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Abstract—We address the problem of automatically detecting
anomalies in images, i.e., patterns that do not conform to those
appearing in a reference training set. This is a very important
feature for enabling an intelligent system to autonomously check
the validity of acquired data, thus performing a preliminary,
automatic, diagnosis.

We approach this problem in a patch-wise manner, by
learning a model to represent patches belonging to a training
set of normal images. Here, we consider a model based on sparse
representations, and we show that jointly monitoring the sparsity
and the reconstruction error of such representation substantially
improves the detection performance with respect to other ap-
proaches leveraging sparse models. As an illustrative application,
we consider the detection of anomalies in scanning electron
microscope (SEM) images, which is essential for supervising the
production of nanofibrous materials.

I. INTRODUCTION

We consider monitoring systems acquiring and processing
images, such as those employed in biomedical or industrial-
control applications. Often, in these application scenarios,
images acquired under normal conditions are characterized by
specific structures or patterns, as such, regions that do not
conform to these are considered anomalies; see Figure 1 for an
illustrative example. Anomalies might indicate a change in the
operating conditions, an unexpected evolution of the monitored
process, or a fault in the sensing apparatus. For these reasons,
it is important that an intelligent system automatically detects
these anomalies, and properly locates the anomalous regions
within the image.

Typically, the problem of identifying patterns that are
different (or novel) with respect to those in a training set of
normal data is referred to novelty detection [1], [2], [3], and
is formulated as a one-class classification problem [4]. It is
often not unrealistic to assume that a training set of normal
data is available, since in several application scenarios these
are easy to collect, while it is usually difficult to gather enough
examples of anomalies, and sometimes impossible to represent
all the possible anomalies that might occur. Anomaly detection
instead [5], refers to the general problem of detecting unex-
pected patterns both in supervised scenarios (when normal, or
normal and anomalous samples are provided for training) and
in unsupervised scenarios (when no labels of the training data
are provided). In this paper, we shall refer to the patterns being
detected as anomalies, despite the novelty detection context,
since this is a more appropriate description in the type of
application we consider.

Most often, novelty-detection techniques learn a predictive
or approximating model from a training set of normal data
and then, during operation, assess the goodness of fit of the
learned model to each test data to determine whether it is
normal or anomalous. Typically, the reconstruction error, i.e.,
the discrepancy between the model output and the test data, is
monitored. This is a very general approach and any approxima-
tion model can be, in principle, used for this purpose. However,
most of the solutions presented in the literature resort to neural
networks [1].

We here tackle the novelty-detection problem by learning a
model providing sparse representations of normal data. Sparse
representations have became lately very popular in several
application domains [6], however, very little work has been
done for novelty detection using sparse representations. In
this work, we show that when adopting sparse models for
novelty detection, the sparsity of the representation has to
be explicitly considered. In particular, we suggest to jointly
monitoring the sparsity and the reconstruction error, and this
substantially outperforms other solutions exploiting standard
criteria to assess how close the test data are to the sparse
learned model.

We consider the novelty-detection problem in images like
those of Figure 1(a), having normal regions well characterized
by specific local structures (patterns), and therefore we operate
in a patch-wise manner. Patches, namely small image regions
having a predefined shape, are thus the core objects of our
analysis, and each patch will be independently analyzed to
determine whether it is normal or anomalous. By doing so, we
use the learned model to detect anomalies in the local image
structure, rather than outliers in the pixel values or changes
affecting the whole image.

As a reference application scenario, we consider the pro-
duction of nanofibrous materials by an electrospinning process
[7], [8], which is monitored by a scanning electron microscope
(SEM). In normal conditions, these SEM images depict a
situation similar to in Figure 1(a), which clearly displays the
peculiar structure of these nanofibres. Anomalous regions, like
those highlighted in Figure 1(b), typically indicate problems
in the nanofibres production process: an intelligent monitor-
ing system is expected to autonomously detect and possibly
measure these regions. In this scenario, automatic novelty
detection [1] becomes of paramount importance since human
inspection is infeasible because of the large number of images
acquired and the small size of the anomalies to be detected.
Our experiments indicate that sparse representations, and the
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Fig. 1. Examples of SEM images depicting a nanofibrous material produced by an electrospinning process: Figure (a) does not contain anomalies, and is
characterized by specific structures and patterns also at local-level. Figure (b) highlights anomalies that are clearly visible among the thin fibres.

proposed solution in particular, are very effective in detecting
anomalies in textures and in the SEM images like those in
Figure 1.

II. RELATED WORKS

An overview of novelty-detection methods on image data
can be found in [1]. Here, we only point out few works that
are particularly related to ours. In particular, [9] addresses
novelty detection in mammograms to identify image regions
indicating abnormal tissues. Five features are extracted from
the images, and Parzen windows are used to estimate their
joint probability density function. Then, anomalies are detected
by drawing decision boundaries over the estimated density. In
[10], the distribution of pixels in normal regions is modeled as
a multivariate Gaussian Markov random field, and the detection
of anomalous regions is performed by means of the Neyman-
Pearson hypothesis test.

Only recently have sparse models been exploited for nov-
elty detection. In [11], a specific sparse-coding procedure
was designed to detect anomalies as data that do not admit
a sparse representation with respect to a given dictionary:
in practice, the recovery of sparse representations and the
identification of anomalous components are simultaneously
performed while processing the input data. In [12], a sparse
model was exploited in a sequential monitoring application to
detect structural changes in a stream of signals. All the above
solutions identify anomalies by assessing the reconstruction
error of the sparse model. We instead jointly monitor both
the reconstruction error and the sparsity of the representation
that is obtained when solving an unconstrained optimization
problem, and our experiments demonstrate the effectiveness
of this solution. Sparse representations have been also used
for detecting unusual events in video sequences [13], [14], by
monitoring the values of the functional minimized during the
sparse coding stage.

It is worth mentioning signal-detection problems [15], [16],
[17], [18], which are also performed by means of sparse
representations and that have been mainly addressed in the

compressive sensing literature. In contrast to the novelty de-
tection problem considered here, these works assume that in
normal conditions only noise is observed, and are meant to
detect the presence of any structured signal by analyzing few
compressive measurements of the observations.

III. PROBLEM FORMULATION

Let us denote by s : X → R+ a grayscale image, where
X ⊂ Z2 is the regular pixel grid corresponding to the image
domain1. We denote by

sc = {s(c+ u), u ∈ U},∀c ∈ X (1)

the patch centered in a specific pixel c, having the support
defined by U , which is a neighborhood of the origin. While in
principle patches sc can be defined over arbitrary shapes, in
practice, U is typically a square neighborhood of

√
m×√m

pixels, where m is the cardinality of U . Note that sc will
usually be considered as a column vector representation in
Rm. We assume that patches in anomaly-free images are drawn
from a stationary, stochastic process PN , and we refer to these
as normal patches. In contrast, we assume that anomalous
patches are generated by a different process PA, which yields
unusual structures that do not conform to those generated by
PN . We further assume that a training set of l normal patches
is provided as a matrix T ∈ Rm×l. While it is possible
to learn a model approximating normal patches from T, the
same does not hold for anomalous patches, since no (or not
enough) training samples are provided: thus, PA is completely
unknown.

Novelty detection is performed at the patch level: each
patch sc is tested to determine whether it does or does not
conform with the model learned to approximate PN . This
allows the automatic identification of regions of Figure 1(b)
where the local image structure differs from the images in the
training set. Thus, we are not simply interested in determining
whether an image s contains anomalies or not, which in

1We assume grayscale images here, but the method can be easily extended
to colour images by defining patches over multiple colour bands.



practice would mean classifying Figure 1(a) as normal and
Figure 1(b) as anomalous.

IV. NOVELTY DETECTION BY MEANS OF SPARSE
REPRESENTATIONS

In this section we introduce the model we use for ap-
proximating patches generated by PN , and we show how
to effectively detect patches that are not consistent with the
learned model.

A. Sparse Approximation for Normal Patches

We adopt the classical model of sparse representations [6]
and we learn a dictionary of patches D̂ to yield an accurate
and sparse representation for any patch sc generated by PN ,
i.e.,

sc ≈ D̂xc =

n∑

i=1

d̂ixi . (2)

In (2), the dictionary D̂ = [d̂1| . . . |d̂N ] is a matrix of Rm×n
whose columns, d̂i, i ∈ {1, . . . , n}, are referred to as atoms.
The coefficient vector xc ∈ Rn is assumed to be sparse, i.e.
‖xc‖0 = L� n, where the `0 “norm” of xc is the number of
non-zero components in xc. In (2), a patch sc is approximated
by D̂xc which occupies a low-dimensional subspace of Rm
generated by the patches corresponding to nonzero coefficients
in xc. Therefore, the sparse approximation of a patch can be
seen as the projection onto the best union of low-dimensional
subspaces spanned by few dictionary atoms.

We consider two different formulations of sparse coding,
namely the estimation of a sparse representation for a specific
patch sc with respect to a given dictionary D̂:

• The constrained problem

xc,0 = arg min
x∈Rn

‖D̂x− sc‖2 such that ‖x‖0 ≤ L,
(3)

which minimizes the reconstruction error of the best
L-sparse representation of sc. Here L > 0 represents
the desired sparsity of the solution and the subscript 0
in xc,0 indicates that the sparse coding was obtained
by solving an optimization problem constraining `0

“norm” of the coefficient vector. Finding an exact so-
lution of (3) is a computationally intractable problem;
the standard approach being greedy algorithms such
as Orthogonal Matching Pursuit (OMP) [19].

• The unconstrained problem

x̂c,1 = arg min
x∈Rn

Jλ(x, D̂, sc), (4)

where the Jλ(·) is a convex loss function defined as

Jλ(x, D̂, sc) =
1

2
‖D̂x− sc‖22 + λ‖x‖1, (5)

and λ > 0 is a regularization parameter that balances
the reconstruction error ‖D̂x− sc‖22, and the sparsity
‖x‖1 of the solution measured by the `1 norm. There
are a number of methods for solving this Basis Pursuit
DeNoising (BPDN) [20] problem, including Alternat-
ing Direction Method of Multipliers (ADMM) [21].

The corresponding dictionary learning problems can be
formalized as a joint optimization over both the dictionary
and coefficients of a sparse representation of the training
matrix T. These problems are non-convex, and are usually
approached via alternating optimization with respect to the
sparse representation and the dictionary. One of the best known
dictionary learning algorithm is K-SVD [22], which usually
employs OMP in its sparse coding stage.

According to the standard novelty detection scheme, we
would like D̂ to provide accurate and sparse representations
exclusively for normal patches.

B. Detecting Anomalous Patches

The dictionary D̂ can be used as a tool to measure the
extent to which a test patch is close to those generated by
PN , and thus the extent to which it is normal or anomalous.
In particular, to quantitatively assess how close a patch is
to the normal ones, we use anomaly indicators that measure
the degree to which its approximation by D̂ is accurate and
sparse. When approximating anomalous patches by linear
combinations of a few atoms of D̂, we expect a substantial
deviation in the sparsity or reconstruction error – and thus also
in the anomaly indicators – since atoms of D̂ were learned to
represent normal structures.

To this purpose, a viable anomaly indicator for the patch
sc would be the reconstruction error given by the solution of
the constrained sparse coding (4),

e(sc) = ‖D̂xc,0 − sc‖2, (6)

where xc,0 comes from (3). The reconstruction error (6) was
used also in [12] to detect structural changes in a sequential
change-detection problem. It is important to remark that e(sc)
constitutes a meaningful anomaly indicator, since the coeffi-
cient vector xc,0 is L-sparse. This indicator is the same that
was used in [12] for sequential monitoring applications.

In contrast, in the BPDN formulation (4), (5) the sparse
coding of a patch sc does not constrain the sparsity of
xc,1, the functional minimization allowing a trade-off between
reconstruction error ‖D̂xc,1−sc‖2 and sparsity ‖xc,1‖1. Thus,
the reconstruction error alone is not a valid anomaly indicator.
The most natural choice would be to use, for each patch sc,
the value of the functional Jλ (5),

f(sc) = Jλ(xc,1, D̂, sc) =
1

2
‖D̂xc,1 − sc‖22 + λ‖xc,1‖1 , (7)

where xc,1 is given by (4). The value of the functional (7)
combines both the sparsity of xc,1 and the reconstruction error
of D̂xc,1, and is the most straightforward option to assess the
success of the unconstrained sparse coding of sc with respect
to D̂.

Here we adopt instead a bivariate anomaly indicator, thus
jointly accounting for both the reconstruction error and the
sparsity of the approximation given by D̂. In particular, given
a patch sc, we compute the sparse coding xc,1 solving the
BPDN (4) problem, and we define the vector

g(sc) = [‖D̂xc,1 − sc‖2, ‖xc,1‖1], (8)

as the bivariate anomaly indicator.
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Fig. 2. The five texture images selected from the Brodatz dataset [23], since their structure can be well captured by 15× 15 patches.

Anomaly indicators can be considered as maps from Rm
(the space of patches) into a low-dimensional feature space,
where features from normal patches follow an unknown dis-
tribution F . Patches yielding unusual values of these indicators
can be considered anomalies. One of the most straightforward
solution to detect anomalies consists of building a suitable
confidence region and considering anomalous all the patches
yielding anomaly indicators falling outside this region. In
practice, a valid option for the scalar anomaly indicator (6), is

Ieα =
[
qα

2
, q1−α2

]
, (9)

where qα denotes the α-quantile of the empirical distribution
of the reconstruction error (6). A patch sc is considered
anomalous if

e(sc) /∈ Ieα. (10)

Analogously, it is possible to define the region Ifα related to
the indicator in (7), which leads to the following test:

f(sc) /∈ Ifα. (11)

When the bivariate indicator (8) is used, we can build a
two-dimensional region [24]

Rγ =

{
φ ∈ R2 :

√
(φ− µ)TΣ−1(φ− µ) ≤ γ

}
, (12)

where µ and Σ are the expectation and the covariance matrix
of F , respectively, and γ is a suitably chosen threshold. Then,
a patch sc is considered anomalous when it does not belong
to Rγ , i.e.,

√
(g(sc)− µ)TΣ−1(g(sc)− µ) > γ. (13)

While confidence regions Ieα and Ifα defined by the quan-
tiles qα

2
and q1−α2 have straightforward interpretation, the

justification of (12) comes from the multivariate Chebyshev’s
inequality, which in this case ensures that, for a normal patch
sc, holds

Pr({g(sc) /∈ Rγ}) ≤
2

γ2
, (14)

where Pr({g(sc) /∈ Rγ}) denotes the probability for a normal
patch sc to lie outside the confidence region (false positive
detection).

The parameters of the confidence regions can be estimated
from the anomaly indicators computed from the training matrix
T or, when available, on additional anomaly-free images that
can be used for validation purpose. In particular, the quantiles

qα
2

and q1−α2 can be computed by analyzing the empirical dis-
tribution of the anomaly indicators over training or validation
data, while µ and Σ are given by their corresponding sample
estimators. In contrast, values of α and γ have to be empirically
chosen according to the desired responsiveness of the anomaly
detectors. In particular, the value of γ has to be tested to
guarantee that the detector (13) yields an acceptable percentage
of false positives. In fact, (14) provides an upper bound on the
probability of having a false positive, which might substantially
overestimate the expected percentage of false positives during
operation. Of course, when the distribution of F is known,
confidence regions yielding tighter bounds of false positives
can be used.

C. Preprocessing and Postprocessing

Before performing the dictionary learning and sparse cod-
ing, we subtract from each patch its average intensity value.
This is a very common normalization procedure when using
sparse representations for image-processing tasks. By doing
so, we make our novelty-detection algorithm more sensitive to
changes in the patch structure rather than in the overall patch
intensity.

The final decision whether a patch is normal or anomalous
ought be taken after some post-processing to spatially ag-
gregate the decisions (i.e., normal/anomalous) at neighboring
patches. Spatial aggregations is meant to filter out detections
that very likely refer to normal regions, thus reducing the
false positive rates of the novelty detector. In practical ap-
plications, these post-processing operations heavily determine
the overall detection performance, since these can be designed
exploiting specific information about the problem at hand (e.g.,
the minimum size of the anomalous regions, their shape or
average intensity). Nevertheless, we do not consider here the
post-processing since we are interested in investigating the
effectiveness of sparse representations for novelty detection,
rather than designing a specific novelty-detection solution.

V. EXPERIMENTS AND DISCUSSION

A. Considered Novelty Detection Techniques

In our experiments we consider the following novelty-
detection techniques based on sparse models:

• Reconstruction: We use the OMP [19] algorithm to
compute e in (6), and we use (10) as a criteria to
detect anomalies. This indicator is the same used
in [12] for a sequential change-detection algorithm.
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Fig. 3. Examples of test images used for the experiments in Section V-B. The
letter (L or R) reported at the bottom of each half-image indicates whether
this is the left or right-hand side of the original image, respectively, while
the numbers refer to the index of the images in Figure 2 where the two
halves have been taken from. As an illustrative example: the left-hand size of
image 3 shown in (a) is exclusively used to learn a dictionary D̂ modeling
this texture as normal, and the test images (b) and (c) are used to assess the
novelty-detection performance when the anomalous patches are taken from
textures of images 2 and 4, respectively. Note that in these test images, the
false positive rate is correctly assessed using the right-hand size of image 3,
and not patches used for training.

The responsiveness to anomalies is determined by the
value of α, which defines the quantiles qα

2
and q1−α2

in (9), thus the confidence region Ieα.

• Functional: We solve the unconstrained BPDN prob-
lem (4) by ADMM [21], then anomalies are detected
by monitoring f in (7) by the confidence interval
in (11). The responsiveness to anomalies is determined
by the value of α.

• Bivariate: We monitor the indicator g in (8) and we
detect anomalies by means of (13). The responsiveness
to anomalies is determined by the value of γ.

• Coding: We adopt the method presented in [11],
where anomalies are detected while performing the
sparse coding of the patches. This method is based on
the assumption that anomalous patches cannot be well
approximated by a linear combination of few atoms of
D̂. More specifically, the following approximation is
considered:

sc ≈ D̂xc + ac , (15)

where xc is the sparse coefficient vector of sc with
respect to D̂ and ac gathers the components of sc
that cannot be sparsely approximated. When the patch
sc is normal, it can be well approximated by D̂xc,
then ac becomes negligible. In contrast, when sc is
anomalous, ac collects almost all of the energy of
the patch. Therefore, anomalies are detected by mon-
itoring ‖ac‖2. More in details, the proposed detection
ruled is

‖ac‖2 > τ, (16)

where τ is the parameter determining the responsive-
ness to anomalies.

The above techniques have been tested in two application
scenarios (Sections V-B and V-C) using patches of size 15×15,
where dictionaries D̂ were learned using the K-SVD algorithm
[22]. Learned dictionaries are 4-times overcomplete, with
m = 225 and n = 900; this is the configuration that provided
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Fig. 4. ROC curves for the considered novelty-detection techniques in Section
V-A, obtained by varying the corresponding parameters: α for Reconstruction
and Functional, γ for Bivariate and τ for Coding. The FPR and TPR
were averaged over all the test images of Section V-B. The ROC curve
corresponding to the Bivariate is the closest to the upper-left corner, indicating
that this novelty-detection solution outperforms the others.

the most satisfactory detection performance. By tuning the
dictionary learning on few training and validation images, we
set the degree of sparsity for the constrained sparse coding (3)
as L = 4 and the penalization term in the BPDN problem (4)
as λ = 0.3.

B. Experiments on Texture Images

Texture images are taken from the Brodatz dataset [23],
and suitably combined to prepare test images for assessing
novelty-detection performance. We considered the five 640 ×
640 textures2 displayed in Figure 2 and we learn a dictionary
D̂i, i ∈ {1, . . . , 5} from all the patches in the left half of each
image (thus on a 320 × 640 image). The left half of each of
these images is not considered for testing, while the right half
is instead used to prepare test images. Test images are vertical
juxtaposition of two different texture and are processed using
the dictionary D̂i that refer to one of the two textures. By
doing so, half of the test image have to be considered normal,
while the other half anomalous. Figure 3 illustrates how these
images have been prepared. Overall, we tested all the possible
combinations of texture images in Figure (3), obtaining twenty
test images.

The following figures of merit are used to assess the
performance of the novelty detectors in Section V-A:

• FPR, the false positive rate, i.e. the percentage of
normal patches labeled as anomalous.

2These textures were selected because it seems to be possible to capture
their structure within patches of 15 × 15 pixels.



• TPR, the true positive rate, i.e. the percentage of
anomalies correctly detected.

These figures of merit heavily depend on the values of γ, α and
τ . To determine which of these novelty-detection techniques
was the most effective one, we tested a wide range of values
for each of these parameters and we plotted the FPR and TPR
averaged over the 20 test images. The results are reported in
the receiver operating characteristic (ROC) curves of Figure 4.
This plot shows a clear gap between the performance achiev-
able by the bivariate indicator and the others, since its curve
is much closer to the upper-left corner.

C. Experiments on the NanoTwice Images

The NanoTwice dataset consists of SEM images obtained
during the quality control of an electrospinning process for pro-
ducing nanofibres. Electrospinning is an electro-hydrodynamic
process taking place between a spinning head with a capillary
opening and a static plate. The spinning head is connected with
a reservoir filled with a polymer solution under pressure. A
high voltage is applied to the spinning head, whereas the plate
is usually grounded, the difference in the voltage between the
spinning head and the plate resulting in an electrically driven
polymer solution jet. The solvent rapidly evaporates from the
jet during the run and, under optimal conditions, a continuous
nano-sized filament is deposited on the plate.

SEM images of these nanofibres show a very peculiar, non-
woven, structure like those reported in Figure 1. In order to
control and optimize the nanofibres production process, it is
important to detect anomalies in such nanofibres, which are
typically classified as

• Beads: limited pieces of the fibre whose diameter is
significantly larger than the rest of the fibre.

• Films: thin, flat layer of polymer lying among the
nanofibers.

• Holes: large dark areas which are not covered by
nanofibers.

We learned the dictionary D̂ from more than 166000
patches extracted from 10 anomaly-free regions of size 400×
400 that were manually cropped from some images. We report
the detection performance over the three images shown in
the top row of Figure 6, where each technique was tuned
to yield approximately the same number of detections. Since
these anomalies are rather easy to locate, we resort to visual
inspection for performance assessment. In Figure 6, pixels
marked in red correspond to coordinates c where the patch
sc was considered anomalous.

Results reported in Figure 6 show that the proposed Biviari-
ate indicator is better at locating anomalies as it concentrates
more than others the detections over beads, films and holes in
these images. Similar results can be achieved by monitoring
the Functional and the Reconstruction indicators, even though
some small beads in the second image and part of the films can
not be detected. Conversely, the Coding indicator is not able
to detect films and holes, since, given their simple structure,
patches in these areas can be accurately reconstructed and
cannot be detected by (16).

0 2 4 6 8
0

0.2
0.4
0.6
0.8
1

‖xc,1‖1
0 0.5 1 1.5 2 2.5

0

1

2

3

4

‖D̂xc,1 − sc‖2

L3
R3
R4

0 1 2 3 4 5 6 7
0

0.2
0.4
0.6
0.8
1

1
2‖D̂xc,1 − sc‖22 + λ‖xc,1‖1

Fig. 5. Empirical distributions of the anomaly indicators (7) and (8) on the
Images in Figure 3 (a) and Figure 3 (c). In this specific case the Functional
indicator is not able to correctly identify anomalies, which can be instead
successfully detected by jointly monitoring the Bivariate anomaly indicator (8).
Each histogram has been normalized to yield area equal to 1.

D. Discussion

Our experiments clearly show the potential of sparse rep-
resentations for detecting anomalies in the image structure,
and the ROC curves in Figure 4 indicate that the Bivariate
detector (8) can definitively outperform the others. This sug-
gests that anomalous patches sometimes yield reconstruction
errors and sparsity values that are not anomalous by themselves
even though, when jointly considered, they fall outside the
confidence region (12). Remarkably, the results emerging from
the NanoTwice dataset are consistent with those on synthetic
images.

It is however surprising that the functional in (7), which is
actually the figure of merit minimized by the sparse coding (4)
– thus the most natural indicator of the goodness of fit for a
sparse model – is far less effective than the Bivariate anomaly
indicator (8). Probably, one of the motivations is illustrated
in Figure 5, where the distribution of indicators over the
test image of Figure 3 is reported. In this specific situation,
the sparse coding (4) achieves very sparse representations
for the anomalous patches (central plot) yielding comparable
reconstruction errors to the normal ones (top plot). This
behavior is motivated by the fact that anomalous patches depict
structures (see image 4 in Figure 2) that are simpler than the
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Fig. 6. Anomaly-detection performance of the considered solutions on the SEM images from the NanoTwice dataset. The top row depicts the original images,
highlighting anomalies: films (dashed green lines), beads (dotted blue lines) and holes (solid red lines). Images from the second to fifth row show the output
of the considered novelty-detection techniques: each red pixel represents the center of a patch considered anomalous. The novelty detector based on Bivariate
indicator is able to correctly identify almost all anomalies, with a small number of false positives. Similar results hold for the Functional and the Reconstruction
indicators. The Coding indicator is instead not able to detect films and holes, because patches belonging to these regions are very simple and admit an accurate
reconstruction. These results show that it is essential to take into account also the sparsity of the representation when performing novelty detection. The parameters
α, γ and τ , have been set to provide approximately the same number of patches detected as anomalous in each image.



normal patches (see image 3 in Figure 2). Then, the functional
somehow balances the contribution of the two terms (bottom
plot), making impossible the separation of anomalies from
normal patches. In contrast, the bivariate indicator is able to
detect these situations since they fall outside the confidence
region (12). Similar arguments holds for the Reconstruction (6)
and the Coding indicators, that are far more sensitive to
variations in the reconstruction error.

VI. CONCLUSIONS

In our previous work [12], we demonstrated the poten-
tial of sparse representations for detecting structural changes
in streams of signals. In particular, in [12] we achieved
promising change-detection performance by monitoring the
reconstruction error of a sparse representation computed when
constraining the sparsity of the solution. The present paper
extends this work to novelty detection in images, confirming
the potential of models providing sparse representations for
detection purposes. Furthermore, we show the advantages of
jointly monitoring the reconstruction error and the sparsity of
the solution to the unconstrained BPDN problem.

Future works will address the application of these results
to the sequential monitoring scenario, and the investigation
of novel learning algorithms to provide dictionaries that are
specifically meant to perform change/novelty detection rather
than data reconstruction. We will also investigate how the
detection performance and the number of required training
patches vary when the patch size increases.
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