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We address the problem of detecting anomalous regions in images,
i.e. regions having a structure that does not conform to normal images
in a reference set [1]. Our approach is based on convolutional sparse
models [2], which model an image s ∈ Rn1×n2 as the sum of k
convolutions between filters dm ∈ Rh1×h2 and sparse feature maps
xm ∈ Rn1×n2 ,m ∈ {1, . . . , k}, i.e.

s ≈
k∑

m=1

dm ∗ xm . (1)

Feature maps {xm} of an input image s are computed by a sparse
coding algorithm solving the optimization problem [2]

arg min
{xm}
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∥∥∥∥∥∑
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dm ∗ xm − s
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+ λ
∑
m

‖xm‖1 , (2)

where λ > 0 is the parameter balancing the reconstruction error and
the sparsity of the feature maps, and ‖dm‖2 = 1 ∀m. Solutions of (2)
can be obtained via the Alternating Direction Method of Multipliers
(ADMM) algorithm [3], exploiting an efficient formulation [4] in the
Fourier domain. Filters can be learned from training images [2].

Our contribution is the design of an anomaly-detection approach
monitoring also the local group sparsity of the feature maps, which
is shown to be a relevant prior for anomaly detection.

I. ANOMALY DETECTION

In our approach, filters {dm} are learned to characterize the local
structure of anomaly-free images represented by a training set S, as
shown in Figure 1a. Then, in anomalous regions, where filters are less
likely to match the image structures, it is reasonable to expect the
sparse coding to be less successful, and that either the feature maps
would be less sparse or that (1) would be a poor approximation.

Our intuition is that the sparsity measured as
∑

m ‖xm‖1 is too
loose a criterion for discriminating anomalous regions, and that the
distribution of nonzero coefficients across different feature maps
should be also taken into account. In fact, we observed that within
normal image regions, where filters are well matched with image
structures, only a few feature maps are simultaneously active within a
local subregion. In contrast, where filters and image structures do not
match, more filters are typically active. For this reason, we perform
anomaly detection by monitoring also the local group sparsity of the
feature maps. Figure 1b illustrates feature maps within normal and
anomalous regions.

To detect anomalous regions we analyze an input image s and
the corresponding features maps {xm} in a patch-wise manner.
In particular, at first we compute the sparse coding of s yielding
{xm}, then each patch of s is independently analyzed, computing
an indicator to quantitatively assess the extent to which the patch is
consistent with learned filters {dm}:

g(i) =

∥∥Pi,q

(
s−

∑
m dm ∗ xm

)∥∥2
2∑

m ‖Pi,qxm‖1∑
m ‖Pi,qxm‖2

 , (3)

where Pi,q denotes the matrix extracting a q × q patch centered at
pixel i. The first and second elements of (3) represent the local re-
construction error and local sparsity of the feature maps respectively:
these directly refer to the terms in (2), thus inherently indicate how
successful the sparse coding was. The third element in (3) represents
the group sparsity, and indicates the spread of nonzero coefficients
across different feature maps in the vicinity of pixel i.

Indicators (3) are treated as random vectors and patches yielding
outliers are considered anomalous. Outliers are simply detected as
vectors falling outside a confidence region built around the mean
vector g, previously computed from S. This yields the anomaly-
detection criteria reported at line 6 of the following algorithm:

Training on a set of normal images S:
1. Learn filters {dm}, compute g,Σ from g(i) extracted from S.
2. Set a threshold γ > 0.

Anomaly Detection in a test image s:
3. Compute the filter maps {xm} solving (2).
4. foreach pixel i of s do
5. Compute g(i)
6. if

(
g(i)− g)′Σ−1(g(i)− g

)
> γ then

7. i belongs to an anomalous region
end

end II. EXPERIMENTS AND CONCLUSIONS

We consider the following anomaly-detection approaches:
• convolutional group: anomaly detection monitoring g (3).
• convolutional: anomaly detection monitoring the first two com-

ponents of g only.
• patch-based: each patch is independently approximated by a

standard sparse model [5] rather than a convolutional one and
both reconstruction error and sparsity are monitored, as in [6].

The first and second approaches use the same collections of filters
(8 filters of size 8×8 and 8 of size 16×16) while dictionaries in the
patch-based approach are 1.5 times redundant, and learned by [7].

We consider 25 textures from the Brodatz dataset [8]: the left
half of each image is used for learning filters (or dictionary) and
for computing g and Σ. The right half of each image is used for
preparing 600 test images as horizontal concatenation of two different
textures (see the example in Figure 1b). Test images are processed
using filters (or dictionary) learned from the corresponding left-hand
side: thus any detection in the left half represents a false positive,
and any detection in the right half a true positive. Performance is
assessed from the receiver operating characteristic (ROC) curves in
Figure 2, obtained varying γ. The regularization λ was empirically
set to 0.1 and the patch size is q×q = 15×15.

Experiments indicate that the local group sparsity is an effective
criterion for detecting anomalies in image structure. Ongoing work
concerns the design of a specific sparse-coding algorithm including
local group sparsity as a regularization term, and the use of this
information for different imaging problems.
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Fig. 1. (a) Learned filters (8 filters are of size 8× 8 and 8 are of size 16× 16) report the prominent local structures of the training image. (b) A test image
used in our experiments: the left half represents the normal region (filters were learned from the other half of the same texture image), while the right half
represents the anomalous region. The ideal anomaly detector should mark all pixels within the right half as anomalous, and all pixels within the left half as
normal. The feature maps corresponding to the two highlighted regions (red and green squares) have approximately the same `1 norms. However, the maps
at the right show that there is a substantially different spread of nonzero coefficients across feature maps. Here, the local group sparsity of the feature maps
is more informative than sparsity for anomaly detection. Feature maps were rescaled for visualization sake.
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Fig. 2. (a) The average ROC curves of the approaches discussed in Section II over the 600 test images created from 25 textures from Brodatz dataset (textures
15, 20, 24, 27, 34, 36, 37, 49, 51, 52, 54, 55, 56, 65, 66, 68, 74, 76, 78, 83, 87, 103, 105, 109, 111). The Area Under the Curve values are 0.914, 0.861
and 0.881 for Convolutional Group, Convolutional and Patch-based, respectively. (b) Few ROC curves for selected textures. Anomaly detection performance
using convolutional models (1) can be substantially improved monitoring also the group sparsity (blue solid line), as the gap between the blue and red curve
(convolutional model) shows. The proposed approach outperforms also the patch-based sparsity (dotted green line). The subplots (b) show that while the
anomaly-detection performance of the three solutions varies quite substantially among different images, the proposed approach performs satisfactorily in all
these cases.
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