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AN INTRODUCTORY EXAMPLE

Everyday millions of credit card transactions are 

processed by automatic systems that are in charge of 

authorizing, analyzing and eventually detect frauds

• Class unbalance

• High dimensional data 

• Streaming massive amount of transactions 

• Concept drift: new fraudulent strategies appear

• Concept drift: genuine transactions also evolves over 

time



A REAL WORLD FRAUD-DETECTION SYSTEM

Dal Pozzolo A., Boracchi G., Caelen O., Alippi C. and Bontempi G., Credit Card Fraud Detection and Concept-Drift 

Adaptation with Delayed Supervised Information , Proceedings of IJCNN 2015,
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AN INTRODUCTORY EXAMPLE

Everyday millions of credit card transactions are 

processed by automatic systems that are in charge of 

authorizing, analyzing and eventually detect frauds

Fraud detection is performed by a classifier that associates 

to each transaction a label «genuine» or «fraudulent»

Challenging classification problem because of

• High dimensional data (considering the number of 

supervised samples)

• Class unbalance

• A massive amount of transactions comes in a stream

• Concept drift: new fraudulent strategies appear

• Concept drift: genuine transactions evolves over time



CONCEPT DRIFT IN LEARNING PROBLEMS

Relevant examples of learning problem in presence of 

Concept Drift includes:

• recommendation systems and spam / email filtering 

where learning task consists in predicting user 

preferences / interests

Spam Classification



CONCEPT DRIFT IN LEARNING PROBLEMS

Relevant examples of learning problem in presence of 

Concept Drift includes:

• recommendation systems and spam / email filtering 

where learning task consists in predicting user 

preferences / interests

• Financial market analysis, where the learning task is to 

predict trends

• Environmental, and smart grids monitoring (anomaly 

detection and prediction tasks). Security (anomaly 

detection tasks)

Need to retrain/update the model to keep performance



IN PRACTICE…

In all application scenarios where 

• data-driven models are used 

• the data-generating process might evolve over time

• data come in the form of stream (acquisition over time)

Concept Drift (CD) should be taken into account.



THIS TUTORIAL

This tutorial focuses on:

• methodologies and algorithms for adapting data-

driven models when CD occurs

• learning aspects, change/outlier/anomaly detection 

algorithms are not discussed

• classification as an example of supervised learning 

problem. Regression problems are not considered 

here even though similar issues applies

• the most important approaches/frameworks that can 

be implemented using any classifier, rather than 

solutions for specific classifiers

• Illustrations refer to scalar and numerical data, even 

though methodologies often applies to multivariate 

and numerical/categorical data as well



DISCLAIMER

The tutorial is far from being exhaustive… please have a 

look at the very good surveys below

J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A survey on concept drift adaptation,” ACM 

Computing Surveys (CSUR), vol. 46, no. 4, p. 44, 2014

G. Ditzler, M. Roveri, C. Alippi, R. Polikar, “Adaptive strategies for learning in nonstationary environments,” IEEE 

Computational Intelligence Magazine, November 2015

C.Alippi, G.Boracchi, G.Ditzler, R.Polikar, M.Roveri, “Adaptive Classifiers for Nonstationary Environments” 

Contemporary Issues in Systems Science and Engineering, IEEE/Wiley Press Book Series, 2015



DISCLAIMER

The tutorial is far from being exhaustive… please have a 

look at the very good surveys below

The tutorial will be unbalanced towards active methods but 

• passive methods are very popular

• this is because of time limitation and a biased 

perspective (from my research activity)



DISCLAIMER

The tutorial is far from being exhaustive… please have a 

look at the very good surveys below

The tutorial will be unbalanced towards active methods but 

• passive methods are very popular

• this is because of time limitation and a biased 

perspective (from my research activity)

I hope this tutorial will help researcher from other disciplines 

to familiarize with the problem and possibly contribute to the 

development of this research filed

Let’s try to make this tutorial as interactive as possible



PRESENTATION OUTLINE

 Problem Statement

• Drift Taxonomy

 Active Approaches

• CD detection monitoring Classification Error

• CD detection monitoring raw data

• JIT classifiers

• Window comparison methods

 Passive Approaches

• Single Model Methods

• Ensemble Methods

 Concluding Remarks



PROBLEM STATEMENT
Learning in Nonstationary (Streaming) Environments



CLASSIFICATION OVER DATASTREAMS

The problem: classification over a potentially infinitely long

stream of data 

𝑋 = {𝒙𝟎, 𝒙𝟏, … , }

Data-generating process 𝒳 generates tuples 𝒙𝑡 , 𝑦𝑡 ∼ 𝒳

• 𝒙𝑡 is the observation at time 𝑡 (e.g., 𝒙𝑡 ∈ ℝ𝑑 )

• 𝑦𝑡 is the associated label which is (often) unknown 

(𝑦𝑡 ∈ Λ )

Typically, one assumes

• Independent and identically distributed (i.i.d.) inputs

𝒙𝒕, 𝑦𝑡 ∼ 𝑝 𝒙, 𝑦

• a training set is provided

𝑇𝑅 = 𝒙0, 𝑦0 , … , 𝒙𝑛 , 𝑦𝑛



CLASSIFICATION OVER DATASTREAMS

The problem: classification over a potentially infinitely long

stream of data 

𝑋 = {𝒙𝟎, 𝒙𝟏, … , }

Data-generating process 𝒳 generates tuples 𝒙𝑡 , 𝑦𝑡 ∼ 𝒳

• 𝒙𝑡 is the observation at time 𝑡 (e.g., 𝒙𝑡 ∈ ℝ𝑑 )

• 𝑦𝑡 is the associated label which is (often) unknown 

(𝑦𝑡 ∈ Λ )

The task: learn an adaptive classifier 𝐾𝑡 to predict labels

 𝑦𝑡 = 𝐾𝑡 𝒙𝑡

in an online manner having a low classification error, 

𝑝 𝑇 =
1

𝑇
 

𝑡=1

𝑇

𝑒𝑡 , where 𝑒𝑡 =  
0, if  𝑦𝑡 = 𝑦𝑡
1, if  𝑦𝑡 ≠ 𝑦𝑡



CLASSIFICATION OVER DATASTREAMS

Typically, one assumes

• Independent and identically distributed (i.i.d.) inputs

𝒙𝒕, 𝑦𝑡 ∼ 𝜙 𝒙, 𝑦

• a training set is provided 𝑇𝑅 = 𝒙0, 𝑦0 , … , 𝒙𝑛, 𝑦𝑛

An initial training set 𝑇𝑅 is provided for learning 𝐾0

• 𝑇𝑅 contains data generated in stationary conditions

A stationary condition of 𝓧 is also denoted concept



CLASSIFICATION OVER DATASTREAMS

Unfortunately, in the real world, datastream 𝒳 might change 

unpredictably during operation. From time 𝑡 onward

𝒙𝒕, 𝑦𝑡 ∼ 𝜙𝑡 𝒙, 𝑦

We say that concept drift occurs at time 𝑡 if

𝜙𝑡 𝒙, 𝑦 ≠ 𝜙𝑡+1 𝒙, 𝑦

(we also say 𝒳 becomes  nonstationary)



ASSUMPTIONS: SUPERVISED SAMPLES

We assume that few supervised samples are provided also 

during operations. These are necessary to:

• React/adapt to concept drift

• Increase classifier accuracy in stationary conditions

The classifier 𝐾0 is updated during operation, thus will be 

denoted by 𝐾𝑡.



DRIFT TAXONOMY



DRIFT TAXONOMY

 Drift taxonomy according to two characteristics:

 What is changing? 

𝜙𝑡 𝒙, 𝑦 = 𝜙𝑡 𝑦|𝒙 𝜙𝑡 𝒙

 Drift might affect 𝜙𝑡 𝑦|𝒙 and/or 𝜙𝑡 𝒙

• Real 

• Virtual

 How does process change over time?

• Abrupt

• Gradual

• Incremental

• Recurring



DRIFT TAXONOMY: WHAT IS CHANGING?

Real Drift 

𝜙𝜏+1 𝑦 𝒙 ≠ 𝜙𝜏 𝑦 𝒙

affects 𝜙𝑡 𝑦|𝒙 while 𝜙𝑡 𝒙 – the distribution of unlabeled 

data – might change or not.

𝜙𝜏+1 𝒙 ≠ 𝜙𝜏(𝒙)

𝑥

𝑡

class 1
class 2

𝑝0 𝑝1

𝜏
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DRIFT TAXONOMY: WHAT IS CHANGING?

Real Drift 

𝜙𝜏+1 𝑦 𝒙 ≠ 𝜙𝜏 𝑦 𝒙

affects 𝜙𝑡 𝑦|𝒙 while 𝜙𝑡 𝒙 – the distribution of unlabeled 

data – might change or not.

𝜙𝜏+1 𝒙 = 𝜙𝜏(𝒙)

E.g. changes in the "class function", classes swap

𝑥

𝑡

class 1
class 2

𝑝0 𝑝1

𝜏



DRIFT TAXONOMY: WHAT IS CHANGING?

Virtual Drift 

𝜙𝜏+1 𝑦 𝒙 = 𝜙𝜏 𝑦 𝒙 while 𝜙𝜏+1 𝒙 ≠ 𝜙𝜏 𝒙

affects only 𝜙𝑡 𝒙 and leaves the class posterior probability 

unchanged. 

These are not relevant from a predictive perspective, 

classifier accuracy is not affected 

𝑥

𝑡

class 1
class 2

𝑝0 𝑝1

𝜏



DRIFT TAXONOMY: WHAT IS CHANGING?

Virtual Drift 

𝜙𝜏+1 𝑦 𝒙 = 𝜙𝜏 𝑦 𝒙 while 𝜙𝜏+1 𝒙 ≠ 𝜙𝜏 𝒙

affects only 𝜙𝑡 𝒙 and leaves the class posterior probability 

unchanged. 



DRIFT TAXONOMY: TIME EVOLUTION

Abrupt 

𝜙𝑡 𝒙, 𝑦 =  
𝜙0 𝒙, 𝑦 𝑡 < 𝜏

𝜙1 𝒙, 𝑦 𝑡 ≥ 𝜏

Permanent shift in the state of 𝒳, e.g. a faulty sensor, or a 

system turned to an active state 

𝑥

𝑡

class 1
class 2

𝑝0 𝑝1

𝜏



DRIFT TAXONOMY: TIME EVOLUTION

Incremental

𝜙𝑡 𝒙, 𝑦 =  
𝜙0 𝒙, 𝑦 𝑡 < 𝜏

𝜙𝑡 𝒙, 𝑦 𝑡 ≥ 𝜏

There is a continuously drifting condition after the change 

that might end up in another stationary state

𝑥

𝑡

class 1
class 2

𝑝0 𝑝𝑡

𝜏

𝑝1



DRIFT TAXONOMY: TIME EVOLUTION

Incremental

𝜙𝑡 𝒙, 𝑦 =  

𝜙0 𝒙, 𝑦 𝑡 < 𝜏0
𝜙𝑡 𝒙, 𝑦 𝜏0 ≤ 𝑡 < 𝜏1
𝜙1 𝒙, 𝑦 𝑡 ≥ 𝜏1

There is a continuously drifting condition after the change 

that might end up in another stationary state

𝑥

𝑡

class 1
class 2

𝑝0 𝑝𝑡

𝜏0

𝑝1



DRIFT TAXONOMY: TIME EVOLUTION

Recurring

𝜙𝑡 𝒙, 𝑦 =

𝜙0 𝒙, 𝑦 𝑡 < 𝜏0
𝜙1 𝒙, 𝑦 𝜏0 ≤ 𝑡 < 𝜏1

…
𝜙0 𝒙, 𝑦 𝑡 ≥ 𝜏𝑛

After concept drift, it is possible that 𝒳 goes back in its initial 

conditions 𝜙0

𝑥

𝑡

class 1
class 2

𝑝0 𝑝1𝑝1 𝑝0

𝜏0



DRIFT TAXONOMY: TIME EVOLUTION

Gradual

𝜙𝑡 𝒙, 𝑦 =  
𝜙0 𝒙, 𝑦 𝑡 < 𝜏

𝜙1 𝒙, 𝑦 𝑡 ≥ 𝜏

The process definitively switches in the new conditions after 

having anticipated some short drifts

𝑥

𝑡

class 1
class 2𝑝0 𝑝1𝑝1 𝑝1𝑝0 𝑝0

𝜏



IS CONCEPT DRIFT A 

PROBLEM?



CLASSIFICATION OVER DATASTREAMS

Consider as, an illustrative example, a simple 

1-dimensional classification problem, where 

• The initial part of the stream is provided for training 

• 𝐾 is simply a threshold 

𝑥

𝑇𝑅
𝑡

class 1
class 2



CLASSIFICATION OVER DATASTREAMS

Consider as, an illustrative example, a simple 

1-dimensional classification problem, where 

• The initial part of the stream is provided for training 

• 𝐾 is simply a threshold 

𝑥

𝑡

class 1
class 2

𝑇𝑅



CLASSIFICATION OVER DATASTREAMS

Consider as, an illustrative example, a simple 

1-dimensional classification problem, where 

• The initial part of the stream is provided for training 

• 𝐾 is simply a threshold 

𝑥
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𝑡

(𝒙𝒕, 𝑦𝑡) are i.i.d.

class 1
class 2



CLASSIFICATION OVER DATASTREAMS

Consider as, an illustrative example, a simple 

1-dimensional classification problem, where 

• The initial part of the stream is provided for training 

• 𝐾 is simply a threshold 

As far as data are i.i.d., the classification error is controlled

𝑥

𝑡

(𝒙𝒕, 𝑦𝑡) are i.i.d.

class 1
class 2



CLASSIFICATION OVER DATASTREAMS

Unfortunately, when concept drift occurs, and 𝜙 changes,

𝑥

𝑡

Concept drift(𝒙𝒕, 𝑦𝑡) are i.i.d.

class 1
class 2

𝜏



CLASSIFICATION OVER DATASTREAMS

Unfortunately, when concept drift occurs, and 𝜙 changes, 

things can be terribly worst.

class 1
class 2

𝑥

𝑡

Concept drift(𝒙𝒕, 𝑦𝑡) are i.i.d.

𝜏



CLASSIFICATION OVER DATASTREAMS

Unfortunately, when concept drift occurs, and 𝜙 changes, 

things can be terribly worst, and the average classification

error 𝑝𝑡 typically increases 

class 1
class 2

𝑥

𝑡

Concept drift(𝒙𝒕, 𝑦𝑡) are i.i.d.

𝑝𝑡

𝜏

𝜏



NEED FOR ADAPTATION

Adaptation is needed to preserve classifier performance

𝑥

𝑡

Concept drift(𝒙𝒕, 𝑦𝑡) are i.i.d.

class 1
class 2

𝑒𝑡

𝜏

𝜏



ADAPTATION



SIMPLE ADAPTATION STRATEGIES

Consider two simple adaptation strategies

• Continuously update 𝐾𝑡 using all supervised couples

• Train 𝐾𝑡 using only the last 𝛿 supervised couples



SIMPLE ADAPTATION STRATEGIES

Consider two simple adaptation strategies

• Continuously update 𝐾𝑡 using all supervised couples

• Train 𝐾𝑡 using only the last 𝛿 supervised couples
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SIMPLE ADAPTATION STRATEGIES

Classification error of two simple adaptation strategies

• Black dots: 𝐾𝑡 uses all supervised couples at time 𝑡

• Red line: 𝐾𝑡 uses only the last 𝛿 supervised couples
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SIMPLE ADAPTATION STRATEGIES

Classification error of two simple adaptation strategies

• Black dots: 𝐾𝑡 uses all supervised couples at time 𝑡

• Red line: 𝐾𝑡 uses only the last 𝛿 supervised couples
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SIMPLE ADAPTATION STRATEGIES

Classification error of two simple adaptation strategies

• Black dots: 𝐾𝑡 uses all supervised couples at time 𝑡

• Red line: 𝐾𝑡 uses only the last 𝛿 supervised couples
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SIMPLE ADAPTATION STRATEGIES

Classification error of two simple adaptation strategies

• Black dots: 𝐾𝑡 uses all supervised couples at time 𝑡

• Red line: 𝐾𝑡 uses only the last 𝛿 supervised couples

o
b

s
e

rv
a

ti
o

n
s

-5

0

5

10 class ω
class ω
T*

Classification error as a function of time

C
la

s
s
if
ic

a
ti
o
n

 E
rr

o
r 

(%
)

1000 2000 3000 4000 5000 6000 7000 8000 9000

27

28

29

30

31

32

33

34

35

T

JIT classifier
Continuous Update Classifier
Sliding Window Classifier
Bayes error

 Dataset

1

2

a)

b)

1000 2000 3000 4000 5000 6000 7000 8000 9000 T

Adaptive Learning 

algorithms trade off  

the two



ADAPTATION UNDER CONCEPT DRIFT

Two main solutions in the literature:

• Active: the classifier 𝐾𝑡 is combined with statistical 

tools to detect concept drift and pilot the adaptation

• Passive: the classifier 𝐾𝑡 undergoes continuous

adaptation determining every time which supervised 

information to preserve

Which is best depends on the expected change rate and 

memory/computational availability



THE ACTIVE APPROACH
Detect-React Classifiers



ACTIVE APPROACHES

Peculiarities:

• Relies on an explicit drift-detection mechanism, 

change detection tests (CDTs)

• Specific post-detection adaptation procedures to 

isolate recent data generated after the change

Pro:

• Also provide information that CD has occurred

• Can improve their performance in stationary conditions

• Alternatively, classifier adapts only after detection

Cons:

• Difficult to handle incremental and gradual drifts



MONITORING CLASSIFICATION ERROR

The simplest approach consist in monitoring the 

classification error (or similar performance measure)

Pro:

• It is the most straightforward figure of merit to monitor

• Changes in  𝑝𝑡 prompts adaptation only when 

performance are affected

Cons:

• CD detection from supervised samples only



MONITORING CLASSIFICATION ERROR



MONITORING CLASSIFICATION ERROR

 The element-wise classification error follows a Bernoulli pdf

𝑒𝑡 ∼ Bernulli(𝜋0)

𝜋0 is the expected classification error in stationary conditions 

 The sum of 𝑒𝑡 in a sliding window follows a Binomial pdf

 

𝑡=𝑇−𝜈

𝑇

𝑒𝑡 ∼ ℬ 𝜋0, 𝜈

 Gaussian approximation when 𝜈 is sufficiently large

𝑝𝑡 =
1

𝜈
 

𝑡=𝑇−𝜈

𝑇

𝑒𝑡 ∼
1

𝜈
ℬ 𝜋0, 𝜈 ≈ 𝒩 𝜋0,

𝜋0 1 − 𝜋0

𝜈

 We have a sequence of i.i.d. Gaussian distributed values



MONITORING CLASSIFICATION ERROR: DDM

Basic idea behind Drift Detection Method (DDM):

J. Gama, P. Medas, G. Castillo, and P. Rodrigues. “Learning with Drift Detection” In Proc. of the 17th Brazilian 

Symp. on Artif. Intell. (SBIA). Springer, Berlin, 286–295, 2004



MONITORING CLASSIFICATION ERROR: DDM

Basic idea behind Drift Detection Method (DDM):

• Detect CD as outliers in the classification error



MONITORING CLASSIFICATION ERROR: DDM

Basic idea behind Drift Detection Method (DDM):

• Detect CD as outliers in the classification error

• Since in stationary conditions error will decrease, look 

for outliers in the right tail only



MONITORING CLASSIFICATION ERROR: DDM

Basic idea behind Drift Detection Method (DDM):

• Detect CD as outliers in the classification error

• Compute, over time 𝑝𝑖 , and 𝜎𝑖 =
𝑝𝑖 1 −𝑝𝑖

𝑖

𝑡

𝑥

𝑡

𝑝𝑖 + 𝜎𝑖
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MONITORING CLASSIFICATION ERROR: DDM

Basic idea behind Drift Detection Method (DDM):

• Detect CD as outliers in the classification error

• Compute, over time 𝑝𝑖 , and 𝜎𝑖 =
𝑝𝑖 1 −𝑝𝑖

𝑖

• Let 𝑝min be the minimum error, 𝜎min =
𝑝min 1 −𝑝min

𝑖

• When 𝑝𝑖 + 𝜎𝑖 > 𝑝min + 2 ∗ 𝜎min raise a warning alert

𝑝𝑖 + 𝜎𝑖

𝑝min + 𝜎min

𝑝𝑖 + 2𝜎𝑖

𝑡



MONITORING CLASSIFICATION ERROR: DDM

Basic idea behind Drift Detection Method (DDM):

• Detect CD as outliers in the classification error

• Compute, over time 𝑝𝑖 , and 𝜎𝑖 =
𝑝𝑖 1 −𝑝𝑖

𝑖

• Let 𝑝min be the minimum error, 𝜎min =
𝑝min 1 −𝑝min

𝑖

• When 𝑝𝑖 + 𝜎𝑖 > 𝑝min + 2 ∗ 𝜎min raise a warning alert

• When 𝑝𝑖 + 𝜎𝑖 > 𝑝min + 3 ∗ 𝜎min detect concept drift

𝑝𝑖 + 𝜎𝑖

𝑝min + 𝜎min

𝑝𝑖 + 3𝜎𝑖

𝑝𝑖 + 2𝜎𝑖

𝑡



POST-DETECTION RECONFIGURATION: DDM

Use supervised samples in between warning and drift alert 

to reconfigure the classifier

𝑡

𝑥

𝑝𝑖 + 𝜎𝑖

𝑝min + 𝜎min

𝑝𝑖 + 3𝜎𝑖
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POST-DETECTION RECONFIGURATION: DDM

Use supervised samples in between warning and drift alert 

to reconfigure the classifier

Warning alerts non that are not followed by a drift alert are 

discarded and considered false-positive detections

𝑝min + 𝜎min

𝑝𝑖 + 3𝜎𝑖

𝑝𝑖 + 2𝜎𝑖

𝑡

𝑝𝑖 + 𝜎𝑖



MONITORING CLASSIFICATION ERROR 

Early Drift Detection Methods (EDDM) performs similar 

monitoring on the average distance between misclassified 

samples

• Average distance is expected to decrease under CD

• They aim at detecting gradual drifts

M. Baena-García, J. Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavaldá, R. Morales-Bueno. “Early drift detection 

method“ In Fourth International Workshop on Knowledge Discovery from Data Streams (2006) 



MONITORING CLASSIFICATION ERROR: EWMA

Use the Exponential Weighted Moving Average (EWMA) 

as tests statistic

Compute EWMA statistic

𝑍𝑡 = 1 − 𝜆 𝑍𝑡−1 + 𝜆 𝑒𝑡, 𝑍0 = 0

Detect concept drift when

𝑍𝑡 > 𝑝0,𝑡 + 𝐿𝑡𝜎𝑡

• 𝑝0,𝑡 is the average error estimated until time 𝑡

• 𝜎𝑡 is its standard deviation of the above estimator

• 𝐿𝑡 is a threshold parameter

EWMA statistic is mainly influenced by recent data. CD is 

detected when the error on recent samples departs from 𝑝0,𝑡

G. J. Ross, N. M. Adams, D. K. Tasoulis, and D. J. Hand "Exponentially Weighted Moving Average

Charts for Detecting Concept Drift" Pattern Recogn. Lett. 33, 2 (Jan. 2012), 191–198 2012



MONITORING CLASSIFICATION ERROR: EWMA

Most importantly:

• 𝐿𝑡 can be set to control the average run length (ARL) 

of the test (the expected time between false positives)

• Like DDM, classifier reconfiguration is performed by 

monitoring 𝑍𝑡 also at a warning level 

𝑍𝑡 > 𝑝0,𝑡 + 0.5 𝐿𝑡𝜎𝑡

• Once CD is detected, the first sample raising a warning 

is used to isolate samples from the new distribution 

and retrain the classifier

G. J. Ross, N. M. Adams, D. K. Tasoulis, and D. J. Hand "Exponentially Weighted Moving Average

Charts for Detecting Concept Drift" Pattern Recogn. Lett. 33, 2 (Jan. 2012), 191–198 2012



MONITORING THE RAW DATA

In some cases, CD can be detected by ignoring class labels 

and monitoring the distribution of the input, unsupervised, 

raw data.
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MONITORING THE RAW DATA

Pros:

• Monitoring 𝜙 𝒙 does not require supervised samples

• Enables the detection of both real and virtual drift

Cons:

• CD that does not affect 𝜙(𝒙) are not perceivable

• In principle, changes not affecting 𝜙 𝑦 𝒙 do not require 

reconfiguration.

• Difficult to design sequential CDTs on streams of 

multivariate data whose distribution is unknown



MONITORING MULTIVARIATE THE RAW DATA

One typically resort to:

• Operating component-wise (thus not performing a 

multivariate analysis)

• Monitoring the log-likelihood w.r.t. an additional model 

describing approximating 𝜙(𝒙) in stationary conditions



WHAT TO MONITOR: ICI-BASED CDT

Extracts Gaussian-distributed features from non-

overlapping windows (such that they are i.i.d.) 

• the sample mean over data windows  

M 𝑠 =  

𝑡= 𝑠−1 𝜈+1

𝑠 𝜈

𝑥𝑡

• a power-law transform of the sample variance

V 𝑠 =
S 𝑠

𝜈 − 1

ℎ0

S(𝑠) is the sample variance over window yielding 𝑀 𝑠

Detection criteria: the Intersection of Confidence Intervals 

rule, an adaptive filtering technique for polynomial regression

C. Alippi, G. Boracchi, M. Roveri "A just-in-time adaptive classification system based on the 

intersection of confidence intervals rule", Neural Networks, Elsevier vol. 24 (2011), pp. 791-800



WHAT TO MONITOR: CI-CUSUM

Several features from non-overlapping windows 

including

• Sample moments

• Projections over the principal components

• Mann-Kendal statistic

Detection criteria: the cumulative sum of each of this 

feature is monitored to detect change in a CUSUM-like 

scheme

C. Alippi and M. Roveri, “Just-in-time adaptive classifiers–part I: Detecting nonstationary 

changes,” IEEE Transactions on Neural Networks, vol. 19, no. 7, pp. 1145–1153, 2008.

C. Alippi, M. Roveri, “Just-in-time adaptive classifiers — part II: Designing the classifier,” IEEE 

Transactions on Neural Networks, vol. 19, no. 12, pp. 2053–2064, 2008.



WHAT TO MONITOR: LOG-LIKELIHOOD

Fit a model (e.g. by GMM or KDE)  𝜙0 to describe

distribution of raw (multivariate) data in stationary 

conditions

For each sample 𝒙 compute the log-likelihood w.r.t.  𝜙0

ℒ 𝒙𝒕 = log  𝜙0 𝒙𝒕 ∈ ℝ

Idea: Changes in the distribution of the log-likelihood 

indicate that  𝜙0 is unfit in describing unsupervised data, 

thus concept drift (possibly virtual) has occurred.

Detection Criteria: any monitoring scheme for scalar i.i.d.

datastream

Kuncheva L.I., " Change detection in streaming multivariate data using likelihood detectors", 

IEEE Transactions on Knowledge and Data Engineering, 2013, 25(5), 1175-1180

X. Song, M. Wu, C. Jermaine, S. Ranka "Statistical change detection for multi-dimensional 

data" In Proceedings of the 13th ACM SIGKDD (KDD 2007)



JUST-IN-TIME CLASSIFIERS 
A methodology for designing adaptive classifiers



JUST-IN-TIME CLASSIFIERS

JIT classifiers are described in terms of :

• concept representations

• operators for concept representations

JIT classifiers are able to:

• detect abrupt CD (both real or virtual)

• Identify and take advantage of recurrent concepts

JIT classifiers leverage:

• sequential techniques to detect CD, monitoring both 

classification error and raw data distribution

• statistical techniques to identify recurrent concepts

Most of solutions for recurrent concepts are among passive 

approaches (see reference below for a survey)

C. Alippi, G. Boracchi, M. Roveri  "Just In Time Classifiers for Recurrent Concepts" IEEE 

Transactions on Neural Networks and Learning Systems, 2013. vol. 24, no.4, pp. 620 -634 



JIT CLASSIFIERS: THE ALGORITHM

Concept Representations 

𝐶 = (𝑍, 𝐹, 𝐷)

• 𝑍 : set of supervised samples

• 𝐹 : set of features for assessing 

concept equivalence

• 𝐷 : set of features for detecting 

concept drift



AN EXAMPLE OF CONCEPT REPRESENTATIONS

𝐶𝑖 = (𝑍𝑖 , 𝐹𝑖 , 𝐷𝑖)

 𝑍𝑖 = 𝒙𝟎, 𝑦0 , … , 𝒙𝒏, 𝑦𝑛 : supervised samples provided 

during the 𝑖th concept 

 𝐹𝑖 features describing 𝑝(𝒙) of the 𝑖th concept. We take: 

• the sample mean 𝑀 ⋅

• the power-low transform of the sample variance 𝑉(⋅)

extracted from non-overlapping sequences

 𝐷𝑖 features for detecting concept drift. These include:

• the sample mean 𝑀 ⋅

• the power-low transform of the sample variance 𝑉(⋅)

• the average classification error 𝑝𝑡(⋅)

extracted from non-overlapping sequences

In stationary conditions features are i.i.d.



JIT CLASSIFIERS: THE ALGORITHM

Concept Representations 

𝐶 = (𝑍, 𝐹, 𝐷)

• 𝑍 : set of supervised samples

• 𝐹 : set of features for assessing 

concept equivalence

• 𝐷 : set of features for detecting 

concept drift

Operators for Concepts

• 𝒟 concept-drift detection

• Υ concept split

• ℰ equivalence operators

• 𝒰 concept update



JIT CLASSIFIERS: THE ALGORITHM

Use the initial training sequence 

to build the concept 

representation 𝐶0



JIT CLASSIFIER: CONCEPT REPRESENTATIONS

𝑡

𝐶0

𝑇𝑅

Build 𝐶0, a practical representation of the current concept

• Characterize both 𝑝(𝒙) and 𝑝 𝑦|𝒙 in stationary 

conditions



JIT CLASSIFIERS: THE ALGORITHM

During operations, each input 

sample is analyzed to 

• Extract features that are 

appended to 𝐹𝑖

• Append supervised 

information in 𝑍𝑖

thus updating the current 

concept representation



JIT CLASSIFIERS: CONCEPT UPDATE

𝑡

The concept representation 𝐶0 is always updated during 

operation, 

• Including supervised samples in 𝑍0 (to describe 𝑝(𝑦|𝒙))

• Computing feature 𝐹0 (to describe 𝑝(𝒙))

𝐶0

𝑇𝑅



JIT CLASSIFIERS: THE ALGORITHM

The current concept 

representation is analyzed by 𝒟
to determine whether concept 

drift has occurred



Determine when features in 𝑫 are no more stationary

• 𝒟 monitoring the datastream by means of online and 

sequential change-detection tests (CDTs)

• Depending on features, both changes in 𝑝 𝑦 𝒙 and 

𝑝(𝒙) can be detected

•  𝑇 is the detection time

JIT CLASSIFIER: DRIFT DETECTION

𝑡 𝑇

𝐶0
𝒟(𝐶0) = 1



AN EXAMPLE OF DETECTION OPERATOR

𝒟 𝐶𝑖 ∈ {0,1}

 Implements online change-detection tests (CDTs) based 

on the Intersection of Confidence Intervals (ICI) rule

 The ICI-rule is an adaptation technique used to define 

adaptive supports for polynomial regression

 The ICI-rule determines when feature sequence (𝐷𝑖) 

cannot be fit by a zero-order polynomial, thus when 𝑫𝒊 is 

non stationary

 ICI-rule requires Gaussian-distributed features but no 

assumptions on the post-change distribution

A. Goldenshluger and A. Nemirovski, “On spatial adaptive estimation of nonparametric regression” 

Math. Meth. Statistics, vol. 6, pp. 135–170,1997.

V. Katkovnik, “A new method for varying adaptive bandwidth selection” IEEE Trans. on Signal Proc, 

vol. 47, pp. 2567–2571, 1999.



JIT CLASSIFIERS: THE ALGORITHM

If concept drift is detected, the 

concept representation is split, 

to isolate the recent data that 

refer to the new state of 𝒳

A new concept description is 

built



Goal: estimating the change point 𝜏 (detections are 

always delayed). Samples in between  𝜏 and  𝑇

Uses statistical tools for performing an offline and 

retrospective analysis over the recent data, like:

• as hypothesis tests (HT)

• change-point methods (CPM) can 

JIT CLASSIFIERS: CONCEPT SPLIT

𝑡 𝑇 𝜏



EXAMPLES OF SPLIT OPERATORS

Υ(𝐶0) = (𝐶0, 𝐶1)

 It performs an offline analysis on 𝐹𝑖 (just the feature 

detecting the change) to estimate when concept drift 

has actually happened

 Detections  𝑇 are delayed w.r.t. the actual change point 𝜏

 Change-Point Methods implement the following 

Hypothesis test on the feature sequence:

 
𝐻0: "𝐹𝑖 contains i. i. d. samples"
𝐻1: "𝐹𝑖 contains a change point"

testing all the possible partitions of 𝐹𝑖 and determining the 

most likely to contain a change point

 ICI-based CDTs implement a refinement procedure to 

estimate 𝜏 after having detected a change at  𝑇.



Given  𝜏, two different concept representations are built

JIT CLASSIFIERS: CONCEPT SPLIT

𝑡 𝑇 𝜏

1

𝐶1𝐶0



JIT CLASSIFIERS: THE ALGORITHM

Look for concepts that are 

equivalent to the current one. 

Gather supervised samples from 

all the representations 𝐶𝑗 that 

refers to the same concept



Concept equivalence is assessed by 

• comparing features 𝐹 to determine whether 𝑝 𝒙 is the 

same on 𝐶𝑚 and 𝐶𝑛 (using a test of equivalence)

• comparing classifiers trained on 𝐶𝑚 and 𝐶𝑛 to 

determine whether 𝑝 𝑦 𝒙 is the same

JIT CLASSIFIERS: COMPARING CONCEPTS

𝑡 𝑇

𝐶𝑛𝐶𝑚

ℰ 𝐶𝑚, 𝐶𝑛 = 1

 𝜏



JIT CLASSIFIERS: THE ALGORITHM

The classifier 𝐾 is reconfigured 

using all the available 

supervised couples



COMPARING WINDOWS



THE MOTIVATING IDEA

Detect CD at time 𝑡 by comparing two different windows.

In practice, one computes:

𝒯(𝑊0,𝑊𝑡)

• 𝑊0: reference window of past (stationary) data

• 𝑊𝑡: sliding window of recent (possibly changed) data

• 𝒯 is a suitable statistic

𝑥

𝑡

𝑥

𝑊0 𝑊𝑡



THE MOTIVATING IDEA

Detect CD at time 𝑡 by comparing two different windows.

In practice, one computes:

𝒯(𝑊0,𝑊𝑡)

• 𝑊0: reference window of past (stationary) data

• 𝑊𝑡: sliding window of recent (possibly changed) data

• 𝒯 is a suitable statistic

𝑥

𝑡

𝑥

𝑊𝑡−𝛿 𝑊𝑡



THE MOTIVATING IDEA

Pro:

• there are a lot of test statistics to compare data 

windows

Cons:

• The biggest drawback of comparing windows is that 

subtle CD might not be detected (this is instead the 

main advantage of sequential techniques)

• More computational demanding than sequential 

technique

• Window size definition is an issue



WINDOW COMPARISON: MAIN APPROACHES

 The averages over two adjacent windows (ADWIN)

Bifet A., Gavaldà R. "Learning from time-changing data with adaptive windowing" In Proc. of 

SIAM International Conference on Data Mining 2007



WINDOW COMPARISON: MAIN APPROACHES

 The averages over two adjacent windows (ADWIN)

 Comparing the classification error over 𝑊𝑡 and 𝑊0

Nishida, K. and Yamauchi, K. "Detecting concept drift using statistical testing" In DS, pp. 264–

269, 2007



WINDOW COMPARISON: MAIN APPROACHES

 The averages over two adjacent windows (ADWIN)

 Comparing the classification error over 𝑊𝑡 and 𝑊0

 Compute empirical distributions of raw data over 𝑊0 and 

𝑊𝑡 and compare

• The Kullback-Leibler divergence

• the Hellinger distance 

T. Dasu, Sh. Krishnan, S. Venkatasubramanian, and K. Yi. "An Information-Theoretic Approach to 

Detecting Changes in Multi-Dimensional Data Streams". In Proc. of the 38th Symp. on the 

Interface of Statistics, Computing Science, and Applications, 2006

G. Ditzler and R. Polikar, “Hellinger distance based drift detection for nonstationary 

environments” in Computational Intelligence in Dynamic and Uncertain Environments (CIDUE), 

2011 IEEE Symposium on, April 2011, pp. 41–48.



WINDOW COMPARISON: MAIN APPROACHES

 The averages over two adjacent windows (ADWIN)

 Comparing the classification error over 𝑊𝑡 and 𝑊0

 Compute empirical distributions of raw data over 𝑊0 and 

𝑊𝑡 and compare

• The Kullback-Leibler divergence

• the Hellinger distance 

• Compute the density ratio over the two windows using 

kernel methods (to overcome curse of dimensionality 

problems when computing empirical distributions)

Kawahara, Y. and Sugiyama, M. "Sequential change-point detection based on direct density-

ratio estimation". Statistical Analysis and Data Mining, 5(2):114–127, 2012.



WINDOW COMPARISON: TESTING 

EXCHANGABILITY

In stationary conditions, all data are i.i.d., thus if we 

• Select a training set and a test set in a window

• Select another 𝑇𝑅 and 𝑇𝑆 pair after reshuffling the two

the empirical error of the two classifiers should be the same

Vovk, V., Nouretdinov, I., and Gammerman, A. Testing exchangeability on-line. In ICML, pp. 

Harel M., Mannor S., El-yaniv R., Crammer K. “Concept Drift Detection Through Resampling“, 

ICML 2014

𝑇𝑅 𝑇𝑆



WINDOW COMPARISON: PAIRED LEARNERS

Two classifiers are trained

• a stable online learner (𝑆) that predicts based on all 

the supervised samples

• a reactive one (𝑅𝑤) trained over a short sliding 

window

During operation

• labels are provided by 𝑆

• predictions of 𝑅𝑤 are computed but not provided 

• as soon as 𝑹𝒘 is more frequently correct than 𝑆, 

detect CD

Adaptation consists in replacing 𝑆 by 𝑅𝑤

Bach, S.H.; Maloof, M., "Paired Learners for Concept Drift" in Data Mining, 2008. ICDM '08. Eighth 

IEEE International Conference on pp.23-32, 15-19 Dec. 2008



REMARKS ON ACTIVE 

APPROACHES



COMMENTS FROM MY PERSONAL EXPERIENCE

 Typically, when monitoring the classification error, false 

positives hurt less than detection delay

• Things might change on class unbalance
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COMMENTS FROM MY PERSONAL EXPERIENCE

 Typically, when monitoring the classification error, false 

positives hurt less than detection delay

• Things might change on class unbalance

 Providing i.i.d. samples for reconfiguration seems more 

critical. When estimating the change-time:

• Overestimates of 𝜏 provide too few samples

• Underestimates of 𝜏 provide non i.i.d. data

• Worth using accurate SPC methods like change-point 

methods (CPMs)

D. M. Hawkins, P. Qiu, and C. W. Kang, “The changepoint model for statistical process control” 

Journal of Quality Technology, vol.  35, No. 4, pp. 355–366, 2003.



COMMENTS FROM MY PERSONAL EXPERIENCE

 Typically, when monitoring the classification error, false 

positives hurt less than detection delay

• Things might change on class unbalance

 Providing i.i.d. samples for reconfiguration seems more 

critical. When estimating the change-time:

• Overestimates of 𝜏 provide too few samples

• Underestimates of 𝜏 provide non i.i.d. data

• Worth using accurate SPC methods like change-point 

methods (CPMs)

 Exploitation of recurrent concept is important 

• Providing additional samples could make the difference

• Mitigate the impact of false positives



THE PASSIVE APPROACH
Classifiers undergoing continuous adaptation



PASSIVE APPROACH

Passive approaches:

• Do not have an explicit CD detection mechanism

• They are aware that 𝜙𝑡(𝒙, 𝑦) might change at any time 

and at any rate

• Perform continuous adaptation of their model(s) 

parameters at each new arrival

They can be divided in:

• Single model methods

• Ensemble methods



SINGLE CLASSIFIER MODEL

 Lower computational cost than ensemble methods

 Mainly related to specific classifiers

• CVFDT: Concept-adapting Very Fast Decision 

Tree learner, and online decision tree algorithm that 

incrementally learns from a sliding window

P. Domingos and G. Hulton, “Mining high-speed data streams” in Proc. of the sixth ACM SIGKDD 

international conference on Knowledge discovery and data mining, pp. 71–80, 2000.

G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data streams” in Proc. of 

Conference on Knowledge Discovery in Data, pp. 97–106, 2001.



SINGLE CLASSIFIER MODEL

 Lower computational cost than ensemble methods

 Mainly related to specific classifiers

• CVFDT: Concept-adapting Very Fast Decision 

Tree learner, and online decision tree algorithm that 

incrementally learns from a sliding window

• OLIN: fuzzy-logic based approach that exploits a 

sliding window

L. Cohen, G. Avrahami-Bakish, M. Last, A. Kandel, and O. Kipersztok, "Real-time data mining of 

non-stationary data streams from sensor networks", Information Fusion, vol. 9, no. 3, pp. 344–353, 

2008.



SINGLE CLASSIFIER MODEL

 Lower computational cost than ensemble methods

 Mainly related to specific classifiers

• CVFDT: Concept-adapting Very Fast Decision 

Tree learner, and online decision tree algorithm that 

incrementally learns from a sliding window

• OLIN: fuzzy-logic based approach that exploits a 

sliding window

• An Extreme Learning Machine has been also 

combined with a time-varying NN

Y. Ye, S. Squartini, and F. Piazza, "Online sequential extreme learning machine in nonstationary 

environments", Neurocomputing, vol. 116, no. 20, pp. 94–101, 2013



ENSEMBLE METHODS



ENSEMBLE METHODS

An ensemble of multiple models is preserved in memory 

ℋ = ℎ0, … , ℎ𝑁

Each individual ℎ𝑖 , 𝑖 = 1,… ,𝑁 is typically trained from a 

different training set and could be from a different model

Final prediction of the ensemble is given by (weighted) 

aggregation of the individual predictions

ℋ 𝒙𝒕 = argmax
𝝎∈𝚲

 

𝒉𝒊∈𝓗

𝛼𝑖 ℎ𝑖 𝒙𝑡 = 𝜔

Typically, one assumes data arrives in batches and each 

classifier is trained over a batch



ENSEMBLE METHODS AND CONCEPT DRIFT

 Each individual implicitly refers to a component of a 

mixture distribution characterizing a concept

 In practice, often ensemble methods assume data 

(supervised and unsupervised) are provided in batches

 Adaptation can be achieved by:

• updating each individual: either in batch or online 

manner

• dynamic aggregation: adaptively defining weights 𝜔𝑖

• structural update: including/removing new individuals 

in the ensemble, possibly recovering past ones that are 

useful in case of recurrent concepts

Kuncheva, L. I. "Classifier ensembles for changing environments" In Proc. of the 5th Int. Workshop 

on Multiple Classifier Systems. MCS. 1–15 2004.



ENSEMBLE METHODS AND CONCEPT DRIFT

Ensemble based approaches provide a natural fit to the 

problem of learning in nonstationary settings,

• Ensembles tend to be more accurate than single 

classifier-based systems due to reduction in the 

variance of the error

• Stability: flexible to easily incorporate new data into a 

classification model, simply by adding new 

individuals to the ensemble (or updating individuals)

• Plasticity: provide a natural mechanism to forget

irrelevant knowledge, simply by removing the 

corresponding old individual(s) from the ensemble

• They can operate in continuously drifting environments



SEA

A fixed-size ensemble that performs

• batch learning

• structural update to adapt to concept drift 

When a new batch 𝑆 = 𝒙𝟎
𝒕 , 𝑦0

𝑡 , 𝒙𝟏
𝒕 , 𝑦1

𝑡 , … , 𝒙𝑩
𝒕 , 𝑦𝐵

𝑡 arrives

• train ℎ𝑡 on 𝑆

• test ℎ𝑡−1 on 𝑆

• If the ensemble is not full (#ℋ < 𝑁), add ℎ𝑡−1 to ℋ

• Otherwise, remove ℎ𝑖 ∈ ℋ that is less accurate on 𝑆
(as far as this is worst than ℎ𝑡−1)

W. N. Street and Y. Kim, "A streaming ensemble algorithm (SEA) for large scale classification", in 

Proceedings to the 7th ACM SIGKDD International Conference on Knowledge Discovery & Data 

Mining, pp. 377–382, 2001



DWM ALGORITHM

Dynamic weighted majority (DWM) algorithm is an ensemble 

method where:

• Individuals are trained on different batches of data

• Each individual is associated to a weight

• Weights are decreased to individuals that are not

accurate on the samples of the current batch

• Individuals having low weights are dropped

• Individuals are created at each error of the ensemble

• Predictions are made by weighted majority voting

Kolter, J. and Maloof, M. "Dynamic weighted majority: An ensemble method for drifting concepts". 

Journal of Machine Learning Research 8, 2755–2790. 2007



LEARNS++ .NSE

Batch-learning algorithm performing predictions based on a 

weighted majority voting scheme:

• Both individuals and training samples are weighted

• Misclassified instances receive large weights: 

samples from the new concept are often misclassified 

thus they receive large weights.

• Weights of the individuals depends on the time-

adjusted errors on current and past batches: old 

individuals can be recovered in case of recurrent 

concepts

• Old individuals are not discarded



DDD 

 Diversity for Dealing with Drifts (DDD) combines two 

ensembles:

• An High diversity ensemble

• A Low diversity ensemble

and a concept-drift detection method. 

 Online bagging is used to control ensemble diversity

 In stationary conditions, predictions are made by low-

diversity ensemble

 After concept drift, the ensembles are updated and 

predictions are made by the high-diversity ensemble.

Minku, L. L.; Yao, X. "DDD: A New Ensemble Approach For Dealing With Concept Drift", IEEE 

Transactions on Knowledge and Data Engineering, IEEE, v. 24, n. 4, p. 619-633, April  2012,



COMMENTS FROM MY PERSONAL EXPERIENCE

We have combined

• a JIT classifier using recurrent concepts

• a sliding window classifier

As in paired learners,

• JIT is meant to provide the best post-detection 

adaptation and best performance in a stationary state

• The sliding window classifier is meant to provide the  

quickest reaction to CD

We used a simple aggregation "Predictions are made by the 

most accurate classifier over the last 20 samples"

Actually this ensemble performed very well, combining the 

advantages of the two classifiers

C. Alippi, G. Boracchi and M. Roveri, “Just In Time Classifiers for Recurrent Concepts” IEEE 

Transactions on Neural Networks and Learning Systems, 2013. vol. 24, no.4, pp. 620 -634



THE ENSEMBLE USING JIT CLASSIFIER



CONCLUDING REMARKS
Recent Trends and Open Issues



RECENT TRENDS

Learning under concept drift and class imbalance

• Typically resampling are used in ensemble methods to 

compensate class imbalance (e.g. SMOTE is used in 

Learn++.CDS, uncorrelated bagging, online bagging, 

SERA)

• Determine which figure of merit to monitor when 

classes are imbalanced 

G. Ditzler and R. Polikar, “Incremental learning of concept drift from streaming imbalanced data” 

IEEE Transactions on Knowledge and Data Engineering, vol. 25, no. 10, pp. 2283–2301, 2013. 

S. Wang, L. L. Minku, and X. Yao, “Resampling-based ensemble methods for online class 

imbalance learning” IEEE Transactions on Knowledge and Data Engineering, vol. 27, no. 5, pp. 

1356–1368, 2015.



RECENT TRENDS

Semi-supervised and unsupervised methods for CD

• Often, supervised information is scarce

• Initially labeled environments and verification latency

• Using unlabeled data to improve model accuracy 

(not only to CD detection) is of paramount importance

Typically the problem is addressed by 

• Approximating the conditional density of each class 

𝑝 𝒙|𝑦 by a parametric density models

• Drift is assumed to be smoothly evolving

K. Dyer, R. Capo, and R. Polikar, “COMPOSE: A semi-supervised learning framework for initially 

labeled non-stationary streaming data,” IEEE TKDE , vol. 25, no. 1, pp. 12–26, 2013.

G. Krempl, “The algorithm apt to classify in concurrence of latency and drift” Advances in 

Intelligent Data Analysis, 2011.

C. Alippi, G. Boracchi, and M. Roveri, “An effective just-in-time adaptive classifier for gradual 

concept drifts” in Proc. of 2011 IJCNN , pp. 1675–1682, IEEE, 2011.



OPEN ISSUES

 A suitable theoretical framework for learning under CD 

is missing. This would enable the assessment of 

performance bounds with respect to specific drift (types, 

rate, magnitudes)

 Techniques for handling data that are not i.i.d. 

realizations of a random variable but that feature specific 

structure under each concept, like signals and images



CHANGE-DETECTION IN STREAMS OF SIGNALS

Signal acquired from a land-slide monitoring application

Normal Signal Anomalous Signal

Alippi C., Boracchi G., Roveri M.,  “A reprogrammable and intelligent monitoring system for rock-

collapse forecasting” IEEE Systems Journal, Accepted for Publication

Alippi C., Boracchi G., Wohlberg B. “Change Detection in Streams of Signals with Sparse 

Representations” IEEE ICASSP 2014, pp 5252 - 5256



ANOMALY DETECTION IN IMAGES



ANOMALY DETECTION IN IMAGES



ANOMALY DETECTION IN IMAGES

Boracchi G., Carrera D. Wohlberg B. ”Novelty Detection in Images by Sparse Representations”

Proceedings of Intelligent Embedded Systems at IEEE SSCI 2014 

Carrera D., Boracchi G., Foi A., Wohlberg B. ”Detecting Anomalous Structures by Convolutional 

Sparse Models” Proceedings of IJCNN 2015



OPEN ISSUES

 A suitable theoretical framework for learning under CD 

is missing. This would enable the assessment of 

performance bounds with respect to specific drift (types, 

rate, magnitudes)

 Techniques for handling data that are not i.i.d. 

realizations of a random variable but that feature specific 

structure under each concept, like signals and images

• In this case there is the problem of learning suitable

representations for detecting changes/anomalies in 

the structure



OPEN ISSUES

 Integration of expert knowledge and data-driven 

models for CD handling

• Experts are reluctant to rely on outputs of black-box 

models that are difficult to interpret

• Valuable information from experts could be integrated 

in CD detection and adaptation

 Benchmarking: 

• Statistically significant results (at least for CD 

detection) often requires synthetically introduced drifts

• Cross-validation by shuffling data is sometimes not 

feasible on streaming data

• A proper validation from historical data is difficult when 

supervised samples come in the form of feedbacks



A VERY HOT RESEARCH TOPIC

The topic is quite hot now, given the popularity of data-

driven models in real world applications where data-

generating processes are nonstationary

• Special Session at IJCNN 2013, 2014, 2015 … we are 

organizing together with Robi Polikar, Rowan 

University

• LEAPS workshop in AIAI 2013

• Special Issue on TNNLS 2013

• Outstanding paper in TNNLS 2016 has been awarded 

to our paper on JIT recurrent concepts

home.deib.polimi.it/boracchi/index.html

C. Alippi, G. Boracchi and M. Roveri, “Just In Time Classifiers for Recurrent Concepts” IEEE 

Transactions on Neural Networks and Learning Systems, 2013. vol. 24, no.4, pp. 620 -634

http://home.deib.polimi.it/boracchi/index.html


QUESTIONS?

THANK YOU VERY MUCH 

home.deib.polimi.it/boracchi/index.html
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