Anomaly Detection with Sparse Representations

Giacomo Boracchi

Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano, Italy

IDSIA, Lugano, Dec. 11, 2014

AN ONGOING WORK WITH

Cesare Alippi, Diego Carrera (Polimi)

Brendt Wohlberg (Los Alamos National Laboratory)

Anomaly (Novelty) Detection

- We consider monitoring systems acquiring and processing images, such as those employed in biomedical or industrial control applications.
- We assume that images acquired under normal conditions are characterized by specific local structures
- Regions that do not conform to these structures are considered anomalies
- We address the problem of learning a model for describing normal structures and detect anomalies as regions that cannot be properly described by the model
- As «running example» we consider scanning electron microscope (SEM) images for monitoring the production of nanofibers

- Problem Formulation
- Sparse Representations for Anomaly Detection
- Anomaly indicators and Anomaly Detection
- Experiments on Anomaly Detection
 - Texture Images
 - SEM images for nanofiber production
- The Change-Detection Problem
- Experiments on Change Detection
 - Microacoustic bursts for rock-face monitoring

PROBLEM FORMULATION

• Patches are small image regions of a predefined shape \mathcal{U} ,

$$\mathbf{s}_c = \{s(c+u), u \in \mathcal{U}\}$$

Patches are small image regions of a predefined shape U,

Patch-Generating Process

Patches are small image regions of a predefined shape U,

$$\mathbf{s}_c = \{s(c+u), u \in \mathcal{U}\}$$

• We assume that in **nominal** conditions, patches $\mathbf{s}_c \in \mathbb{R}^m$ are i.i.d. realizations from a stochastic process \mathcal{P}_N

$$\mathbf{s}_{c} \sim \mathcal{P}_{N}$$

• A training set of *l* normal patches $T \in \mathbb{R}^{m \times l}$ is given to learn a model \widehat{D} approximating normal patches

The Anomaly-Detection Problem

• We assume that anomalous patches are generated by \mathcal{P}_A

$$\mathbf{s}_{c} \sim \mathcal{P}_{A}$$

- The process generating anomalies $\mathcal{P}_A \neq \mathcal{P}_N$ is unknown
- Anomalies have to be detected as patches that do not conform the model learned to describe normal patches
 - We define **anomaly indicators** $f(\mathbf{s}_i)$ that measure the degree to which the learned model fits each patch \mathbf{s}_i
 - We detect anomalies as outliers in the anomaly indicators
- Peculiarity of the proposed approach is to leverage models D yielding sparse representation of image patches

SPARSE REPRESENTATIONS

for anomaly detection

Sparse Representations

- Sparse representations have shown to be a very useful method for constructing signal models
- The underlying assumption is that

 $\mathbf{s} \approx D\mathbf{x}$ i.e, $\|\mathbf{s} - D\mathbf{x}\|^2 \approx 0$

and $\mathbf{x} \in \mathbb{R}^n$ where:

- $D \in \mathbb{R}^{m \times n}$ is the **dictionary**, columns are called **atoms**
- the coefficient vector \mathbf{x} is sparse ($\|\mathbf{x}\|_0 = L \ll n$)

Sparse Representations

- Sparse representations have shown to be a very useful method for constructing signal models
- The underlying assumption is that

 $\mathbf{s} \approx D\mathbf{x}$ i.e, $\|\mathbf{s} - D\mathbf{x}\|^2 \approx 0$

and $\mathbf{x} \in \mathbb{R}^n$ where:

- $D \in \mathbb{R}^{m \times n}$ is the **dictionary**, columns are called **atoms**
- the coefficient vector \mathbf{x} is sparse ($\|\mathbf{x}\|_0 = L \ll n$)
- Sparse signals live in a union of low-dimensional subspaces of R^m, each having maximum dimension L, defined by dictionary atoms {d_i} (columns of D).

$$\exists \mathbf{x} \in \mathbb{R}^n \text{ s.t. } \mathbf{s} = \sum_{i=1}^n x_i \mathbf{d}_i$$

Learning a Dictionary for Modeling Stationarity

- Learning D
 corresponds to learning the union of subpaces where patches in T – the normal ones- live.
- Dictionary learning is a joint optimization over the dictionary and coefficients of a sparse representation of T \widehat{D} - argmin $\|DX - T\|$

$$D = \underset{D \in \mathbb{R}^{m \times n}, X \in \mathbb{R}^{n \times l}}{\operatorname{argmin}} \|DX - T\|_{F}$$

such that $\|\mathbf{x}_k\|_0 \leq L, \forall k$

We consider here the KSVD algorithm [Aharon 06]

[Aharon 06] M. Aharon, M. Elad, and A. M. Bruckstein, "K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation," Transactions on Signal Processing vol. 54, no. 11, November 2006, pp. 4311–4322.

- The dictionary D
 can be used for computing the sparse representation of any patch to be tested
- There are efficient tools for computing \mathbf{x} , the sparse approximation of a patch \mathbf{s} w.r.t. a given dictionary \widehat{D}

$\widehat{D}\mathbf{x} \approx \mathbf{s}$

This operation is referred to as the sparse coding

Sparse Coding - ℓ^0 norm problem

Sparse coding solving the constrained problem

P0:
$$\hat{\mathbf{x}}_{\mathbf{0}} = \underset{\mathbf{x} \in \mathbb{R}^n}{\operatorname{argmin}} \|\widehat{D}\mathbf{x} - \mathbf{s}\|_2 \text{ s.t.} \|\mathbf{x}\|_0 \le L$$

- The sparsity of the solution is constrained to be at most *L*
- Typically solved by means of Greedy Algoritms, such as the Orthogonal Matching Pursuit (OMP).
- Solving this problem actually corresponds to projecting the observed data into the union of subspaces (determined by at most *L* atoms).

Sparse Coding - ℓ^1 norm problem

Sparse coding solving the unconstrained problem

P1:
$$\hat{\mathbf{x}}_1 = \underset{\mathbf{x} \in \mathbb{R}^n}{\operatorname{argmin}} J_{\lambda}(\mathbf{x}, \widehat{D}, \mathbf{s})$$

where the functional is

$$J_{\lambda}(\mathbf{x},\widehat{D},\mathbf{s}) = \|\widehat{D}\mathbf{x} - \mathbf{s}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}$$

- The sparsity requirement is relaxed by a penalization term on the l₁- norm of the coefficients
- Under some conditions the solution of P0 and P1 do coincide
- This is a Basis Pursuit Denoising (BPDN) problem: there are several optimization methods in the literature.
- We adopt Alternating Direction Method of Multipliers (ADMM)

ANOMALY INDICATORS

Tools to quantitatively assess «patch normality»

Anomaly Indicators

- Given a dictionary \widehat{D} learned to describe the training set T
- We measure the extent to which a given patch s is consistent with the nominal conditions, by computing the sparse coding of s w.r.t. D

 $\mathbf{s} \rightarrow \hat{\mathbf{s}}$, where $\hat{\mathbf{s}} = \widehat{D}\hat{\mathbf{x}}$ and $\hat{\mathbf{s}} \approx \mathbf{s}$

- When solving the P0 problem, \hat{s} is the projection of s on the best subspace of at most L atoms of \hat{D} .
- We need suitable anomaly-indicators that quantitatively assess how close s is to nominal patches.
 - anomaly indicators have to take into account both accuracy and sparsity of the representation

- The following anomaly indicators have been considered:
 - When solving P0 the reconstruction error $e(\mathbf{s}) = \|\mathbf{s} - \widehat{D}\widehat{\mathbf{x}}_{\mathbf{0}}\|_{2}$, being $\widehat{\mathbf{x}}_{\mathbf{0}}$ the solution of P0
 - When solving P1, the value of the functional $f(\mathbf{s}) = \|\mathbf{s} \widehat{D}\widehat{\mathbf{x}}_1\|_2 + \lambda \|\widehat{\mathbf{x}}_1\|_1, \text{ being } \widehat{\mathbf{x}}_1 \text{ the solution of P1}$
 - When solving P1, jointly the sparsity and the error $g(\mathbf{s}) = [\|\mathbf{s} - \widehat{D}\widehat{\mathbf{x}}_1\|_2; \lambda \|\widehat{\mathbf{x}}_1\|_1]$, being $\widehat{\mathbf{x}}_1$ the solution of P1

ANOMALY DETECTION

on the anomaly indicators

Anomaly Detection

- The anomaly indicators captures the degree to which the structure of s is similar to that of normal patches
- Patches are processed independently
- We treat the anomaly indicators as realization from an unknown random variable: thus
- Detecting patches having anomalous structures becomes detecting outliers in anomaly indicators
 - Several statistical techniques have been developed ranging from graphical, confidence intervals-based, density-based
 - Outliers are detected as point in low-denisty regions
 - We perform outlier detection using confidence intervals which behaves quite well for unimodal distribution

25 January 2015

Anomaly Detection from 1D Anomaly Indicators

- We treat anomaly indicators computed from i.i.d. stationary data as random variables.
- We define high-density regions for the empirical distribution of anomaly indicators from T
- In case of 1D-anomaly indicators, such a region is

$$\mathcal{I}^e_{\alpha} = [q_{\frac{\alpha}{2}}, q_{1-\frac{\alpha}{2}}]$$

where $q_{\frac{\alpha}{2}}$ is the $\alpha/2$ quantile of the empirical distribution

Anomaly Detection from 1D Anomaly Indicators

- We treat anomaly indicators computed from i.i.d. stationary data as random variables.
- We define high-density regions for the empirical distribution of anomaly indicators from T
- In case of 1D-anomaly indicators, such a region is

$$\mathcal{I}^e_{\alpha} = \left[q_{\frac{\alpha}{2}}, q_{1-\frac{\alpha}{2}}\right]$$

where $q_{\underline{\alpha}}$ is the $\alpha/2$ quantile of the empirical distribution

Anomaly Detection from 1D Anomaly Indicators

- We treat anomaly indicators computed from i.i.d. stationary data as random variables.
- We define high-density regions for the empirical distribution of anomaly indicators from T
- In case of 1D-anomaly indicators, such a region is

$$\mathcal{I}^e_{\alpha} = [q_{\frac{\alpha}{2}}, q_{1-\frac{\alpha}{2}}]$$

where $q_{\frac{\alpha}{2}}$ is the $\alpha/2$ quantile of the empirical distribution

 We detect anomalies as data yielding anomaly indicators, out of high-density regions (outliers)

$$e(\mathbf{s}) \notin \mathcal{I}^e_{\alpha}$$

• The same for anomaly indicator $f(\cdot)$

Anomaly Detection from 2D Anomaly Indicators

• For the bivariate indicator $g(\cdot)$ we build a confidence region

$$R_{\gamma} = \left\{ \xi \in \mathbb{R}^2, \text{ s. t. } \sqrt{(\xi - \mu)' \Sigma^{-1}(\xi - \mu)} \le \gamma \right\}$$

where μ and Σ are the sample mean and sample covariance of the anomaly indicators from *T*.

Anomaly Detection from 2D Anomaly Indicators

• For the bivariate indicator $g(\cdot)$ we build a confidence region

$$R_{\gamma} = \left\{ \xi \in \mathbb{R}^2, \text{ s. t. } \sqrt{(\xi - \mu)' \Sigma^{-1}(\xi - \mu)} \le \gamma \right\}$$

where μ and Σ are the sample mean and sample covariance of the anomaly indicators from *T*.

- The Chebyshev's inequality ensures that a normal patch falls outside R_{γ} with probability $\leq 2/\gamma^2$
- Anomalies are detected as

s s.t.
$$\sqrt{(\boldsymbol{g}(\mathbf{s}) - \mu)' \Sigma^{-1}(\boldsymbol{g}(\mathbf{s}) - \mu)} > \gamma$$

Anomaly Detection from 2D Anomaly Indicators

• For the bivariate indicator $g(\cdot)$ we build a confidence region

$$R_{\gamma} = \left\{ \xi \in \mathbb{R}^2, \text{ s. t. } \sqrt{(\xi - \mu)' \Sigma^{-1}(\xi - \mu)} \le \gamma \right\}$$

where μ and Σ are the sample mean and sample covariance of the anomaly indicators from *T*.

EXPERIMENTS

On Texture and SEM images

Anomaly detection in images

 Data are 15 × 15 patches extracted from textured images characterized by a specific structure

Test on Synthetic Images

Image 4

Image 5

Anomaly detection in images

- We extract 15 × 15 patches from textured images, each characterized by a specific structure
- Anomaly detection problems are simulated by assembling test images that contains patches from different texture
 - The left half of each image is used to learn \widehat{D}
 - The right half is used for testing and juxtaposed with other half images

We learn a dictionary from L3

Anomaly detection in images

- Data are 15 × 15 patches extracted from textured images characterized by a specific structure
- Anomaly detection problems are simulated by syntetically creating test images gathering patches from different texture
- Each patch is **pre-processed** by subtracting its mean
- No post-processing to aggregate decision spatially is performed
- For further details, please refer to [Boracchi 2014]

[Boracchi 2014] Giacomo Boracchi, Diego Carrera, Brendt Wohlberg «Anomaly Detection in Images By Sparse Representations» SSCI 2014

25 January 2015

- FPR: the false positive rate, i.e. the percentage of normal patches labelled as anomalous
- TPR: the true positive rate, i.e., the percentage of anomalies correctly detected

Alternative Solution

 In [Adler 2013] the anomaly detection is performed during the sparse coding. The following model is consider

 $\mathbf{s} = D\mathbf{x} + \mathbf{a} + \mathbf{v}$ where \mathbf{v} is a noise term

and a collects all the components of s that cannot be sparsely approximated.

Sparse coding is performed solving the following problem

$$\hat{\mathbf{x}} = \underset{\mathbf{x} \in \mathbb{R}^n}{\operatorname{argmin}} \frac{1}{2} \|\mathbf{s} - D\mathbf{x} - \mathbf{a}\|_2 + \|\mathbf{x}\|_1 + \|\mathbf{a}\|_2$$

- Normal patches: ||a||₂ is negligible, anomalous patches: ||a||₂ is large.
- Anomalies detected comparing $||a||_2$ against a threshold

[Adler 2013] A. Adler, M. Elad, Y. Hel-Or, and E. Rivlin, "Sparse coding with anomaly detection," in Proc. of IEEE MLSP, September 2013,

ROC curves when varying the threshold

FPR

Anomaly detection in SEM images

- Problem Description: we consider the production of nanofibrous materials by an electrospinning process
- An scanning electron microscope (SEM) is used to monitor the production process and detect the presence of
 - Beads
 - Films
- Detecting anomalies and assessing how large they are is very important for supervising the monitoring process

Anomaly detection in SEM images

- Problem Description: we consider the production of nanofibrous materials by an electrospinning process
- An scanning electron microscope (SEM) is used to monitor the production process and detect the presence of
 - Beads
 - Films
- Detecting anomalies and assessing how large they are is very important for supervising the monitoring process
- Each anomaly detection method has been manually tuned to operate at its best performance
- Further details can be found in [Boracchi 2014]

[Boracchi 2014] Giacomo Boracchi, Diego Carrera, Brendt Wohlberg «Anomaly Detection in Images By Sparse Representations» SSCI 2014

Anomaly detection by means of $e(\cdot)$

Anomaly detection by means of $f(\cdot)$

Anomaly detection by means of Adler

SOME REMARKS

From a more general perspective...

- This approach can be applied to any data-generating process as far as:
 - Observations are signals whos structure characterizes the stationarity
 - It is possible to learn a dictionary to describe these signals
 - Anomalies exhibit different structures (or different noise levels)

Data-Generating Process

• We assume that in **normal (stationary)** conditions, we observe data $\mathbf{s} \in \mathbb{R}^m$ drawn from a stochastic process \mathcal{P}_N

$$\mathbf{s} \sim \mathcal{P}_N$$

• We do not know the process, we only assume that data are i.i.d. realizations from \mathcal{P}_N .

From a more general perspective...

- This approach can be also applied to sequential monitoring applications, where we are interested in detecting persistent changes in the data-generating process
- Permanent shifts of the process could be due to
 - Faults
 - Unforeseen evolution of the environment

CHANGE DETECTION ON STREAMS OF SIGNALS

A very related problem

The change-detection problem

 The change-detection problem consists in monitoring a sequence of data (datastream), vectors of R^m

 $\{\mathbf{s}_t\}_{t=1,\dots}$

and determining when the data-generating process changes.

$$\mathbf{s}_t = \begin{cases} \mathbf{s}_t \sim \mathcal{P}_N & t < T^* \\ \mathbf{s}_t \sim \mathcal{P}_A & t \ge T^* \end{cases}$$

- **Unpredictability** of the change, \mathcal{P}_A is unknown and sometimes also \mathcal{P}_N is unknown.
- T* is denoted the change point

The change-detection problem

 There is a temporal dimension and we want do detect permanent shifts of the process

The change-detection problem

 There is a temporal dimension and we want do detect permanent shifts of the process

Sequential Monitoring

- We assueme a training set T of signals generated in stationary conditions are given
- We use these data to learn a dictionary \widehat{D}
- During the operational life, signals arrives steadily
- We perform sparse coding of each incoming signal s_i
 w.r.t. D
 and comptute the change indicator e(s_i)
- Use a sequential decision tool to determine, at each time t if the sequence $\{e(\mathbf{s}_i), i < t\}$ contains stationary data

$$\{\mathbf{s}_{i}, i = 1, ...\}$$

Sequential Monitoring

- Sequential Change-Detection Tests (CDTs) can be used for detecting changes in a stream of anomaly indicators [Basseville 93]
 - Data are analyzed incrementally
 - Decisions are taken online considering in principle the whole past sequence
- We adopt the Change-Point Method in [Ross 2011] based on the Lepage Test Statistic
- The Lepage test Statistic detects changes in the scale and location of an unknown random variable

[Basseville 93] M. Basseville and I. V. Nikiforov, Detection of abrupt changes: theory and application. Upper Saddle River, NJ, USA:Prentice-Hall, Inc., 1993.

[Ross 2011] G. J. Ross, D. K. Tasoulis, and N. M. Adams, "Nonparametric monitoring of data streams for changes in location and scale," Technometrics, vol. 53, no. 4, pp. 379–389, 2011.

A CHANGE-DETECTION EXPERIMENT

on environmental monitoring application

Current deployments

St Martin mount – LC, Italy

Hybrid monitoring system

Torrioni di Rialba - LC, Italy

Wireless monitoring system <

Hybrid monitoring system -

- We consideres acoustic emissions acquired by an wired/wireless sensor networks meant to monitor a rock faces
- 64 samples signals acquired at 2 KHz by a MEMS.
- Anomalies have been synthetically modified by randomly adding a DB4 wavelet basis atom

Environmental Monitoring

- We consideres acoustic emissions acquired by an wired/wireless sensor networks meant to monitor a rock faces
- 64 samples signals acquired at 2 KHz by a MEMS.
 Example of Original Bursts
 Example of Bursts Modified adding atoms from D1

- We consideres acoustic emissions acquired by an wired/wireless sensor networks meant to monitor a rock faces
- 64 samples signals acquired at 2 KHz by a MEMS.
- Anomalies have been synthetically modified by randomly adding a DB4 wavelet basis atom
- We perform change detection by means of the Lepage CPM using the $e(\cdot)$ change indicator.
- We synthetically generate sequences containing 500 signals before and after the change
- Further details are provided in [Alippi 2014]

[Alippi 2014] C. Alippi, G. Boracchi, and B. Wohlberg, "Change detection in streams of signals with sparse representations," ICASSP 2014, pp. 5252 – 5256.

25 January 2015

Distribution of the change indicators

- To show the detectablity of the change we plot the empirical distribution of change indicator before and after the change.
- And compare it with the distirbution of $||\mathbf{x}_i||_2$ and $||\mathbf{x}_i||_1$

Distribution of the change indicators

- To show the detectablity of the change we plot the empirical distribution of change indicator before and after the change.
- And compare it with the distirbution of $||\mathbf{x}_i||_2$ and $||\mathbf{x}_i||_1$
- Change-detection performance using CPM are in line with the detectability of the change
 - Using $e(\cdot)$ all the changes are detected with no false positive with an average detection delay of 25 samples
 - Using $\|\mathbf{x}_i\|_1$ delay increased at 124, with 33% of FN
 - Using $\|\mathbf{x}_i\|_2$ no detections

CONCLUDING REMARKS

25 January 2015

- Our experiments show that sparse representation allows to build effective models for detecting
 - anomalies
 - process changes

affecting data structures

 Sparse models describe data that in stationary conditions are heterogenous: e.g., atoms of D might be from different classes.

- Ongoing works include:
 - the study of customized dictionary learning metods for performing change/anomaly detection
 - the application of the proposed system to other application domains such as EGC analysis to detect arrhythmia
 - For the specific case of SEM images we are performing a wider experimental campaign, also comparing with more starightforward techniques

Empirical Distributions, Synthetic Change

