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Anomaly (Novelty) Detection 

 We consider monitoring systems acquiring and 

processing images, such as those employed in biomedical 

or industrial control applications.  

 We assume that images acquired under normal 

conditions are characterized by specific local structures  

 Regions that do not conform to these structures are 

considered anomalies 

 We address the problem of learning a model for describing 

normal structures and detect anomalies as regions that 

cannot be properly described by the model 

 As «running example» we consider scanning electron 

microscope (SEM) images for monitoring the production of 

nanofibers 
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PROBLEM FORMULATION 



Patch-Generating Process 

 Patches are small image regions of a predefined shape 𝒰, 

𝐬𝑐 = {𝑠 𝑐 + 𝑢 , 𝑢 ∈ 𝒰} 
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Patch-Generating Process 

 Patches are small image regions of a predefined shape 𝒰, 

𝐬𝑐 = {𝑠 𝑐 + 𝑢 , 𝑢 ∈ 𝒰} 

 We assume that in nominal conditions, patches 𝐬𝑐 ∈ ℝ𝑚 

are i.i.d. realizations from a stochastic process  𝒫𝑁 

𝐬c ∼ 𝒫𝑁 

 

 

 A training set of 𝑙 normal patches 𝑇 ∈ ℝ𝑚×𝑙 is given to 

learn a model 𝐷  approximating normal patches 



The Anomaly-Detection Problem 

 We assume that anomalous patches are generated by 𝒫𝐴 

𝐬c ∼ 𝒫𝐴 

 The process generating anomalies 𝒫𝐴 ≠ 𝒫𝑁 is unknown 

 Anomalies have to be detected as patches that do not 

conform the model learned to describe normal patches 

• We define anomaly indicators 𝑓(𝐬𝑖) that measure the 

degree to which the learned model fits each patch 𝐬𝑖 

• We detect anomalies as outliers in the anomaly 

indicators 

 Peculiarity of the proposed approach is to leverage 

models 𝐷   yielding sparse representation of image 

patches 

 

 

 



SPARSE REPRESENTATIONS 
for anomaly detection 



Sparse Representations 

 Sparse representations have shown to be a very useful 

method for constructing signal models 

 The underlying assumption is that 

𝐬 ≈ 𝐷𝐱   i. e,  𝐬 − 𝐷𝐱 2 ≈ 0  

and 𝐱 ∈ ℝ𝑛 where: 

• 𝐷 ∈ ℝ𝑚×𝑛 is the dictionary, columns are called atoms 

• the coefficient vector 𝐱 is sparse ( 𝐱 0 = 𝐿 ≪ 𝑛) 
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Sparse Representations 

 Sparse representations have shown to be a very useful 

method for constructing signal models 

 The underlying assumption is that 

𝐬 ≈ 𝐷𝐱   i. e,  𝐬 − 𝐷𝐱 2 ≈ 0  

and 𝐱 ∈ ℝ𝑛 where: 

• 𝐷 ∈ ℝ𝑚×𝑛 is the dictionary, columns are called atoms 

• the coefficient vector 𝐱 is sparse ( 𝐱 0 = 𝐿 ≪ 𝑛) 

 Sparse signals live in a union of low-dimensional 

subspaces of ℝ𝑚, each having maximum dimension 𝐿, 

defined by dictionary atoms {𝐝𝑖} (columns of 𝐷). 

∃ 𝐱 ∈ ℝ𝑛 s. t.   𝐬 =   𝑥𝑖𝐝𝑖

𝑛

𝑖=1

 



Learning a Dictionary for Modeling Stationarity 

 Learning 𝐷  corresponds to learning the union of 

subpaces where patches in 𝑇 – the normal ones- live. 

 Dictionary learning is a joint optimization over the 

dictionary and coefficients of a sparse representation of 𝑇 

𝐷 =  argmin
𝐷∈ℝ𝑚×𝑛,𝑋∈ℝ𝑛×𝑙

𝐷𝑋 − 𝑇 𝐹 

such that 𝐱𝑘 0 ≤ 𝐿, ∀𝑘 

 We consider here the KSVD algorithm [Aharon 06] 

 

 

[Aharon  06] M. Aharon, M. Elad, and A. M. Bruckstein, “K-SVD: An algorithm for  

designing  overcomplete dictionaries for sparse representation,” Transactions on  

Signal Processing vol. 54, no. 11, November 2006, pp. 4311–4322. 



Sparse Coding 

 The dictionary 𝐷  can be used for computing the sparse 

representation of any patch to be tested 

 There are efficient tools for computing 𝐱, the sparse 

approximation of a patch 𝐬 w.r.t. a given dictionary 𝐷  

𝐷 𝐱 ≈ 𝐬  

 This operation is referred to as the sparse coding 

 



Sparse Coding - l𝟎 norm problem 

 Sparse coding solving  the constrained problem 

P0:    𝐱 𝟎 = argmin
𝐱∈ℝ𝑛

 𝐷 𝐱 − 𝐬
𝟐
 s. t. 𝐱 0 ≤ 𝐿 

 The sparsity of the solution is constrained to be at most 𝐿 

 Typically solved by means of Greedy Algoritms, such as 

the Orthogonal Matching Pursuit (OMP). 

 Solving this problem actually corresponds to projecting the 

observed data into the union of subspaces (determined by 

at most 𝐿 atoms). 



Sparse Coding - l𝟏 norm problem 

 Sparse coding solving the unconstrained problem 

P1:   𝐱 𝟏 = argmin
𝐱∈ℝ𝑛

  𝐽𝜆 𝐱, 𝐷 , 𝐬  

     where the functional is  

𝐽𝜆 𝐱, 𝐷 , 𝐬 = 𝐷 𝐱 − 𝐬
𝟐

𝟐
+ 𝜆 𝐱 1 

 The sparsity requirement is relaxed by a penalization term 

on the ℓ1- norm of the coefficients 

 Under some conditions the solution of P0 and P1 do 

coincide 

 This is a Basis Pursuit Denoising (BPDN) problem: there 

are several optimization methods in the literature. 

 We adopt Alternating Direction Method of Multipliers 

(ADMM) 

 



ANOMALY INDICATORS 
Tools to quantitatively assess «patch normality» 



Anomaly Indicators 

 Given a dictionary 𝐷  learned to describe the training set 𝑇 

 We measure the extent to which a given patch 𝐬 is 

consistent with the nominal conditions, by computing 

the sparse coding of 𝐬 w.r.t. 𝑫  

𝐬 → 𝐬 ,  where  𝐬 = 𝐷 𝐱  and 𝐬 ≈ 𝐬  

 When solving the P0 problem, 𝐬  is the projection of 𝐬 on 

the best subspace of at most 𝐿 atoms of 𝐷 . 

 We need suitable anomaly-indicators that quantitatively 

assess how close 𝐬 is to nominal patches. 

• anomaly indicators have to take into account both 

accuracy and sparsity of the representation 

 



Anomaly Indicators 

 The following anomaly indicators have been 

considered: 
 

• When solving P0 the reconstruction error 

𝑒 𝐬 = 𝐬 − 𝐷 𝐱 𝟎 𝟐
, being 𝐱 𝟎 the solution of P0 

 

• When solving P1, the value of the functional  

𝑓 𝐬 = 𝐬 − 𝐷 𝐱 𝟏 𝟐
+ 𝜆 𝐱 𝟏 𝟏 , being 𝐱 𝟏 the solution of P1 

 

• When solving P1, jointly the sparsity and the error 

𝑔 𝐬 = [ 𝐬 − 𝐷 𝐱 𝟏 𝟐
;  𝜆 𝐱 𝟏 𝟏] , being 𝐱 𝟏 the solution of P1 

 



ANOMALY DETECTION 
on the anomaly indicators 



Anomaly Detection 

 The anomaly indicators captures the degree to which the 

structure of 𝐬 is similar to that of normal patches 

 Patches are processed independently 

 We treat the anomaly indicators as realization from an 

unknown random variable: thus 

 Detecting patches having anomalous structures 

becomes detecting outliers in anomaly indicators 

• Several statistical techniques have been developed 

ranging from graphical, confidence intervals-based, 

density-based 

• Outliers are detected as point in low-denisty regions 

• We perform outlier detection using confidence intervals 

which behaves quite well for unimodal distribution 
25 January 2015 



Anomaly Detection from 1D Anomaly Indicators 

 We treat anomaly indicators computed from i.i.d. 

stationary data as random variables. 

 We define high-density regions for the empirical 

distribution of anomaly indicators from 𝑇 

 In case of 1D-anomaly indicators, such a region is 

ℐ𝛼
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2
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where 𝑞𝛼
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Anomaly Detection from 1D Anomaly Indicators 

 We treat anomaly indicators computed from i.i.d. 

stationary data as random variables. 

 We define high-density regions for the empirical 

distribution of anomaly indicators from 𝑇 

 In case of 1D-anomaly indicators, such a region is 

ℐ𝛼
𝑒 = [𝑞𝛼

2
, 𝑞

1−
𝛼
2
] 

where 𝑞𝛼
2
 is the 𝛼/2 quantile of the empirical distribution 

 We detect anomalies as data yielding anomaly indicators, 

out of high-density regions (outliers) 

𝑒 𝐬  ∉ ℐ𝛼
𝑒 

 The same for anomaly indicator 𝑓(⋅) 



Anomaly Detection from 2D Anomaly Indicators 

 For the bivariate indicator 𝑔 ⋅  we build a confidence 

region  

𝑅𝛾 = 𝜉 ∈  ℝ2, s. t. 𝜉 − 𝜇 ′Σ−1 𝜉 − 𝜇 ≤ 𝛾   

where 𝜇 and Σ are the sample mean and sample 

covariance of the anomaly indicators from 𝑇. 
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Anomaly Detection from 2D Anomaly Indicators 

 For the bivariate indicator 𝑔 ⋅  we build a confidence 

region  

𝑅𝛾 = 𝜉 ∈  ℝ2, s. t. 𝜉 − 𝜇 ′Σ−1 𝜉 − 𝜇 ≤ 𝛾   

where 𝜇 and Σ are the sample mean and sample 

covariance of the anomaly indicators from 𝑇. 

 The Chebyshev’s inequality ensures that a normal patch 

falls outside 𝑅𝛾 with probability ≤ 2/𝛾2 

 Anomalies are detected as 

𝐬   s. t.  𝒈(𝐬) − 𝜇 ′Σ−1 𝒈(𝐬) − 𝜇 > 𝛾 

 



Anomaly Detection from 2D Anomaly Indicators 

 For the bivariate indicator 𝑔 ⋅  we build a confidence 

region  

𝑅𝛾 = 𝜉 ∈  ℝ2, s. t. 𝜉 − 𝜇 ′Σ−1 𝜉 − 𝜇 ≤ 𝛾   

where 𝜇 and Σ are the sample mean and sample 

covariance of the anomaly indicators from 𝑇. 
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EXPERIMENTS 
On Texture and SEM images 



Anomaly detection in images 

 Data are 15 × 15 patches extracted from textured images 

characterized by a specific structure 

 

25 January 2015 



Test on Synthetic Images 

25 January 2015 

 



Anomaly detection in images 

 We extract 15 × 15 patches from textured images, each 

characterized by a specific structure 

 Anomaly detection problems are simulated by assembling 

test images that contains patches from different texture 

• The left half of each image is used to learn 𝐷  

• The right half is used for testing and juxtaposed  with 

other half images 

25 January 2015 



Test Images 

We learn a  

dictionary from L3 

Test images 



Anomaly detection in images 

 Data are 15 × 15 patches extracted from textured images 

characterized by a specific structure 

 Anomaly detection problems are simulated by syntetically 

creating test images gathering patches from different 

texture 

 Each patch is pre-processed by subtracting its mean 

 No post-processing to aggregate decision spatially is 

performed 

 For further details, please refer to [Boracchi 2014] 

 

 

25 January 2015 

[Boracchi 2014] Giacomo Boracchi, Diego Carrera, Brendt Wohlberg «Anomaly 

Detection in Images By Sparse Representations» SSCI 2014 

 



Figures of Merit 

 FPR: the false positive rate, i.e. the percentage of normal 

patches labelled as anomalous 

 TPR: the true positive rate, i.e., the percentage of 

anomalies correctly detected 



Figures of Merit 
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Alternative Solution 

 In [Adler 2013] the anomaly detection is performed during 

the sparse coding. The following model is consider 

𝐬 = 𝐷𝐱 + 𝐚 + 𝝂     where 𝝂 is a noise term 

and 𝐚 collects all the components of 𝐬 that cannot be 

sparsely approximated.  

 Sparse coding is performed solving the following problem 

𝐱 = argmin
1

2
𝐱∈ℝ𝑛

𝒔 − 𝐷𝒙 − 𝒂 𝟐 + 𝒙 𝟏 + 𝒂 𝟐  

 Normal patches: 𝒂 𝟐 is negligible, anomalous patches: 

𝒂 𝟐 is large.  

 Anomalies detected comparing 𝒂 𝟐 against a threshold 

 [Adler 2013] A. Adler, M. Elad, Y. Hel-Or, and E. Rivlin, “Sparse coding with 

anomaly detection,” in Proc. of IEEE MLSP, September 2013, 



ROC curves when varying the threshold 

 



Anomaly detection in SEM images 

 Problem Description: we consider the production of 

nanofibrous materials by an electrospinning process 

 An scanning electron microscope (SEM) is used to 

monitor the production process and detect the presence of 

• Beads  

• Films 

 Detecting anomalies and assessing how large they are is 

very important for supervising the monitoring process 
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Anomaly detection in SEM images 

 Problem Description: we consider the production of 

nanofibrous materials by an electrospinning process 

 An scanning electron microscope (SEM) is used to 

monitor the production process and detect the presence of 

• Beads  

• Films 

 Detecting anomalies and assessing how large they are is 

very important for supervising the monitoring process 

 Each anomaly detection method has been manually tuned 

to operate at its best performance 

 Further details can be found in [Boracchi 2014] 

 [Boracchi 2014] Giacomo Boracchi, Diego Carrera, Brendt Wohlberg «Anomaly 

Detection in Images By Sparse Representations» SSCI 2014 

 



Original Image 

 



Anomaly detection by means of 𝒆(⋅) 

 



Anomaly detection by means of 𝒇(⋅) 

 



Anomaly detection by means of 𝒈(⋅) 

 



Anomaly detection by means of Adler 

 



SOME REMARKS 



From a more general perspective… 

 This approach can be applied to any data-generating 

process as far as: 

• Observations are signals whos structure 

characterizes the stationarity 

• It is possible to learn a dictionary to describe these 

signals 

• Anomalies exhibit different structures (or different 

noise levels) 
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Data-Generating Process 

 We assume that in normal (stationary) conditions, we 

observe data 𝐬 ∈ ℝ𝑚 drawn from a stochastic process  𝒫𝑁 

𝐬 ∼ 𝒫𝑁 

 We do not know the process, we only assume that data 

are i.i.d. realizations from 𝒫𝑁. 

 

 



From a more general perspective… 

 This approach can be also applied to sequential 

monitoring applications, where we are interested in 

detecting persistent changes in the data-generating 

process 

 Permanent shifts of the process could be due to 

• Faults 

• Unforeseen evolution of the environment 

 

 

 

25 January 2015 



CHANGE DETECTION ON 

STREAMS OF SIGNALS 
A very related problem 



The change-detection problem 

 The change-detection problem consists in monitoring a 

sequence of data (datastream), vectors of ℝ𝑚 

𝐬𝑡 𝑡=1,… 

and determining when the data-generating process 

changes. 

𝐬𝑡 =  
𝐬𝑡 ∼ 𝒫𝑁   𝑡 < 𝑇∗

𝐬𝑡 ∼ 𝒫𝐴   𝑡 ≥ 𝑇∗  

 Unpredictability of the change, 𝒫𝐴 is unknown and 

sometimes also 𝒫𝑁 is unknown. 

 𝑇∗ is denoted the change point 



The change-detection problem 

 There is a temporal dimension and we want do detect 

permanent shifts of the process 

 

 

 



The change-detection problem 

 There is a temporal dimension and we want do detect 

permanent shifts of the process 

𝒫𝐴 𝒫𝑁 

𝑇∗ 



Sequential Monitoring  

 We assueme  a training set T of signals generated in 

stationary conditions are given 

 We use these data to learn a dictionary 𝐷  

 During the operational life, signals arrives steadily 

 We perform sparse coding of each incoming signal 𝐬𝑖 
w.r.t. 𝐷  and comptute the change indicator 𝑒(𝐬𝑖) 

 Use a sequential decision tool to determine, at each time 𝑡 
if the sequence {𝑒 𝐬𝑖 , 𝑖 < 𝑡} contains stationary data 

… 

{𝑒 𝐬𝑖 , 𝑖 = 1,… } 

{𝐬𝑖 , 𝑖 = 1,… } 



Sequential Monitoring 

 Sequential Change-Detection Tests (CDTs) can be used 

for detecting changes in a stream of anomaly indicators 

[Basseville 93] 

• Data are analyzed incrementally 

• Decisions are taken online considering in principle the 

whole past sequence 

 We adopt the Change-Point Method in [Ross 2011] 

based on the Lepage Test Statistic 

 The Lepage test Statistic detects changes in the scale 

and location of an unknown random variable 

 [Basseville 93] M. Basseville and I. V. Nikiforov, Detection of abrupt changes: 

theory and application. Upper Saddle River, NJ, USA:Prentice-Hall, Inc., 1993. 

[Ross 2011] G. J. Ross, D. K. Tasoulis, and N. M. Adams, “Nonparametric 

monitoring of data streams for changes in location and scale,” Technometrics, 

vol. 53, no. 4, pp. 379–389, 2011. 



A CHANGE-DETECTION 

EXPERIMENT 
on environmental monitoring application 



Current deployments 



St Martin mount – LC, Italy 

Hybrid monitoring system 



Torrioni di Rialba  - LC, Italy 

Hybrid monitoring system 

Wireless monitoring system 



Environmental Monitoring 

 We consideres acoustic emissions acquired by an 

wired/wireless sensor networks meant to monitor a rock 

faces 

 64 samples signals acquired at 2 KHz by a MEMS.  

 Anomalies have been synthetically modified by randomly 

adding a DB4 wavelet basis atom 
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Environmental Monitoring 

 We consideres acoustic emissions acquired by an 

wired/wireless sensor networks meant to monitor a rock 

faces 

 64 samples signals acquired at 2 KHz by a MEMS.  

 Anomalies have been synthetically modified by randomly 

adding a DB4 wavelet basis atom 

 We perform change detection by means of the Lepage 

CPM using the 𝑒(⋅) change indicator. 

 We synthetically generate sequences containing 500 

signals before and after the change 

 Further details are provided in [Alippi 2014]  

 

25 January 2015 

[Alippi 2014] C. Alippi, G. Boracchi, and B. Wohlberg, “Change detection in streams 

of signals with sparse representations,” ICASSP 2014 , pp. 5252 – 5256. 



Distribution of the change indicators 

 To show the detectablity of the change we plot the 

empirical distribution of change indicator before and after 

the change. 

 And compare it with the distirbution of 𝐱𝑖 2 and 𝐱𝑖 1 



Distribution of the change indicators 

 To show the detectablity of the change we plot the 

empirical distribution of change indicator before and after 

the change. 

 And compare it with the distirbution of 𝐱𝑖 2 and 𝐱𝑖 1 

 Change-detection performance using CPM are in line with 

the detectability of the change 

• Using 𝑒 ⋅  all the changes are detected with no false 

positive with an average detection delay of 25 samples 

• Using 𝐱𝐢 1 delay increased at 124, with 33% of FN 

• Using 𝐱𝐢 2 no detections 



CONCLUDING REMARKS 

25 January 2015 



Conclusions 

 Our experiments show that sparse representation allows 

to build effective models for detecting  

• anomalies  

• process changes 

    affecting data structures 

 Sparse models describe data that in stationary conditions 

are heterogenous: e.g., atoms of 𝐷  might be from 

different classes. 

 

 

 



Ongoing works 

 Ongoing works include: 

• the study of customized dictionary learning metods for 

performing change/anomaly detection 

• the application of the proposed system to other 

application domains such as EGC analysis to detect 

arrhythmia 

• For the specific case of SEM images we are 

performing a wider experimental campaign, also 

comparing with more starightforward techniques 

 



Questions? 

 


