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Anomaly (Novelty) Detection 

 We consider monitoring systems acquiring and 

processing images, such as those employed in biomedical 

or industrial control applications.  

 We assume that images acquired under normal 

conditions are characterized by specific local structures  

 Regions that do not conform to these structures are 

considered anomalies 

 We address the problem of learning a model for describing 

normal structures and detect anomalies as regions that 

cannot be properly described by the model 

 As «running example» we consider scanning electron 

microscope (SEM) images for monitoring the production of 

nanofibers 
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PROBLEM FORMULATION 



Patch-Generating Process 

 Patches are small image regions of a predefined shape 𝒰, 

𝐬𝑐 = {𝑠 𝑐 + 𝑢 , 𝑢 ∈ 𝒰} 

 

 

 

 

 

 

 

 



Patch-Generating Process 

 Patches are small image regions of a predefined shape 𝒰, 

𝐬𝑐 = {𝑠 𝑐 + 𝑢 , 𝑢 ∈ 𝒰} 

 

 

 

 

 

 

 

 

𝑐 

𝒰 



Patch-Generating Process 

 Patches are small image regions of a predefined shape 𝒰, 

𝐬𝑐 = {𝑠 𝑐 + 𝑢 , 𝑢 ∈ 𝒰} 

 We assume that in nominal conditions, patches 𝐬𝑐 ∈ ℝ𝑚 

are i.i.d. realizations from a stochastic process  𝒫𝑁 

𝐬c ∼ 𝒫𝑁 

 

 

 A training set of 𝑙 normal patches 𝑇 ∈ ℝ𝑚×𝑙 is given to 

learn a model 𝐷  approximating normal patches 



The Anomaly-Detection Problem 

 We assume that anomalous patches are generated by 𝒫𝐴 

𝐬c ∼ 𝒫𝐴 

 The process generating anomalies 𝒫𝐴 ≠ 𝒫𝑁 is unknown 

 Anomalies have to be detected as patches that do not 

conform the model learned to describe normal patches 

• We define anomaly indicators 𝑓(𝐬𝑖) that measure the 

degree to which the learned model fits each patch 𝐬𝑖 

• We detect anomalies as outliers in the anomaly 

indicators 

 Peculiarity of the proposed approach is to leverage 

models 𝐷   yielding sparse representation of image 

patches 

 

 

 



SPARSE REPRESENTATIONS 
for anomaly detection 



Sparse Representations 

 Sparse representations have shown to be a very useful 

method for constructing signal models 

 The underlying assumption is that 

𝐬 ≈ 𝐷𝐱   i. e,  𝐬 − 𝐷𝐱 2 ≈ 0  

and 𝐱 ∈ ℝ𝑛 where: 

• 𝐷 ∈ ℝ𝑚×𝑛 is the dictionary, columns are called atoms 

• the coefficient vector 𝐱 is sparse ( 𝐱 0 = 𝐿 ≪ 𝑛) 
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Sparse Representations 

 Sparse representations have shown to be a very useful 

method for constructing signal models 

 The underlying assumption is that 

𝐬 ≈ 𝐷𝐱   i. e,  𝐬 − 𝐷𝐱 2 ≈ 0  

and 𝐱 ∈ ℝ𝑛 where: 

• 𝐷 ∈ ℝ𝑚×𝑛 is the dictionary, columns are called atoms 

• the coefficient vector 𝐱 is sparse ( 𝐱 0 = 𝐿 ≪ 𝑛) 

 Sparse signals live in a union of low-dimensional 

subspaces of ℝ𝑚, each having maximum dimension 𝐿, 

defined by dictionary atoms {𝐝𝑖} (columns of 𝐷). 

∃ 𝐱 ∈ ℝ𝑛 s. t.   𝐬 =   𝑥𝑖𝐝𝑖

𝑛

𝑖=1

 



Learning a Dictionary for Modeling Stationarity 

 Learning 𝐷  corresponds to learning the union of 

subpaces where patches in 𝑇 – the normal ones- live. 

 Dictionary learning is a joint optimization over the 

dictionary and coefficients of a sparse representation of 𝑇 

𝐷 =  argmin
𝐷∈ℝ𝑚×𝑛,𝑋∈ℝ𝑛×𝑙

𝐷𝑋 − 𝑇 𝐹 

such that 𝐱𝑘 0 ≤ 𝐿, ∀𝑘 

 We consider here the KSVD algorithm [Aharon 06] 

 

 

[Aharon  06] M. Aharon, M. Elad, and A. M. Bruckstein, “K-SVD: An algorithm for  

designing  overcomplete dictionaries for sparse representation,” Transactions on  

Signal Processing vol. 54, no. 11, November 2006, pp. 4311–4322. 



Sparse Coding 

 The dictionary 𝐷  can be used for computing the sparse 

representation of any patch to be tested 

 There are efficient tools for computing 𝐱, the sparse 

approximation of a patch 𝐬 w.r.t. a given dictionary 𝐷  

𝐷 𝐱 ≈ 𝐬  

 This operation is referred to as the sparse coding 

 



Sparse Coding - l𝟎 norm problem 

 Sparse coding solving  the constrained problem 

P0:    𝐱 𝟎 = argmin
𝐱∈ℝ𝑛

 𝐷 𝐱 − 𝐬
𝟐
 s. t. 𝐱 0 ≤ 𝐿 

 The sparsity of the solution is constrained to be at most 𝐿 

 Typically solved by means of Greedy Algoritms, such as 

the Orthogonal Matching Pursuit (OMP). 

 Solving this problem actually corresponds to projecting the 

observed data into the union of subspaces (determined by 

at most 𝐿 atoms). 



Sparse Coding - l𝟏 norm problem 

 Sparse coding solving the unconstrained problem 

P1:   𝐱 𝟏 = argmin
𝐱∈ℝ𝑛

  𝐽𝜆 𝐱, 𝐷 , 𝐬  

     where the functional is  

𝐽𝜆 𝐱, 𝐷 , 𝐬 = 𝐷 𝐱 − 𝐬
𝟐

𝟐
+ 𝜆 𝐱 1 

 The sparsity requirement is relaxed by a penalization term 

on the ℓ1- norm of the coefficients 

 Under some conditions the solution of P0 and P1 do 

coincide 

 This is a Basis Pursuit Denoising (BPDN) problem: there 

are several optimization methods in the literature. 

 We adopt Alternating Direction Method of Multipliers 

(ADMM) 

 



ANOMALY INDICATORS 
Tools to quantitatively assess «patch normality» 



Anomaly Indicators 

 Given a dictionary 𝐷  learned to describe the training set 𝑇 

 We measure the extent to which a given patch 𝐬 is 

consistent with the nominal conditions, by computing 

the sparse coding of 𝐬 w.r.t. 𝑫  

𝐬 → 𝐬 ,  where  𝐬 = 𝐷 𝐱  and 𝐬 ≈ 𝐬  

 When solving the P0 problem, 𝐬  is the projection of 𝐬 on 

the best subspace of at most 𝐿 atoms of 𝐷 . 

 We need suitable anomaly-indicators that quantitatively 

assess how close 𝐬 is to nominal patches. 

• anomaly indicators have to take into account both 

accuracy and sparsity of the representation 

 



Anomaly Indicators 

 The following anomaly indicators have been 

considered: 
 

• When solving P0 the reconstruction error 

𝑒 𝐬 = 𝐬 − 𝐷 𝐱 𝟎 𝟐
, being 𝐱 𝟎 the solution of P0 

 

• When solving P1, the value of the functional  

𝑓 𝐬 = 𝐬 − 𝐷 𝐱 𝟏 𝟐
+ 𝜆 𝐱 𝟏 𝟏 , being 𝐱 𝟏 the solution of P1 

 

• When solving P1, jointly the sparsity and the error 

𝑔 𝐬 = [ 𝐬 − 𝐷 𝐱 𝟏 𝟐
;  𝜆 𝐱 𝟏 𝟏] , being 𝐱 𝟏 the solution of P1 

 



ANOMALY DETECTION 
on the anomaly indicators 



Anomaly Detection 

 The anomaly indicators captures the degree to which the 

structure of 𝐬 is similar to that of normal patches 

 Patches are processed independently 

 We treat the anomaly indicators as realization from an 

unknown random variable: thus 

 Detecting patches having anomalous structures 

becomes detecting outliers in anomaly indicators 

• Several statistical techniques have been developed 

ranging from graphical, confidence intervals-based, 

density-based 

• Outliers are detected as point in low-denisty regions 

• We perform outlier detection using confidence intervals 

which behaves quite well for unimodal distribution 
25 January 2015 



Anomaly Detection from 1D Anomaly Indicators 

 We treat anomaly indicators computed from i.i.d. 

stationary data as random variables. 

 We define high-density regions for the empirical 

distribution of anomaly indicators from 𝑇 

 In case of 1D-anomaly indicators, such a region is 

ℐ𝛼
𝑒 = [𝑞𝛼

2
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1−
𝛼
2
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where 𝑞𝛼
2
 is the 𝛼/2 quantile of the empirical distribution 



Anomaly Detection from 1D Anomaly Indicators 

 We treat anomaly indicators computed from i.i.d. 

stationary data as random variables. 

 We define high-density regions for the empirical 

distribution of anomaly indicators from 𝑇 

 In case of 1D-anomaly indicators, such a region is 

ℐ𝛼
𝑒 = [𝑞𝛼

2
, 𝑞

1−
𝛼
2
] 

where 𝑞𝛼
2
 is the 𝛼/2 quantile of the empirical distribution 

𝜶/𝟐 % of the 

sample here 

𝑞
1−

𝛼
2
 𝑞𝛼

2
 

𝜶/𝟐 % of the 

sample here 



Anomaly Detection from 1D Anomaly Indicators 

 We treat anomaly indicators computed from i.i.d. 

stationary data as random variables. 

 We define high-density regions for the empirical 

distribution of anomaly indicators from 𝑇 

 In case of 1D-anomaly indicators, such a region is 

ℐ𝛼
𝑒 = [𝑞𝛼

2
, 𝑞

1−
𝛼
2
] 

where 𝑞𝛼
2
 is the 𝛼/2 quantile of the empirical distribution 

 We detect anomalies as data yielding anomaly indicators, 

out of high-density regions (outliers) 

𝑒 𝐬  ∉ ℐ𝛼
𝑒 

 The same for anomaly indicator 𝑓(⋅) 



Anomaly Detection from 2D Anomaly Indicators 

 For the bivariate indicator 𝑔 ⋅  we build a confidence 

region  

𝑅𝛾 = 𝜉 ∈  ℝ2, s. t. 𝜉 − 𝜇 ′Σ−1 𝜉 − 𝜇 ≤ 𝛾   

where 𝜇 and Σ are the sample mean and sample 

covariance of the anomaly indicators from 𝑇. 
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Anomaly Detection from 2D Anomaly Indicators 

 For the bivariate indicator 𝑔 ⋅  we build a confidence 

region  

𝑅𝛾 = 𝜉 ∈  ℝ2, s. t. 𝜉 − 𝜇 ′Σ−1 𝜉 − 𝜇 ≤ 𝛾   

where 𝜇 and Σ are the sample mean and sample 

covariance of the anomaly indicators from 𝑇. 

 The Chebyshev’s inequality ensures that a normal patch 

falls outside 𝑅𝛾 with probability ≤ 2/𝛾2 

 Anomalies are detected as 

𝐬   s. t.  𝒈(𝐬) − 𝜇 ′Σ−1 𝒈(𝐬) − 𝜇 > 𝛾 

 



Anomaly Detection from 2D Anomaly Indicators 

 For the bivariate indicator 𝑔 ⋅  we build a confidence 

region  

𝑅𝛾 = 𝜉 ∈  ℝ2, s. t. 𝜉 − 𝜇 ′Σ−1 𝜉 − 𝜇 ≤ 𝛾   

where 𝜇 and Σ are the sample mean and sample 

covariance of the anomaly indicators from 𝑇. 
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EXPERIMENTS 
On Texture and SEM images 



Anomaly detection in images 

 Data are 15 × 15 patches extracted from textured images 

characterized by a specific structure 

 

25 January 2015 



Test on Synthetic Images 

25 January 2015 

 



Anomaly detection in images 

 We extract 15 × 15 patches from textured images, each 

characterized by a specific structure 

 Anomaly detection problems are simulated by assembling 

test images that contains patches from different texture 

• The left half of each image is used to learn 𝐷  

• The right half is used for testing and juxtaposed  with 

other half images 

25 January 2015 



Test Images 

We learn a  

dictionary from L3 

Test images 



Anomaly detection in images 

 Data are 15 × 15 patches extracted from textured images 

characterized by a specific structure 

 Anomaly detection problems are simulated by syntetically 

creating test images gathering patches from different 

texture 

 Each patch is pre-processed by subtracting its mean 

 No post-processing to aggregate decision spatially is 

performed 

 For further details, please refer to [Boracchi 2014] 

 

 

25 January 2015 

[Boracchi 2014] Giacomo Boracchi, Diego Carrera, Brendt Wohlberg «Anomaly 

Detection in Images By Sparse Representations» SSCI 2014 

 



Figures of Merit 

 FPR: the false positive rate, i.e. the percentage of normal 

patches labelled as anomalous 

 TPR: the true positive rate, i.e., the percentage of 

anomalies correctly detected 



Figures of Merit 
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Alternative Solution 

 In [Adler 2013] the anomaly detection is performed during 

the sparse coding. The following model is consider 

𝐬 = 𝐷𝐱 + 𝐚 + 𝝂     where 𝝂 is a noise term 

and 𝐚 collects all the components of 𝐬 that cannot be 

sparsely approximated.  

 Sparse coding is performed solving the following problem 

𝐱 = argmin
1

2
𝐱∈ℝ𝑛

𝒔 − 𝐷𝒙 − 𝒂 𝟐 + 𝒙 𝟏 + 𝒂 𝟐  

 Normal patches: 𝒂 𝟐 is negligible, anomalous patches: 

𝒂 𝟐 is large.  

 Anomalies detected comparing 𝒂 𝟐 against a threshold 

 [Adler 2013] A. Adler, M. Elad, Y. Hel-Or, and E. Rivlin, “Sparse coding with 

anomaly detection,” in Proc. of IEEE MLSP, September 2013, 



ROC curves when varying the threshold 

 



Anomaly detection in SEM images 

 Problem Description: we consider the production of 

nanofibrous materials by an electrospinning process 

 An scanning electron microscope (SEM) is used to 

monitor the production process and detect the presence of 

• Beads  

• Films 

 Detecting anomalies and assessing how large they are is 

very important for supervising the monitoring process 
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Anomaly detection in SEM images 

 Problem Description: we consider the production of 

nanofibrous materials by an electrospinning process 

 An scanning electron microscope (SEM) is used to 

monitor the production process and detect the presence of 

• Beads  

• Films 

 Detecting anomalies and assessing how large they are is 

very important for supervising the monitoring process 

 Each anomaly detection method has been manually tuned 

to operate at its best performance 

 Further details can be found in [Boracchi 2014] 

 [Boracchi 2014] Giacomo Boracchi, Diego Carrera, Brendt Wohlberg «Anomaly 

Detection in Images By Sparse Representations» SSCI 2014 
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Anomaly detection by means of 𝒆(⋅) 

 



Anomaly detection by means of 𝒇(⋅) 

 



Anomaly detection by means of 𝒈(⋅) 

 



Anomaly detection by means of Adler 

 



SOME REMARKS 



From a more general perspective… 

 This approach can be applied to any data-generating 

process as far as: 

• Observations are signals whos structure 

characterizes the stationarity 

• It is possible to learn a dictionary to describe these 

signals 

• Anomalies exhibit different structures (or different 

noise levels) 
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Data-Generating Process 

 We assume that in normal (stationary) conditions, we 

observe data 𝐬 ∈ ℝ𝑚 drawn from a stochastic process  𝒫𝑁 

𝐬 ∼ 𝒫𝑁 

 We do not know the process, we only assume that data 

are i.i.d. realizations from 𝒫𝑁. 

 

 



From a more general perspective… 

 This approach can be also applied to sequential 

monitoring applications, where we are interested in 

detecting persistent changes in the data-generating 

process 

 Permanent shifts of the process could be due to 

• Faults 

• Unforeseen evolution of the environment 
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CHANGE DETECTION ON 

STREAMS OF SIGNALS 
A very related problem 



The change-detection problem 

 The change-detection problem consists in monitoring a 

sequence of data (datastream), vectors of ℝ𝑚 

𝐬𝑡 𝑡=1,… 

and determining when the data-generating process 

changes. 

𝐬𝑡 =  
𝐬𝑡 ∼ 𝒫𝑁   𝑡 < 𝑇∗

𝐬𝑡 ∼ 𝒫𝐴   𝑡 ≥ 𝑇∗  

 Unpredictability of the change, 𝒫𝐴 is unknown and 

sometimes also 𝒫𝑁 is unknown. 

 𝑇∗ is denoted the change point 



The change-detection problem 

 There is a temporal dimension and we want do detect 

permanent shifts of the process 

 

 

 



The change-detection problem 

 There is a temporal dimension and we want do detect 

permanent shifts of the process 

𝒫𝐴 𝒫𝑁 

𝑇∗ 



Sequential Monitoring  

 We assueme  a training set T of signals generated in 

stationary conditions are given 

 We use these data to learn a dictionary 𝐷  

 During the operational life, signals arrives steadily 

 We perform sparse coding of each incoming signal 𝐬𝑖 
w.r.t. 𝐷  and comptute the change indicator 𝑒(𝐬𝑖) 

 Use a sequential decision tool to determine, at each time 𝑡 
if the sequence {𝑒 𝐬𝑖 , 𝑖 < 𝑡} contains stationary data 

… 

{𝑒 𝐬𝑖 , 𝑖 = 1,… } 

{𝐬𝑖 , 𝑖 = 1,… } 



Sequential Monitoring 

 Sequential Change-Detection Tests (CDTs) can be used 

for detecting changes in a stream of anomaly indicators 

[Basseville 93] 

• Data are analyzed incrementally 

• Decisions are taken online considering in principle the 

whole past sequence 

 We adopt the Change-Point Method in [Ross 2011] 

based on the Lepage Test Statistic 

 The Lepage test Statistic detects changes in the scale 

and location of an unknown random variable 

 [Basseville 93] M. Basseville and I. V. Nikiforov, Detection of abrupt changes: 

theory and application. Upper Saddle River, NJ, USA:Prentice-Hall, Inc., 1993. 

[Ross 2011] G. J. Ross, D. K. Tasoulis, and N. M. Adams, “Nonparametric 

monitoring of data streams for changes in location and scale,” Technometrics, 

vol. 53, no. 4, pp. 379–389, 2011. 



A CHANGE-DETECTION 

EXPERIMENT 
on environmental monitoring application 



Current deployments 



St Martin mount – LC, Italy 

Hybrid monitoring system 



Torrioni di Rialba  - LC, Italy 

Hybrid monitoring system 

Wireless monitoring system 



Environmental Monitoring 

 We consideres acoustic emissions acquired by an 

wired/wireless sensor networks meant to monitor a rock 

faces 

 64 samples signals acquired at 2 KHz by a MEMS.  

 Anomalies have been synthetically modified by randomly 

adding a DB4 wavelet basis atom 

 

25 January 2015 



Environmental Monitoring 

 We consideres acoustic emissions acquired by an 

wired/wireless sensor networks meant to monitor a rock 

faces 

 64 samples signals acquired at 2 KHz by a MEMS.  

 

25 January 2015 



Environmental Monitoring 

 We consideres acoustic emissions acquired by an 

wired/wireless sensor networks meant to monitor a rock 

faces 

 64 samples signals acquired at 2 KHz by a MEMS.  

 Anomalies have been synthetically modified by randomly 

adding a DB4 wavelet basis atom 

 We perform change detection by means of the Lepage 

CPM using the 𝑒(⋅) change indicator. 

 We synthetically generate sequences containing 500 

signals before and after the change 

 Further details are provided in [Alippi 2014]  

 

25 January 2015 

[Alippi 2014] C. Alippi, G. Boracchi, and B. Wohlberg, “Change detection in streams 

of signals with sparse representations,” ICASSP 2014 , pp. 5252 – 5256. 



Distribution of the change indicators 

 To show the detectablity of the change we plot the 

empirical distribution of change indicator before and after 

the change. 

 And compare it with the distirbution of 𝐱𝑖 2 and 𝐱𝑖 1 



Distribution of the change indicators 

 To show the detectablity of the change we plot the 

empirical distribution of change indicator before and after 

the change. 

 And compare it with the distirbution of 𝐱𝑖 2 and 𝐱𝑖 1 

 Change-detection performance using CPM are in line with 

the detectability of the change 

• Using 𝑒 ⋅  all the changes are detected with no false 

positive with an average detection delay of 25 samples 

• Using 𝐱𝐢 1 delay increased at 124, with 33% of FN 

• Using 𝐱𝐢 2 no detections 



CONCLUDING REMARKS 

25 January 2015 



Conclusions 

 Our experiments show that sparse representation allows 

to build effective models for detecting  

• anomalies  

• process changes 

    affecting data structures 

 Sparse models describe data that in stationary conditions 

are heterogenous: e.g., atoms of 𝐷  might be from 

different classes. 

 

 

 



Ongoing works 

 Ongoing works include: 

• the study of customized dictionary learning metods for 

performing change/anomaly detection 

• the application of the proposed system to other 

application domains such as EGC analysis to detect 

arrhythmia 

• For the specific case of SEM images we are 

performing a wider experimental campaign, also 

comparing with more starightforward techniques 

 



Questions? 

 


