Anomaly Detection with Sparse
Representations

Giacomo Boracchi

Dipartimento di Elettronica
Informazione e Bioingegneria,

Politecnico di Milano, Italy

IDSIA, Lugano, Dec. 11, 2014

- I POLITECNICO DI MILANO




S _

AN ONGOING WORK WITH

Cesare Alippi, Diego Carrera (Polimi)
Brendt Wohlberg (Los Alamos National Laboratory)

N POLITECNICO DI MILANO




N

nomaly (Novelty) Detection

We consider monitoring systems acquiring and
processing images, such as those employed in biomedical
or industrial control applications.

We assume that images acquired under normal
conditions are characterized by specific local structures

Regions that do not conform to these structures are
considered anomalies

We address the problem of learning a model for describing
normal structures and detect anomalies as regions that
cannot be properly described by the model

As «running example» we consider scanning electron
microscope (SEM) images for monitoring the production of
nanofibers
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= Problem Formulation

= Sparse Representations for Anomaly Detection
= Anomaly indicators and Anomaly Detection
= EXxperiments on Anomaly Detection

- Texture Images
- SEM images for nanofiber production
= The Change-Detection Problem

= EXxperiments on Change Detection

- Microacoustic bursts for rock-face monitoring
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PROBLEM FORMULATION
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I
| Patch-Generating Process

= Patches are small image regions of a predefined shape U,

s ={s(c+u),u €U}
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I
| Patch-Generating Process

= Patches are small image regions of a predefined shape U,

s ={s(c+u),u €U}

= We assume that in nominal conditions, patches s, € R™
are I.1.d. realizations from a stochastic process Py

Sc"’:PN

A i\ /O

= A training set of [ normal patches T € R™*! is given to
learn a model D approximating normal patches
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| The Anomaly-Detection Problem

= We assume that anomalous patches are generated by P,
Sc ~ Py
= The process generating anomalies P, # Py IS unknown

= Anomalies have to be detected as patches that do not
conform the model learned to describe normal patches

- We define anomaly indicators f(s;) that measure the
degree to which the learned model fits each patch s;

- We detect anomalies as outliers in the anomaly
iIndicators

= Peculiarity of the proposed approach is to leverage

models D yielding sparse representation of image
patches
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SPARSE REPRESENTATIONS

for anomaly detection
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| Sparse Representations
|

= Sparse representations have shown to be a very useful
method for constructing signal models

= The underlying assumption is that
s ~ DX i.e, Is — Dx||? = 0
and x € R™ where:

« D € R™" js the dictionary, columns are called atoms
- the coefficient vector x is sparse (||x||, = L K n)
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| Sparse Representations
|
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I O
| Sparse Representations
|

= Sparse representations have shown to be a very useful
method for constructing signal models

= The underlying assumption is that
s ~ DX i.e, Is — Dx||? = 0
and x € R™ where:

« D € R™" js the dictionary, columns are called atoms
- the coefficient vector x is sparse (||x||, = L K n)

= Sparse signals live in a union of low-dimensional
subspaces of R™, each having maximum dimension L,
defined by dictionary atoms {d;} (columns of D).
n

Ix e R"'s.t. §s= Exidi

=1
.
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Learning a Dictionary for Modeling Stationarity
|

= Learning D corresponds to learning the union of
subpaces where patches in T — the normal ones- live.

= Dictionary learning is a joint optimization over the
dictionary and coefficients of a sparse representation of T

Py

D = argmin  ||DX —T||

DeRmxn’XE]Rnxl
such that ||xx ||, < L, Vk
= We consider here the KSVD algorithm [Aharon 06]

[Aharon 06] M. Aharon, M. Elad, and A. M. Bruckstein, “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” Transactions on
Signal Processing vol. 54, no. 11, November 2006, pp. 4311-4322.




I
| Sparse Coding

= The dictionary D can be used for computing the sparse
representation of any patch to be tested

= There are efficient tools for computing x, the sparse
approximation of a patch s w.r.t. a given dictionary D

Dx ~ s

= This operation is referred to as the sparse coding
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|Sparse Coding - ¢° norm problem

= Sparse coding solving the constrained problem

PO: X, = argmin ||5X — s||2 s.t.||x]|g < L
xeRM?

= The sparsity of the solution is constrained to be at most L

= Typically solved by means of Greedy Algoritms, such as
the Orthogonal Matching Pursuit (OMP).

= Solving this problem actually corresponds to projecting the
observed data into the union of subspaces (determined by
at most L atoms).
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|Sparse Coding - ¢! norm problem

= Sparse coding solving the unconstrained problem

P1: X4 = argmin J, (x, D, s)
xeRM?
where the functional is
~ ~ 2
];L(X,D,S) = ||Dx — s||2 + A|x||;
= The sparsity requirement is relaxed by a penalization term

on the ¢;- norm of the coefficients

= Under some conditions the solution of PO and P1 do
coincide

= This is a Basis Pursuit Denoising (BPDN) problem: there
are several optimization methods in the literature.

= We adopt Alternating Direction Method of Multipliers
(ADMM)
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ANOMALY INDICATORS

Tools to quantitatively assess «patch normality»
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|Anoma|y Indicators

= Given a dictionary D learned to describe the training set T

= We measure the extent to which a given patch s is
consistent with the nominal conditions, by computing
the sparse coding of sw.r.t. D

s > 8§ where S=Dgands§~s

= When solving the PO problem, s is the projection of s on
the best subspace of at most L atoms of D.

= We need suitable anomaly-indicators that quantitatively
assess how close s is to nominal patches.

- anomaly indicators have to take into account both
accuracy and sparsity of the representation
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|Anoma|y Indicators

= The following anomaly indicators have been
considered:

- When solving PO the reconstruction error

e(s) = ||s — D%,l|,, being &, the solution of PO

- When solving P1, the value of the functional

f(s)=|s- ﬁfq”z + A||%4|l1 , being &4 the solution of P1

- When solving P1, jointly the sparsity and the error

g(s) = [||s — D&4]|; All&41l1] , being &, the solution of P1
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ANOMALY DETECTION

on the anomaly indicators
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|Anoma|y Detection

= The anomaly indicators captures the degree to which the
structure of s is similar to that of normal patches

= Patches are processed independently

= We treat the anomaly indicators as realization from an
unknown random variable: thus

= Detecting patches having anomalous structures
becomes detecting outliers in anomaly indicators

- Several statistical techniques have been developed
ranging from graphical, confidence intervals-based,
density-based

- Outliers are detected as point in low-denisty regions

- We perform outlier detection using confidence intervals
which behaves quite well for unimodal distribution

25 January 2015 | .
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|Anoma|y Detection from 1D Anomaly Indicators

= We treat anomaly indicators computed from i.i.d.
stationary data as random variables.

= We define high-density regions for the empirical
distribution of anomaly indicators from T

= |n case of 1D-anomaly indicators, such a region is
Jo = [qa,q,_a]
2 2

where qga Is the a/2 quantile of the empirical distribution
2
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I
|Anoma|y Detection from 1D Anomaly Indicators

= We treat anomaly indicators computed from i.i.d.
stationary data as random variables.

= We define high-density regions for the empirical
distribution of anomaly indicators from T

= |n case of 1D-anomaly indicators, such a region is
Jo = [qa,q,_a]
2 2
where qga Is the a/2 quantile of the empirical distribution
2

= We detect anomalies as data yielding anomaly indicators,
out of high-density regions (outliers)

e(s) ¢7¢
= The same for anomaly indicator f(-)
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|Anoma|y Detection from 2D Anomaly Indicators

= For the bivariate indicator g(-) we build a confidence
region

R, ={§ € R, 5.tV Z7TE — ) <]

where u and X are the sample mean and sample
covariance of the anomaly indicators from T.

Uz
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|Anoma|y Detection from 2D Anomaly Indicators

= For the bivariate indicator g(-) we build a confidence
region

R, ={§ € R, 5.tV Z7TE — ) <]

where u and X are the sample mean and sample
covariance of the anomaly indicators from T.

= The ChebysheVv’s inequality ensures that a normal patch
falls outside R, with probability < 2/y?

= Anomalies are detected as

s s.t.y/(g(s) —w)'Z1(g(s) — ) >y
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|Anoma|y Detection from 2D Anomaly Indicators

= For the bivariate indicator g(-) we build a confidence
region

R, ={§ € R, 5.tV Z7TE — ) <]

where u and X are the sample mean and sample
covariance of the anomaly indicators from T.

Uz
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EXPERIMENTS

On Texture and SEM images
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I
|Anoma|y detection in images
|

= Data are 15 x 15 patches extracted from textured images
characterized by a specific structure
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Test on Synthetic Images

IRIRIRIRIRIRIRININ] (aImIninIN)

AR RINIRIRINIREN Rimia AIRIRIRN:
MBINIRIRIRIBRIRIRIAINIA janininininl
lll||lllllllllllllllllill ArpimininInN;
Il|lllll'llllllllllllllllllllllllllllll
]IlllllIllllIllllllll.'.lllllllll|lllll
TR L L fpimmmInInIRInInIN}
Illl|III!lIl(IlIlllllllltllllllllIlI?ll
Illllllllllllllll!lllll.l.llllllll'l K
lllllllII.IIIIIIlll|lll'lllllllllll. L)
ipirinEminiwInIn) pimimimIminIninInin
gpinininimiminin’ infnininIniRIRINID
IRARIRENIRINININ imimimIRiainIn
RisadnImIn iR ImINIRIn SIRIRINININANIN
1mnn AINARIMIEIRINERIRINIWY 18 1L
IR INIRIinIN) AL A AL L 111 11
NN O AL mIRINIRININ
IRIRIRIRIRIRIN RINIRIRININ RINIARRINEN
pdmsmImI I NIRRT NI NN RARIREN




I
|Anoma|y detection in images
|

= We extract 15 x 15 patches from textured images, each
characterized by a specific structure

= Anomaly detection problems are simulated by assembling
test images that contains patches from different texture
- The left half of each image is used to learn D

- The right half is used for testing and juxtaposed with
other half images
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I
|Anoma|y detection in images
|

= Data are 15 x 15 patches extracted from textured images
characterized by a specific structure

= Anomaly detection problems are simulated by syntetically
creating test images gathering patches from different
texture

= Each patch is pre-processed by subtracting its mean

= No post-processing to aggregate decision spatially is
performed

= For further details, please refer to [Boracchi 2014]

[Boracchi 2014] Giacomo Boracchi, Diego Carrera, Brendt Wohlberg «<Anomaly
Detection in Images By Sparse Representations» SSCI 2014

25 January 2015 | .
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| Figures of Merit

= FPR: the false positive rate, i.e. the percentage of normal
patches labelled as anomalous

= TPR: the true positive rate, i.e., the percentage of
anomalies correctly detected
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Figures of Merit
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Figures of Merit

< True Positives

False Positives
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| | .
|Alternative Solution
|

= |n [Adler 2013] the anomaly detection is performed during
the sparse coding. The following model is consider

s=Dx+a+v wherevisanoise term

and a collects all the components of s that cannot be
sparsely approximated.

= Sparse coding is performed solving the following problem

X = argminills — Dx —all, +|lx|[{ + llall;
xeERN

= Normal patches: ||al|, is negligible, anomalous patches:
lal|, is large.
= Anomalies detected comparing ||a||, against a threshold

[Adler 2013] A. Adler, M. Elad, Y. Hel-Or, and E. Rivlin, “Sparse coding with
anomaly detection,” in Proc. of IEEE MLSP, September 2013,



N

OC curves when varying the threshold

TPR

ROC curves for different techniques
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|Anoma|y detection in SEM images

= Problem Description: we consider the production of
nanofibrous materials by an electrospinning process

= An scanning electron microscope (SEM) is used to
monitor the production process and detect the presence of
- Beads
- Films

= Detecting anomalies and assessing how large they are is
very important for supervising the monitoring process
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|Anoma|y detection in SEM images

= Problem Description: we consider the production of
nanofibrous materials by an electrospinning process

= An scanning electron microscope (SEM) is used to
monitor the production process and detect the presence of

- Beads
- Films
= Detecting anomalies and assessing how large they are is
very important for supervising the monitoring process

= Each anomaly detection method has been manually tuned
to operate at its best performance

= Further details can be found in [Boracchi 2014]

[Boracchi 2014] Giacomo Boracchi, Diego Carrera, Brendt Wohlberg «<Anomaly
Detection in Images By Sparse Representations» SSCI 2014
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Anomaly detection by means of f(+)
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Anomaly detection by means of g()
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Anomaly detection by means of Adler
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SOME REMARKS
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| From a more general perspective...

= This approach can be applied to any data-generating
process as far as:

- Observations are signals whos structure
characterizes the stationarity

- Itis possible to learn a dictionary to describe these

signals
- Anomalies exhibit different structures (or different
noise levels)
25 January 2015 | .




Data-Generating Process

= We assume that in normal (stationary) conditions, we
observe data s € R™ drawn from a stochastic process Py

SN:])N

= We do not know the process, we only assume that data
are I.1.d. realizations from Py .
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I
| From a more general perspective...

= This approach can be also applied to sequential
monitoring applications, where we are interested In

detecting persistent changes in the data-generating
Process

= Permanent shifts of the process could be due to

- Faults
- Unforeseen evolution of the environment

25 January 2015
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CHANGE DETECTION ON
STREAMS OF SIGNALS

A very related problem
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|The change-detection problem

= The change-detection problem consists in monitoring a
sequence of data (datastream), vectors of R™

{St}t=1,...

and determining when the data-generating process
changes.

S _{StN?N t<T*
Lt StN“])A tZT*

= Unpredictability of the change, 2, is unknown and
sometimes also Py is unknown.

= T*is denoted the change point

- I POLITECNICO DI MILANO




The change-detection problem

= There is atemporal dimension and we want do detect
permanent shifts of the process

b 10 15 20 25 30 35




The change-detection problem

= There is atemporal dimension and we want do detect
permanent shifts of the process
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Sequential Monitoring

= We assueme atraining set T of signhals generated in
stationary conditions are given

= \We use these data to learn a dictionary D
= During the operational life, signals arrives steadily

= We perform sparse coding of each incoming signal s;
w.r.t. D and comptute the change indicator e(s;)

= Use a sequential decision tool to determine, at each time t
If the sequence {e(s;),i < t} contains stationary data

{Si, l — 1’ 'R }
' fe(s;),i=1,..}
i 1 T |‘ T T T T
‘ | e »

nditions, recom




Sequential Monitoring
= Sequential Change-Detection Tests (CDTs) can be used
for detecting changes in a stream of anomaly indicators

[Basseville 93]

- Data are analyzed incrementally

- Decisions are taken online considering in principle the
whole past sequence

= We adopt the Change-Point Method in [Ross 2011]
based on the Lepage Test Statistic

= The Lepage test Statistic detects changes in the scale
and location of an unknown random variable

[Basseville 93] M. Basseville and 1. V. Nikiforov, Detection of abrupt changes:
theory and application. Upper Saddle River, NJ, USA:Prentice-Hall, Inc., 1993.

[Ross 2011] G. J. Ross, D. K. Tasoulis, and N. M. Adams, “Nonparametric
monitoring of data streams for changes in location and scale,” Technometrics,
vol. 53, no. 4, pp. 379-389, 2011.
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A CHANGE-DETECTION
EXPERIMENT

on environmental monitoring application
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Current deployments
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St Martin mount — LC, Italy
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| Environmental Monitoring
|

= We consideres acoustic emissions acquired by an
wired/wireless sensor networks meant to monitor a rock
faces

= 64 samples signals acquired at 2 KHz by a MEMS.

= Anomalies have been synthetically modified by randomly
adding a DB4 wavelet basis atom

25 January 2015
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I

nvironmental Monitoring

We consideres acoustic emissions acquired by an
wired/wireless sensor networks meant to monitor a rock
faces

64 samples signals acquired at 2 KHz by a MEMS.

Anomalies have been synthetically modified by randomly
adding a DB4 wavelet basis atom

We perform change detection by means of the Lepage
CPM using the e(:) change indicator.

We synthetically generate sequences containing 500
signals before and after the change

Further details are provided in [Alippi 2014]

[Alippi 2014] C. Alippi, G. Boracchi, and B. Wohlberg, “Change detection in streams
of signals with sparse representations,” ICASSP 2014 , pp. 5252 — 5256.

25 January 2015
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Distribution of the change indicators

= To show the detectablity of the change we plot the
empirical distribution of change indicator before and after

the change.

= And compare it with the distirbution of ||x;||, and ||x;]|;
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I
| Distribution of the change indicators

= To show the detectablity of the change we plot the
empirical distribution of change indicator before and after
the change.

= And compare it with the distirbution of ||x;||, and ||x;]|;

= Change-detection performance using CPM are in line with
the detectability of the change

- Using e(+) all the changes are detected with no false
positive with an average detection delay of 25 samples
- Using ||x;]|; delay increased at 124, with 33% of FN

- Using ||xi]|, no detections
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CONCLUDING REMARKS
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I
| Conclusions
||

= Our experiments show that sparse representation allows
to build effective models for detecting

- anomalies
- process changes
affecting data structures

= Sparse models describe data that in stationary conditions

are heterogenous: e.g., atoms of D might be from
different classes.
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|Ongoing Works

= Ongoing works include:

- the study of customized dictionary learning metods for
performing change/anomaly detection

- the application of the proposed system to other
application domains such as EGC analysis to detect
arrhythmia

- For the specific case of SEM images we are
performing a wider experimental campaign, also
comparing with more starightforward techniques
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Empirical Distributions, Synthetic Change

training
----—before the change
—after the change
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