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PROBLEM FORMULATION 



Data-Generating Process 

 We assume that in normal (stationary) conditions, we 

observe data 𝐬 ∈ ℝ𝑚 drawn from a stochastic process  𝒫𝑁 

𝐬 ∼ 𝒫𝑁 

 We do not know the process, we only assume that data 

are i.i.d. realizations from 𝒫𝑁. 
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The change-detection problem 

 The change-detection problem consists in monitoring a 

sequence of data (datastream), vectors of ℝ𝑚 

𝐬𝑡 𝑡=1,… 

and determining when the data-generating process 

changes. 

𝐬𝑡 =  
𝐬𝑡 ∼ 𝒫𝑁   𝑡 < 𝑇∗

𝐬𝑡 ∼ 𝒫𝐴   𝑡 ≥ 𝑇∗  

 Unpredictability of the change, 𝒫𝐴 is unknown and 

sometimes also 𝒫𝑁 is unknown. 

 𝑇∗ is denoted the change point 



The change-detection problem 

 There is a temporal dimension and we want do detect 

permanent shifts of the process 

 

 

 



The change-detection problem 

 There is a temporal dimension and we want do detect 

permanent shifts of the process 

𝒫𝐴 𝒫𝑁 

𝑇∗ 



The Anomaly-Detection Problem 

 In the anomaly-detection problem we assume a set of 

data (vectors of ℝ𝑚) 

𝐬𝒊 𝑖=1,…𝑙 

and we want to detect data that do not conform to the 

expected behavior i.e., that are not likely to have been 

generated by 𝒫𝑁.  

 Anomalies are also referred to outliers. “An outlier is an 

observation which deviates so much from the other 

observations as to arouse suspicions that it was 

generated by a different mechanism” [Hawkins 1980]: 

 

 

 

 

[Hawkins 1980] Hawkins, D. Identification of Outliers. Chapman and Hall, 1980. 

 



 



The Anomaly-Detection Problem 

 In the anomaly-detection problem: 

• There is no an explicit temporal dimension. 

• Few anomaly might show up, the change cannot be 

considered as persisent. 

• Anomalies might comes from different processes. 
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In the Random Variable World 

 Stationarity means that a data are i.i.d. realizations of a 

random variable 

 Not all outliers induce a process change 

 

 

 

 

 

 

 

 

 



In the Random Variable World 

 Stationarity means that a data are i.i.d. realizations of a 

random variable 

 Not all process changes induce outliers 

 

 

 

 

 

 

 

 

 



Detection Tools In the Random Variable World 

 Sequential Change-Detection Tests (CDTs) can be used 

for detecting changes in a datastream [Basseville 93] 

• Data are analyzed incrementally 

• Decisions are taken online considering in principle the 

whole past sequence 

 

 Outlier detection methods:  

• Several statistical techniques have been developed 

ranging from graphical, confidence intervals-based, 

density-based and several others 

[Basseville 93] M. Basseville and I. V. Nikiforov, Detection of abrupt changes: 

theory and application. Upper Saddle River, NJ, USA:Prentice-Hall, Inc., 1993. 



And When Data Are Not Random Variables? 

 Model-Based Approach 

• We learn a model to describe normal data (𝑀𝜃) 

• We measure the degree to which the model fits the 

data by means of change indicators 𝑓(𝐬𝑖) 

• We detect changes/anomalies by monitoring the 

change indicators as random variables 

 

 

 

 

 

• The most straightforward is 𝑓 𝐬𝑖 = 𝐬𝑖 − 𝑅 𝐬𝑖 ,𝑴𝜽 2 

 

 

𝐬𝑖 
Comparison with a 

model describing 

normal data 
𝑓(𝐬𝑖) 

𝑴𝜃 



A Semi-Supervised Learning Problem 

 We assume that a set of normal data is provided for 

training purposes: 

• Learning a suitable model to compute the change 

indicators 

• Learning the distribution of change indicators in 

stationary conditions and run a change/anomaly 

detection algorithm on them 

 No examples of anomalies/data generated after the 

change are instead provided 

 In these settings, anomaly detection is also referred to as 

novelty detetection or one class classification 

[Pimentel 2014] 

 
[Pimentel 2014] M. A. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko, “A 

review of novelty detection,” Signal Processing, vol. 99, pp. 215 – 249, June 2014. 



SPARSE REPRESENTATIONS 
for performing change/anomaly detection 



Sparsity 

 We say that a signal 𝐬 ∈ ℝ𝑚 is sparse w.r.t. to dictionary 

𝐷 ∈  ℝ𝑚×𝑛, i.e., a set of 𝐝𝑖 𝑖=1,..,𝑛 vectors of ℝ𝑚 

∃ 𝐱 ∈ ℝ𝑛 s. t.   𝐬 =   𝑥𝑖𝐝𝑖

𝑛

𝑖=1

 

    and 𝐱 0 = 𝐿 ≪ 𝑛.  

or equivalently, in matrix notation 𝐬 = 𝐷𝐱 . 

 Sparse signals in ℝ𝑚 live in a union of low-dimensional 

subspaces (each having dimension maximum 𝐿). 

 When the (sorted) coefficients of 𝐱 follow a power-law 

decay the signal is compressible, and can be accurately 

approximated by a sparse representation. 
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Sparse Representations 

 Sparse representations has shown to be a very useful 

method for constructing signal models; 

 The underlying assumption is that 

𝐬 = 𝐷𝐱 + 𝝂, where 𝝂 is a noise term 

 Where 𝐷 ∈ ℝ𝑛×𝑚 is the dictionary, whose columns are 

called atoms, 𝐱 are the coefficients which are assumed to 

be sparse, i.e., 𝐱 0 ≪ 𝑛 

 There are efficient tools for computing 𝐱 , the sparse 

approximation of a signal 𝐬 w.r.t. a given dictionary 𝐷 

𝐬 = 𝐷𝐱   and  𝐬 ≈ 𝐷𝐱  

in a sense that 𝐷𝐱 − 𝐬 𝟐 is small 

 This operation is referred to as the sparse coding 



Sparse Coding 

 Sparse coding solving  the following constrained problem 

P0:    𝐱 𝟎 = argmin
𝐱∈ℝ𝑛

 𝐷𝐱 − 𝐬 𝟐  s. t. 𝐱 0 ≤ 𝐿 

 Exact solutions are computationally intractable. 

 Typically solved by means of Greedy Algoritms, such as 

the Orthogonal Matching Pursuit (OMP). 

 Solving this problem actually corresponds to projecting the 

observed data into the union of subspaces (determined by 

at most 𝐿 atoms). 



Sparse Coding (cnt) 

 Sparse coding solving the following unconstrained 

problem 

P1:   𝐱 𝟏 = argmin
𝐱∈ℝ𝑛

  𝐽𝜆 𝐱, 𝐷, 𝐬  

     where the functional is  

𝐽𝜆 𝐱, 𝐷, 𝐬 = 𝐷𝐱 − 𝐬 𝟐
𝟐 + 𝜆 𝐱 1 

 The sparsity requirement is relaxed by a penalization term 

on the ℓ1- norm of the coefficients 

 Under some conditions the solution of P0 and P1 do 

coincide 

 This is a Basis Pursuit Denoising (BPDN) problem: there 

are several optimization methods in the literature. 

 We adopt Alternating Direction Method of Multipliers 

(ADMM) 

 



Dictionary Learning 

 It is possible to learn a dictionary 𝐷  that provides sparse 

approximation for a set of training data 𝑇 ∈  ℝ𝑚,𝑙. 

 Solution is a joint optimization over the dictionary and 

coefficients of a sparse repr. of the training matrix 𝑇 

𝐷 =  argmin
𝐷∈ℝ𝑚×𝑛,𝑋∈ℝ𝑛×𝑙

𝐷𝑋 − 𝑇 𝐹 

such that 𝐱𝑘 0 ≤ 𝐿, ∀𝑘 

• Greedy solutions are obtained by alternating 

optimization over the dictionary atoms and the sparse 

representations of the training set  

• We consider here the KSVD [Aharon 06] that uses 

OMP as sparse coding stage 

[Aharon  06] M. Aharon, M. Elad, and A. M. Bruckstein, “K-SVD: An algorithm for  

designing  overcomplete dictionaries for sparse representation,” Transactions on  

Signal Processing vol. 54, no. 11, November 2006, pp. 4311–4322. 



Learning a Dictionary for Modeling Stationarity 

 Learning 𝐷  corresponds to learning the union of subpaces 

where signals in 𝑇 - generated in stationarity - live. 

 In order to measure the extent to which a given signal 𝐬 is 

consistent with the stationary conditions we compute 

the sparse coding of 𝐬 w.r.t. 𝑫  

𝐬 → 𝐬 ,  where  𝐬 = 𝐷𝐱  and 𝐬 ≈ 𝐬  

 We need suitable change-indicators that quantitatively 

assess, in the sparse domain, how close 𝐬 is to stationary 

signals. 

• In the specific case of sparse representations, the 

change indicators have to take into account both 

accuracy and sparsity of the representation 

 

 



Change Indicators 

 The following change indicators have been considered: 

• When solving P0 the reconstruction error 

𝑒 𝐬 = 𝐬 − 𝐷 𝐱 𝟎 𝟐
, being 𝐱 𝟎 the solution of P0 

• When solving P1, the value of the functional  

𝑓 𝐬 = 𝐬 − 𝐷 𝐱 𝟏 𝟐
+ 𝜆 𝐱 𝟏 𝟏 , being 𝐱 𝟏 the solution of P1 

• When solving P1, jointly the sparsity and the error 

𝑔 𝐬 = [ 𝐬 − 𝐷 𝐱 𝟏 𝟐
;  𝜆 𝐱 𝟏 𝟏] , being 𝐱 𝟏 the solution of P1 

 



Anomaly Detection from Change Indicators 

 We treat change indicators computed from i.i.d. 

stationary data as random variables. 

 We define high-density regions for the empirical 

distribution of change indicators from 𝑇 

 In case of 1D-change indicators, an high-density region is 

ℐ𝛼
𝑒 = [𝑞𝛼

2
, 𝑞

1−
𝛼
2
] 

where 𝑞𝛼
2
 is the 𝛼/2 quantile of the empirical distribution 



Anomaly Detection from Change Indicators 

 We treat change indicators computed from i.i.d. 

stationary data as random variables. 

 We define high-density regions for the empirical 

distribution of change indicators from 𝑇 

 In case of 1D-change indicators, an high-density region is 

ℐ𝛼
𝑒 = [𝑞𝛼

2
, 𝑞

1−
𝛼
2
] 

where 𝑞𝛼
2
 is the 𝛼/2 quantile of the empirical distribution 

𝜶/𝟐 % of the 

sample here 

𝑞
1−

𝛼
2
 𝑞𝛼

2
 

𝜶/𝟐 % of the 

sample here 



Anomaly Detection from Change Indicators 

 We treat change indicators computed from i.i.d. 

stationary data as random variables. 

 We define high-density regions for the empirical 

distribution of change indicators from 𝑇 

 In case of 1D-change indicators, an high-density region is 

ℐ𝛼
𝑒 = [𝑞𝛼

2
, 𝑞

1−
𝛼
2
] 

where 𝑞𝛼
2
 is the 𝛼/2 quantile of the empirical distribution 

 We detect anomalies as data yilding change indicators, 

out of high-density regions (outliers) 

𝑒 𝐬  ∉ ℐ𝛼
𝑒 

 The same for change indicators 𝑓(⋅) 



Anomaly Detection from 2D Change Indicators 

 For the bivariate indicator 𝑔 ⋅  we build a confidence 

region  

𝑅𝛾 = 𝜉 ∈  ℝ2, s. t. 𝜉 − 𝜇 ′Σ−1 𝜉 − 𝜇 ≤ 𝛾   

where 𝜇 and Σ are the sample mean and sample 

covariance of the change indicators from 𝑇. 

 

𝜇1 

𝜇2 
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 The Chebyshev’s inequality says that a normal patch falls 
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Change Detection from Change Indicators 

 We adopt Change-Point Methods (CPMs) [Hawkins 2003] 

 CPMs are hypothesis test to assess weather a finite 

sequence 𝑥𝑡 𝑡=1,…,𝑁 contains a change point, i.e., 

 
𝐻0:  "all data in the sequence are i.i.d."            
𝐻1: "the sequence contains a change point. "

 

 A change-point is a point such that 

𝑥𝑡 =  
𝑥𝑡 ∼ 𝜙𝑜   𝑡 < 𝑇∗

𝑥𝑡 ∼ 𝜙1   𝑡 ≥ 𝑇∗
 

 

[Hawkins 2003] D. M. Hawkins, P. Qiu, and C. W. Kang, “The changepoint 

model for statistical process control,” Journal of Quality Technology, vol.  35, 

No. 4,  pp. 355–366, 2003. 



Change-Point Methods 

 Each point 𝑆 in the sequence 𝑥𝑡 𝑡 = 1,… is considereded 

as a perspective change point 

 The two sets  

𝐴𝑆 = 𝑥𝑡 , 𝑡 < 𝑆

𝐵𝑆 = 𝑥𝑡 , 𝑆 ≤ 𝑡 ≤ 𝑁
 

are compared by means of a suitable statistic 𝒯 

 When the partitioning corresponding the largest value of 

the statistics yields enough statistical evidence for 

claiming the change, the sequence contains a change 

point 

 

 



 



Change Detection from Change Indicators 

 Optimized implementations of CPMs have been recently 

presented to operate online in a nonparametric manner  

 We adopt the CPM in [Ross 2011] based on the Lepage 

Test Statistic 

 The Lepage test Statistic detects changes in the scale 

and location of an unknown random variable 

 To monitor a of data {𝐱𝑖}𝑖=1,… we compute, at each new 

arrival the change indicator 𝑒(𝐱𝑖) and use CPM of Lepage 

test statistic to detect changes in the location and scale of 

the change indicators 

[Ross 2011] G. J. Ross, D. K. Tasoulis, and N. M. Adams, “Nonparametric 

monitoring of data streams for changes in location and scale,” Technometrics, 

vol. 53, no. 4, pp. 379–389, 2011. 



Alternative Approaches 

 There are not so many solution for change/anomaly 

detection using sparse representation 

 In the CS scenario there are quite a few works concerning  

• the signal detection problem, see references in [Alippi 

2013] 

• and other methods assuming known changes 

 Sparse representations have been though used for 

discriminative tasks such as classifications 

 

 

[Alippi 2014] C. Alippi, G. Boracchi, and B. Wohlberg, “Change detection in streams 

of signals with sparse representations,” ICASSP 2014 , pp. 5252 – 5256. 



Other Solutions 

 In [Adler 2013] the anomaly detection is performed during 

the sparse coding. The following model is consider 

𝐬 = 𝐷𝐱 + 𝐚 + 𝝂     where 𝝂 is a noise term 

and 𝐚 collects all the components of 𝐬 that cannot be 

sparsely approximated.  

 Sparse coding is performed solving the following problem 

𝐱 = argmin
1

2
𝐱∈ℝ𝑛

𝒔 − 𝐷𝒙 − 𝒂 𝟐 + 𝒙 𝟏 + 𝒂 𝟐  

 Normal patches: 𝒂 𝟐 is negligible, anomalous patches: 

𝒂 𝟐 is large.  

 Anomalies detected comparing 𝒂 𝟐 against a threshold 

 [Adler 2013] A. Adler, M. Elad, Y. Hel-Or, and E. Rivlin, “Sparse coding with 

anomaly detection,” in Proc. of IEEE MLSP, September 2013, 



EXPERIMENTS 
Performing change/anomaly detection using 

sparse representations 



Anomaly detection in images 

 Data are 8 × 8 patches extracted from textured images 

characterized by a specific structure 
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Test on Synthetic Images 
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Anomaly detection in images 

 Data are 8 × 8 patches extracted from textured images 

characterized by a specific structure 

 Anomaly detection problems are simulated by assembling 

test images that contains patches from different texture 

• The left half of each image is used to learn 𝐷  

• The right half is used for testing and juxtaposed  with 

other half images 

2 September 2014 



Test Images 

 

We learn a  

dictionary from here 

Test images 



Anomaly detection in images 

 Data are 8 × 8 patches extracted from textured images 

characterized by a specific structure 

 Anomaly detection problems are simulated by syntetically 

creating test images gathering patches from different 

texture 

 Each patch is pre-processed by subtracting its mean 

 No post-processing to aggregate decision spatially is 

performed 

 For further details, please refer to [Boracchi 2014] 
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[Boracchi 2014] Giacomo Boracchi, Diego Carrera, Brendt Wohlberg «Anomaly 

Detection in Images By Sparse Representations» SSCI 2014 

 



Figures of Merit 

 FPR: the false positive rate, i.e. the percentage of normal 

patches labelled as abnormal 

 TPR: the false negative rate, i.e., the percentage of 

anomalies correctly detected 
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Performance evaluation of the considered indicators 

 



Why such a performance gap? 
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Anomaly detection in SEM images 

 Problem Description: we consider the production of 

nanofibrous materials by an electrospinning process 

 An scanning electron microscope (SEM) is used to 

monitor the production process and detect the presence of 

• Beads  

• Films 

 Detecting anomalies and assessing how large they are is 

very important for supervising the monitoring process 

 



 



Anomaly detection in SEM images 

 Problem Description: we consider the production of 

nanofibrous materials by an electrospinning process 

 An scanning electron microscope (SEM) is used to 

monitor the production process and detect the presence of 

• Beads  

• Films 

 Detecting anomalies and assessing how large they are is 

very important for supervising the monitoring process 

 All the anomaly detection methods have been manually 

tuned to operate at its best performance 

 Further details can be found in [Boracchi 2014] 

 [Boracchi 2014] Giacomo Boracchi, Diego Carrera, Brendt Wohlberg «Anomaly 

Detection in Images By Sparse Representations» SSCI 2014 
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Anomaly detection by means of 𝒆(⋅) 

 



Anomaly detection by means of 𝒇(⋅) 

 



Anomaly detection by means of [Adler 2013] 

 



Anomaly detection by means of 𝒈(⋅) 
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Anomaly detection by means of 𝒆(⋅) 

 



Anomaly detection by means of 𝒇(⋅) 

 



Anomaly detection by means of [Adler 2013] 
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Environmental Monitoring 

 We consideres acoustic emissions acquired by an 

wired/wireless sensor networks meant to monitor a rock 

faces 

 64 samples signals acquired at 2 KHz by a MEMS.  

 Anomalies have been synthetically modified by randomly 

adding a DB4 wavelet basis atom 
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Environmental Monitoring 

 We consideres acoustic emissions acquired by an 

wired/wireless sensor networks meant to monitor a rock 

faces 

 64 samples signals acquired at 2 KHz by a MEMS.  

 Anomalies have been synthetically modified by randomly 

adding a DB4 wavelet basis atom 

 We perform change detection by means of the Lepage 

CPM using the 𝑒(⋅) change indicator. 

 We synthetically generate sequences containing 500 

signals before and after the change 

 Further details on available in [Alippi 2014]  
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[Alippi 2014] C. Alippi, G. Boracchi, and B. Wohlberg, “Change detection in streams 

of signals with sparse representations,” ICASSP 2014 , pp. 5252 – 5256. 



Distribution of the change indicators 

 To show the detectablity of the change we plot the 

empirical distribution of change indicator before and after 

the change. 

 And compare it with the distirbution of 𝐱𝑖 2 and 𝐱𝑖 1 



Distribution of the change indicators 

 To show the detectablity of the change we plot the 

empirical distribution of change indicator before and after 

the change. 

 And compare it with the distirbution of 𝐱𝑖 2 and 𝐱𝑖 1 

 Change-detection performance using CPM are in line with 

the detectability of the change 

• Using 𝑒 ⋅  all the changes are detected with no false 

positive with an average detection delay of 25 samples 

• Using 𝐱𝐢 1 delay increased at 124, with 33% of FN 

• Using 𝐱𝐢 2 no detections 



CONCLUDING REMARKS 
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Ongoing Works 

 Our preliminary investigation shows that sparse 

representation allows to build effective models for 

performing change/anomaly detection 

 Sparse representations provide models able to fit data 

generating processes that in stationary conditions yield  

heterogenous signals (e.g. belonging to different classes): 

Atoms of 𝐷  might be from different classes. 

 Ongoing works include: 

• the study of customized dictionary learning metods for 

performing change/anomaly detection 

• the application of the proposed system to other 

application domains such as EGC analysis to detect 

arrhythmia. 

 

 

 


