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Abstract. A desirable feature in smart cameras is the ability to au-
tonomously detect any tampering event/attack that would prevent a
clear view over the monitored scene. No matter whether tampering is
due to atmospheric phenomena (e.g., few rain drops over the camera
lens) or to malicious attacks (e.g., occlusions or device displacements),
these have to be promptly detected to possibly activate countermeasures.
Tampering detection is particularly challenging in battery-powered cam-
eras, where it is not possible to acquire images at full-speed frame-rates,
nor use sophisticated image-analysis algorithms.
We here introduce a tampering-detection algorithm specifically designed
for low-power smart cameras. The algorithm leverages very simple in-
dicators that are then monitored by an outlier-detection scheme: any
frame yielding an outlier is detected as tampered. Core of the algo-
rithm is the partitioning of the scene into adaptively defined regions, that
are preliminarily defined by segmenting the image during the algorithm-
configuration phase, and which shows to improve the detection of camera
displacements. Experiments show that the proposed algorithm can suc-
cessfully operate on sequences acquired at very low-frame rate, such as
one frame every minute, with a very small computational complexity.

Keywords: tampering detection, smart cameras, displacement detec-
tion, blurring detection, low-power cameras, low-frame rate.

1 Introduction

Cameras operating outdoor and in harsh environments are exposed to atmo-
spheric phenomena and intentional attacks that might prevent the correct im-
age acquisition. Rain, snow, dust lying on the camera lens cause blurry (Figure
1(a)) or partially occluded (Figure 1(b)) pictures, while wind might displace the
camera (Figure 1(c) - 1(d)). Similarly, an attacker can intentionally change the
camera focus, spray some opaque or glossy liquid, displace or occlude the camera.
We refer to these events/attacks as tampering. In many situations, tampering is
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Fig. 1. Examples of tampering events due to atmospheric phenomena. (a) rain drops
resulting in a blurry picture, (b) snow partially occluding the camera view, (c)-(d)
wind displacing the camera.

not straightforward to detect (e.g. when the camera is not physically damaged
and does not go out-of-order), and image analysis techniques are the only viable
option.

Tampering detection is an essential feature in surveillance systems [1], which
are expected to autonomously detect any tampering, and promptly report alerts.
Tampering, in fact, might result in images that are useless for monitoring pur-
poses: even a mild blur might hinder the identification of important details such
as licence plates. Surveillance cameras most often operate at normal frame-rates
(e.g. around few frames per second) and are connected to the power supply.
Tampering detection for surveillance cameras have been quite investigated in
the literature; in particular, camera displacements and occlusions are typically
detected by comparing the current frame against an estimate of the scene back-
ground, while blurring is detected by monitoring the high-frequency components
of images, as these are expected to drop. In [2] and [3] tampering is detected by
comparing the histograms of background and current frame, and by monitoring
the energy in wavelet or Fourier domain. Two background models, estimated over
different time intervals, are used in [3]. In [4], tampering detection is performed
by combining background subtraction together with edge detection and normal-
ized cross-correlation. Background estimates and block matching in [5] enable
the displacement detection, while the number of SURF [6] keypoints is used to
detect blurring. A buffer of recent frames rather than an explicit background can
be used as in [7]. All the above solutions, including [8, 9], are computationally
demanding and are not viable options for low-power cameras.

In this work, we expressly target low-power and ultra-low-power smart cam-
eras, like SecSoC (Security System on Chip), an innovative prototype based on
a cluster of ReISC (Reduced Energy Instruction Set Computer) cores, designed
and produced by STMicroelectronics. SecSoC is a battery-powered device, char-
acterized by a constrained computational power (clock rates 82.5 MHz at 1.2V,
and sub-1MHz at 0.6V) and reduced memory (1.25 MB). While low-power cam-
eras are not meant for critical surveillance applications, they might be easily
employed for monitoring wide environments thanks to their low cost and main-
tenance requirements.



Tampering detection in low-power cameras (eventually organized in wireless
sensor network) is more challenging than in conventional surveillance systems,
and this problem has not been much investigated so far [10, 11]. Beside com-
putational aspects – such as the number of operations per pixels allowed – the
big issue is that low-power smart cameras typically operate at very low-frame
rates (e.g., less than one frame per minute), thus the acquired sequence does not
evolve smoothly. These aspects prevent the use of learned background models
and the analysis of foreground variations. In fact, when dynamic environments
are monitored at low frame-rates, changes in the scene and in the light condi-
tions might produce consecutive frames that are very different (see Figure 2).
Smart cameras have to promptly distinguish between normal changes (due to
illumination or movements in the scene), and changes due to camera tampering,
to raise an alert and eventually avoid the transmission of tampered frames.

We address the detection of camera blurring and displacement (Section 2),
and propose an algorithm (Section 3) that relies on indicators that can be eas-
ily computed in low-power smart cameras. We monitor the average image in-
tensity or frame difference (to detect camera displacement), and the average
gradient norm (to detect blurring), and detect tampered frames by analyzing
outliers in these indicators. In particular, we show that separately monitoring
these indicators over different regions of the image can substantially improve the
displacement-detection performance. Image regions are defined during an initial
configuration phase (Section 3.1), thus the algorithm operates at a negligible
computational overhead with respect to monitoring the whole image (Section
3.2). Our algorithm thus represents a prompt trigger, to be possibly combined
with other sequential monitoring techniques. Experiments (Section 4) show that
leveraging image regions can substantially improve the displacement-detection
performance.

2 Problem Formulation

Let zt be frame acquired at time t

zt(x) = Dt[yt](x), ∀x ∈ X (1)

where Dt denotes an operator transforming the original image yt, and x ∈ Z2

indicates the pixel coordinates belonging to the regular pixel grid X ⊂ Z2. As
far as there are no tampering attacks/events,

Dt[yt](x) = yt(x) + ηt(x), ∀x ∈ X (2)

where ηt is a random variable accounting for image noise and yt are acquired
from the same viewpoint and camera orientation, even though typically yt 6= yt−1
because the depicted scene changes.
When, at time τ∗, an external disturbance introduces blurring, the image yt is
degraded by an unknown blur operator, and zt becomes

Dt[yt](x) =

∫
X
y(s)ht(x, s)ds + ηt(x) ∀x ∈ X, t ≥ τ∗ (3)
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Fig. 2. Examples of synthetically generated blurring (3-rd frame in (a)) and camera
displacement (3-rd frame in (b)).

where ht(x, ·) > 0 is the point-spread function at pixel x ∈ X.
A camera displacement at frame τ∗ is instead modeled as

zt(x) =

{
yt(x) + η(x) per t < T ∗

wt(x) + η(x) per t > T ∗
, (4)

where wt and yt refer to different viewpoints and/or camera orientations.
The proposed tampering-detection algorithm analyzes a sequence of frames

{zt, t = 1, . . . } to detect the time instant τ∗ when tampering like (3) or (4)
occurs. We assume that T0 tampering-free frames are provided for training. For
simplicity, we consider grayscale frames: extensions to color images are straight-
forward.

3 Tampering Detection

Algorithm 1 presents the proposed tampering detection, which relies on simple
indicators such as the average intensity (the luma, denoted by l), the average
frame difference (FD, denoted by d) and the average norm of the gradient (de-
noted by g). The first two are meant to detect camera displacements, which
would substantially change the image content, while the latter the blurring,
which would attenuate the high frequencies of the image. As anticipated in Sec-
tion 1, during the initial configuration, the scene is segmented in K disjoint
regions {Rk, k = 1, . . . ,K}, namely Rk ⊂ X , Ri ∩Rj = ∅,∀i 6= j. The employed
segmentation is detailed in Section 3.1.

For each zt, we compute the luma and frame difference separately on each of
the K regions,

lk(t) =
1

#Rk

∑
x∈Rk

zt(x) (5)

dk(t) =
1

#Rk

∑
x∈Rk

(zt(x)− zt−1(x))
2
, k = 1, . . . ,K , (6)



(a)
l(
t)

0.3

0.4

0.5

∂
l(
t)

-0.2

0.2

T
ot

al
R

eg
io

n 
1

R
eg

io
n 

2

Frame 143 Frame 144 Frame 145 Frame 146

l(
t)

0.2

0.4

0.6

∂
l(
t)

-0.2

0.2

(b)

(c)

l(
t)

0.4

0.45

Indicators

∂
l(
t)

-0.02

0.02

Detrended Indicators
120 140 160 180 t 120 140 160 180 t 

Fig. 3. Example of camera displacements. Left plots report the luma values, while right
plots depict the detrended luma: we show both indicators computed over the full image
(a) and on two reported regions (b and c). Red dots indicate a single displaced frame.
Values in the highlighted areas refer to the frames depicted on top of the figure. The
highlighted displacement yields a small peak in l(t) and two outliers in the sequence of
detrended indicators ∂l(t), which can be clearly detected.

where #(·) denotes the cardinality of a set. We can simultaneously monitor
both luma and frame difference, even though computing dk requires to store the
previous frame and this also depends on memory availability of the device. In
what follows, including Algorithm 1, we consider only the luma l, but the same
procedures apply to the frame difference d as well. The average gradient norm
is instead computed over the whole image

g(t) =
∑
x∈X

(√
(zt ~ fh)

2
(x) + (zt ~ fv)

2
(x)

)
, (7)

where fh and fv are the horizontal and vertical derivative filters, respectively,
and ~ denotes the 2d convolution.

Figure 3 shows how a camera displacement affects the luma. First of all, we
observe that a displaced frame changes l(t) (introducing a peak in Figure 3(a))
and that this change is also visible in the indicators lk(t) for the regions (Fig-
ure 3(b) and Figure 3(c)). Second, we observe that outlier-detection methods [12]
based on density estimates or on confidence intervals –that are very efficient to
run– cannot be straightforwardly applied here. In fact, these methods are meant
for independent and identically distributed (i.i.d.) random variables, while here
indicators follow an unpredictable trend because of changes in the scene or in the
illumination. Therefore, we perform a detrending [13] of the indicator sequence
by a temporal derivative

∂lk(t) = lk(t)− lk(t− 1), k = 1, . . . ,K , (8)

and we similarly define ∂dk(t) and ∂g(t).



Algorithm 1: The Proposed Tampering-Detection Algorithm

Input: γl, γg, Γl, training frames {zt, t = 1, . . . , T0}, regions {Rk, k = 1, . . . ,K}
Training phase:

1. Compute ∂lk(t) and ∂g(t), t = 1, · · · , To

2. Compute ∂lk, ∂g, σlk and σg.
Operational phase:

3. for t = To + 1, . . . ,∞ do
4. Get frame zt, set nl = 0;
5. Compute ∂g(t)
6. if ∂g(t) < −γgσg ∨ ∂l(t) > γgσg then
7. raise a blurring alert in zt

end
8. for k = 1, . . . ,K do
9. Compute ∂lk(t)

10. if ∂lk(t) < −γlσlk ∨ ∂lk(t) > γlσlk then
11. nl = nl + 1

end

end
12. if nl ≥ Γl then
13. raise a camera displacement alert in zt

end

end

The sequences of detrended indicators (reported in Figure 3) can be suitably
monitored by the following confidence intervals:

[∂lk(t)− γlσlk , ∂lk(t) + γlσlk ], k = 1, . . . ,K , (9)

where ∂lk(t) denotes the mean and σlk the standard deviation of ∂l over Rk
(Algorithm 1, line 1), computed from tampering-free frames provided for training
(i.e. zt , t = 1, . . . , To) and γl > 0 is a tuning parameter. Similar intervals are
built for ∂dk(t) and ∂g (line 2).

During operations, indicators are computed (lines 5 and 9), and any indicator
falling outside its confidence region is considered an outlier. In particular, any
outlier in ∂g yields a blurring alert (line 6), while camera-displacement alerts are
raised when at least Γl indicators ∂lk simultaneously yield outliers (line 12). The
threshold Γl together with γl determine the displacement-detection promptness.
The extreme configurations correspond to Γl = 1, where it is sufficient that a
single region fires an outlier to raise a camera-displacement alert, and Γl = K−1
where all but one region3 have to simultaneously fire an outlier to raise an alert.

It is important to remark that tampering yields outliers in the transient of
the detrended indicators (8): namely, a single tampered frame yields two outliers
(as shown in Figure 3) and only the first and the last of a sequence of consecutive

3 It is better to exclude a region since, for instance, the sky-region typically does not
change when the camera is displaced, either horizontally or vertically



tampered frames yield outliers in the detrended indicators. This is the reason why
detrended indicators are monitored in a one-shot manner, targeting the detection
of the first tampered-frame. On the one hand, this one-shot monitoring can
provide prompt detections, which is particularly important at the low frame-rates
we consider, on the other hand, the persistence of tampering is disregarded. To
take this valuable information into account, some form of sequential monitoring
should be applied to the indicator sequence as in [11], possibly combined with
Algorithm 1.

3.1 Scene Segmentation

Scene has to be preliminarily segmented to define regions that Algorithm 1 takes
as input. To this purpose, we use part of the training frames before T0 to compute
the feature vector f(x) ∈ R5 for each pixel x ∈ X

f(x) =
[
r(x); c(x); l̄(x);σl(x); g(x);σg(x)

]
, ∀x ∈ X . (10)

In (10), r(x) and c(x) denotes the row and column of x, respectively, l̄(x) and
σl(x) the mean and standard deviation of the intensity at x, computed over
time, and g(x) and σg(x) the mean of gradient norm and its standard deviation,
computed over time. These feature vectors are meant to cluster pixels in regions
having, over training frames, similar spatial appearance and temporal behavior.

As in superpixel methods [14], segmentation is performed by k-means clus-
tering. Feature vectors (10) over the whole image are clustered by a weighted
k-means [15] that scales each component of the Euclidean distance between a
feature vector and a cluster centroid of a weight that is inversely proportional
to the standard deviation over the cluster. This scaling compensates the fact
that the components of the feature vector might span very different ranges. The
number of clusters is defined by testing several values and then choosing the best
solution according to the Calinski-Harabasz criterion [16].

Finally, morphological image-processing operations are executed to remove
boundaries between different regions, and eventually regions that are too small.
This defines the regions {Rk , k = 1, . . . ,K}, and two examples are reported in
Figure 3.

3.2 Computational Complexity

The most computationally demanding operations of Algorithm 1 consist in com-
puting the indicators, in particular g. Computing g requires, when using the
Sobel filters in (7), 34 operations per pixels4, while computing l and d requires 1
and 3 operations per pixel, respectively. Detecting outliers in the indicators re-
quires two comparisons per frame: thus, monitoring regions instead of the whole
image has a negligible impact on the overall computational complexity. Algo-
rithm 1 has very low memory requirements: l and g indicators can be computed

4 Execution can be accelerated whether hardware implementations of the FFT trans-
form are available



online, while d requires to store a single frame in memory. Segmentation is exe-
cuted only during the initial configuration and can be performed on an external
device connected to the smart camera. As such, Algorithm 1 can be properly
executed on low-power and ultra low-power cameras.

4 Experiments

Experiments are meant to assess the advantages of separately monitoring regions
in the considered tampering-detection framework. To this purpose, we show that
Algorithm 1 detects camera displacements better than monitoring indicators on
the whole image (Whole Image in Figure 4). We also show that it is important
to adapt regions to the image content, since operating on K regions obtained
by clustering [r(x), c(x)] leads to performance loss (Voronoi in Figure 4). For
both Voronoi and regions defined as in Section 3.1, we consider the two extreme
configurations where alerts are raised at the first region firing an outlier or when
K − 1 regions simultaneously fire outliers.

We recorded 8 sequences from webcams monitoring different urban areas,
yielding overall 12200 frames. From each frame, we have cropped the central
area, removing the 50 top-most and bottom-most rows, and the 50 left-most
and right-most columns5. We have synthetically introduced 10% of tampered
frames: displacements have been simulated by moving the central cropping area
of a random shift having magnitude between 20 and 50 rows and columns (as
in Figure 2(b)), while blurring (as in Figure 2(a)) was simulated by convolution
against a Gaussian kernel, with standard deviation randomly defined in the range
[1, 5].

A typical figure of merit for assessing detection performance is the Receiver
Operating Characteristic (ROC) curve, where each point corresponds to a pair
(FPRγ , TPRγ) defined as

FPRγ =
FPγ

TNγ + FPγ
, and TPRγ =

TPγ
TPγ + FNγ

.

Here, TPγ represents the number of true positives (tampered frames correctly de-
tected), FPγ of false positives (tampering-free frames detected), TNγ of true neg-
atives (tampering-free frames not detected) and FNγ of false negatives (missed
tampered frames), for a given value of γ. ROC curves have been computed by
varying γl, γd and γg in a range of values between 0.1 and 50.

Discussion ROC curves in Figure 4(a)-(b) and the Area Under the Curve
(AUC) values reported in the caption confirm that camera displacements can be
better detected by monitoring FD than luma, and that it is convenient to define
regions by segmenting the scene. As an example, if we set γd = 15.6, Algorithm 1
operates at FPR = 1% and detects nearly all tampering since TPR = 99.92%. In
contrast, to operate at FPR = 1% when monitoring the whole image or Voronoi
regions we obtain TPR = 91.67% (γd = 6.5) and TPR = 89.05% (γd = 18.64),

5 Sequences can be provided upon request.
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Fig. 4. (a) ROC curves relative to displacement detection based on FD: the AUC
obtained by “Algorithm 1 - One region” is 99.89%, while the AUC obtained by on the
whole image is 99.65%. (b) ROC curves relative to displacement detection based on
luma: the AUC obtained by “Algorithm 1 - One region” is 98.44%, while the AUC
obtained on the whole image is 84.07%. (c) ROC curves relative to blurring detection
based on gradient: as opposed to (a) and (b), “Algorithm 1 - One region” (AUC
98.4%) is outperformed by monitoring the whole image, AUC = 99.13%. To highlight
differences, the ROC curves in (a) and (c) are drawn over a smaller FPR, TPR range.

respectively. When monitoring l, Algorithm 1 achieves TPR = 73.98% at FPR =
1% (γd = 5.8), while monitoring the whole image is quite ineffective (TPR =
17.85%, γd = 3.7), and similarly perform Voronoi’s regions (TPR = 53.02%,
γd = 6). We remark that, in the considered low-power scenario, it is important
to operate at low FPR to prevent useless data transmission (that would reduce
the battery time-life) and the activation of eventual countermeasures. As far as
the values of Γd and Γl are concerned, the most effective configuration consists in
raising an alert as soon as a single region fires a very clear outlier, which implies
setting quite wide intervals (9). This option is also preferable because it enables
the detection of partial occlusions of the scene. We observe that displacements
typically change all the Voronoi regions, and this is why Voronoi outperforms
Algorithm 1 in the configuration K − 1 in both luma and FD.

Figure 4(c) confirms that blurring is more effectively detected by monitoring
the whole image at once. This is probably due to the fact that, typically, regions
do not include the most prominent edge of the scene, which are indeed the most
informative parts to detect blurring.

5 Conclusions

We presented a tampering-detection algorithm that leverages an image segmen-
tation to improve the detection of camera displacements, and that at the same
time can detect blurring. The algorithm has low-computational complexity and
has to be considered a prompt trigger for detecting tampering in low-power and
ultra low-power cameras operating at low frame rates.

Ongoing work concerns approaching other types of tampering, such as degra-
dations of the imaging sensor, and the integration of sequential monitoring
schemes [11] to detect subtle tampering that persists over time. Moreover, we



will investigate the use of superpixels methods [14] to segment the scene, by
including suitable temporal information to the feature vectors.
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