NSL: PASSIVE APPROACHES

Giacomo Boracchi¹ and Gregory Ditzler²

¹ Politecnico di Milano Dipartimento Elettronica e Informazione Milano, Italy

² The University of Arizona Department of Electrical & Computer Engineering Tucson, AZ USA

giacomo.boracchi@polimi.it, ditzler@email.arizona.edu

ONSE A PASSIVE VIEW

(BACK TO)ADAPTATION STRATEGIES

- Active: the learner K is combined with a tool to detect concept drift that pilots adaptation.
- Passive: assume the process undergoes continuous adaptation.

WHAT IS PASSIVE LEARNING?

- It's all about the adaptation mechanism employed to cope with the change!
 - active approaches rely on an explicit detection of the change in the data distribution to activate an adaptation mechanism
 - passive approaches continuously update the model over time (without requiring an explicit detection of the change)
 - Passively assume that some type of change is present in the data stream
- Is one approach more correct than another? No!
 - Benchmarking Dilemma What makes an algorithm successful? Detection delay? Classification error? Can we make the comparison fair?
- Dicotomy of Passive Learning
 - Single Classifier
 - Ensemble
 - Batch versus Online

SINGLE CLASSIFIER NODELS

CONCEPT-ADAPTING VERY FAST DECISION TREE

- Decision tree models are very popular with traditional supervised learning, but how can we use them with concept drift in the data stream?
- Concept-adapting Very Fast Decision Tree learner (CVFDT) is an online decision tree algorithm
- CVFDT attempts to stay current by growing alternative sub-trees until an old sub-tree is accurate then it is replaced
 - The current split at a node in the tree may not be optimal throughout all of time
 - Use windows of samples to evaluate the tree to remove the low quality sub-trees
 - Time complexity of O(1)

STOCHASTIC GRADIENT DESCENT & ELM

- Stochastic gradient descent (SGD) is an online representation of classical "batch" gradient descent algorithm
 - Commonly used to train neural networks
 - Mini-batches are sometimes used at each timestep to achieve a smoother convergence in the function being minimized
- SGD has been implemented using a linear classifier minimizing a hinge loss function for learning in nonstationary environment
 - Massive Online Analysis (more about this later) has an implementation of this approach in their software package
- An Extreme Learning Machine has been also combined with a time-varying NN for learning in nonstationary environments

ONLINE INFORMATION NETWORK

- OLIN (online information network) is fuzzy-logic algorithm that repeatedly learns a from sliding window of examples in order to update the existing model
 - Replace it by a former model
 - Or construct a new model if a major concept drift is detected
 - Borrow from active and passive approaches
- OLIN updates the fuzzy-info network by identifying non-relevant nodes, adding new layers and replacing the output layer when new data arrive. If a new concept was presented then a new fuzzy-info network is learned.
 - A new concept could be identified by a statistically significant drop is the classification accuracy on the latest labeled data

A DILEMMA OF SORTS

Stability

 The ability of an algorithm to recall old information that it has learned in the past

Plasticity

 The ability for an algorithm to learn new information when data are available

Sounds like we could have two opposing ideas!

OFENSEMBLE MODELS

Balancing the stability-plasticity dilemma

ENSEMBLE MODELS

- Ensemble based approaches provide a natural fit to the problem of learning in a nonstationary setting
 - Ensembles tend to be more accurate than single classifier-based systems due to reduction in the variance of the error
- (Stability) They have the flexibility to easily incorporate new data into a classification model when new data are presented, simply by adding new members to the ensemble
- (Plasticity) They provide a natural mechanism to forget irrelevant knowledge, simply by removing the corresponding old classifier(s) from the ensemble

$$\begin{array}{c} \mathcal{S}_{1}, \ldots, \mathcal{S}_{t} \\ \hline \\ \mathsf{Add Expert} \ h_{t} \ \mathrm{to} \ H \\ \hline \\ \mathsf{Update Weights} \\ \hline \\ \mathsf{Update Weights} \\ \hline \\ \mathsf{H}(H, f_{t+1}) \\ \hline \\ \\ \mathsf{Measure} \ \ell(H, f_{t+1}) \\ \hline \\ \\ \mathsf{Predict} \ \mathcal{S}_{t+1} \\ \hline \\ \end{array}$$

ENSEMBLE MODELS

An **ensemble** of **multiple models** is preserved in memory $\mathcal{H} = \{h_0, \dots, h_N\}$

Each **individual** h_i , i = 1, ..., N is typically trained from a different training set and could be from a different model

Final prediction of the ensemble is given by (weighted) **aggregation of the individual predictions**

$$H(\boldsymbol{x}_{t}) = \underset{\boldsymbol{\omega} \in \boldsymbol{\Lambda}}{\operatorname{argmax}} \sum_{\boldsymbol{h}_{i} \in \boldsymbol{\mathcal{H}}} \alpha_{i} \left[h_{i}(\boldsymbol{x}_{t}) = \boldsymbol{\omega}\right]$$

Typically, one assumes data arrives in **batches** and each classifier is trained over a batch

ENSEMBLE MODELS

- Each individual implicitly refers to a component of a mixture distribution characterizing a concept
- In practice, often ensemble methods assume data (supervised and unsupervised) are provided in batches
- Adaptation can be achieved by:
 - updating each individual: either in batch or online manner
 - dynamic aggregation: adaptively defining weights ω_i
 - structural update: including/removing new individuals in the ensemble, possibly recovering past ones that are useful in case of recurrent concepts

TAXONOMY OF CD ADAPTATION IN ENSEMBLE

Ensemble based approaches provide a **natural fit** to the problem **of learning in nonstationary settings**,

- Ensembles tend to be more accurate than single classifier-based systems due to reduction in the variance of the error
- Stability: flexible to easily incorporate new data into a classification model, simply by adding new individuals to the ensemble (or updating individuals)
- Plasticity: provide a natural mechanism to forget irrelevant knowledge, simply by removing the corresponding old individual(s) from the ensemble
- They can operate in continuously drifting environments
- Apadtive strategies can be applied to add/remove classifiers by on individual classifier and the ensemble error

SEA

A **fixed-size ensemble** that performs

- batch learning
- structural update to adapt to concept drift

When a new batch $S = \{(x_0^t, y_0^t), (x_1^t, y_1^t), \dots, (x_B^t, y_B^t)\}$ arrives

- train h_t on S
- test h_{t-1} on S
- If the ensemble is not full (# $\mathcal{H} < N$), add h_{t-1} to \mathcal{H}
- Otherwise, **remove** $h_i \in \mathcal{H}$ that is **less accurate** on *S* (as far as this is worst than h_{t-1})

Prune the ensmeble to improve the performance

DWM

 Littlestone's Weighted Majority algorithm is an ensemble online algorithm for combining multiple classifiers learning from a stream of data; however, keeping the same classifiers in the ensemble for the duration of the stream could be suboptimal in a nonstationary setting

Dynamic weighted majority (DWM) algorithm is an ensemble method where:

- Individuals classifiers are trained on incoming data
- Each individual is associated to a weight
- Weights are decreased to individuals that are not accurate on the samples of the current batch
- Individuals having low weights are dropped
- Individuals are created at each error of the ensemble
- Predictions are made by weighted majority voting
- Ensemble size is not fixed

DIVERSITY, DIVERSITY, DIVERSITY!

- Diversity in an ensemble has been shown to be benefical in ensembles that have been learned from a static distribution, but how can diversity be used in a nonstationary stream
- Diversity for Dealing with Drifts (DDD) combines two ensembles:
 - An High diversity ensemble
 - A Low diversity ensemble

and a concept-drift detection method.

- Online bagging is used to control ensemble diversity
- In stationary conditions, predictions are made by low-diversity ensemble
- After concept drift, the ensembles are updated and predictions are made by the high-diversity ensemble.

MINKU, L. L.; YAO, X. . "DDD: A New Ensemble Approach For Dealing With Concept Drift.", *IEEE Transactions on Knowledge and Data Engineering*, IEEE, v. 24, n. 4, p. 619-633, April 2012

ONLINE BAGGING & BOOSTING

Central Concept

- Bagging and boosting works well for batches of data; however, these approaches are not equipped to handle data streams. Oza developed approaches to perform this batch to online version
- Issue: Online bagging and boosting does not account for concept drift
- Parallel to Active: Implement Change detection to reset classifiers

• Return $h(x) = argmax_{c \in C} \sum_{m:h_m(x)=y} log \frac{1}{\beta_m}$.

ADAPTIVE SIZE HOEFFDING TREES (ASHT)

- Online bagging & boost are not designed for learning in nonstationary environments. How can we modify the base classifier to learn concepts over time?
- Thoughts on pruning trees
 - In a slowly changing environment, larger trees can better capture the concepts
 - In a quickly changing environment, smaller trees can adapt quickly to new concepts with new examples from the stream
 - Solution: Ensembles with different size Hoeffding trees
- Examples from the stream are learned by different size Hoeffding trees. These trees are "reset" at different time intervals
 - Short trees are reset more often than larger trees
 - Opportunity: Active approach to tell us when to reset a tree (small and large)

ACCURACY UPDATED ENSEMBLE

Motivation

- Build a data stream mining algorithm that is not specific to one type of drift, but rather robust on
- The "size" of a classifier is important for many application, not only for memory limitations, but also for learning in a nonstationary environment
- The Accuracy Updated Ensemble (AUE2) learns a classifiers on the most recent data and weights them according to their accuracy; however, the base classifier is limited in its memory footprint to avoid unnecessarily large models
 - Weaker classifiers are discarded with the most recent (accurate) classifier
 - Potentially incorporates catastrophic forgetting

LEARN++.NSE

- Learn++ is an incremental learning ensemble to learn classifiers from streaming batches of data
 - Think boosting, but for incremental learning
 - Batches of data are assumed to be sampled iid from a distribution
- Learn++ works well on static distributions; however, classifier weights remain fixed, which is an ill-advised strategy if each batch of data is not sampled iid. Especially the testing data!
- Solution: Learn++.NSE: Similar to DWM, Learn++.NSE extends Learn++ for learning in nonstationary environments (NSE)

Polikar R., Udpa L., Udpa, S., Honavar, V., "Learn++: An incremental learning algorithm for supervised neural networks," IEEE Transactions on System, Man and Cybernetics (C), vol. 31, no. 4, pp. 497-508, 2001

LEARN++ NSE

- Learn⁺⁺.NSE: incremental learning algorithm for concept drift
 - Generate a classifier with each new batch of data, compute a pseudo error for each classifier, apply time-adjusted weighting mechanism, and call a weighted majority vote for an ensemble decision
 - Recent pseudo errors are weighted heavier than old errors
 - Works very well on a broad range of concept drift problems

Elwell R. and Polikar R., "Incremental Learning of Concept Drift in Nonstationary Environments" IEEE Transactions on Neural Networks, vol. 22, no. 10, pp. 1517-1531, 2011.

DISCOUNTED LOSS (ERROR)

LEARN++NSE IN ACTION

Accuracy

IMBALANCED & NSE

Class Imbalance

- Learners tend to bias themselves towards the majority class
 - Minority class is typically of great importance
- Many concept drift algorithms tend to use error or a figure of merit derived from error to adapt to a nonstationary environment
- Learn⁺⁺.CDS {Concept Drift with SMOTE}
 - Apply SMOTE to Learn⁺⁺.NSE
 - Learn⁺⁺.NSE works well on problems involving concept drift
 - SMOTE works well at increasing the recall of a minority class
- Learn⁺⁺.NIE {Nonstationary and Imbalanced Environments}
 - Classifiers are replaced with sub-ensembles
 - Sub-ensemble is applied to learn a minority class
 - Voting weights are assigned based on figures of merit besides a class independent error
- Other Approaches: SERA, UCB, muSERA, REA

A GLIMPSE AT ENSEMBLE ERROR

- Assuming the loss is convex in its first argument, the ensemble's expected loss becomes $\mathbb{E}_T[\ell(H, f_T)] \leq \sum_{k=1}^t w_{k,t} \mathbb{E}_T[\ell(h_k, f_T)]$

which is a weighted average each expert's loss

- Generally not computable and is difficult to interpret
- Decomposing the loss using existing domain adaptation theory with prior work leads to the bound t

$$\mathbb{E}_{T}[\ell(H, f_{T})] \leq \sum_{k=1}^{t} w_{k,t} \mathbb{E}_{T}[\ell(h_{k}, f_{T})]$$

$$\leq \sum_{k=1}^{t} w_{k,t} \left(\mathbb{E}_{k}[\ell(h_{k}, f_{k})] + \mathbb{E}_{T}[\ell(f_{k}, f_{T})] + \frac{1}{2} d_{\mathcal{H}\Delta\mathcal{H}} \left(\mathcal{U}_{k}, \mathcal{U}_{T}\right) \right)$$

Looks bad! But interpretable!

Loss(ensemble) < weightedSum(training loss + labeling disagreement + divergence of unlabeled data)

Real & virtual drifts have been defined in literature, but now related to loss!

INTERALITY LABELED ENVIRONMENTS

INITIALLY LABELED ENVIRONMENTS

- All previous learning scenarios assumed a supervised learning setting
 - Transductive and Semi-Supervised was discussed
 - What if we're only provide some labeled data at T_0 and all future time points are unlabeled?
 - Active Learning versus Learning in Initially Labeled Environments
 - AL: Assume that we have access to an oracle that can label the unlabeled data at a cost
 - ILNSE: Extreme latency verification! No labeled data are received after T_0

Progression of a single class experiencing (a) translational, (b) rotational, and (c) volumetric drift.

Data

Dyer K., Capo R., Polikar R., "COMPOSE: A Semi-Supervised Learning Framework for Initially Compose Labeled Non-Stationary Streaming Data" IEEE Transactions on Neural Networks and Learning Systems, vol. 25, no. 1, pp. 12-26, 2014

Dyer K., Capo R., Polikar R., "COMPOSE: A Semi-Supervised Learning Framework for Initially Compose Labeled Non-Stationary Streaming Data" IEEE Transactions on Neural Networks and Learning Systems, vol. 25, no. 1, pp. 12-26, 2014

Dyer K., Capo R., Polikar R., "COMPOSE: A Semi-Supervised Learning Framework for Initially Compose Labeled Non-Stationary Streaming Data" IEEE Transactions on Neural Networks and Learning Systems. vol. 25. no. 1, pp. 12-26, 2014 Systems, vol. 25, no. 1, pp. 12-26, 2014

Dyer K., Capo R., Polikar R., "COMPOSE: A Semi-Supervised Learning Framework for Initially Compose Labeled Non-Stationary Streaming Data" IEEE Transactions on Neural Networks and Learning Systems. vol. 25. no. 1. pp. 12-26. 2014 Systems, vol. 25, no. 1, pp. 12-26, 2014

Dyer K., Capo R., Polikar R., "COMPOSE: A Semi-Supervised Learning Framework for Initially Compose Labeled Non-Stationary Streaming Data" IEEE Transactions on Neural Networks and Learning Systems. vol. 25. no. 1. pp. 12-26. 2014 Systems, vol. 25, no. 1, pp. 12-26, 2014

Dyer K., Capo R., Polikar R., "COMPOSE: A Semi-Supervised Learning Framework for Initially **Compose** Labeled Non-Stationary Streaming Data" IEEE Transactions on Neural Networks and Learning Systems, vol. 25, no. 1, pp. 12-26, 2014 Systems, vol. 25, no. 1, pp. 12-26, 2014

COMPOSE

Sarnelle J., Sanchez A., Capo R., Haas J. and Polikar R., "Quantifying the Limited and Gradual Concept Drift Assumption," Int. Joint Conf. on Neural Networks (IJCNN), 2015.

COMPOSE IN ACTION

Dyer K., Capo R., Polikar R., "COMPOSE: A Semi-Supervised Learning Framework for Initially Labeled Non-Stationary Streaming Data" IEEE Transactions on Neural Networks and Learning Systems, vol. 25, no. 1, pp. 12-26, 2014.

COMMENTS FROM MY EXPERIENCE

- Ensemble classifier approaches have had more success that single classifier implementations for nonstationary environments*
- Hybrid approaches (active & passive) can be beneficial! There is no single best strategy
 - Sometimes we lump these approach in the the active category
- In practice, a weighted majority vote is a better strategy as long as we have a reliable estimate of a classifiers error

NSL: PASSIVE APPROACHES

Giacomo Boracchi¹ and Gregory Ditzler²

¹ Politecnico di Milano Dipartimento Elettronica e Informazione Milano, Italy

² The University of Arizona Department of Electrical & Computer Engineering Tucson, AZ USA

giacomo.boracchi@polimi.it, ditzler@email.arizona.edu

DATA SETS & GENERATORS

BUILDING A NONSTATIONARY DATA STREAM

• Recall: A concept drift occurs at time t if $\phi_t(\mathbf{x}, y) \neq \phi_{t+1}(\mathbf{x}, y)$

(we also say X becomes **nonstationary**)

- Drift might affect $\phi_t(y|\mathbf{x})$ and/or $\phi_t(\mathbf{x})$
 - Real and virtual drifts
 - Abrupt, Gradual, Fast
- Synthetic data streams can be generated by sampling data from a distribution that simulates the changes in the probabilities
 - E.g., Data could be sampled from a Gaussian distribution with changing parameters or classes abruptly changed/swap

THE VALUE OF SYNTHETIC & REAL DATA

- Concept drift algorithms have been benchmarked against a vast pool of synthetic and real-world data sets, both of which are of great importance to appropriately benchmarking
 - Synthetic data allow us to carefully design experiments to evaluate the limitations of an approach
 - Real world data serve as the ultimate benchmark about how we should expect an algorithm to perform when it is deployed

SEA DATA STREAM

- Hyperplane changes location at three points in time
 - Three features only two of which are relevant. One feature is noise with 10% noise in the labels
 - Class imbalance changes as the plane shift. Thus, change in $\phi(x|y)$ and $\phi(y)$ changes.
 - Dual change

G. Ditzler, G. Rosen, and R. Polikar, "Domain Adaptation Bounds for Multiple Expert Systems Under Concept Drift," International Joint Conference on Neural Networks, 2014. (best student paper)

KUNCHEVA'S DRIFT GENERATOR

- Narasimhamurthy & Kuncheva (2007) developed a Matlab package for simulating nonstationary data streams. Feature include:
 - STAGGER: The feature space is described by three features: size, color and shape. There are three data sources
 - Target Concept 1 : size = small AND color = red
 - Target Concept 2 : color = green OR shape = circular
 - Target Concept 3 : size = medium OR size = large
 - Drifting Hyperplanes: Similar to SEA with a plane
 - Drifting Multi-Modal Gaussian Distributions:
 - Stationary to Nonstationary Data Stream: The above data streams can be sampled from a static distribution; however, to add in nonstationarities, drift can be simulated in the stream by sampling from different concepts

STAGGER: Concept 2

15 objects

12 objects

DDD GENERATOR

- Minku et al.'s concept drift generator for Matlab
 - Circle: Given two variables and a point, do samples fall in or out of a circle with radius r? Let r change to simulate drift
 - Sine: $y > a \sin(b x + c) + d$? Changle the parameters a, b, c, and d.
 - Moving Hyperplane: Similar to SEA with a 1D line
 - **Boolean**: Modification of a STAGGER themed data set
- You can simulate a lot of different data streams with non-stationarities using the GUI

O REAL-WORLD DATA

REAL-WORLD DATA

- On real data it is sometimes difficult to obtain statistically significant results,
 - How can we quantify delays in change-detection applications on time-dependent data
 - For synthetic data we will know the location of the change; however, this is a bit more ambiguous with real-world data
 - Sometimes time-dependant are data correlated, e.g., the New South Whales electricity data (elec2)
 - Data may not be evolving through a sequence of stationary states
 - This is a problem for active methods
 - Difficult to estimate what could be the performance in real-world because sometimes supervised samples are provided depending on your previous performance
 - Labeled data are not always available to tell us what the current error is for the system to be able to update classifier paremeters (e.g., classifier weights)

REAL-WORLD DATA

- Airlines Data: 100M+ instances contain flight arrival and departure records. The goal is to predict if a flight is delayed.
- **Chess.com**: Game records for a player over approximately three years
- elec2:
- KDD Cup 1999 Data: Collection of network intrusion detection data.
- Luxembourg: Predict a users internet usage European Social Survey data
- NOAA: ~27 years of daily weather measurements from Nebraska. The goal is to predict rainfall.
- POLIMI Rock Collapse/Landslide Forecasting: Sensor measurements coming from monitoring systems for rock collapse and landslide forecasting deployed on the Italian Alps.
- Spam: Collection of spam & ham emails collected over two years

https://github.com/gditzler/ConceptDriftResources

NOTE ON ELEC2

- Data streams could have a temporal component that is not considered in the evaluation of a classifier(s)
 - Assumption is that data are not sampled iid, but still sampled independently
 - This is an issue if the data are auto-correlated
- Bifet et al. pointed out this flaw in the elec2 data set and presented a new statistic for benchmarking such data sets that have temporal dependence

$$\kappa^+ = \frac{n}{n-1} \cdot p_0 - \frac{1}{n-1}$$

Albert Bifet, Indrė Žliobaitė, Jesse Read, Bernhard Pfahringer and Geoff Holmes: Pitfalls in benchmarking data stream classification and how to avoid them ECML-PKDD 2013

SOFTWARE

MASSIVE ONLINE ANALYSIS

- Massive Online Analysis (MOA) is a Java software package for developing and benchmarking data stream algorithms
 - Active approaches
 - DDM
 - EDDM
 - ADWIN
 - Passive approaches
 - ASHT
 - SGD
 - AUE
 - AUE2

 Extensions: Scalable MOA (Apache Storm), and StreamDM (Apache Streaming Spark)

INCREMENTAL LEARNING WITH ENSEMBLES

- Matlab-based toolbox (collection) of scripts that implement several ensemblebased algorithms for learning in nonstationary environments
 - Weighted Majority Ensemble
 - Simple Majority Ensemble
 - Follow the Leader
 - Learn++/Learn++.NSE/Learn++.CDS
 - Example scripts are included

-						Data set					
_		rain	elec2	german	ringworm	splice	twonorm	wave	chess	lux	rank
-	1–0 loss										
-	nse	0.218 (3)	0.339 (1)	0.224 (1)	0.232 (2)	0.18 (1)	0.0234 (2)	0.139 (1)	0.329 (3)	0.102 (1)	1.67
	avg	0.216 (2)	0.365 (4)	0.259 (4)	0.242 (3)	0.206 (3)	0.0245 (3)	0.152 (3)	0.419 (4)	0.499 (4)	3.33
	exp	0.214 (1)	0.354 (3)	0.229 (2)	0.232 (1)	0.184 (2)	0.0231 (1)	0.144 (2)	0.31 (2)	0.485 (3)	1.89
	ftl	0.294 (4)	0.341 (2)	0.243 (3)	0.249 (4)	0.271 (4)	0.0387 (4)	0.162 (4)	0.288 (1)	0.13 (2)	3.11
-	logistic loss										
-	nse	0.781 (3)	0.897 (2.5)	0.69 (1.5)	0.747 (1)	0.756 (1.5)	0.489(1)	0.637 (1)	0.879 (3)	0.992 (2)	1.83
	avg	0.781 (2)	0.897 (2.5)	0.69 (1.5)	0.747 (2)	0.756 (1.5)	0.491 (3)	0.637 (2)	0.879 (4)	1.03 (4)	2.50
	exp	0.779 (1)	0.892 (1)	0.691 (3)	0.748 (3)	0.756 (3)	0.491 (2)	0.637 (3)	0.873 (2)	0.998 (3)	2.33
	ftl	0.87 (4)	0.938 (4)	0.738 (4)	0.795 (4)	0.824 (4)	0.502 (4)	0.665 (4)	0.83 (1)	0.627 (1)	3.33
		mse loss									
-	nse	0.652 (3)	0.896 (3)	0.716 (1.5)	0.705 (1.5)	0.569 (1.5)	0.0759 (1)	0.454 (3)	0.991 (3)	0.377 (1)	2.06
	avg	0.625 (1)	0.892 (2)	0.716 (1.5)	0.705 (1.5)	0.569 (1.5)	0.0768 (3)	0.41 (2)	0.933 (2)	1.47 (4)	2.06
in	exp	0.63 (2)	0.872 (1)	0.719 (3)	0.707 (3)	0.572 (3)	0.0766 (2)	0.409 (1)	0.918 (1)	1.1 (3)	2.11
_	ftl	1.18 (4)	1.37 (4)	0.971 (4)	0.997 (4)	1.09 (4)	0.155 (4)	0.646 (4)	1.15 (4)	0.52 (2)	3.78

G. Ditzler, G. Rosen and R. Polikar, "Discounted expert weighting for concept drift," International Symposium on Computational Intelligence in Dynamic and Uncertain Environments, 2013.

COMPARING MULTIPLE CLASSIFIERS

- Comparing multiple classifiers on multiple datasets is not a trivial problem
 - Confidence intervals will only allow for the comparison of multiple classifiers on a single dataset
- The rank based Friedman test can determine if classifiers are performing equally across multiple dataset
 - Apply ranks to the average of each measure on a dataset
 - Standard deviation of the measure is not used in the Friedman test

$$\chi_F^2 = \frac{12N}{k(k+1)} \left(\sum_{\substack{j=1\\j=1}}^k R_j^2 - \frac{k(k+1)^2}{4} \right)$$
$$F_f = \frac{(N-1)\chi_F^2}{N(k-1) - \chi_F^2}$$

- z-scores can be computed from the ranks in the Friedman test
 - The α -level or critical value must be adjusted based on the multiple comparisons being made
 - Bonferroni-Dunn procedure adjusts α to $\alpha/(k-1)$

$$z_m(i,j) = \frac{R_m(i) - R_m(j)}{\sqrt{\frac{k(k+1)}{6N}}}$$

J. Demsar, "Statistical Comparisons of Classifiers over Multiple Data Sets," J. Machine Learning Research, vol. 7, pp. 1-30, 2006.

CHALENCES AND PERSPECTIVES

CHALLENGES

- Learning in nonstaionary environments is becoming a more mature field; however, there are many sub-problems in the field that still need to be addressed more rigorously
 - **Unbalanced environment**: Data from each of the classes are extremely imbalanced, which is a serious problem if the algorithm is using error to track the environment.
 - Semisupervised: How can we best incorporate data that are unlabeled into our model if we cannot assume the data are sampled iid?
 - Consensus Maximization: Train supervised and unsupervised models
 - Semi-supervised vs. Transductive?
 - Latency verification: What if we cannot assume that the classifier will receive immediate feedback?
 - A study of extreme latency verification and how to perform benchmarks
 - Error estimation: How can error be accurately estimated in the precense of nonstationary data streams when an concept is abruptly re-introduced

CHALLENGES

- A theoretical framework is lacking that incorporates drift information in the labeled and unlabeled data
 - Less heuristics more statistics!
- Integration of expert-driven knowledge with data-driven knowledge

