

in the location and scale

Results

• The HT power decays with 𝑑: DL

does not only concern the

upperbound of SNR.

• DL is not due to estimation errors,

but these make things worst.

• The power of the Lepage HT also

decreases, which indicates that

the change is more difficult to

detect also monitoring the variance

Lepage log(𝜙0(⋅))

Lepage log( ෠𝜙0(⋅))

t-test  log(𝜙0(⋅))

t-test  log( ෠𝜙0(⋅))



Results: the Power of the Hypothesis Tests

Particle Wine



Results: the Power of the Hypothesis Tests

Particle Wine• DL: the power of Hypothesis Tests

also decays with 𝑑, not just the

upperbound of SNR.

• DL occurs also in non-Gaussian data

• The Lepage statistic also decreases,

which indicates that the change is

more difficult to detect also monitoring

the variance

• Experiments on synthetic datasets

confirms that DL is not due to

estimation errors of ෠𝜙0



DETECTABILITY LOSS AND 

ANOMALY DETECTION IN IMAGES



The Considered Problem



Patch-based processing of nanofibers

Analyze each patch of an image 𝑠

𝐬𝑐 = {𝑠 𝑐 + 𝑢 , 𝑢 ∈ 𝒰}

and determine whether it is normal or anomalous

Patches 𝐬c ∈ ℝ𝑝 are too high-dimensional (𝑝 ≫ 0) for 

modeling the distribution 𝜙0 generating normal paches

We need to extract suitable features to reduce the 

dimensionality of our anomaly-detection problem.



Feature Extraction

Expert-driven features: On each patch, compute

• the average, 

• the variance, 

• the total variation. 

These are expected to distinguish normal and anomalous

patches

Data-driven features: our approach consists in

1. Learning a model 𝒟 that describes normal patches

2. Assessing the conformance of each patch 𝐬𝑐 to 𝒟



𝒟: Dictionary of patches

Sparse representations have shown to be a very useful 

method for constructing signal models

The underlying assumption is that

𝐬 ≈ 𝐷𝜶 i. e., 𝐬 − 𝐷𝜶 2 ≈ 0

and 𝜶 ∈ ℝ𝑛 where:

• 𝐷 ∈ ℝ𝑝×𝑛 is the dictionary, columns are called atoms

• the coefficient vector 𝐱 is sparse 

− 𝜶 0 = 𝐿 ≪ 𝑛 or 

− 𝜶 1 is small 

The dictionary is learned a training set of normal patches.

We learn a union of low-dimensional sub-spaces where

normal patches live



The dictionary of normal patches

Example of training patches Few learned atoms (BPDN-based learning)



Data-Driven Features

To assess the confrmance of 𝒔𝑐 with 𝒟 we perform the

Sparse coding:

𝜶 = argmin
෥𝜶∈ℝ𝑛

𝐷෥𝜶 − 𝐬 𝟐
𝟐 + 𝜆 ෥𝜶 1, 𝜆 > 0

which we solve using the BPDN problem (using ADMM).

We then measure

𝐷𝜶 − 𝐬 𝟐
𝟐

and 

𝜶 𝟏

Data-driven features are 𝐱 =
𝐷𝜶 − 𝐬 𝟐

𝟐

𝜶 1



Detecting Anomalies

Normal patches are expected to yield features 𝐱 that are 

i.i.d. and that follow a (unknown) distribution 𝜙0,
anomalous patches do not, as they follow  𝜙1 ≠ 𝜙0

We are back to the original problem

“Determining whether a set of data 𝒙𝑐 , 𝑐 = 1,… is

generated from 𝝓𝒐 and detect possible outliers"

𝑡

𝒙
(𝑡
)

……

𝜙1𝜙0 𝜙0

Anomaly Detection Problem











The ROC curves

Tests on 40 images with 

anomalies manually 

annotated by an expert

The proposed anomaly 

detection algorithm 

outperforms expert-driven 

features and other 

methods based on sparse 

representations



Detectability Loss on these nanofibers

Selecting the good features is obviously important.

Why not stacking data-driven and expert-driven features?

Consider 𝑑 = 3, 4, 5 dimensional features

• We selectively add the three expert-driven features to 

the two data-driven ones

• We always fit a GM model to a large-enough number of 

training data



Detectability Loss on these nanofibers

Anomaly detection

performance 

progressively decay

when 𝑑 increases



Detectability Loss and Irrelevant Features

Irrelevant features, namely features that:

• are not directly affected by the change

• do not provide any additional information for change

detection purposes (i.e. leave sKL 𝜙0, 𝜙1 constant)

Adding irrelevant feature yields detectability loss. 

Other issues might cause the performance decay

• A biased denisty function for ෠𝜙0
• Scarcity of training samples when 𝑑 increases

However, we are inclined to conclude that

• These expert-driven features do not add enough

relevant information on top of the data-driven ones (for 

anomaly-detection purposes).



Obviously is not always the case 

We developed data-driven features based on convolutional

sparse models

𝒔 ≈෍

𝑖=1

𝑛

𝒅𝒊 ⊛𝜶𝒊 , s. t. 𝜶𝒊 is sparse

where a signal 𝒔 is entirely encoded as the sum of 𝑛
convolutions between a filter 𝒅𝒊 and a coefficient map 𝜶𝒊

Pros:

• Translation invariant representation

• Few small filters are typically required

• Filters exhibit very specific image structures

• Easy to use filters having different size

Collaboration with Los Alamos National Laboratory, NM, USA



Example of Learned Filters

Training Image Learned Filters



Convolutional Sparsity for Anomaly Detection

If we consider the convolutional sparse coding

ෝ𝜶 = argmin
𝜶 𝑛

෍

𝑖=1

𝑛

𝒅𝒊 ⊛𝜶𝒊 − 𝐬

𝟐

𝟐

+ 𝜆෍

𝑖=1

𝑛

𝜶 1

we can build the feature vector as:

𝒙𝑐 =

ෑ

𝒄

෍

𝑖=1

𝑛

𝒅𝒊 ⊛ ෝ𝜶𝒊 − 𝐬

𝟐

𝟐

෍

𝑖=1

𝑛

ෑ

𝒄

ෝ𝜶

𝟏

…but unfortunately, detection performance are rather poor



Sparsity is too loose a criterion for detection

The two (normal and anomalous) patches

exhibit same sparsity and reconstruction error
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Convolutional Sparsity for Anomaly Detection

Add the group sparsity of the maps on the patch 

support as an additional feature

𝑥𝑐 =

ෑ

𝒄

෍

𝑖=1

𝑚

𝒅𝒊 ⊛ ෝ𝜶𝒊 − 𝐬

𝟐

𝟐

෍

𝑖=1

𝑚

ෑ

𝒄

ෝ𝜶

1

෍

𝑖=1

𝑚

ෑ

𝒄

ෝ𝜶

2

D. Carrera, G. Boracchi, A. Foi and B. Wohlberg , “Detecting Anomalous Structures by 

Convolutional Sparse Models “  IEEE IJCNN 2015



Anomaly-Detection Performance

On 25 different textures and 

600 test images (pair of 

textures to mimic 

normal/anomalous regions)

Best performance achieved 

by the 3-dimensional 

feature indicators

Achieve similar 

performance than steerable 

pyramid specifically 

designed for texture 

classification



CONCLUDING REMARKS



Comments on Detectability Loss

 Detectability loss occurs:

• independently on the specific statistical tool used to 

monitor the log-likelihood 

• does not depend on how the change affects 𝜙0, e.g. 

the number of affected components.

 Empirical analysis confirms DL on real-world datastreams.

• It is important to keep the change-magnitude constant 

when changing 𝑑 (or the dataset) 

 Irrelevant components in 𝒙 are harmful! Consider this in 

feature-based anomaly-detection methods.

 Ongoing works: extending this study to other change-

detection approaches and to other families of distributions.

 Further details  http://arxiv.org/pdf/1510.04850v2

http://arxiv.org/pdf/1510.04850v2


Thanks, Questions?

C. Alippi, G. Boracchi, D. Carrera, M. Roveri, "Change Detection in Multivariate 

Datastreams: Likelihood and Detectability Loss"  IJCAI 2016, New York, USA, July 9 - 13 

D. Carrera, G. Boracchi, A. Foi and B. Wohlberg "Detecting Anomalous Structures by 

Convolutional Sparse Models" IJCNN 2015 Killarney, Ireland, July 12

D. Carrera, F. Manganini, G. Boracchi, E. Lanzarone "Defect Detection in Nanostructures", 

IEEE Transactions on Industrial Informatics -- Submitted, 11 pages.



BACKUP SLIDES



Sketch of the proof

Theorem

Let 𝜙0 = 𝒩(𝜇0, Σ0) and let 𝜙1 𝒙 = 𝜙0(𝑄𝒙 + 𝒗) where

𝑄 ∈ ℝ𝑑×𝑑 and orthogonal , 𝒗 ∈ ℝ𝑑, then

SNR 𝜙0 → 𝜙1 <
𝐶

𝑑

Where 𝐶 is a constant that depends only on sKL 𝜙0, 𝜙1

Sketch of the proof: recall

We compute an upper bound of the numerator and a lower 

bound of the denominator

SNR 𝜙0 → 𝜙1 =

E
𝒙∼𝜙0

ℒ(𝒙) − E
𝒙∼𝜙1

ℒ(𝒙)
2

var
𝒙∼𝜙0

ℒ(𝒙) + var
𝒙∼𝜙1

ℒ(𝒙)



Sketch of the proof

We now show that

sKL 𝜙0, 𝜙1 ≥ E
𝒙∼𝜙0

ℒ 𝒙 − E
𝒙∼𝜙1

ℒ 𝒙 (∗)

From  ℒ 𝒙 = log(𝜙0 𝒙 ) and the definition of sKL it follows

sKL 𝜙0, 𝜙1 = E
𝒙∼𝜙0

[log(𝜙0 𝒙 ] − E
𝒙∼𝜙0

log 𝜙1 𝒙 +

+ E
𝒙∼𝜙1

[log 𝜙1 𝒙 ] − E
𝒙∼𝜙1

[log(𝜙0 𝒙 ]

Thus

∗ ⟺ E
𝒙∼𝜙1

log 𝜙1 𝒙 − E
𝒙∼𝜙0

log 𝜙1 𝒙 ≥ 0



Sketch of the proof

E
𝒙∼𝜙1

log 𝜙1 𝒙 − E
𝒙∼𝜙0

log 𝜙1 𝒙 =

= ∫ log 𝜙1 𝒙 𝜙1 𝒙 𝑑𝒙 − ∫ log 𝜙1 𝒙 𝜙0 𝒙 𝑑𝒙

We denote

𝒚 = 𝑄′ 𝒙 − 𝒗 , 𝒙 = 𝑄𝒚 + 𝒗

𝑑𝒚 = det 𝑄′ 𝑑𝒙 = 𝑑𝒙

𝜙0 𝒙 = 𝜙1 𝑄′ 𝒙 − 𝒗 = 𝜙1(𝒚)

𝜙1 𝒙 = 𝜙1 𝑄𝒚 + 𝒗 =:𝜙2(𝒚)

then

E
𝒙∼𝜙1

log 𝜙1 𝒙 − E
𝒙∼𝜙0

log 𝜙1 𝒙 =

= ∫ log 𝜙1 𝒙 𝜙1 𝒙 𝑑𝒙 − ∫ log 𝜙2 𝒚 𝜙1 𝒚 𝑑𝒙 =

= KL 𝜙1, 𝜙2 ≥ 0



Sketch of the proof

Thus         

sKL 𝜙0, 𝜙1 ≥ E
𝒙∼𝜙0

ℒ 𝒙 − E
𝒙∼𝜙1

ℒ 𝒙

Moreover   

var
𝒙∼𝜙0

ℒ 𝒙 = var
𝒙∼𝜙0

−
1

2
𝜒2 =

𝑑

2

It follows

SNR 𝜙0 → 𝜙1 =

E
𝒙∼𝜙0

ℒ(𝒙) − E
𝒙∼𝜙1

ℒ(𝒙)
2

var
𝒙∼𝜙0

ℒ(𝒙) + var
𝒙∼𝜙1

ℒ(𝒙)
≤
sKL 𝜙0, 𝜙1

2

𝑑/2


