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| Intelligent System for Novelty Detection

= We consider monitoring systems acquiring and
processing images, such as those employed in
biomedical or industrial control applications.

= We assume that images acquired under normal
conditions are characterized by specific structures

= Regions that do not conform to these structures are
considered anomalies

= An intelligent system has to automatically detect
anomalous regions

= As «running example» we consider scanning electron
microscope (SEM) images for monitoring the production of
nanofibers
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= Problem Formulation

Sparse Representations for Novelty Detection
= Anomaly indicators
= EXxperiments

- Texture Images
- SEM images for nanofiber production
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PROBLEM FORMULATION

- I POLITECNICO DI MILANO




I
| Patch-Generating Process

= Patches are small image regions of a predefined shape U,

s, = {s(c+u),u € U}
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I
| Patch-Generating Process

= Patches are small image regions of a predefined shape U,

s, = {s(c+u),u € U}

= We assume that in nominal conditions, patches s, € R™
are I.1.d. realizations from a stochastic process Py

AN /O

= A training set of | normal patches T € R™*! is given to
learn a model D approximating normal patches
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| The Novelty-Detection Problem

= We assume that anomalous patches are generated by P,
Sc ~ Py
= The process generating anomalies P, # Py IS unknown

= Anomalies have to be detected as patches that do not
conform the model learned to describe normal patches

- We define anomaly indicators f(s;) that measure the
degree to which the learned model fits each patch s;

- We detect anomalies as outliers in the anomaly
iIndicators

= Peculiarity of the proposed approach is to leverage

models D yielding sparse representation of image
patches
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SPARSE REPRESENTATIONS

for novelty detection
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| Sparse Representations
||

= Sparse representations have shown to be a very useful
method for constructing signal models

= The underlying assumption is that
s ~ DX
and ||x||, = L « n, where:

« D € R™*" s the dictionary, columns are called atoms
- the coefficient vector x Is assumed to be sparse

= Sparse signals live in a union of low-dimensional
subspaces of R™, each having maximum dimension L,
defined by dictionary atoms.
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Learning a Dictionary for Modeling Stationarity
= Learning D corresponds to learning the union of subpaces
where patches in T — the normal ones- live.

= Solution is a joint optimization over the dictionary and
coefficients of a sparse representation of T

P

D = argmin ||[DX —T||

De]RmXTl,Xe]RnXl
such that ||x|lo < L,Vk
= We consider here the KSVD algorithm [Aharon 06]

[Aharon 06] M. Aharon, M. Elad, and A. M. Bruckstein, “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” Transactions on
Signal Processing vol. 54, no. 11, November 2006, pp. 4311-4322.
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| Sparse Coding

= Given the dictionary D we use it for computing the sparse
representation of a patch to be tested

= There are efficient tools for computing x, the sparse
approximation of a patch s w.r.t. a given dictionary D

Dx =~ s
in a sense that | Dx — s||, is small

= This operation is referred to as the sparse coding
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| Sparse Coding - €° norm problem

= Sparse coding solving the constrained problem

P0: X, = argmin ||5X — s||2 s.t.||x]lg < L
xeRM

= The sparsity of the solution is constrained to be at most L
= Exact solutions are computationally intractable.

= Typically solved by means of Greedy Algoritms, such as
the Orthogonal Matching Pursuit (OMP).
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|Sparse Coding - ¢* norm problem

= Sparse coding solving the unconstrained problem

P1: X4 = argmin J; (X, D, s)

XeERM
where the functional is

~ -~ 2
]A(X,D,S) = ||Dx — s||2 + AlIx||4
= The sparsity requirement is relaxed by a penalization term

on the £;- norm of the coefficients

= This is a Basis Pursuit Denoising (BPDN) problem: there
are several optimization methods in the literature.

= We adopt Alternating Direction Method of Multipliers
(ADMM)
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ANOMALY INDICATORS
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|Anomaly Indicators

= |n order to measure the extent to which a given patch s is
consistent with the nominal conditions we compute the

sparse coding of sw.r.t. D

s > 8§ where §s=DgandsS=~s

= We need suitable anomaly-indicators that quantitatively
assess how close s is to nominal patches.

- In the specific case of sparse representations, the
anomaly indicators have to take into account both

accuracy and sparsity of the representation
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|Anomaly Indicators

= The following anomaly indicators have been
considered:

- When solving PO the reconstruction error

e(s) = ||s — D%y|,, being %, the solution of PO

- When solving P1, the value of the functional

f(s)=|s- 13)21”2 + A||%4|l1 , being &, the solution of P1

- When solving P1, jointly the sparsity and the error

g(s) =1||s - 5)21”2; All%1111] , being &4 the solution of P1
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|Anomaly Detection from 1D Anomaly Indicators

= We treat anomaly indicators computed from 1.1.d.
stationary data as random variables.

= We define high-density regions for the empirical
distribution of anomaly indicators from T

= |n case of 1D-anomaly indicators, such a region is

jcel — [qg' ql—g]
2 2

where g« Is the a/2 quantile of the empirical distribution
2
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B O
|Anomaly Detection from 1D Anomaly Indicators

= We treat anomaly indicators computed from 1.1.d.
stationary data as random variables.

= We define high-density regions for the empirical
distribution of anomaly indicators from T

= |n case of 1D-anomaly indicators, such a region is

‘76815 — [qg' ql—g]
2 2

where g« Is the a/2 quantile of the empirical distribution
2

= We detect anomalies as data yielding anomaly indicators,
out of high-density regions (outliers)

e(s) € Jg
= The same for anomaly indicator f ()
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|Anomaly Detection from 2D Anomaly Indicators

= For the bivariate indicator g(-) we build a confidence
region

Ry ={¢ € R:s.t/E - E —w) <V

where u and X are the sample mean and sample
covariance of the anomaly indicators from T.

U2
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|Anomaly Detection from 2D Anomaly Indicators

= For the bivariate indicator g(-) we build a confidence
region

Ry ={¢ € R:s.t/E - E —w) <V

where u and X are the sample mean and sample
covariance of the anomaly indicators from T.

= The Chebyshev’s inequality ensures that a normal patch
falls outside R, with probability < 2/y*

= Anomalies are detected as

s s.t. v/ (g(s)—wW)'E1(g(s) —pw) >y
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|Anomaly Detection from 2D Anomaly Indicators

= For the bivariate indicator g(-) we build a confidence
region

Ry ={¢ € R:s.t/E - E —w) <V

where u and X are the sample mean and sample
covariance of the anomaly indicators from T.

U2
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EXPERIMENTS

Performing change/anomaly detection using
sparse representations
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|Anomaly detection in images
|

= We extract 15 x 15 patches from textured images, each
characterized by a specific structure
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Test on Synthetic Images
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|Anomaly detection in images
|

= Data are 15 x 15 patches extracted from textured images
characterized by a specific structure

= Anomaly detection problems are simulated by assembling
test images that contains patches from different texture

- The left half of each image is used to learn D

- The right half is used for testing and juxtaposed with
other half images
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Test Images
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|Anomaly detection in images
|

= Data are 15 x 15 patches extracted from textured images
characterized by a specific structure

= Anomaly detection problems are simulated by syntetically
creating test images gathering patches from different
texture

= Each patch is pre-processed by subtracting its mean

= No post-processing to aggregate decision spatially is
performed

= For further details, please refer to [Boracchi 2014]

[Boracchi 2014] Giacomo Boracchi, Diego Carrera, Brendt Wohlberg «Anomaly
Detection in Images By Sparse Representations» SSCI 2014
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| Figures of Merit

= FPR: the false positive rate, I.e. the percentage of normal
patches labelled as anomalous

= TPR: the true positive rate, I.e., the percentage of
anomalies correctly detected
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Figures of Merit
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Figures of Merit
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P
Indicators

erformance evaluation of the considered

TPR

ROC curves for different techniques
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|Anomaly detection in SEM images

= Problem Description: we consider the production of
nanofibrous materials by an electrospinning process

= An scanning electron microscope (SEM) is used to
monitor the production process and detect the presence of
- Beads
- Films

= Detecting anomalies and assessing how large they are is
very important for supervising the monitoring process
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|Anomaly detection in SEM images

= Problem Description: we consider the production of
nanofibrous materials by an electrospinning process

= An scanning electron microscope (SEM) is used to
monitor the production process and detect the presence of

- Beads
- Films
= Detecting anomalies and assessing how large they are is
very important for supervising the monitoring process

= Each anomaly detection method has been manually tuned
to operate at its best performance

= Further details can be found in [Boracchi 2014]

[Boracchi 2014] Giacomo Boracchi, Diego Carrera, Brendt Wohlberg «Anomaly
Detection in Images By Sparse Representations» SSCI 2014
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Anomaly detection by means of f()
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‘Anomaly detection by means of g(-)
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CONCLUDING REMARKS
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|Conc|usions
||

= Qur experiments show that sparse representation allows
to build effective models for detecting data characterized
by anomalous structures

- Jointly monitoring the reconstruction error and the
sparsity of the solution to the unconstrained BPDN
problem provides best performance

= Sparse representations provide models able to describe
data that in stationary conditions yield heterogenous
signals (e.g. belonging to different classes): atoms of D
might be from different classes.
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= Ongoing works include:

- the application of these results to the sequential
monitoring scenario

- the study of customized dictionary learning metods for
performing change/anomaly detection

- the application of the proposed system to other
application domains such as EGC analysis to detect
arrhythmia.
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