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Abstract— Most fraud-detection systems (FDSs) monitor
streams of credit card transactions by means of classifiers
returning alerts for the riskiest payments. Fraud detection is
notably a challenging problem because of concept drift (i.e.
customers’ habits evolve) and class unbalance (i.e. genuine
transactions far outnumber frauds). Also, FDSs differ from
conventional classification because, in a first phase, only a small
set of supervised samples is provided by human investigators
who have time to assess only a reduced number of alerts. Labels
of the vast majority of transactions are made available only
several days later, when customers have possibly reported unau-
thorized transactions. The delay in obtaining accurate labels
and the interaction between alerts and supervised information
have to be carefully taken into consideration when learning in
a concept-drifting environment.

In this paper we address a realistic fraud-detection setting
and we show that investigator’s feedbacks and delayed labels
have to be handled separately. We design two FDSs on the
basis of an ensemble and a sliding-window approach and we
show that the winning strategy consists in training two separate
classifiers (on feedbacks and delayed labels, respectively), and
then aggregating the outcomes. Experiments on large dataset
of real-world transactions show that the alert precision, which
is the primary concern of investigators, can be substantially
improved by the proposed approach.

Index Terms— Fraud Detection, Concept Drift, Unbalanced
Data, Data Streams, Anomaly Detection.

I. INTRODUCTION

Everyday a huge and growing number of credit cards
payments takes place while being targeted by fraudulent ac-
tivities. Companies processing electronic transactions have to
promptly detect any fraudulent behavior in order to preserve
customers’ trust and the safety of their own business.

Most fraud-detection system (FDSs) employ machine-
learning algorithms to learn frauds’ patterns and detect
them as datastreams of transactions come [4]. In particular,
we focus here on FDSs which aim to detect frauds by
means of classifiers that label transactions as fraudulent or
genuine. Fraud detection is particularly challenging for two
reasons [5]: frauds represent a small fraction of all the
daily transactions [3] and their distribution evolves over time
because of seasonality and new attack strategies [29]. This
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situation is typically referred to as concept drift [19] and is
of extreme relevance for FDSs which have to be constantly
updated either by exploiting the most recent supervised
samples or by forgetting outdated information that might be
no more useful whereas not misleading.

In a real-world setting, it is impossible to check all
transactions. The cost of human labour seriously constrains
the number of alerts, returned by the FDS, that can be
validated by investigators. Investigators in fact check the
alerts by calling the cardholders, and then provide the FDS
with feedbacks indicating whether the alerts were related to
fraudulent or genuine transactions. These feedbacks, which
refer to a tiny fraction of the daily transactions amount, are
the only real-time information that can be provided to train
or update classifiers. The labels of the rest of transactions
can be assumed to be known several days later, once a
certain reaction-time for the customers have passed: all
the transactions that customers do not report as frauds are
considered genuine. In the paper we will distinguish between
immediate feedback samples (i.e. transactions annotated with
the investigator feedback) and delayed samples, whose labels
is obtained only after some time. This distinction is crucial
for the design of an accurate FDS, though most FDSs in
the literature [25], [36], [16], [4] assume an immediate and
accurate labeling after the processing of each transaction.
This oversimplifying assumption ignores the alert-feedback
interaction, which makes the few recent supervised couples
dependent from the performance of the FDS itself.

Another substantial difference between the real-world set-
tings and the ideal ones considered in literature is that the
primary concern of any FDS should be to return a small
number of very precise alerts, then reducing the number of
genuine transactions (false positives) that have be controlled
by investigators. In practice, the optimal FDS should be
the one maximizing the number of frauds detected within
the budget of alerts that can be reported. Notwithstanding,
classical performance metrics considered in the literature are
the area under the curve (AUC), the cost (namely, financial
losses arising from misclassification), and metrics based on
the confusion matrix [23] (e.g the F-measure), which are not
necessarily meaningful for the alert precision.

In this work we show that, in a real-world fraud-detection
scenario, it is convenient to handle immediate feedbacks
separately from delayed supervised samples. The former, in
fact, are selected as the most risky transactions according to
the FDS itself, while the latter refer to all the occurred trans-
actions. Our claim is better illustrated in Section IV, where



we investigate two traditional learning approaches for FDSs,
namely, i) a sliding-window approach where a classifier is re-
trained everyday on the most recent supervised samples and
ii) an ensemble approach where, everyday, a new component
replaces the oldest one in the ensemble. We designed and
assessed two different solutions for each approach: in the
first, feedbacks and delayed supervised samples are pooled
together while in the second we train two distinct classifiers,
based on feedbacks and delayed samples respectively, and
then aggregate the outputs. Experiments shown in Section V
on two real-world credit card datasets indicate that handling
feedbacks separately from delayed training samples can
substantially improve the alert precision. We motivate this
result as the fact that this solution guarantees a prompter
reaction to concept drift: additional experiments on datasets
that have been manipulated to introduce concept drift in
specific days, confirm our intuition.

To the best of our knowledge, this is also the first work
addressing the problem of fraud detection when supervised
pairs are provided according to the alert-feedback interaction,
as formulated in Section III.

II. RELATED WORKS

FDSs are confronted with two major challenges: i) han-
dling non-stationary streams of transactions, namely a stream
where the statistical properties of both frauds and genuine
transactions change overtime; ii) handling the class unbal-
ance, since legitimate transactions generally far outnumber
the fraudulent ones. In what follows we provide an overview
of state-of-the-art FDSs with a specific focus on solutions
for evolving and unbalanced data streams.

In the fraud-detection literature both supervised [7], [10],
[4] and unsupervised [6], [34] solutions have been pro-
posed. Unsupervised methods do not rely on transactions
labels (i.e. genuine or fraudulent) and associate fraudulent
behaviours [6] to transactions that do not conform with
the majority. Unsupervised methods exploit clustering algo-
rithms [31], [36] to group customers into different profiles
and identify frauds as transactions departing from customer
profile (see also the recent survey by Phua [30]).

In this paper we will focus on supervised methods. Su-
pervised methods exploit labels that investigators assign to
transactions for training a classifier and, during operation,
detect frauds by classifying each transaction in the incoming
stream [5]. Fraud detection has been often considered as
an application scenario for several classification algorithms,
e.g. Neural networks [22], [1], [16], [7], Support Vector Ma-
chines [37], Decision Trees [13] and Random Forest [12]).

Learning on the stream of credit transactions is a chal-
lenging issue because transactions evolve and change over
time, e.g. customers’ behaviour change in holiday seasons
and new fraud activities may appear. This problem is known
as concept drift [19] and learning algorithms operating
in non-stationary environments typically rely only on the
supervised information that is up-to-date (thus relevant),
and remove any obsolete training sample [2]. Most often,
concept-drift adaptation is achieved by training a classifier

over a sliding window of the recent supervised samples
(e.g. STAGGER [32] and FLORA [38]) or by ensemble of
classifiers where recent supervised data are used to train
a new classifier while obsolete ones are discarded (e.g.
SEA [33] and DWM [26]).

Streams of credit card transactions present an additional
challenge: the classes are extremely unbalanced since frauds
are typically less than 1% of genuine transactions [13]. Class
unbalance is typically addressed by resampling methods [24],
which balance the training set by removing samples of the
majority class (undersampling) or by replicating the minority
class (oversampling). In practice, concept-drift adaptation in
an unbalanced environment is often achieved by combining
ensemble methods and resampling techniques. The class
unbalance problem is addressed in [20], [21] by propagat-
ing minority class training samples and undersampling the
majority class. Chen and He proposed REA [11] where they
recommend to propagate only examples from the minority
class that belong to the same concept using a k-nearest
neighbors algorithm. Learn++.NIE [15] creates multiple bal-
anced training sets from a batch using undersampling, then
it learns a classifier on each balanced subset and combines
all classifier’s predictions. Lichtenwalter and Chawla [28]
suggest to propagate not only positives, but also observations
from the negative class that are misclassified in the previous
batch to increase the boundary definition between the two
classes.

All the aforementioned learning frameworks demand a
training set of recent instances with their own ground-truth
class label. However, in a real-world FDS, this is often not
possible because only few recent supervised couples are pro-
vided according to the alert-feedback interaction described in
Section I. The only FDS explicitly handling concept drift in
the transaction streams is [35] which nevertheless, like other
FDS presented in the literature [6], [7], [10], ignores the
alert-feedback interaction.

It is worth to remark that this alert-feedback interaction
could remind an active-learning scenario where the learner
is allowed to query an oracle for requiring informative
supervised couples from a large set of unlabelled obser-
vations. Unfortunately in a FDS scenario, this solution is
not feasible since an exploration phase, where investigators
should check a large number of (possibly uninteresting)
transactions, would not be considered as acceptable.

III. PROBLEM FORMULATION

We formulate here the fraud detection problem as a binary
classification task where each transaction is associated to
a feature vector x and a label y. Features in x could be
the transaction amount, the shop id, the card id, the time-
stamp or the country, as well as features extracted from
the customer profile. Because of the time-varying nature of
the transactions’ stream, typically, FDSs train (or update)
a classifier Kt every day (t). The classifier Kt : Rn →
{+,−} associates to each feature vector x ∈ Rn, a label
Kt(x) ∈ {+,−}, where + denotes a fraud and − a genuine
transaction. Since frauds represent a negligible fractions of
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Fig. 1. The supervised samples available at day t include: i) feedbacks of
the first δ days and ii) delayed couples occurred before the δth day.

the total number of transactions, the positive class is also
called the minority class and the negative one the majority
class.

In general, FDSs operate on a continuous stream of trans-
actions because frauds have to be detected online, however,
the classifier is updated once a day, to gather a sufficient
amount of supervised transactions. Transactions arriving at
day t, namely Tt, are processed by the classifier Kt−1 trained
in the previous day (t− 1). The k riskiest transactions of Tt
are reported to the investigators, where k > 0 represents the
number of alerts the investigators are able to validate. The
reported alerts At are determined by ranking the transactions
of Tt according to the posterior probability PKt−1

(+|x),
which is the estimate, returned by Kt−1, of the probability
for x to be a fraud. The set of reported alerts at day t is
defined as

At = {x s.t. r(x) ≤ k} (1)

where r(x) ∈ {1, . . . ,#Tt} is the rank of the transaction x
according to PKt−1

(+|x), and #(·) denotes the cardinality
of a set. In other terms, the transaction with the highest
probability ranks first (r(x) = 1) and the one with the lowest
probability ranks last (r(x) = #Tt).

Investigators will then provide feedbacks Ft about the
alerts in At, defining a set of k supervised couples (x, y)

Ft = {(x, y), x ∈ At}, (2)

which represents the only immediate information that the
FDS receives. At day t, we also receive the labels of all
the transactions processed at day t − δ, providing a set of
delayed supervised couples Dt−δ = {(x, y), x ∈ Tt−δ}, see
Figure 1. Though these transactions have not been personally
checked by investigators, they are by default assumed to be
genuine after δ days, as far as customers do not report frauds.
1 As a result, the labels of all the transactions older than δ
days are provided at day t. The problem of receiving delayed
labels is also referred to as verification latency [27].

It is worth to remark that this is still a simplified descrip-
tion of the processes regulating companies analyzing credit

1Investigators typically assume that frauds missed by the FDS are
reported by customers themselves (e.g. after having checked their credit
card balance), within a maximum time-interval of δ days.
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Fig. 2. Everyday we have a new set of feedbacks
(Ft, Ft−1, . . . , Ft−(δ−1)) from the first δ days and a new set of
delayed transactions occurred on the δth day (Dt−δ). In this Figure we
assume δ = 7 and the colours refer to the notation in Figure 1.

cards transactions. For instance, it is typically not possible
to extract the alerts At by ranking the whole set Tt, since
transactions have to be immediately passed to investigators;
similarly, delayed supervised couples Dt−δ do not come all
at once, but are provided over time. Notwithstanding, we
deem that the most important aspects of the problem (i.e.
the alert-feedback interaction and the time-varying nature of
the stream) are already contained in our formulation and that
further details would unnecessarily make the problem setting
complex.

Feedbacks Ft can either refer to frauds (correct alerts)
or genuine transactions (false alerts): correct alerts are the
true positives (TP), while false alerts are the false positives
(FP). Similarly, Dt−δ contains both fraud (false negative)
and genuine transactions (true negatives), although the vast
majority of transactions belong to the genuine class. Figure 2
illustrates the two types of supervised pairs that are provided
everyday.

The goal of a FDS is to return accurate alerts: when too
many FPs are reported, investigators might decide to ignore
forthcoming alerts. Thus, what actually matters is to achieve
the highest precision in At. This precision can be measured
by the quantity

pk(t) =
#{(x, y) ∈ Ft s.t. y = +}

k
(3)

where pk(t) is the proportion of frauds in the top k transac-
tions with the highest likelihood of being frauds ([4]).

IV. LEARNING STRATEGY

The fraud-detection scenario described in Section III sug-
gests that learning from feedbacks Ft is a different problem
than learning from delayed samples in Dt−δ . The first differ-
ence is evident: Ft provides recent, up-to-date, information
while Dt−δ might be already obsolete once it comes. The
second difference concerns the percentage of frauds in Ft and
Dt−δ . While it is clear that the class distribution in Dt−δ is
always skewed towards the genuine class (see Figure 2), the
number of frauds in Ft actually depends on the performance
of classifier Kt−1: values of pk(t) ∼ 50% provide feedbacks
Ft where frauds and genuine transactions are balanced, while



high precision values might even result in Ft skewed towards
frauds. The third, and probably the most subtle, difference is
that supervised couples in Ft are not independently drawn,
but are instead selected by Kt−1 among those transaction
that are more likely to be frauds. As such, a classifier
trained on Ft learns how to label transactions that are most
likely to be fraudulent, and might be in principle not precise
on the vast majority of genuine transactions. Therefore,
beside the fact that Ft and Dt−δ might require different
resampling methods, Ft and Dt−δ are also representative of
two different classification problems and, as such, they have
to be separately handled. In the following, two traditional
fraud-detection approaches are presented (Section IV-A), and
further developed to handle separately feedbacks and delayed
supervised couples (Section IV-B). Experiments in Section
V show that this is a valuable strategy, which substantially
improves the alert precision.

A. Conventional Classification Approaches in FDS

During operation, feedbacks Ft and delayed super-
vised samples Dt−δ can be exploited for training or
updating the classifier Kt. In particular, we train the
FDS considering the feedbacks from the last δ days
(i.e. {Ft, Ft−1, . . . , Ft−(δ−1)}) and the delayed supervised
pairs from the last α days before the feedbacks, i.e.
{Dt−δ, . . . , Dt−(δ+α−1)} (see Figure 2). 2

In the following we present two conventional solutions for
concept-drift adaptation [34], [20] built upon a classification
algorithm proving an estimate of the probability P (+|x).
• Wt: a sliding window classifier that is daily updated

over the supervised samples received in the last δ +
α days, i.e. {Ft, . . . , Ft−(δ−1), Dt−δ, . . . , Dt−(δ+α−1)}
(see Figure 3).

• Et: an ensemble of classifiers {M1,M2, . . . ,Mα,F },
whereMi is trained on Dt−(δ+i−1) and Ft is trained on
all the feedbacks of the last δ days {Ft, . . . , Ft−(δ−1)}.
The estimate of posterior probability PEt(+|x) is esti-
mated by averaging the posterior probabilities of the
individual classifiers, PMi(+|x), i = 1, . . . , α and
PFt(+|x). Note that we use a single classifier to learn
from the set of feedbacks since their size is typically
small. Everyday, Ft is re-trained considering the new
feedbacks, while a new classifier is trained on the
new delayed supervised couples provided (Dt−δ) and
included in the ensemble. At the same time, the most
obsolete classifier is removed from the ensemble.

These solutions implement two basic approaches for han-
dling concept drift that can be further improved by adopting
dynamic sliding windows or adaptive ensemble sizes [17].

B. Separating delayed Supervised Samples from Feedbacks

Our intuition is that feedbacks and delayed transactions
have to be treated separately because, beside requiring
different tools for handling class unbalance, they refer to

2There is no point of storing feedbacks from Ft−δ (or before), as these
supervised couples are provided in Dt−δ (or before).
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Fig. 3. Supervised information used by different classifiers in the ensemble
and sliding window approach. The Figure assume that feedbacks are
provided for the first 7 days (δ = 7) and delayed samples of two days
before the feedbacks are available (α = 2).

different classification problems. Therefore, at day t we
train a specific classifier Ft on the feedbacks of the last
δ days {Ft, . . . , Ft−(δ−1)} and denote by PFt

(+|x) its
posterior probability. We then train a second classifier on the
delayed samples by means either of a sliding-window or an
ensemble mechanism (see Figure 3): Let us denote by WD

t

the classifier trained on a sliding window of delayed samples
{Dt−δ, . . . , Dt−(δ+α−1)} and by PWD

t
(+|x) its posterior

probabilities, while EDt denotes the ensemble of α classifiers
{M1,M2, . . . ,Mα} where each individual classifier Mi

is trained on Dt−δ−i, i = 1, . . . , α. Then, the posterior
probability PEDt (+|x) is obtained by averaging the posterior
probabilities of the individual classifiers.

Each of these two classifiers has to be aggregated with Ft
to exploit information provided by feedbacks. However, to
raise alerts, we are not interested in aggregation methods at
the label level but rather at the posterior probability level.
For the sake of simplicity we adopt the most straightforward
combination approach based on averaging the posterior prob-
abilities of the two classifiers (Ft and one among WD

t and
EDt ). Let us denote by AEt the aggregation of Ft and EDt
where PAE

t
(+|x) is defined as:

PAE
t
(+|x) =

PFt(+|x) + PEDt (+|x)
2

(4)

Similar definition holds for the aggregation of Ft and WD
t

(AWt ). Note that Ft and WD
t jointly use the training set of

Wt and, similarly, the two classifiers Ft and EDt jointly use
the same training samples of Et (see Figure 3).

However, inWt feedbacks represent a small portion of the
supervised samples used for training, hence they have little
influence on PWt

(+|x), while in the aggregation AWt their
contribution becomes more prominent. Similarly, Ft repre-
sents one of the classifiers of the ensemble Et, hence it has
in principle the same influence as all the other α classifiers



trained on delayed samples to determine PEt(+|x).3.
Experiments in Section V show that handling feedbacks

separately from delayed supervised samples provides much
more precise alerts, and that FDSs relying on classifiers
trained exclusively on feedbacks and delayed supervised
samples (like AWt and AEt ) substantially outperform FDSs
trained on feedbacks and delayed supervised samples pooled
together (likeWt and Et). In what follows, as practical exam-
ple of the separation of feedbacks from delayed supervised
couples, we detail the specific solutions based on Random
Forests that were used in our experiments.

C. Two Specific FDSs based on Random Forest

As a base algorithm the FDSs presented in the previous
section we used a Random Forest [9] with 100 trees. In
particular, for WD

t , Wt and for all Mi, i = 1, . . . , α, we
used a Balanced Random Forest (BRF) where each tree
is trained on a balanced bootstrap sample, obtained by
randomly undersampling the majority class while preserving
all the minority class samples in the corresponding training
set. Each tree of BRF receives a different random sample
of the genuine transactions and the same samples from
the fraud class in the traininig set, yielding a balanced
training set. This undersampling strategy allows one to learn
trees with balanced distribution and to exploit many subsets
of the majority class. At the same time, this resampling
method reduces training sizes and improve detection speed.
A drawback of undersampling is that we are potentially
removing relevant training samples form the dataset, however
this problem is mitigated by the fact that we learn 100
different trees. Using undersampling allows us to rebalance
the batches without propagating minority class observations
along the streams as in [20]. Propagating frauds between
batches should be avoided whenever possible, since it re-
quires access to previous batches that we might not be able
to store when data arrives in streams. In contrast, for Ft
that is trained on feedbacks we adopted a standard Random
Forest (RF) where no resampling is performed.

V. EXPERIMENTS

We considered two datasets of credit card transactions of
European cardholders: the first one (referred to as 2013) is
composed of daily transactions from the 5th of September
2013 to the 18th of January 2014, the second one (referred
to as 2014) contains transactions from the 5th of August to
the 9th of September 2014. In the 2013 dataset there is an
average of 160k transactions per day and about 304 frauds
per day, while in the 2014 dataset there is on average 173k
transactions and 380 frauds everyday. Table I reports few
additional details about these datasets and shows that they
are also heavily unbalanced.

In the first experiments we process both datasets to as-
sess the importance of separating feedbacks from delayed
supervised samples. Though we expect these streams to be

3In the specific case of the ensemble and of posterior probabilities com-
puted by averaging (4), the aggregation of Ft and EDt (AEt ) corresponds
to assigning a larger weight to Ft in Et.

TABLE I
DATASETS

Id Start day End day # Days # Instances # Features % Fraud
2013 2013-09-05 2014-01-18 136 21,830,330 51 0.19%
2014 2014-08-05 2014-10-09 44 7,619,452 51 0.22%

affected by concept drift (CD), since they span a quite long
time range, we do not have any ground truth to investigate
the reaction to concept drift of the proposed FDS. To
this purpose, we design the second experiment where we
juxtapose batches of transactions acquired in different times
of the year to artificially introduce CD in a specific day in
the transaction stream.

In both experiments we test FDSs built on random forests
presented in Section IV-C. We considered both the sliding
window and ensemble approaches and compared the accu-
racy of pooling feedbacks and delayed supervised samples
together (Wt and Et) against learning separate classifiers (Ft,
WD
t and EDt ) that are then aggregated (AWt and AEt ). Let

us recall that alerts are raised by each tested classifier. This
means that also the feedbacks returned to the classifiers might
be different. This has to be considered when comparing
different classifiers, for instance, when comparing Wt and
WD
t , the supervised information provided is not the same

because, in the first case alerts are raised by Wt while in the
second by WD

t .
We assume that after δ = 7 days all the transactions labels

are provided (delayed supervised information) and that we
have a budget of k = 100 alerts that can be checked by
the investigators: thus, Ft is trained on a window of 700
feedbacks. We set α = 16 so thatWD

t is trained on a window
of 16 days and EDt (resp. Et) is an ensemble of 16 (resp. 17)
classifiers. 4

Each experiments is repeated 10 times to reduce the
results’ variability due to bootstrapping of the training sets
in the random forests. The FDS performance is assessed by
means of the average pk over all the batches (the higher
the better) and use a paired t-test to assess whether the
performance gaps between each pair of tested classifiers
is significant or not. We compute the paired t-test on the
ranks resulting from the Friedman test [18] as recommended
by Demsar [14]. In practice, for each batch, we rank the
strategies from the least to the best performing and then
compare each strategy against the others by means of a paired
t-test based on the ranks. Then we sum the ranks over all
batches. More formally, let rs,j ∈ {1, . . . , S} be the rank
of strategy s on day j and S be the number of strategies
to compare. The strategy with the highest accuracy in j has
rs,j = S and the one with the lowest has rs,j = 1. The
paired t-test compares ranks of strategy a against b by means
of ra,j − rb,j , j ∈ {1, . . . , J}, where J is the total number
of batches. Then the sum of ranks for strategy s is defined
as

∑J
j=1 rj,s. The higher the sum, the higher is the number

4We ran several experiments with α = 1, 8, 16, 24 and found α = 16 as
a good trade-off between performance, computational load, and the number
of days that can be used for testing in each stream.



of times that one strategy is superior to the others.

A. Experiments on 2013 and 2014 Datasets

In order to evaluate the benefit of learning on feed-
backs and delayed samples separately, we first compare
the performance of classifier Wt against Ft, WD

t and the
aggregation AWt . Table II shows the average pk over all the
batches for the two datasets separately. In both 2013 and

TABLE II
AVERAGE pk BETWEEN ALL THE BATCHES

Dataset 2013 Dataset 2014
classifier mean sd mean sd

F 0.609 0.250 0.596 0.249
WD 0.540 0.227 0.549 0.253
W 0.563 0.233 0.559 0.256
AW 0.697 0.212 0.657 0.236

2014 datasets, AWt outperforms the other FDSs in terms of
pk. The barplots of Figure 5 show the sum of ranks for
each classifier and the results of the paired t-tests. Figure
5 indicates that in both datasets (Figures 5(a) and 5(b))
AWt is significantly better than all the other classifiers. Ft
achieves higher average pk and higher sum of ranks thanWD

t

and Wt: this confirms that feedbacks are very important to
increase pk. Figure 4(a) displays the value of pk for AWt
and Wt in each day, averaged in a neighborhood of 15 days.
During December there is a substantial performance drop,
that can be seen as a Concept Drift (CD) due to a change
in cardholder behaviour before Christmas. However, AWt
dominatesWt along the whole 2013 dataset, which confirms
that a classifier AWt that learns on feedbacks and delayed
transactions separately outperforms a classifier Wt trained
on all the supervised information pooled together (feedbacks
and delayed transactions).

Figures 5(c), 5(d) and Tables III confirm this claim also
when the FDSs implements an ensemble of classifiers. 5 In
particular, Figure 4(b) displays the smoothed average pk of
classifiers AEt and Et. For the whole dataset AEt has better
pk than Et.

TABLE III
AVERAGE pk BETWEEN ALL THE BATCHES

Dataset 2013 Dataset 2014
classifier mean sd mean sd

F 0.603 0.258 0.596 0.271
ED 0.459 0.237 0.443 0.242
E 0.555 0.239 0.516 0.252
AE 0.683 0.220 0.634 0.239

B. Experiments on artificial dataset with CD

In this section we artificially introduce an abrupt CD in
specific days by juxtaposing transactions acquired in different
times of the year. Table IV reports the three datasets that have
been generated by concatenating batches of the dataset 2013

5Please note that classifier Ft returns different results between Table II
and Table III because of the stochastic nature of RF.

W
AW

(a) Sliding window strategies

AE

E

(b) Ensemble strategies

Fig. 4. Average pk per day (the higher the better) for classifiers on
dataset 2013 smoothed using moving average of 15 days. In the sliding
window approach classifier AWt has higher pk than Wt, and in the ensemble
approach AEt is superior than Et.

with batches from 2014. The number of days after concept
drift is set such that the FDS has the time to forget the
information from the previous concept.

TABLE IV
DATASETS WITH ARTIFICIALLY INTRODUCED CD

Id Start 2013 End 2013 Start 2014 End 2014
CD1 2013-09-05 2013-09-30 2014-08-05 2014-08-31
CD2 2013-10-01 2013-10-31 2014-09-01 2014-09-30
CD3 2013-11-01 2013-11-30 2014-08-05 2014-08-31

Table V(a) shows the values of pk averaged over all
the batches in the month before the change for the sliding
window approach, while Table V(b) shows pk in the month
after the CD. AWt reports the highest pk before and after
CD. Similar results are obtained with the ensemble approach

TABLE V
AVERAGE pk IN THE MONTH BEFORE AND AFTER CD FOR THE SLIDING

WINDOW APPROACH

(a) Before CD
CD1 CD2 CD3

classifier mean sd mean sd mean sd
F 0.411 0.142 0.754 0.270 0.690 0.252

WD 0.291 0.129 0.757 0.265 0.622 0.228
W 0.332 0.215 0.758 0.261 0.640 0.227
AW 0.598 0.192 0.788 0.261 0.768 0.221

(b) After CD
CD1 CD2 CD3

classifier mean sd mean sd mean sd
F 0.635 0.279 0.511 0.224 0.599 0.271

WD 0.536 0.335 0.374 0.218 0.515 0.331
W 0.570 0.309 0.391 0.213 0.546 0.319
AW 0.714 0.250 0.594 0.210 0.675 0.244

(Tables VI(a), VI(b)). In all these experiments, AEt is also
faster than standard classifiers Et and Wt to react in the
presence of a CD (see Figure 6). The large variation of pk
over the time reflect the non-stationarity of the data stream.
Expect for dataset CD1, we have on average lower pk after
concept drift.

C. Discussion

In this section we analyze the accuracy improvements
achieved by classifiers AWt and AEt proposed in Section IV-
B. First of all, we notice that the classifier learned on recent
feedbacks is more accurate that the one learned on delayed
samples. This is made explicit by Tables II and III showing
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Fig. 5. Comparison of classification strategies using sum of ranks in all batches and paired t-test based upon on the ranks of each batch (classifiers having
the same letter on their bar are not significantly different with a confidence level of 0.95). In both datasets (2013 and 2014), classifiers AWt and AEt are
significantly better that the others.
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dataset CD1
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(b) Sliding window strategies on
dataset CD2
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dataset CD3
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Fig. 6. Average pk per day (the higher the better) for classifiers on datasets with artificial concept drift (CD1, CD2 and CD3) smoothed using moving
average of 15 days. In all datasets AWt has higher pk than Wt. For the ensemble approach we show only dataset CD3, where AEt dominates Et for the
whole dataset (similar results are obtained on CD1 and CD2, but they are not included for compactness). The vertical bar denotes the date of the concept
drift.

TABLE VI
AVERAGE pk IN THE MONTH BEFORE AND AFTER CD FOR THE

ENSEMBLE APPROACH

(a) Before CD
CD1 CD2 CD3

classifier mean sd mean sd mean sd
F 0.585 0.183 0.731 0.267 0.706 0.245
ED 0.555 0.318 0.563 0.217 0.562 0.223
E 0.618 0.313 0.696 0.276 0.648 0.245
AE 0.666 0.222 0.772 0.272 0.751 0.221

(b) After CD
CD1 CD2 CD3

classifier mean sd mean sd mean sd
F 0.696 0.270 0.477 0.235 0.610 0.270
ED 0.551 0.298 0.286 0.182 0.486 0.265
E 0.654 0.266 0.373 0.235 0.581 0.268
AE 0.740 0.232 0.575 0.227 0.659 0.245

that Ft often outperforms WD
t (and EDt ), and Wt (and Et).

We deem that Ft outperforms WD
t (resp. EDt ) since WD

t

(resp. EDt ) are trained on less recent supervised couples.
As far as the improvement with respect to Wt (and Et) is
concerned, our interpretation is that this is due to the fact
that Wt (and Et) are trained on the entire supervised dataset,
then weakening the specific contribution of feedbacks.

Our results instead show that aggregation prevents the
large amount of delayed supervised samples to dominate the
small set of immediate feedbacks. This boils down to assign
larger weights to the most recent than to the old samples,
which is a golden rule when learning in non-stationary en-

vironments. The aggregation AWt is indeed an effective way
to attribute higher importance to the information included in
the feedbacks. At the same time AEt is a way to balance the
contribution of Ft and the remaining α models of Et.

Another motivation of the accuracy improvement is that
classifiers trained on feedbacks and delayed samples address
two different classification tasks (Section IV). For this reason
too, it is not convenient to pool the two types of supervised
samples together.

Finally, the aggregation presented in equation 4 provides
equal weights to the two posterior probabilities PFt

and PWD
t

(PEDt ). However, more sophisticated and eventually adaptive
aggregation schemes (e.g. non-linear or stacking [8]) could
be used to react to concept drift. In fact, in a rapidly drifting
environment, the relative weight of PFt should eventually
increase, because WD

t (or EDt ) might be obsolete and prone
to false alarms.

VI. CONCLUSION

In this paper we formalise a framework that reproduces
the working conditions of real-world FDSs. In a real-
world fraud-detection scenario, the only recent supervised-
information is provided on the basis of the alerts generated
by the FDS and feedbacks provided by investigators. All the
other supervised samples are provided with a much larger
delay.

Our intuition is that the alert-feedback interaction has
to be explicitly considered to improve alert precision and



that feedbacks and delayed samples have to be separately
handled when training a realistic FDS. To this purpose, we
have considered two general approaches for fraud detection:
a sliding window and an ensemble of classifiers. We have
then compared FDSs that separately learn on feedbacks and
delayed samples against FDSs that pool all the the available
supervised information together. Experiments run on real-
world streams of transactions show that the former strategy
provides much more precise alerts than the latter, and that it
also adapts more promptly in concept-drifting environments.

Future work will focus on investigating adaptive mecha-
nisms to aggregate the classifier trained on feedbacks and the
one trained on delayed samples, to further improve the alert
precision in non-stationary streams.
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