Just-in-Time Classifiers For Recurrent Concepts

Giacomo Boracchi

Politecnico di Milano,

giacomo.boracchi@polim.it

September, 16th 2015

Universitè Libre de Bruxelles

Joint work with Cesare Alippi and Manuel Roveri

- Problem Statement
 - Drift Taxonomy
- Just In Time Classifiers at a Glance
 - Few more details
- Experiments
- Conclusions

PROBLEM FORMULATION

Learning in Nonstationary (Streaming) Environments

The problem: classification over a potentially infinitely long stream of data

$$X = \{x_0, x_1, \dots, \}$$

Data-generating process \mathcal{X} generates tuples $(\mathbf{x}_t, \mathbf{y}_t) \sim \mathcal{X}$

- x_t is the observation at time t (e.g., $x_t \in \mathbb{R}^d$)
- y_t is the associated label which is (often) unknown $(y_t \in \Lambda)$

The problem: classification over a potentially infinitely long stream of data

$$X = \{x_0, x_1, \dots, \}$$

Data-generating process \mathcal{X} generates tuples $(\mathbf{x}_t, \mathbf{y}_t) \sim \mathcal{X}$

- x_t is the observation at time t (e.g., $x_t \in \mathbb{R}^d$)
- y_t is the associated label which is (often) unknown $(y_t \in \Lambda)$
- Typically, one **assumes**
 - Independent and identically distributed (i.i.d.) inputs

$$(\boldsymbol{x_t}, \boldsymbol{y_t}) \sim p(\boldsymbol{x}, \boldsymbol{y})$$

• a training set is provided

$$TR = \{ (x_0, y_0), \dots, (x_n, y_n) \}$$

The task: learn a classifier *K* to predict labels $\hat{y}_t = K(x_t)$

in an online manner having a low classification error,

$$\widehat{err_{K}}(T) = \frac{1}{T} \sum_{t=1}^{T} e_{t} \text{, where } e_{t} = \begin{cases} 0, & \text{if } \hat{y}_{t} = y_{t} \\ 1, & \text{if } \hat{y}_{t} \neq y_{t} \end{cases}$$

The task: learn a classifier *K* to predict labels $\hat{y}_t = K(x_t)$

in an online manner having a low classification error,

$$\widehat{err_{K}}(T) = \frac{1}{T} \sum_{t=1}^{T} e_{t} \text{, where } e_{t} = \begin{cases} 0, & \text{if } \hat{y}_{t} = y_{t} \\ 1, & \text{if } \hat{y}_{t} \neq y_{t} \end{cases}$$

Unfortunately, datastreams \mathcal{X} might change during operations. From time *t* onward

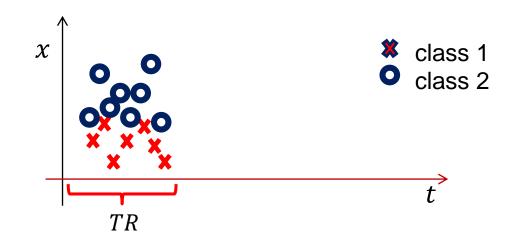
$$(\boldsymbol{x_t}, \boldsymbol{y_t}) \sim p_t(\boldsymbol{x}, \boldsymbol{y})$$

and \mathcal{X} becomes **nonstationary** (undergoes a change) at t if $p_t(\mathbf{x}, y) \neq p_{\{t+1\}}(\mathbf{x}, y)$

Changes in \mathcal{X} are referred to as **concept drift**

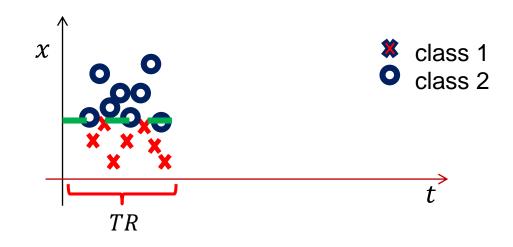
Consider as, an illustrative example, a simple 1-dimensional classification problem, where

- The initial part of the stream is provided for training
- *K* is simply a threshold



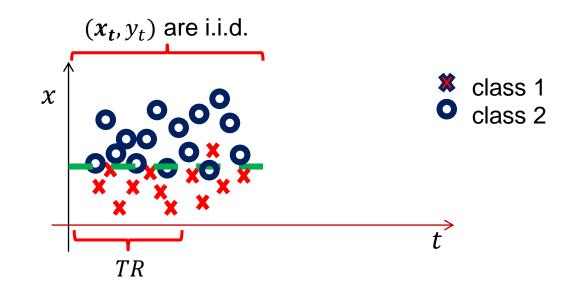
Consider as, an illustrative example, a simple 1-dimensional classification problem, where

- The initial part of the stream is provided for training
- *K* is simply a threshold



Consider as, an illustrative example, a simple 1-dimensional classification problem, where

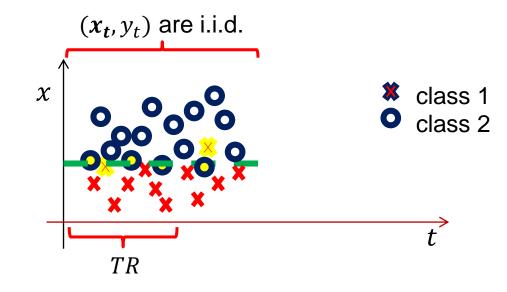
- The initial part of the stream is provided for training
- *K* is simply a threshold



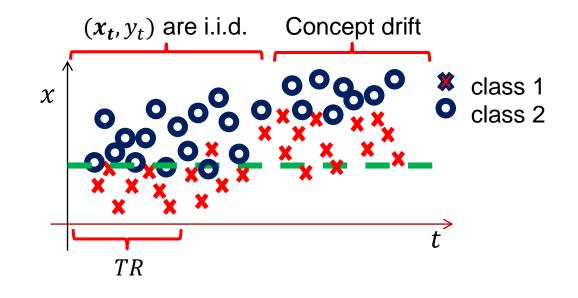
Consider as, an illustrative example, a simple 1-dimensional classification problem, where

- The initial part of the stream is provided for training
- *K* is simply a threshold

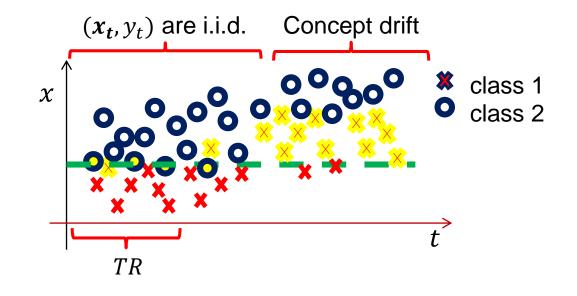
As far as data are i.i.d., the classification error is controlled



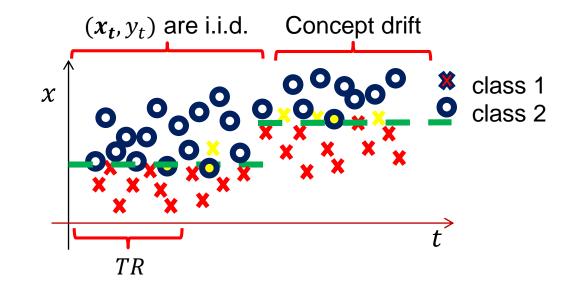
Unfortunately, when concept drift occurs, and pdf p of $\ensuremath{\mathcal{X}}$ changes,



Unfortunately, when concept drift occurs, and pdf p of \mathcal{X} changes, things can be terribly worst.



Adaptation is needed to preserve classifier performance



We assume that **few supervised samples** are provided during **operations**.

Supervised samples enable the classifier to:

- **React to concept drift** to preserve its performance.
- Increase its accuracy in stationary conditions.

The classifier have to be **updated**, thus K becomes K_t

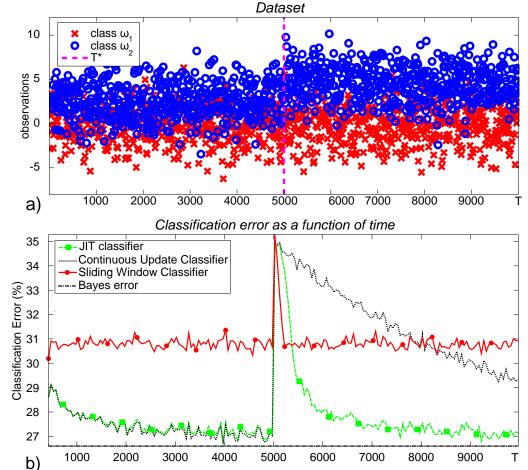
ADAPTATION STRATEGIES

Consider two straightforward adaptation strategies

- Continuously update K_t using all supervised couples
- Train K_t using only the last δ supervised couples

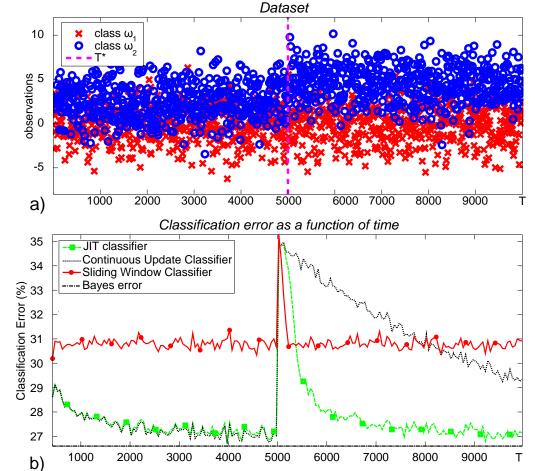
Consider two straightforward adaptation strategies

- Continuously update K_t using all supervised couples
- Train K_t using only the last δ supervised couples



Consider two straightforward adaptation strategies

- Continuously update K_t using all supervised couples
- Train K_t using only the last δ supervised couples



Just including "fresh" training samples is not enough Two main solutions in the literature:

- Active: the classifier K_t is combined with statistical tools to detect concept drift and pilot the adaptation
- Passive: the classifier K_t undergoes continuous adaptation determining every time which supervised information to preserve

Which is best depends on the expected change rate and memory/computational availability

DRIFT TAXONOMY

- Drift taxonomy according to two characteristics:
- What is changing?

$$p_t(\boldsymbol{x}, \boldsymbol{y}) = p_t(\boldsymbol{y}|\boldsymbol{x}) \ p_t(\boldsymbol{x})$$

- Drift might affect $p_t(y|\mathbf{x})$ and/or $p_t(\mathbf{x})$
 - Real
 - Virtual
- How does it changes over time?
 - Abrupt
 - Gradual
 - Recurring
 -

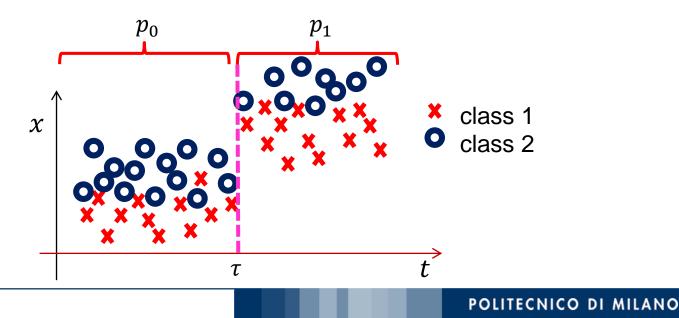
Drift taxonomy: What is changing?

Real Drift

$$p_{\tau+1}(y|\mathbf{x}) \neq p_{\tau}(y|\mathbf{x})$$

affects $p_t(y|x)$ while $p_t(x)$ – the distribution of unlabeled data – *might* change or not.

 $p_{\tau+1}(\boldsymbol{x}) \neq p_{\tau}(\boldsymbol{x})$



Drift taxonomy: What is changing?

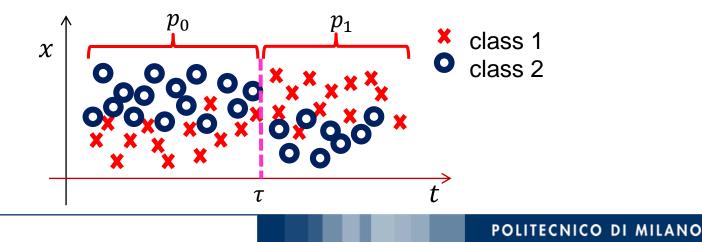
Real Drift

$$p_{\tau+1}(y|\boldsymbol{x}) \neq p_{\tau}(y|\boldsymbol{x})$$

affects $p_t(y|x)$ while $p_t(x)$ – the distribution of unlabeled data – *might* change or not.

$$p_{\tau+1}(\boldsymbol{x}) = p_{\tau}(\boldsymbol{x})$$

E.g. changes in the "class function", classes swap

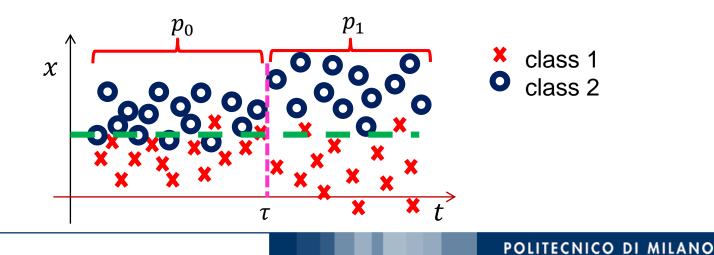


Virtual Drift

$$p_{\tau+1}(y|\mathbf{x}) = p_{\tau}(y|\mathbf{x})$$
 while $p_{\tau+1}(\mathbf{x}) \neq p_{\tau}(\mathbf{x})$

affects only $p_t(x)$ and leaves the class posterior probability unchanged.

These are not relevant from a predictive perspective, classifier accuracy is not affected

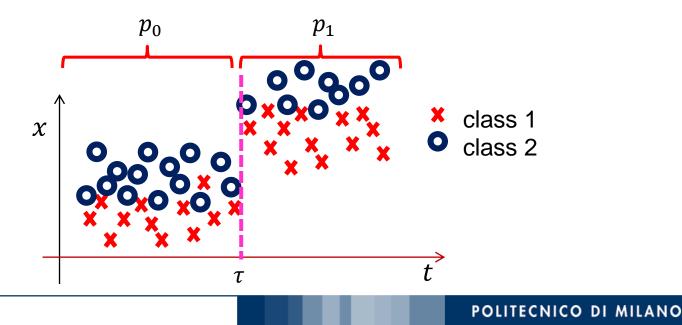


Drift taxonomy: time evolution

Abrupt

$$p_t(\mathbf{x}, y) = \begin{cases} p_0(\mathbf{x}, y) & t < \tau \\ p_1(\mathbf{x}, y) & t \ge \tau \end{cases}$$

Permanent shift in the state of \mathcal{X} , e.g. a faulty sensor, or a system turned to an active state

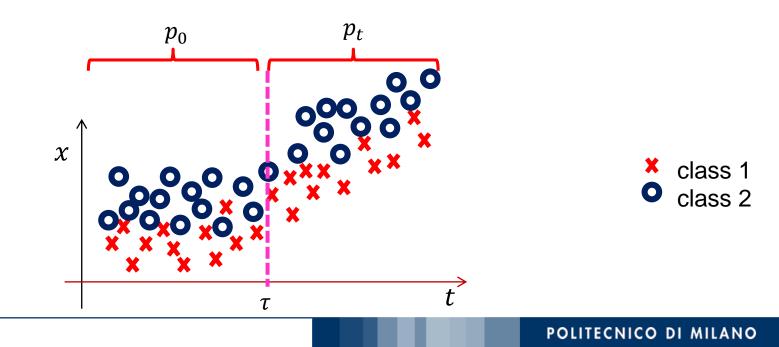


Drift taxonomy: time evolution

Gradual

$$p_t(\mathbf{x}, y) = \begin{cases} p_0(\mathbf{x}, y) & t < \tau \\ p_t(\mathbf{x}, y) & t \ge \tau \end{cases}$$

There is not a stationary state of \mathcal{X} after the change

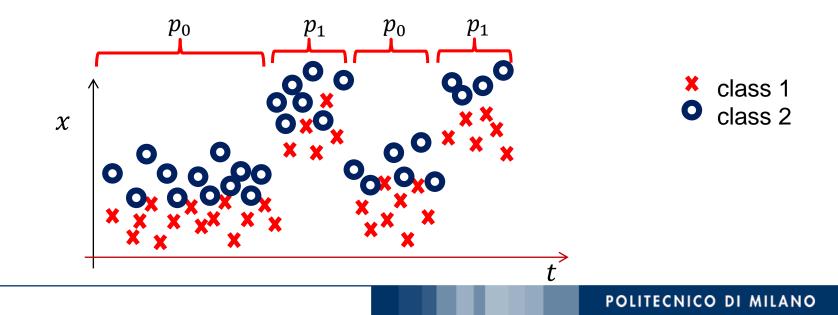


Drift taxonomy: time evolution

Recurring

$$p_t(\boldsymbol{x}, \boldsymbol{y}) = \begin{cases} p_0(\boldsymbol{x}, \boldsymbol{y}) & t < \tau \\ p_1(\boldsymbol{x}, \boldsymbol{y}) & t \ge \tau \\ \dots & \\ p_1(\boldsymbol{x}, \boldsymbol{y}) \end{cases}$$

After τ , another concept drift might bring back \mathcal{X} in p_0



We present a framework to design adaptive classifiers able to operate on concept drifts that are

- abrupt
- possibly recurrent
- real
- virtual

JUST-IN-TIME CLASSIFIERS

A methodology for designing adaptive classifiers

- 1- Build concept $C_0 = (Z_0, F_0, D_0)$ from the training sequence;
- 2- $Z_{\text{rec}} = \emptyset$ and i = 0;
- 3- while $(x_t \text{ is available})$ do
- 4- $\mathcal{U}(C_i, \{x_t\}) \to C_i;$
- 5- **if** $(y_t \text{ is available})$ **then**
- 6- $| \mathcal{U}(C_i, \{(x_t, y_t)\}) \rightarrow C_i;$ end
- 7-8-9-10-12 **if** $(\mathcal{D}(C_i) = 1)$ **then** i = i + 1; $\Upsilon(C_{i-1}) \rightarrow (C_k, C_l);$ $C_i = C_l;$ $C_{i-1} = C_k;$ $\mathcal{Z}_{rec} = \bigcup_{\substack{\mathcal{L} \in C_i, C_j = 1 \\ 0 \le j \le i}} Z_j;$

end

13-

14-

if $(y_t \text{ is not available})$ then $\begin{vmatrix} \widehat{y}_t = K(Z_i \cup Z_{rec}, x_t). \end{vmatrix}$ end end

Concept Representations

C = (Z, F, D)

- *Z* : set of supervised samples
- *F* : set of features for assessing concept equivalence
- D : set of features for detecting concept drift

- 1- Build concept $C_0 = (Z_0, F_0, D_0)$ from the training sequence;
- 2- $Z_{\text{rec}} = \emptyset$ and i = 0;
- 3- while $(x_t \text{ is available})$ do
- 4-5- $\mathcal{U}(C_i, \{x_t\}) \to C_i;$ if $(y_t \text{ is available})$ the
- 5- **if** $(y_t \text{ is available})$ **then** 6- $\mathcal{U}(C_i, \{(x_t, y_t)\}) \rightarrow C_i;$
 - end $(\mathcal{O}_i, \{(x_t, g_t)\})$

7-
8-
9-
10-
11-
if
$$(\mathcal{D}(C_i) = 1)$$
 then
 $i = i + 1;$
 $\Upsilon(C_{i-1}) \to (C_k, C_l);$
 $C_i = C_l;$
 $C_{i-1} = C_k;$

$$Z_{\text{rec}} = \bigcup_{\substack{\mathcal{E}(C_i, C_j) = 1 \\ 0 \le j < i}} Z_j;$$

end

12-

13-

14-

end

if $(y_t \text{ is not available})$ then $\begin{vmatrix} \widehat{y}_t = K(Z_i \cup Z_{rec}, x_t). \end{vmatrix}$ end

Concept Representations

C = (Z, F, D)

- *Z* : set of supervised samples
- *F* : set of features for assessing concept equivalence
- *D* : set of features for detecting concept drift

Operators for Concepts

- *D* concept-drift detection
- Y concept split
- *E* equivalence operators
- *U* concept update

- Build concept C₀ = (Z₀, F₀, D₀) from the training sequence;
 Z_{rec} = Ø and i = 0;
- 3- while $(x_t \text{ is available})$ do
- 4- $\mathcal{U}(C_i, \{x_t\}) \to C_i;$ 5 **if** $(x_t, x_t, x_t) \to C_i;$
- 5-6- $U(C_i, \{(x_t, y_t)\}) \rightarrow C_i;$

end

7-8-9-10-12 **if** $(\mathcal{D}(C_i) = 1)$ **then** i = i + 1; $\Upsilon(C_{i-1}) \rightarrow (C_k, C_l);$ $C_i = C_l;$ $C_{i-1} = C_k;$ $\mathcal{Z}_{rec} = \bigcup_{\substack{\mathcal{O} \in I \\ \mathcal{D}(C_i, C_j) = 1 \\ 0 \le j \le i}} Z_j;$

end

13-

14-

if $(y_t \text{ is not available})$ then $\begin{vmatrix} \widehat{y}_t = K(Z_i \cup Z_{rec}, x_t). \end{vmatrix}$ end end JIT classifiers can be built upon specific classifier (like svm, decision trees, naive Bayes, knn, etc..)

1-	Build concept $C_0 = (Z_0, F_0, D_0)$ from the
	training sequence;
	$Z_{\rm rec} = \emptyset$ and $i = 0;$
-	

while $(x_t \text{ is available})$ do 3-

$$\begin{array}{c|ccc}
4- & \mathcal{U}(C_i, \{x_t\}) \to C_i; \\
5- & \text{if } (y_t \text{ is available}) \text{ then} \\
6- & & \mathcal{U}(C_i, \{(x_t, y_t)\}) \to C_i; \\
& \text{end} \end{array}$$

7-
8-
9-
10-
12-
if
$$(\mathcal{D}(C_i) = 1)$$
 then
 $i = i + 1;$
 $\Upsilon(C_{i-1}) \rightarrow (C_k, C_l);$
 $C_i = C_l;$
 $C_{i-1} = C_k;$
 $Z_{\text{rec}} = \bigcup_{\substack{\mathcal{E}(C_i, C_j) = 1 \\ 0 \le j < i}} Z_j;$

end

14-

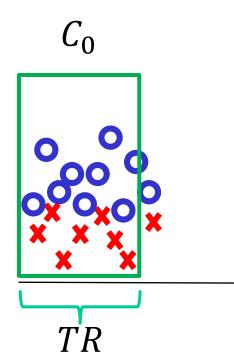
13if $(y_t \text{ is not available})$ then $\widehat{y}_t = K(Z_i \cup Z_{\text{rec}}, x_t).$ end end

Use the initial training sequence to build the concept representation C_0

JIT Classifier: Concept Representations

Build C₀, a practical representation of the current concept

• Characterize both p(x) and p(y|x) in stationary conditions



t

1-	Build concept $C_0 = (Z_0, F_0, D_0)$ from the	
	training sequence;	
2-	$Z_{\rm rec} = \emptyset$ and $i = 0$;	
3-	while $(x_t \text{ is available})$ do	
4-	$\mathcal{U}(C_i, \{x_t\}) \to C_i;$	
5-	if $(y_t \text{ is available})$ then	
6-	$ \qquad \qquad$	
	end	
7-	if $(\mathcal{D}(C_i) = 1)$ then	
8-	i = i + 1;	
9-	$\Upsilon(C_{i-1}) \to (C_k, C_l);$	
10-	$C_i = C_l;$	
11-	$C_{i-1} = C_k;$	
12-	$Z_{\rm rec} = \bigcup Z_j;$	
	$\mathcal{E}(C_i, C_j) = 1$ $0 \le j \le i$	
	end $0 \le j < i$	
13-	if $(y_t \text{ is not available})$ then	
14-	$\widehat{y}_t = K(Z_i \cup Z_{\text{rec}}, x_t).$	
	end	
end		

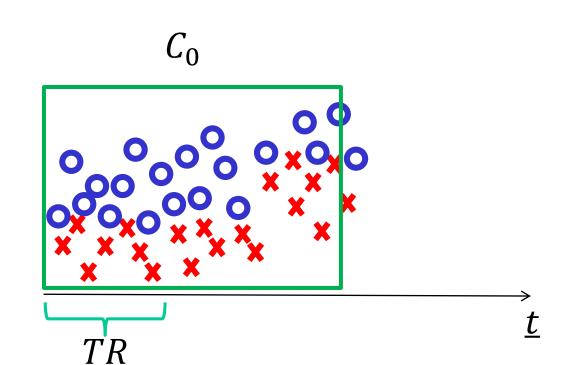
During operations, each input sample is analyzed to

- Extract features that are appended to F_i
- Append supervised information in *Z_i*

thus updating the current concept representation

The concept representation C_0 is **always updated** during operation,

- Including supervised samples in Z_0 (to describe p(y|x))
- Computing feature F_0 (to describe p(x))



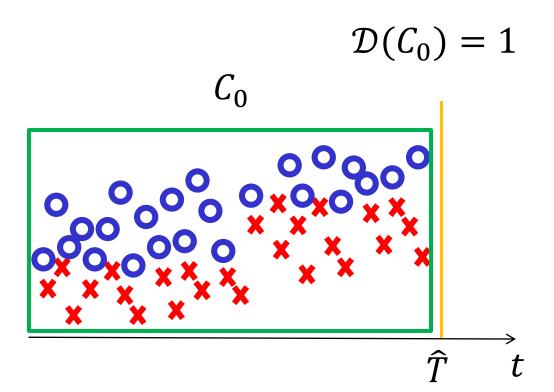
JIT Classifiers: the Algorithm

1-	- Build concept $C_0 = (Z_0, F_0, D_0)$ from the							
	training sequence;							
2-	2- $Z_{\text{rec}} = \emptyset$ and $i = 0$;							
3-	3- while $(x_t \text{ is available})$ do							
4-	$\mathcal{U}(C_i, \{x_t\}) \to C_i;$							
5-	if $(y_t \text{ is available})$ then							
6-	$ \qquad \qquad \mathcal{U}(C_i, \{(x_t, y_t)\}) \to C_i; $							
	end							
7-	if $(\mathcal{D}(C_i) = 1)$ then							
8-	i = i + 1;							
9-	$\Upsilon(C_{i-1}) \to (C_k, C_l);$							
10-	$C_i = C_l;$							
11-	$C_{i-1} = C_k;$							
12-	$Z_{ m rec} = \bigcup Z_j;$							
	$\mathcal{E}(C_i, C_j) = 1$ $0 \le j \le i$							
	end $0 \le j < i$							
13-	if $(y_t \text{ is not available})$ then							
14-	$\widehat{y}_t = K(Z_i \cup Z_{\text{rec}}, x_t).$							
	end $g_t = \Pi(\Xi_t \cup \Xi_{\text{lec}}, \omega_t)$.							
end								

The current concept representation is analyzed by \mathcal{D} to determine whether concept drift has occurred

 \mathcal{D} monitoring the datastream by means of **online** and **sequential** change-detection tests (CDTs)

• Changes are detected monitoring p(y|x) and p(x)



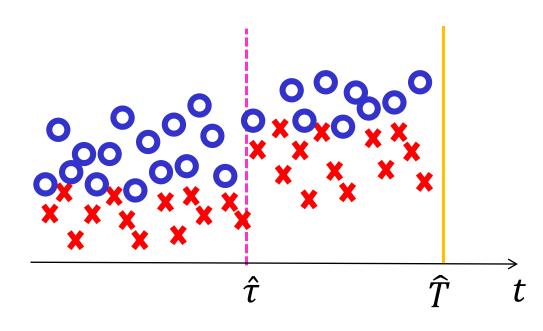
JIT Classifiers: the Algorithm

1- Build concept $C_0 = (Z_0, F_0, D_0)$ from the training sequence;							
0 7 (band i 0)							
2- $Z_{\text{rec}} = \emptyset$ and $i = 0;$							
3- while (x_t is available) do							
4- $\mathcal{U}(C_i, \{x_t\}) \to C_i;$							
5- if $(y_t \text{ is available})$ then							
6- $\mathcal{U}(C_i, \{(x_t, y_t)\}) \to C_i;$							
end							
7- if $(\mathcal{D}(C_i) = 1)$ then							
8- $i = i + 1;$							
9- $\Upsilon(C_{i-1}) \to (C_k, C_l);$							
$10- \qquad C_i = C_l;$							
$11- \qquad C_{i-1} = C_k;$							
$12- \qquad \qquad$							
$\mathcal{E}(C_i, C_j) = 1$ $0 \le j < i$							
end							
13- if $(y_t \text{ is not available})$ then							
$ 4- \qquad \qquad$							
end							
end							

If concept drift is detected, the concept representation is split, to isolate the recent data that refer to the new state of X

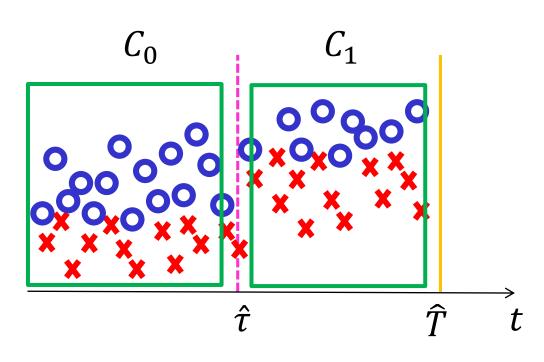
A new concept description is built

Offline and retrospective statistical tools such as hypothesis tests (HT) or change-point methods (CPM) can be used to estimate the change point.



Two concept descriptions are constructed

 $\Upsilon(C_0) = (C_0, C_1)$



JIT Classifiers: the Algorithm

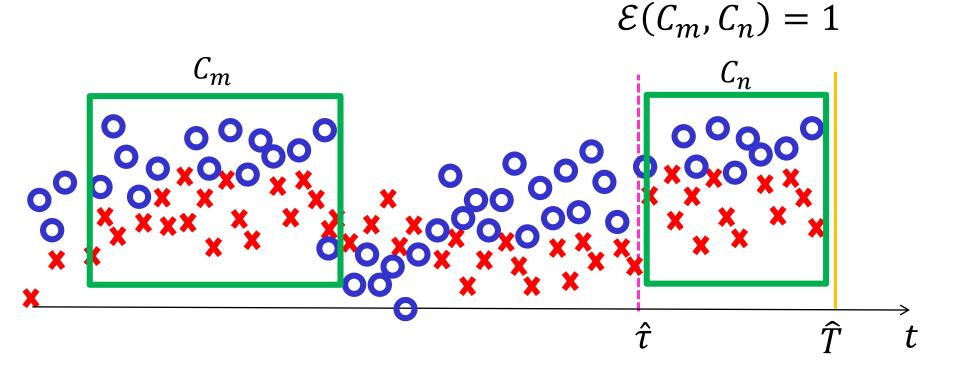
1-	Build concept $C_0 = (Z_0, F_0, D_0)$ from the								
training sequence;									
2-	$Z_{\rm rec} = \emptyset$ and $i = 0$;								
3-	while $(x_t \text{ is available})$ do								
4-	$\mathcal{U}(C_i, \{x_t\}) \to C_i;$								
5-	if $(y_t \text{ is available})$ then								
6-	$ \qquad \qquad$								
	end								
7-	if $(\mathcal{D}(C_i) = 1)$ then								
8-	i = i + 1;								
9-	$\Upsilon(C_{i-1}) \to (C_k, C_l);$								
10-	$C_i = C_l;$								
11-	$C_{i-1} = C_k;$								
12-	$Z_{\rm rec} = \bigcup Z_j;$								
	$\mathcal{E}(C_i, C_j) = 1$ $0 \le j \le i$								
	end								
13-	if $(y_t \text{ is not available})$ then								
14-	$\widehat{y}_t = K(Z_i \cup Z_{\text{rec}}, x_t).$								
end									
end									

Look for concepts that are equivalent to the current one.

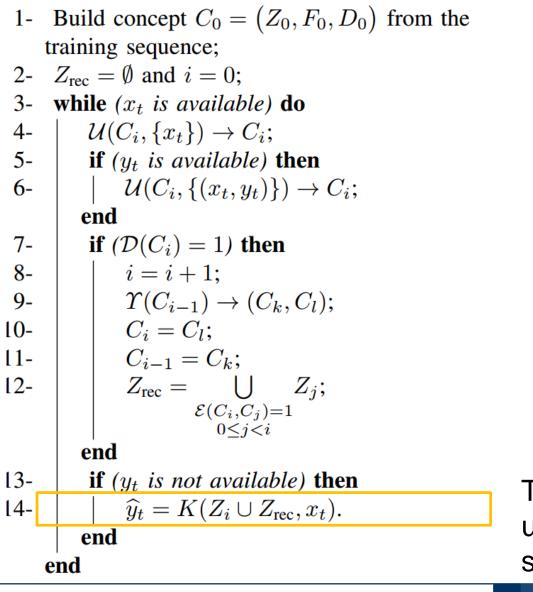
Gather supervised samples from all the representations C_j that refers to the same concept

Concept equivalence is assessed by

- comparing features F to determine whether p(x) is the same on C_m and C_n
- comparing classifiers trained on C_m and C_n to determine whether p(y|x) is the same



JIT Classifiers: the Algorithm



The classifier *K* is reconfigured using all the available supervised couples

JUST-IN-TIME CLASSIFIERS

Few more details about a specific example

POLITECNICO DI MILANO

$$C_i = (Z_i, F_i, D_i)$$

- Z_i = {(x₀, y₀), ..., (x_n, y_n)}: supervised samples provided during the ith concept
- F_i features describing p(x) of the i^{th} concept. We take:
 - the sample mean $M(\cdot)$
 - the power-low transform of the sample variance $V(\cdot)$ extracted from **nonoverlapping sequences**
- *D_i* features for detecting concept drift. These include:
 - the sample mean $M(\cdot)$
 - the power-low transform of the sample variance $V(\cdot)$
 - the average classification error \widehat{err}

extracted from **nonoverlapping sequences**

Update operator

$$\mathcal{U}(C_i, \{(\boldsymbol{x_0}, y_0)\}) = C_i$$

insert the **supervised couple** (x_0, y_0) in Z_i and

$$\mathcal{U}(C_i, \{\boldsymbol{x_0}, \dots, \boldsymbol{x_n}\}) = C_i$$

Takes a sequence of unsupervised data as input, extracts features values and appends them to F_i

Concept Drift Detection Operator

$\mathcal{D}(C_i) \in \{0,1\}$

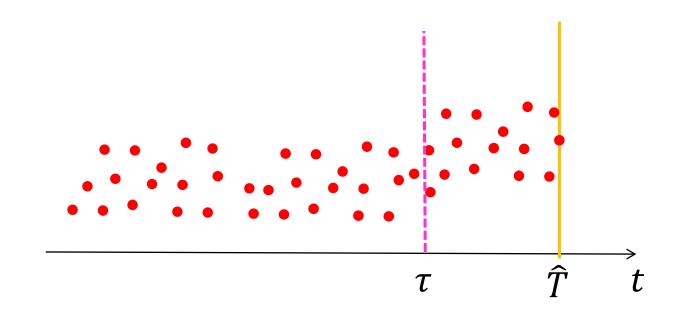
- Implements online change-detection tests (CDTs) based on the Intersection of Confidence Intervals (ICI) rule
- The ICI-rule is an adaptation technique used to define adaptive supports for polynomial regression
- The ICI-rule determines when feature sequence (D_i) cannot be fit by a zero-order polynomial, thus when D_i is non stationary
- ICI-rule requires Gaussian-distributed features but no assumptions on the post-change distribution

[1] A. Goldenshluger and A. Nemirovski, "On spatial adaptive estimation of nonparametric regression," Math. Meth. Statistics, vol. 6, pp. 135–170,1997.

[2] V. Katkovnik, "A new method for varying adaptive bandwidth selection," IEEE Trans. on Signal Proc, vol. 47, pp. 2567–2571, 1999.

$\Upsilon(C_0) = (C_0, C_1)$

- It performs an offline analysis on F_i (just the feature detecting the change) to estimate when concept drift has actually happened
- Detections \hat{T} are delayed w.r.t. the actual change point τ



$$\Upsilon(C_0) = (C_0, C_1)$$

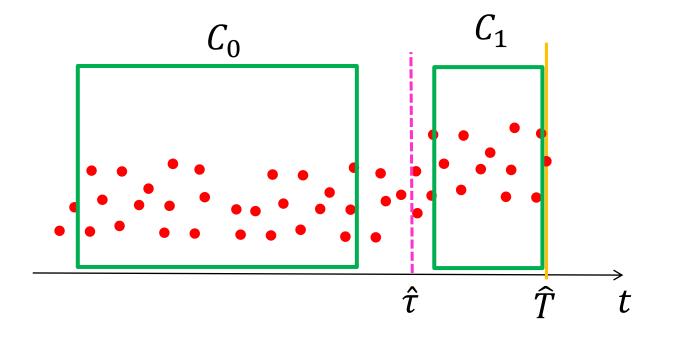
- It performs an offline analysis on F_i (just the feature detecting the change) to estimate when concept drift has actually happened
- Detections \hat{T} are delayed w.r.t. the actual change point τ
- ICI-based CDTs implement a refinement procedure to stimate τ after having detected a change at \hat{T} .
- Change-Point Methods implement the following Hypothesis test on the feature sequence:

 $\begin{cases} H_0: "F_i \text{ contains i. i. d. samples"} \\ H_1: "F_i \text{ contains a change point"} \end{cases}$

testing all the possible partitions of F_i and determining the most likely to contain a change point

$$\Upsilon(C_0) = (C_0, C_1)$$

 In both cases, it is convenient to exclude data close to the estimated change point
 î, implementing some heuristic



$\mathcal{E}(C_0,C_1)\in\{0,1\}$

- Determines if C₀ and C₁ refer to the same concept
 - Performs an equivalence testing problem to determine whether F_0 and F_1 refer to the same p(x)
 - Compares classifiers trained on Z_0 and Z_1 on the same validation set to determine if p(y|x) was the same
- Recurrent concepts are identified by performing a pairwise comparison against the previously encountered concepts

EXPERIMENTS

POLITECNICO DI MILANO

Considered Classifiers

We considered the following adaptive classifiers:

- JIT for recurrent concepts
- JIT without recurrent concepts handling
- W: a sliding window classifier
- *E*: a two-individuals **ensemble** which pairs JIT and *W*
- U: a classifier trained on all the available data

that have been tested on KNN, and Naive Bayes Classifiers

Considered Classifiers

We considered the following adaptive classifiers:

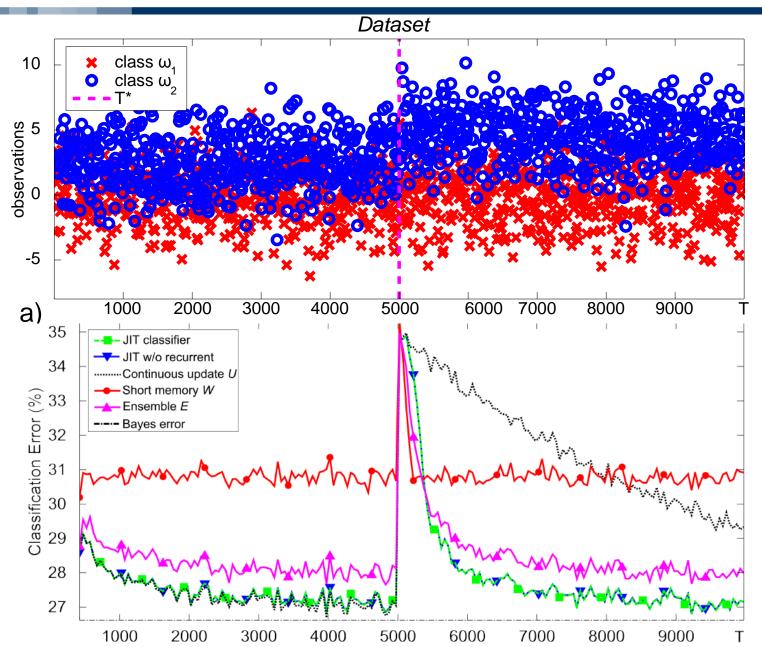
- JIT for recurrent concepts
- JIT without recurrent concepts handling
- W: a sliding window classifier
- *E*: a two-individuals **ensemble** which pairs JIT and *W*
- U: a classifier trained on all the available data

that have been tested on KNN, and Naive Bayes Classifiers

In the ensemble E, the output is defined by **selecting** the most accurate classifier over the last 20 samples (like in paired learners)

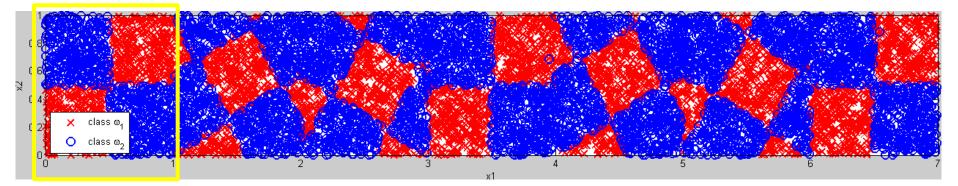
The **ensemble** is meant to **improve reaction promptness** to concept drift. In stationary conditions JIT outperforms *E*

The Ensemble *E*

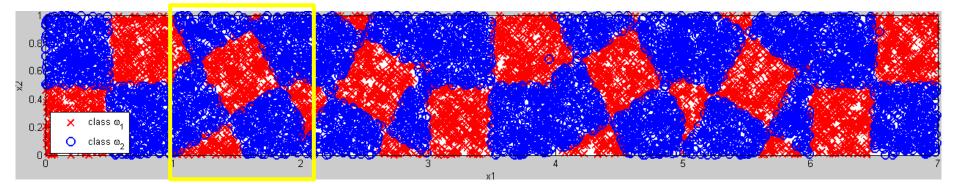


- 10000 samples uniformly distributed in $[0, 1] \times [0, 1]$
- Classification function is a checkerboard of side 0.5
- Concept drift affects classification function by rotating the checkerboard every 2000 samples.
- One sample every 5 is supervised

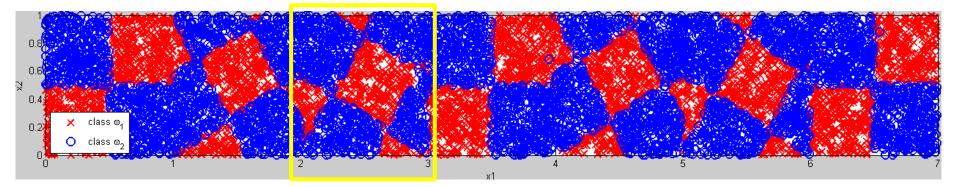
- 10000 samples uniformly distributed in $[0, 1] \times [0, 1]$
- Classification function is a checkerboard of side 0.5
- Concept drift affects classification function by rotating the checkerboard every 2000 samples.
- One sample every 5 is supervised



- 10000 samples uniformly distributed in $[0, 1] \times [0, 1]$
- Classification function is a checkerboard of side 0.5
- Concept drift affects classification function by rotating the checkerboard every 2000 samples.
- One sample every 5 is supervised



- 10000 samples uniformly distributed in $[0, 1] \times [0, 1]$
- Classification function is a checkerboard of side 0.5
- Concept drift affects classification function by rotating the checkerboard every 2000 samples.
- One sample every 5 is supervised



R. Elwell and R. Polikar, "Incremental learning of concept drift in nonstationary environments," Neural Networks, IEEE Transactions on, vol. 22, no. 10, pp. 1517 –1531, oct. 2011

- 10000 samples uniformly distributed in $[0, 1] \times [0, 1]$
- Classification function is a checkerboard of side 0.5
- Concept drift affects classification function by rotating the checkerboard every 2000 samples.
- One sample every 5 is supervised

Sine:

- Similar to CB, class function is a sine
- Tested introducing irrelevant components and class noise

W. N. Street and Y. Kim, "A streaming ensemble algorithm (sea) for large-scale classification," in Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining ser KDD '01

- Classification error averaged over 2000 runs
- Precision and Recall for the identification of recurrent concept (JIT classifier only)

$$precision = \frac{tp}{tp+fp}$$
 and $recall = \frac{tp}{tp+fn}$

Experiment	Base classifier	JIT	Ensemble	JIT w/o recurrent	Short Memory (W)	Continuous Update (U)	Precision Recurrent	Recall Recurrent
CHECKERBOARD_1	k-NN	21.45	17.06	21.41	21.77	44.58	0.422	0.724
CHECKERBOARD_2	k-NN	19.92	14.32	20.37	18.93	24.48	1	0.799
CHECKERBOARD_3	k-NN	18.60	15.60	18.83	20.48	25.67	0.977	0.833
MULTIVARIATE	k-NN	23.60	21.74	23.61	25.00	47.85	1	0.947
GAUSSIAN	NB	21.52	19.97	21.52	21.08	49.03	1	1
SINE_2	k-NN	14.33	11.09	15.50	15.59	44.07	1	0.987
SINE_2A	k-NN	19.49	12.80	20.55	18.10	44.43	1	0.932
SINE_IRREL_2	k-NN	23.76	18.37	24.79	24.19	45.49	1	0.793
SINE_IRREL_2A	k-NN	31.23	22.05	31.64	27.33	45.83	1	0.415
EMAIL_LIST	k-NN	42.00	36.65	42.00	36.55	37.03	-	0
EMAIL_LIST	SVM	22.34	17.31	22.90	22.62	42.83	1	0.250

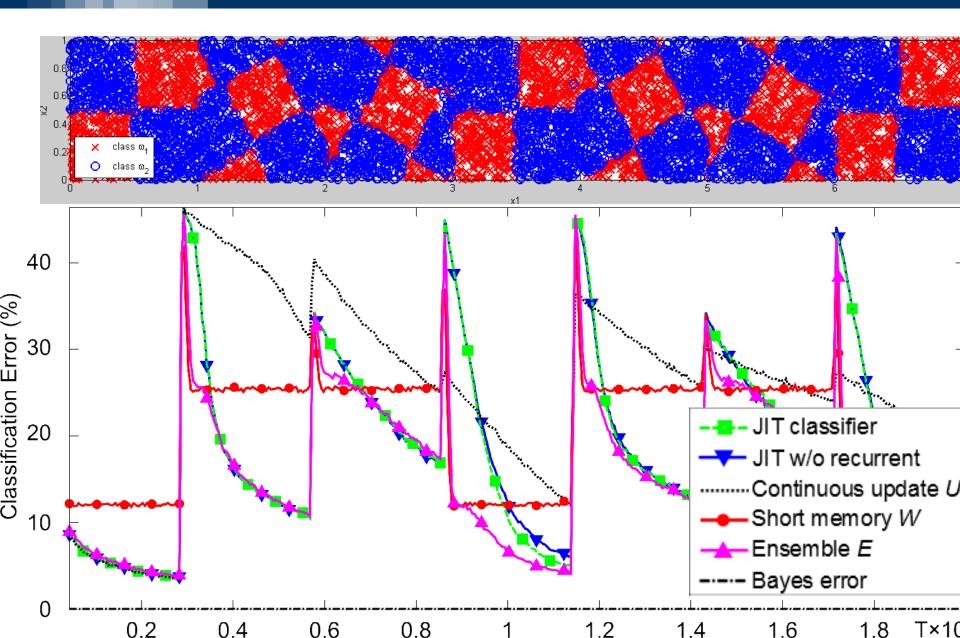
- Classification error averaged over 2000 runs
- Precision and Recall for the identification of recurrent concept (JIT classifier only)

$$precision = \frac{tp}{tp+fp}$$
 and $recall = \frac{tp}{tp+fn}$

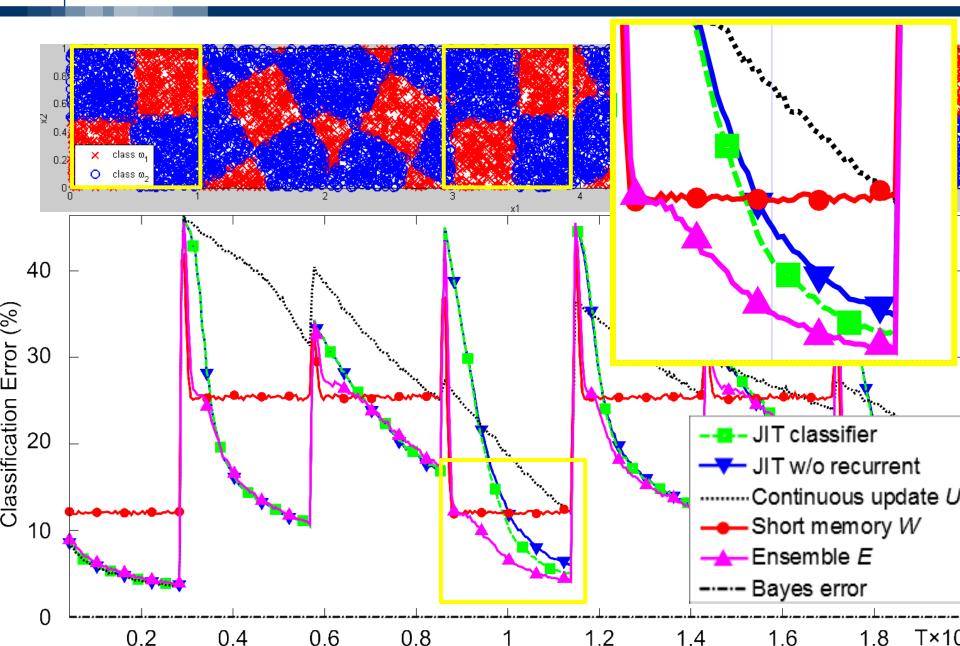
CHECKERBOARD_1 dataset does not contain recurrent concepts. Equivalence operator can correctly associate concepts that have been split by FP of \mathcal{D}

Experiment	Base classifier	JIT	Ensemble	JIT w/o recurrent	Short Memory (W)	Continuous Update (U)	Precision Recurrent	Recall Recurrent
CHECKERBOARD_1	k-NN	21.45	17.06	21.41	21.77	44.58	0.422	0.724
CHECKERBOARD_2	k-NN	19.92	14.32	20.37	18.93	24.48	1	0.799
CHECKERBOARD_3	k-NN	18.60	15.60	18.83	20.48	25.67	0.977	0.833
MULTIVARIATE	k-NN	23.60	21.74	23.61	25.00	47.85	1	0.947
GAUSSIAN	NB	21.52	19.97	21.52	21.08	49.03	1	1
SINE_2	k-NN	14.33	11.09	15.50	15.59	44.07	1	0.987
SINE_2A	k-NN	19.49	12.80	20.55	18.10	44.43	1	0.932
SINE_IRREL_2	k-NN	23.76	18.37	24.79	24.19	45.49	1	0.793
SINE_IRREL_2A	k-NN	31.23	22.05	31.64	27.33	45.83	1	0.415
EMAIL_LIST	k-NN	42.00	36.65	42.00	36.55	37.03	-	0
LMAIL_LIST	SVM	22.34	17.31	22.90	22.62	42.83	1	0.250

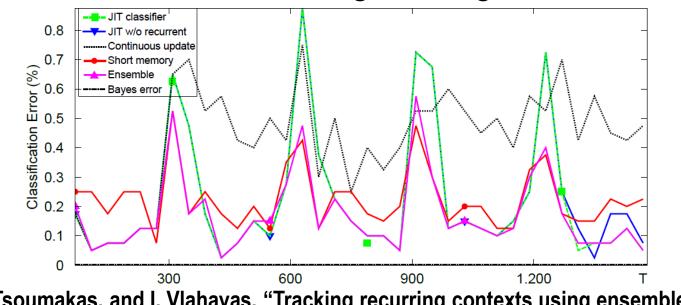
Exploiting Recurrent Concepts



Exploiting Recurrent Concepts



- Inputs x are email text in the bag-of-words representation (913 Boolean attributes)
- Each email refers to a specific topic. Some topics are considered of interest, the remaining are considered spam
- Concept drift is introduced every 300 emails by swapping spam/ham labels, simulating a change in user interests



I. Katakis, G. Tsoumakas, and I. Vlahavas, "Tracking recurring contexts using ensemble classifiers: an application to email filtering," Knowl. Inf. Syst., vol. 22, no. 3, pp. 371–391, Mar. 2010

CONCLUDING REMARKS

POLITECNICO DI MILANO

- We proposed a general methodology for designing different JIT Classifiers based on different
 - concept representations
 - techniques to detect concept drift, split concept representations and assess concept equivalence
 - base classifiers
- Concept representations have to be *condensed* for the JIT classifiers to be efficient in the real-world
 - Pruning / down sampling Z, F, D
 - Learn models describing data distributions in Z, F, D not investigated yet

Similarly, very old concept representations might be dropped if necessary

- Unfortunately, most of nonparametric techniques for analyzing p(x) are meant for scalar data
 - These can be though applied to multivariate data by monitoring the log-likelihood of a models learned to describe unsupervised data

Kuncheva L.I., Change detection in streaming multivariate data using likelihood detectors, IEEE Transactions on Knowledge and Data Engineering, 2013, 25(5), 1175-1180 (DOI: 10.1109/TKDE.2011.226).

- Unfortunately, most of nonparametric techniques for analyzing p(x) are meant for scalar data
 - These can be though applied to multivariate data by monitoring the log-likelihood of a models learned to describe unsupervised data
- Monitoring the classification error is straightforward but: the error of K_t is nonstationary, since K_t is updated.
 - It is more convenient to monitor the error of a second classifier K₀ that is never updated

Kuncheva L.I., Change detection in streaming multivariate data using likelihood detectors, IEEE Transactions on Knowledge and Data Engineering, 2013, 25(5), 1175-1180 (DOI: 10.1109/TKDE.2011.226).

- Extension to gradual drifts
 - «detection / adaptation» paradigm is not optimal since the post-change conditions are nonstationary
 - Need to interpret and compensate drift as in semisupervised learning methods

Dyer K., Capo R., Polikar R., "COMPOSE: A Semi-Supervised Learning Framework for Initially Labeled Non-Stationary Streaming Data" IEEE Transactions on Neural Networks and Learning Systems, Special issue on Learning in Nonstationary and Dynamic Environments – Systems, vol. 25, no. 1, pp. 12-26, 2014

Preprint and (some) codes available from

home.deib.polimi.it/boracchi/index.html

Just In Time Classifiers for Recurrent Concepts

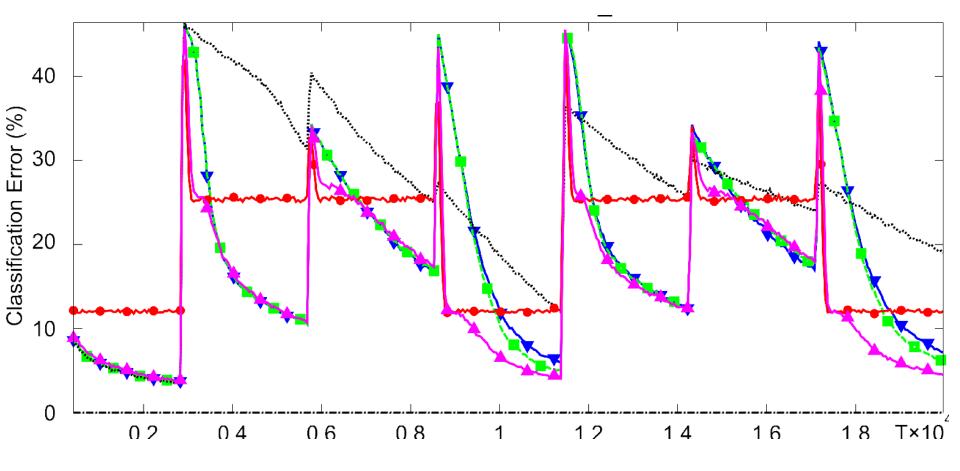
Cesare Alippi, Giacomo Boracchi and Manuel Roveri, IEEE Transactions on Neural Networks and Learning Systems, 2013. vol. 24, no.4, pp. 620-634 <u>doi:10.1109/TNNLS.2013.2239309</u>

A just-in-time adaptive classification system based on the intersection of confidence intervals rule,

Cesare Alippi, Giacomo Boracchi, Manuel Roveri

<u>Neural Networks, Elsevier</u> vol. 24 (2011), pp. 791-800 <u>doi:10.1016/j.neunet.2011.05.012</u>

Thank you, questions?



POLITECNICO DI MILANO