Novelty Detection in Images by Sparse Representations

Giacomo Boracchi, Diego Carrera

Dipartimento di Elettronica Informazione e Bioingegneria,

Politecnico di Milano, Italy

Brendt Wohlberg

Theoretical Division, Los Alamos National Laboratory, NM, USA

Dec. 10, 2014

Intelligent System for Novelty Detection

- We consider monitoring systems acquiring and processing images, such as those employed in biomedical or industrial control applications.
- We assume that images acquired under normal conditions are characterized by specific structures
- Regions that do not conform to these structures are considered anomalies
- An intelligent system has to automatically detect anomalous regions
- As «running example» we consider scanning electron microscope (SEM) images for monitoring the production of nanofibers

- Problem Formulation
- Sparse Representations for Novelty Detection
- Anomaly indicators
- Experiments
 - Texture Images
 - SEM images for nanofiber production

PROBLEM FORMULATION

• Patches are small image regions of a predefined shape \mathcal{U} ,

$$\mathbf{s}_c = \{s(c+u), u \in \mathcal{U}\}$$

Patches are small image regions of a predefined shape U,

 $\mathbf{s}_c = \{s(c+u), u \in \mathcal{U}\}$

Patch-Generating Process

Patches are small image regions of a predefined shape U,

$$\mathbf{s}_c = \{s(c+u), u \in \mathcal{U}\}$$

• We assume that in **nominal** conditions, patches $\mathbf{s}_c \in \mathbb{R}^m$ are i.i.d. realizations from a stochastic process \mathcal{P}_N

$$\mathbf{s}_{c} \sim \mathcal{P}_{N}$$

• A training set of *l* normal patches $T \in \mathbb{R}^{m \times l}$ is given to learn a model \widehat{D} approximating normal patches

The Novelty-Detection Problem

• We assume that anomalous patches are generated by \mathcal{P}_A

$$\mathbf{s}_{c} \sim \mathcal{P}_{A}$$

- The process generating anomalies $\mathcal{P}_A \neq \mathcal{P}_N$ is unknown
- Anomalies have to be detected as patches that do not conform the model learned to describe normal patches
 - We define anomaly indicators f(s_i) that measure the degree to which the learned model fits each patch s_i
 - We detect anomalies as outliers in the anomaly indicators
- Peculiarity of the proposed approach is to leverage models D yielding sparse representation of image patches

SPARSE REPRESENTATIONS

for novelty detection

Sparse Representations

- Sparse representations have shown to be a very useful method for constructing signal models
- The underlying assumption is that

 $\mathbf{s} \approx D\mathbf{x}$

and $\|\mathbf{x}\|_0 = L \ll n$, where:

- $D \in \mathbb{R}^{m \times n}$ is the **dictionary**, columns are called **atoms**
- the coefficient vector ${\bf x}$ is assumed to be sparse
- Sparse signals live in a union of low-dimensional subspaces of R^m, each having maximum dimension L, defined by dictionary atoms.

Learning a Dictionary for Modeling Stationarity

- Learning \widehat{D} corresponds to learning the union of subpaces where patches in T the normal ones- live.
- Solution is a joint optimization over the dictionary and coefficients of a sparse representation of T

$$\widehat{D} = \underset{D \in \mathbb{R}^{m \times n}, X \in \mathbb{R}^{n \times l}}{\operatorname{argmin}} \|DX - T\|_{F}$$

such that $\|\mathbf{x}_k\|_0 \leq L, \forall k$

We consider here the KSVD algorithm [Aharon 06]

[Aharon 06] M. Aharon, M. Elad, and A. M. Bruckstein, "K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation," Transactions on Signal Processing vol. 54, no. 11, November 2006, pp. 4311–4322.

Sparse Coding

- Given the dictionary \widehat{D} we use it for computing the sparse representation of a patch to be tested
- There are efficient tools for computing \mathbf{x} , the sparse approximation of a patch \mathbf{s} w.r.t. a given dictionary \widehat{D}

$\widehat{D}\mathbf{x} \approx \mathbf{s}$

in a sense that $\|\widehat{D}\mathbf{x} - \mathbf{s}\|_2$ is small

This operation is referred to as the sparse coding

Sparse Coding - ℓ^0 norm problem

Sparse coding solving the constrained problem

P0:
$$\hat{\mathbf{x}}_{\mathbf{0}} = \underset{\mathbf{x} \in \mathbb{R}^n}{\operatorname{argmin}} \|\widehat{D}\mathbf{x} - \mathbf{s}\|_2 \text{ s.t.} \|\mathbf{x}\|_0 \le L$$

- The sparsity of the solution is constrained to be at most L
- Exact solutions are computationally intractable.
- Typically solved by means of Greedy Algoritms, such as the Orthogonal Matching Pursuit (OMP).

Sparse Coding - ℓ^1 norm problem

Sparse coding solving the unconstrained problem

P1:
$$\hat{\mathbf{x}}_1 = \underset{\mathbf{x} \in \mathbb{R}^n}{\operatorname{argmin}} J_{\lambda}(\mathbf{x}, \widehat{D}, \mathbf{s})$$

where the functional is

$$J_{\lambda}(\mathbf{x},\widehat{D},\mathbf{s}) = \|\widehat{D}\mathbf{x} - \mathbf{s}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}$$

- The sparsity requirement is relaxed by a penalization term on the l₁- norm of the coefficients
- This is a Basis Pursuit Denoising (BPDN) problem: there are several optimization methods in the literature.
- We adopt Alternating Direction Method of Multipliers (ADMM)

ANOMALY INDICATORS

In order to measure the extent to which a given patch s is consistent with the nominal conditions we compute the sparse coding of s w.r.t. D

 $\mathbf{s} \rightarrow \hat{\mathbf{s}}$, where $\hat{\mathbf{s}} = \widehat{D}\hat{\mathbf{x}}$ and $\hat{\mathbf{s}} \approx \mathbf{s}$

- We need suitable anomaly-indicators that quantitatively assess how close s is to nominal patches.
 - In the specific case of sparse representations, the anomaly indicators have to take into account both accuracy and sparsity of the representation

- The following anomaly indicators have been considered:
 - When solving P0 the reconstruction error $e(\mathbf{s}) = \|\mathbf{s} - \widehat{D}\widehat{\mathbf{x}}_0\|_2$, being $\widehat{\mathbf{x}}_0$ the solution of P0
 - When solving P1, the value of the functional $f(\mathbf{s}) = \|\mathbf{s} \widehat{D}\widehat{\mathbf{x}}_1\|_2 + \lambda \|\widehat{\mathbf{x}}_1\|_1, \text{ being } \widehat{\mathbf{x}}_1 \text{ the solution of P1}$
 - When solving P1, jointly the sparsity and the error $g(\mathbf{s}) = [\|\mathbf{s} - \widehat{D}\widehat{\mathbf{x}}_1\|_2; \lambda \|\widehat{\mathbf{x}}_1\|_1]$, being $\widehat{\mathbf{x}}_1$ the solution of P1

Anomaly Detection from 1D Anomaly Indicators

- We treat anomaly indicators computed from i.i.d. stationary data as random variables.
- We define high-density regions for the empirical distribution of anomaly indicators from T
- In case of 1D-anomaly indicators, such a region is

$$\mathcal{I}^e_{\alpha} = [q_{\frac{\alpha}{2}}, q_{1-\frac{\alpha}{2}}]$$

where $q_{\frac{\alpha}{2}}$ is the $\alpha/2$ quantile of the empirical distribution

Anomaly Detection from 1D Anomaly Indicators

- We treat anomaly indicators computed from i.i.d. stationary data as random variables.
- We define high-density regions for the empirical distribution of anomaly indicators from T
- In case of 1D-anomaly indicators, such a region is

$$\mathcal{I}^e_{\alpha} = \left[q_{\frac{\alpha}{2}}, q_{1-\frac{\alpha}{2}}\right]$$

where $q_{\underline{\alpha}}$ is the $\alpha/2$ quantile of the empirical distribution

Anomaly Detection from 1D Anomaly Indicators

- We treat anomaly indicators computed from i.i.d. stationary data as random variables.
- We define high-density regions for the empirical distribution of anomaly indicators from T
- In case of 1D-anomaly indicators, such a region is

$$\mathcal{I}^e_{\alpha} = [q_{\frac{\alpha}{2}}, q_{1-\frac{\alpha}{2}}]$$

where $q_{\frac{\alpha}{2}}$ is the $\alpha/2$ quantile of the empirical distribution

 We detect anomalies as data yielding anomaly indicators, out of high-density regions (outliers)

$$e(\mathbf{s}) \notin \mathcal{I}^e_{\alpha}$$

• The same for anomaly indicator $f(\cdot)$

Anomaly Detection from 2D Anomaly Indicators

• For the bivariate indicator $g(\cdot)$ we build a confidence region

$$R_{\gamma} = \left\{ \xi \in \mathbb{R}^2, \text{ s. t. } \sqrt{(\xi - \mu)' \Sigma^{-1}(\xi - \mu)} \le \gamma \right\}$$

where μ and Σ are the sample mean and sample covariance of the anomaly indicators from *T*.

Anomaly Detection from 2D Anomaly Indicators

• For the bivariate indicator $g(\cdot)$ we build a confidence region

$$R_{\gamma} = \left\{ \xi \in \mathbb{R}^2, \text{ s. t. } \sqrt{(\xi - \mu)' \Sigma^{-1}(\xi - \mu)} \le \gamma \right\}$$

where μ and Σ are the sample mean and sample covariance of the anomaly indicators from *T*.

- The Chebyshev's inequality ensures that a normal patch falls outside R_{γ} with probability $\leq 2/\gamma^2$
- Anomalies are detected as

s s.t.
$$\sqrt{(\boldsymbol{g}(\mathbf{s}) - \mu)' \Sigma^{-1}(\boldsymbol{g}(\mathbf{s}) - \mu)} > \gamma$$

Anomaly Detection from 2D Anomaly Indicators

• For the bivariate indicator $g(\cdot)$ we build a confidence region

$$R_{\gamma} = \left\{ \xi \in \mathbb{R}^2, \text{ s. t. } \sqrt{(\xi - \mu)' \Sigma^{-1}(\xi - \mu)} \le \gamma \right\}$$

where μ and Σ are the sample mean and sample covariance of the anomaly indicators from *T*.

EXPERIMENTS

Performing change/anomaly detection using sparse representations

Anomaly detection in images

 We extract 15 × 15 patches from textured images, each characterized by a specific structure

Test on Synthetic Images

Image 4

Image 5

Anomaly detection in images

- Data are 15 × 15 patches extracted from textured images characterized by a specific structure
- Anomaly detection problems are simulated by assembling test images that contains patches from different texture
 - The left half of each image is used to learn \widehat{D}
 - The right half is used for testing and juxtaposed with other half images

We learn a dictionary from L3

Anomaly detection in images

- Data are 15 × 15 patches extracted from textured images characterized by a specific structure
- Anomaly detection problems are simulated by syntetically creating test images gathering patches from different texture
- Each patch is pre-processed by subtracting its mean
- No post-processing to aggregate decision spatially is performed
- For further details, please refer to [Boracchi 2014]

[Boracchi 2014] Giacomo Boracchi, Diego Carrera, Brendt Wohlberg «Anomaly Detection in Images By Sparse Representations» SSCI 2014

10 December 2014

- FPR: the false positive rate, i.e. the percentage of normal patches labelled as anomalous
- TPR: the true positive rate, i.e., the percentage of anomalies correctly detected

Performance evaluation of the considered indicators

Anomaly detection in SEM images

- Problem Description: we consider the production of nanofibrous materials by an electrospinning process
- An scanning electron microscope (SEM) is used to monitor the production process and detect the presence of
 - Beads
 - Films
- Detecting anomalies and assessing how large they are is very important for supervising the monitoring process

Anomaly detection in SEM images

- Problem Description: we consider the production of nanofibrous materials by an electrospinning process
- An scanning electron microscope (SEM) is used to monitor the production process and detect the presence of
 - Beads
 - Films
- Detecting anomalies and assessing how large they are is very important for supervising the monitoring process
- Each anomaly detection method has been manually tuned to operate at its best performance
- Further details can be found in [Boracchi 2014]

[Boracchi 2014] Giacomo Boracchi, Diego Carrera, Brendt Wohlberg «Anomaly Detection in Images By Sparse Representations» SSCI 2014

Anomaly detection by means of $e(\cdot)$

Anomaly detection by means of $f(\cdot)$

CONCLUDING REMARKS

10 December 2014

- Our experiments show that sparse representation allows to build effective models for detecting data characterized by anomalous structures
 - Jointly monitoring the reconstruction error and the sparsity of the solution to the unconstrained BPDN problem provides best performance
- Sparse representations provide models able to describe data that in stationary conditions yield heterogenous signals (e.g. belonging to different classes): atoms of D
 might be from different classes.

- Ongoing works include:
 - the application of these results to the sequential monitoring scenario
 - the study of customized dictionary learning metods for performing change/anomaly detection
 - the application of the proposed system to other application domains such as EGC analysis to detect arrhythmia.