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Intelligent System for Novelty Detection 

 We consider monitoring systems acquiring and 

processing images, such as those employed in 

biomedical or industrial control applications.  

 We assume that images acquired under normal 

conditions are characterized by specific structures  

 Regions that do not conform to these structures are 

considered anomalies 

 An intelligent system has to automatically detect 

anomalous regions 
 

 As «running example» we consider scanning electron 

microscope (SEM) images for monitoring the production of 

nanofibers 
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• Texture Images 

• SEM images for nanofiber production 

 



PROBLEM FORMULATION 



Patch-Generating Process 

 Patches are small image regions of a predefined shape 𝒰, 

𝐬𝑐 = {𝑠 𝑐 + 𝑢 , 𝑢 ∈ 𝒰} 
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Patch-Generating Process 

 Patches are small image regions of a predefined shape 𝒰, 

𝐬𝑐 = {𝑠 𝑐 + 𝑢 , 𝑢 ∈ 𝒰} 

 We assume that in nominal conditions, patches 𝐬𝑐 ∈ ℝ𝑚 

are i.i.d. realizations from a stochastic process  𝒫𝑁 

𝐬c ∼ 𝒫𝑁 

 

 

 A training set of 𝑙 normal patches 𝑇 ∈ ℝ𝑚×𝑙 is given to 

learn a model 𝐷  approximating normal patches 



The Novelty-Detection Problem 

 We assume that anomalous patches are generated by 𝒫𝐴 

𝐬c ∼ 𝒫𝐴 

 The process generating anomalies 𝒫𝐴 ≠ 𝒫𝑁 is unknown 

 Anomalies have to be detected as patches that do not 

conform the model learned to describe normal patches 

• We define anomaly indicators 𝑓(𝐬𝑖) that measure the 

degree to which the learned model fits each patch 𝐬𝑖 

• We detect anomalies as outliers in the anomaly 

indicators 

 Peculiarity of the proposed approach is to leverage 

models 𝐷   yielding sparse representation of image 

patches 

 

 

 



SPARSE REPRESENTATIONS 
for novelty detection 



Sparse Representations 

 Sparse representations have shown to be a very useful 

method for constructing signal models 

 The underlying assumption is that 

𝐬 ≈ 𝐷𝐱 

and 𝐱 0 = 𝐿 ≪ 𝑛, where: 

• 𝐷 ∈ ℝ𝑚×𝑛 is the dictionary, columns are called atoms 

• the coefficient vector 𝐱 is assumed to be sparse 

 

 Sparse signals live in a union of low-dimensional 

subspaces of ℝ𝑚, each having maximum dimension 𝐿, 

defined by dictionary atoms. 

 



Learning a Dictionary for Modeling Stationarity 

 Learning 𝐷  corresponds to learning the union of subpaces 

where patches in 𝑇 – the normal ones- live. 

 Solution is a joint optimization over the dictionary and 

coefficients of a sparse representation of 𝑇 

𝐷 = argmin
𝐷∈ℝ𝑚×𝑛,𝑋∈ℝ𝑛×𝑙

𝐷𝑋 − 𝑇 𝐹 

such that 𝐱𝑘 0 ≤ 𝐿, ∀𝑘 

 We consider here the KSVD algorithm [Aharon 06] 

 

 

[Aharon  06] M. Aharon, M. Elad, and A. M. Bruckstein, “K-SVD: An algorithm for  

designing  overcomplete dictionaries for sparse representation,” Transactions on  

Signal Processing vol. 54, no. 11, November 2006, pp. 4311–4322. 



Sparse Coding 

 Given the dictionary 𝐷  we use it for computing the sparse 

representation of a patch to be tested 

 There are efficient tools for computing 𝐱, the sparse 

approximation of a patch 𝐬 w.r.t. a given dictionary 𝐷  

𝐷 𝐱 ≈ 𝐬  

in a sense that 𝐷 𝐱 − 𝐬
𝟐
 is small 

 This operation is referred to as the sparse coding 

 



Sparse Coding - l
𝟎
 norm problem 

 Sparse coding solving  the constrained problem 

P0:    𝐱 𝟎 = argmin
𝐱∈ℝ𝑛

 𝐷 𝐱 − 𝐬
𝟐
 s. t. 𝐱 0 ≤ 𝐿 

 The sparsity of the solution is constrained to be at most 𝐿 

 Exact solutions are computationally intractable. 

 Typically solved by means of Greedy Algoritms, such as 

the Orthogonal Matching Pursuit (OMP). 



Sparse Coding - l
𝟏
 norm problem 

 Sparse coding solving the unconstrained problem 

P1:   𝐱 𝟏 = argmin
𝐱∈ℝ𝑛

  𝐽𝜆 𝐱, 𝐷 , 𝐬  

     where the functional is  

𝐽𝜆 𝐱,𝐷 , 𝐬 = 𝐷 𝐱 − 𝐬
𝟐

𝟐
+ 𝜆 𝐱 1 

 The sparsity requirement is relaxed by a penalization term 

on the ℓ1- norm of the coefficients 

 This is a Basis Pursuit Denoising (BPDN) problem: there 

are several optimization methods in the literature. 

 We adopt Alternating Direction Method of Multipliers 

(ADMM) 

 



ANOMALY INDICATORS 



Anomaly Indicators 

 In order to measure the extent to which a given patch 𝐬 is 

consistent with the nominal conditions we compute the 

sparse coding of 𝐬 w.r.t. 𝑫  

𝐬 → 𝐬 ,  where  𝐬 = 𝐷 𝐱  and 𝐬 ≈ 𝐬  

 We need suitable anomaly-indicators that quantitatively 

assess how close 𝐬 is to nominal patches. 

• In the specific case of sparse representations, the 

anomaly indicators have to take into account both 

accuracy and sparsity of the representation 

 



Anomaly Indicators 

 The following anomaly indicators have been 

considered: 
 

• When solving P0 the reconstruction error 

𝑒 𝐬 = 𝐬 − 𝐷 𝐱 𝟎 𝟐
, being 𝐱 𝟎 the solution of P0 

 

• When solving P1, the value of the functional  

𝑓 𝐬 = 𝐬 − 𝐷 𝐱 𝟏 𝟐
+ 𝜆 𝐱 𝟏 𝟏 , being 𝐱 𝟏 the solution of P1 

 

• When solving P1, jointly the sparsity and the error 

𝑔 𝐬 = [ 𝐬 − 𝐷 𝐱 𝟏 𝟐
;  𝜆 𝐱 𝟏 𝟏] , being 𝐱 𝟏 the solution of P1 

 



Anomaly Detection from 1D Anomaly Indicators 

 We treat anomaly indicators computed from i.i.d. 

stationary data as random variables. 

 We define high-density regions for the empirical 

distribution of anomaly indicators from 𝑇 

 In case of 1D-anomaly indicators, such a region is 

ℐ𝛼
𝑒 = [𝑞𝛼

2
, 𝑞

1−
𝛼
2
] 

where 𝑞𝛼
2
 is the 𝛼/2 quantile of the empirical distribution 
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Anomaly Detection from 1D Anomaly Indicators 

 We treat anomaly indicators computed from i.i.d. 

stationary data as random variables. 

 We define high-density regions for the empirical 

distribution of anomaly indicators from 𝑇 

 In case of 1D-anomaly indicators, such a region is 

ℐ𝛼
𝑒 = [𝑞𝛼

2
, 𝑞

1−
𝛼
2
] 

where 𝑞𝛼
2
 is the 𝛼/2 quantile of the empirical distribution 

 We detect anomalies as data yielding anomaly indicators, 

out of high-density regions (outliers) 

𝑒 𝐬  ∉ ℐ𝛼
𝑒 

 The same for anomaly indicator 𝑓(⋅) 



Anomaly Detection from 2D Anomaly Indicators 

 For the bivariate indicator 𝑔 ⋅  we build a confidence 

region  

𝑅𝛾 = 𝜉 ∈  ℝ2, s. t. 𝜉 − 𝜇 ′Σ−1 𝜉 − 𝜇 ≤ 𝛾   

where 𝜇 and Σ are the sample mean and sample 

covariance of the anomaly indicators from 𝑇. 
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Anomaly Detection from 2D Anomaly Indicators 

 For the bivariate indicator 𝑔 ⋅  we build a confidence 

region  

𝑅𝛾 = 𝜉 ∈  ℝ2, s. t. 𝜉 − 𝜇 ′Σ−1 𝜉 − 𝜇 ≤ 𝛾   

where 𝜇 and Σ are the sample mean and sample 

covariance of the anomaly indicators from 𝑇. 

 The Chebyshev’s inequality ensures that a normal patch 

falls outside 𝑅𝛾 with probability ≤ 2/𝛾2 

 Anomalies are detected as 

𝐬   s. t.  𝒈(𝐬) − 𝜇 ′Σ−1 𝒈(𝐬) − 𝜇 > 𝛾 

 



Anomaly Detection from 2D Anomaly Indicators 

 For the bivariate indicator 𝑔 ⋅  we build a confidence 

region  

𝑅𝛾 = 𝜉 ∈  ℝ2, s. t. 𝜉 − 𝜇 ′Σ−1 𝜉 − 𝜇 ≤ 𝛾   

where 𝜇 and Σ are the sample mean and sample 

covariance of the anomaly indicators from 𝑇. 
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EXPERIMENTS 
Performing change/anomaly detection using 

sparse representations 



Anomaly detection in images 

 We extract 15 × 15 patches from textured images, each 

characterized by a specific structure 

 

10 December 2014 



Test on Synthetic Images 

10 December 2014 

 



Anomaly detection in images 

 Data are 15 × 15 patches extracted from textured images 

characterized by a specific structure 

 Anomaly detection problems are simulated by assembling 

test images that contains patches from different texture 

• The left half of each image is used to learn 𝐷  

• The right half is used for testing and juxtaposed  with 

other half images 

10 December 2014 



Test Images 

We learn a  

dictionary from L3 

Test images 



Anomaly detection in images 

 Data are 15 × 15 patches extracted from textured images 

characterized by a specific structure 

 Anomaly detection problems are simulated by syntetically 

creating test images gathering patches from different 

texture 

 Each patch is pre-processed by subtracting its mean 

 No post-processing to aggregate decision spatially is 

performed 

 For further details, please refer to [Boracchi 2014] 

 

 

10 December 2014 

[Boracchi 2014] Giacomo Boracchi, Diego Carrera, Brendt Wohlberg «Anomaly 

Detection in Images By Sparse Representations» SSCI 2014 

 



Figures of Merit 

 FPR: the false positive rate, i.e. the percentage of normal 

patches labelled as anomalous 

 TPR: the true positive rate, i.e., the percentage of 

anomalies correctly detected 



Figures of Merit 

 



Figures of Merit 
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Performance evaluation of the considered 

indicators 

 



Anomaly detection in SEM images 

 Problem Description: we consider the production of 

nanofibrous materials by an electrospinning process 

 An scanning electron microscope (SEM) is used to 

monitor the production process and detect the presence of 

• Beads  

• Films 

 Detecting anomalies and assessing how large they are is 

very important for supervising the monitoring process 
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Anomaly detection in SEM images 

 Problem Description: we consider the production of 

nanofibrous materials by an electrospinning process 

 An scanning electron microscope (SEM) is used to 

monitor the production process and detect the presence of 

• Beads  

• Films 

 Detecting anomalies and assessing how large they are is 

very important for supervising the monitoring process 

 Each anomaly detection method has been manually tuned 

to operate at its best performance 

 Further details can be found in [Boracchi 2014] 

 [Boracchi 2014] Giacomo Boracchi, Diego Carrera, Brendt Wohlberg «Anomaly 

Detection in Images By Sparse Representations» SSCI 2014 

 



Original Image 

 



Anomaly detection by means of 𝒆(⋅) 

 



Anomaly detection by means of 𝒇(⋅) 

 



Anomaly detection by means of 𝒈(⋅) 

 



CONCLUDING REMARKS 
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Conclusions 

 Our experiments show that sparse representation allows 

to build effective models for detecting data characterized 

by anomalous structures  

• Jointly monitoring the reconstruction error and the 

sparsity of the solution to the unconstrained BPDN 

problem provides best performance 

 Sparse representations provide models able to describe 

data that in stationary conditions yield heterogenous 

signals (e.g. belonging to different classes): atoms of 𝐷  

might be from different classes. 

 

 

 



 Ongoing works include: 

• the application of these results to the sequential 

monitoring scenario 

• the study of customized dictionary learning metods for 

performing change/anomaly detection 

• the application of the proposed system to other 

application domains such as EGC analysis to detect 

arrhythmia. 

 


