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PROBLEM FORMULATION 



Data-Generating Process 

 We assume that in normal (stationary) conditions, we 

observe data 𝐬 ∈ ℝ𝑚 drawn from a stochastic process  𝒫𝑁 

𝐬 ∼ 𝒫𝑁 

 We do not know the process, we only assume that data 

are i.i.d. realizations from 𝒫𝑁. 
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The change-detection problem 

 The change-detection problem consists in monitoring a 

sequence of data (datastream), vectors of ℝ𝑚 

𝐬𝑡 𝑡=1,… 

and determining when the data-generating process 

changes. 

𝐬𝑡 =  
𝐬𝑡 ∼ 𝒫𝑁   𝑡 < 𝑇∗

𝐬𝑡 ∼ 𝒫𝐴   𝑡 ≥ 𝑇∗  

 Unpredictability of the change, 𝒫𝐴 is unknown and 

sometimes also 𝒫𝑁 is unknown. 

 𝑇∗ is denoted the change point 



The change-detection problem 

 There is a temporal dimension and we want do detect 

permanent shifts of the process 
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 There is a temporal dimension and we want do detect 

permanent shifts of the process 
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The Anomaly-Detection Problem 

 In the anomaly-detection problem we assume a set of 

data (vectors of ℝ𝑚) 

𝐬𝒊 𝑖=1,…𝑙 

and we want to detect data that do not conform to the 

expected behavior i.e., that are not likely to have been 

generated by 𝒫𝑁.  

 Anomalies are also referred to outliers. “An outlier is an 

observation which deviates so much from the other 

observations as to arouse suspicions that it was 

generated by a different mechanism” [Hawkins 1980]: 

 

 

 

 

[Hawkins 1980] Hawkins, D. Identification of Outliers. Chapman and Hall, 1980. 

 



 



The Anomaly-Detection Problem 

 In the anomaly-detection problem: 

• There is no an explicit temporal dimension. 

• Few anomaly might show up, the change cannot be 

considered as persisent. 

• Anomalies might comes from different processes. 
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In the Random Variable World 

 Stationarity means that a data are i.i.d. realizations of a 

random variable 

 Not all outliers induce a process change 
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Detection Tools In the Random Variable World 

 Sequential Change-Detection Tests (CDTs) can be used 

for detecting changes in a datastream [Basseville 93] 

• Data are analyzed incrementally 

• Decisions are taken online considering in principle the 

whole past sequence 

 

 Outlier detection methods:  

• Several statistical techniques have been developed 

ranging from graphical, confidence intervals-based, 

density-based and several others 

[Basseville 93] M. Basseville and I. V. Nikiforov, Detection of abrupt changes: 

theory and application. Upper Saddle River, NJ, USA:Prentice-Hall, Inc., 1993. 



And When Data Are Not Random Variables? 

 Model-Based Approach 

• We learn a model to describe normal data (𝑀𝜃) 

• We measure the degree to which the model fits the 

data by means of change indicators 𝑓(𝐬𝑖) 

• We detect changes/anomalies by monitoring the 

change indicators as random variables 

 

 

 

 

 

• The most straightforward is 𝑓 𝐬𝑖 = 𝐬𝑖 − 𝑅 𝐬𝑖 ,𝑴𝜽 2 

 

 

𝐬𝑖 
Comparison with a 

model describing 

normal data 
𝑓(𝐬𝑖) 

𝑴𝜃 



A Semi-Supervised Learning Problem 

 We assume that a set of normal data is provided for 

training purposes: 

• Learning a suitable model to compute the change 

indicators 

• Learning the distribution of change indicators in 

stationary conditions and run a change/anomaly 

detection algorithm on them 

 No examples of anomalies/data generated after the 

change are instead provided 

 In these settings, anomaly detection is also referred to as 

novelty detetection or one class classification 

[Pimentel 2014] 

 
[Pimentel 2014] M. A. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko, “A 

review of novelty detection,” Signal Processing, vol. 99, pp. 215 – 249, June 2014. 



SPARSE REPRESENTATIONS 
for performing change/anomaly detection 



Sparsity 

 We say that a signal 𝐬 ∈ ℝ𝑚 is sparse w.r.t. to dictionary 

𝐷 ∈  ℝ𝑚×𝑛, i.e., a set of 𝐝𝑖 𝑖=1,..,𝑛 vectors of ℝ𝑚 

∃ 𝐱 ∈ ℝ𝑛 s. t.   𝐬 =   𝑥𝑖𝐝𝑖

𝑛

𝑖=1

 

    and 𝐱 0 = 𝐿 ≪ 𝑛.  

or equivalently, in matrix notation 𝐬 = 𝐷𝐱 . 

 Sparse signals in ℝ𝑚 live in a union of low-dimensional 

subspaces (each having dimension maximum 𝐿). 

 When the (sorted) coefficients of 𝐱 follow a power-law 

decay the signal is compressible, and can be accurately 

approximated by a sparse representation. 
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Sparse Representations 

 Sparse representations has shown to be a very useful 

method for constructing signal models; 

 The underlying assumption is that 

𝐬 = 𝐷𝐱 + 𝝂, where 𝝂 is a noise term 

 Where 𝐷 ∈ ℝ𝑛×𝑚 is the dictionary, whose columns are 

called atoms, 𝐱 are the coefficients which are assumed to 

be sparse, i.e., 𝐱 0 ≪ 𝑛 

 There are efficient tools for computing 𝐱 , the sparse 

approximation of a signal 𝐬 w.r.t. a given dictionary 𝐷 

𝐬 = 𝐷𝐱   and  𝐬 ≈ 𝐷𝐱  

in a sense that 𝐷𝐱 − 𝐬 𝟐 is small 

 This operation is referred to as the sparse coding 



Sparse Coding 

 Sparse coding solving  the following constrained problem 

P0:    𝐱 𝟎 = argmin
𝐱∈ℝ𝑛

 𝐷𝐱 − 𝐬 𝟐  s. t. 𝐱 0 ≤ 𝐿 

 Exact solutions are computationally intractable. 

 Typically solved by means of Greedy Algoritms, such as 

the Orthogonal Matching Pursuit (OMP). 

 Solving this problem actually corresponds to projecting the 

observed data into the union of subspaces (determined by 

at most 𝐿 atoms). 



Sparse Coding (cnt) 

 Sparse coding solving the following unconstrained 

problem 

P1:   𝐱 𝟏 = argmin
𝐱∈ℝ𝑛

  𝐽𝜆 𝐱, 𝐷, 𝐬  

     where the functional is  

𝐽𝜆 𝐱, 𝐷, 𝐬 = 𝐷𝐱 − 𝐬 𝟐
𝟐 + 𝜆 𝐱 1 

 The sparsity requirement is relaxed by a penalization term 

on the ℓ1- norm of the coefficients 

 Under some conditions the solution of P0 and P1 do 

coincide 

 This is a Basis Pursuit Denoising (BPDN) problem: there 

are several optimization methods in the literature. 

 We adopt Alternating Direction Method of Multipliers 

(ADMM) 

 



Dictionary Learning 

 It is possible to learn a dictionary 𝐷  that provides sparse 

approximation for a set of training data 𝑇 ∈  ℝ𝑚,𝑙. 

 Solution is a joint optimization over the dictionary and 

coefficients of a sparse repr. of the training matrix 𝑇 

𝐷 =  argmin
𝐷∈ℝ𝑚×𝑛,𝑋∈ℝ𝑛×𝑙

𝐷𝑋 − 𝑇 𝐹 

such that 𝐱𝑘 0 ≤ 𝐿, ∀𝑘 

• Greedy solutions are obtained by alternating 

optimization over the dictionary atoms and the sparse 

representations of the training set  

• We consider here the KSVD [Aharon 06] that uses 

OMP as sparse coding stage 

[Aharon  06] M. Aharon, M. Elad, and A. M. Bruckstein, “K-SVD: An algorithm for  

designing  overcomplete dictionaries for sparse representation,” Transactions on  

Signal Processing vol. 54, no. 11, November 2006, pp. 4311–4322. 



Learning a Dictionary for Modeling Stationarity 

 Learning 𝐷  corresponds to learning the union of subpaces 

where signals in 𝑇 - generated in stationarity - live. 

 In order to measure the extent to which a given signal 𝐬 is 

consistent with the stationary conditions we compute 

the sparse coding of 𝐬 w.r.t. 𝑫  

𝐬 → 𝐬 ,  where  𝐬 = 𝐷𝐱  and 𝐬 ≈ 𝐬  

 We need suitable change-indicators that quantitatively 

assess, in the sparse domain, how close 𝐬 is to stationary 

signals. 

• In the specific case of sparse representations, the 

change indicators have to take into account both 

accuracy and sparsity of the representation 

 

 



Change Indicators 

 The following change indicators have been considered: 

• When solving P0 the reconstruction error 

𝑒 𝐬 = 𝐬 − 𝐷 𝐱 𝟎 𝟐
, being 𝐱 𝟎 the solution of P0 

• When solving P1, the value of the functional  

𝑓 𝐬 = 𝐬 − 𝐷 𝐱 𝟏 𝟐
+ 𝜆 𝐱 𝟏 𝟏 , being 𝐱 𝟏 the solution of P1 

• When solving P1, jointly the sparsity and the error 

𝑔 𝐬 = [ 𝐬 − 𝐷 𝐱 𝟏 𝟐
;  𝜆 𝐱 𝟏 𝟏] , being 𝐱 𝟏 the solution of P1 

 



Anomaly Detection from Change Indicators 

 We treat change indicators computed from i.i.d. 

stationary data as random variables. 

 We define high-density regions for the empirical 

distribution of change indicators from 𝑇 

 In case of 1D-change indicators, an high-density region is 

ℐ𝛼
𝑒 = [𝑞𝛼

2
, 𝑞

1−
𝛼
2
] 

where 𝑞𝛼
2
 is the 𝛼/2 quantile of the empirical distribution 
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Anomaly Detection from Change Indicators 

 We treat change indicators computed from i.i.d. 

stationary data as random variables. 

 We define high-density regions for the empirical 

distribution of change indicators from 𝑇 

 In case of 1D-change indicators, an high-density region is 

ℐ𝛼
𝑒 = [𝑞𝛼

2
, 𝑞

1−
𝛼
2
] 

where 𝑞𝛼
2
 is the 𝛼/2 quantile of the empirical distribution 

 We detect anomalies as data yilding change indicators, 

out of high-density regions (outliers) 

𝑒 𝐬  ∉ ℐ𝛼
𝑒 

 The same for change indicators 𝑓(⋅) 



Anomaly Detection from 2D Change Indicators 

 For the bivariate indicator 𝑔 ⋅  we build a confidence 

region  

𝑅𝛾 = 𝜉 ∈  ℝ2, s. t. 𝜉 − 𝜇 ′Σ−1 𝜉 − 𝜇 ≤ 𝛾   

where 𝜇 and Σ are the sample mean and sample 

covariance of the change indicators from 𝑇. 

 

𝜇1 

𝜇2 
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Change Detection from Change Indicators 

 We adopt Change-Point Methods (CPMs) [Hawkins 2003] 

 CPMs are hypothesis test to assess weather a finite 

sequence 𝑥𝑡 𝑡=1,…,𝑁 contains a change point, i.e., 

 
𝐻0:  "all data in the sequence are i.i.d."            
𝐻1: "the sequence contains a change point. "

 

 A change-point is a point such that 

𝑥𝑡 =  
𝑥𝑡 ∼ 𝜙𝑜   𝑡 < 𝑇∗

𝑥𝑡 ∼ 𝜙1   𝑡 ≥ 𝑇∗
 

 

[Hawkins 2003] D. M. Hawkins, P. Qiu, and C. W. Kang, “The changepoint 

model for statistical process control,” Journal of Quality Technology, vol.  35, 

No. 4,  pp. 355–366, 2003. 



Change-Point Methods 

 Each point 𝑆 in the sequence 𝑥𝑡 𝑡 = 1,… is considereded 

as a perspective change point 

 The two sets  

𝐴𝑆 = 𝑥𝑡 , 𝑡 < 𝑆

𝐵𝑆 = 𝑥𝑡 , 𝑆 ≤ 𝑡 ≤ 𝑁
 

are compared by means of a suitable statistic 𝒯 

 When the partitioning corresponding the largest value of 

the statistics yields enough statistical evidence for 

claiming the change, the sequence contains a change 

point 

 

 



 



Change Detection from Change Indicators 

 Optimized implementations of CPMs have been recently 

presented to operate online in a nonparametric manner  

 We adopt the CPM in [Ross 2011] based on the Lepage 

Test Statistic 

 The Lepage test Statistic detects changes in the scale 

and location of an unknown random variable 

 To monitor a of data {𝐱𝑖}𝑖=1,… we compute, at each new 

arrival the change indicator 𝑒(𝐱𝑖) and use CPM of Lepage 

test statistic to detect changes in the location and scale of 

the change indicators 

[Ross 2011] G. J. Ross, D. K. Tasoulis, and N. M. Adams, “Nonparametric 

monitoring of data streams for changes in location and scale,” Technometrics, 

vol. 53, no. 4, pp. 379–389, 2011. 



Alternative Approaches 

 There are not so many solution for change/anomaly 

detection using sparse representation 

 In the CS scenario there are quite a few works concerning  

• the signal detection problem, see references in [Alippi 

2013] 

• and other methods assuming known changes 

 Sparse representations have been though used for 

discriminative tasks such as classifications 

 

 

[Alippi 2014] C. Alippi, G. Boracchi, and B. Wohlberg, “Change detection in streams 

of signals with sparse representations,” ICASSP 2014 , pp. 5252 – 5256. 



Other Solutions 

 In [Adler 2013] the anomaly detection is performed during 

the sparse coding. The following model is consider 

𝐬 = 𝐷𝐱 + 𝐚 + 𝝂     where 𝝂 is a noise term 

and 𝐚 collects all the components of 𝐬 that cannot be 

sparsely approximated.  

 Sparse coding is performed solving the following problem 

𝐱 = argmin
1

2
𝐱∈ℝ𝑛

𝒔 − 𝐷𝒙 − 𝒂 𝟐 + 𝒙 𝟏 + 𝒂 𝟐  

 Normal patches: 𝒂 𝟐 is negligible, anomalous patches: 

𝒂 𝟐 is large.  

 Anomalies detected comparing 𝒂 𝟐 against a threshold 

 [Adler 2013] A. Adler, M. Elad, Y. Hel-Or, and E. Rivlin, “Sparse coding with 

anomaly detection,” in Proc. of IEEE MLSP, September 2013, 



EXPERIMENTS 
Performing change/anomaly detection using 

sparse representations 



Anomaly detection in images 

 Data are 8 × 8 patches extracted from textured images 

characterized by a specific structure 
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Test on Synthetic Images 

2 September 2014 

 



Anomaly detection in images 

 Data are 8 × 8 patches extracted from textured images 

characterized by a specific structure 

 Anomaly detection problems are simulated by assembling 

test images that contains patches from different texture 

• The left half of each image is used to learn 𝐷  

• The right half is used for testing and juxtaposed  with 

other half images 

2 September 2014 



Test Images 

 

We learn a  

dictionary from here 

Test images 



Anomaly detection in images 

 Data are 8 × 8 patches extracted from textured images 

characterized by a specific structure 

 Anomaly detection problems are simulated by syntetically 

creating test images gathering patches from different 

texture 

 Each patch is pre-processed by subtracting its mean 

 No post-processing to aggregate decision spatially is 

performed 

 For further details, please refer to [Boracchi 2014] 

 

 

2 September 2014 

[Boracchi 2014] Giacomo Boracchi, Diego Carrera, Brendt Wohlberg «Anomaly 

Detection in Images By Sparse Representations» SSCI 2014 

 



Figures of Merit 

 FPR: the false positive rate, i.e. the percentage of normal 

patches labelled as abnormal 

 TPR: the false negative rate, i.e., the percentage of 

anomalies correctly detected 
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Performance evaluation of the considered indicators 

 



Why such a performance gap? 
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Anomaly detection in SEM images 

 Problem Description: we consider the production of 

nanofibrous materials by an electrospinning process 

 An scanning electron microscope (SEM) is used to 

monitor the production process and detect the presence of 

• Beads  

• Films 

 Detecting anomalies and assessing how large they are is 

very important for supervising the monitoring process 

 



 



Anomaly detection in SEM images 

 Problem Description: we consider the production of 

nanofibrous materials by an electrospinning process 

 An scanning electron microscope (SEM) is used to 

monitor the production process and detect the presence of 

• Beads  

• Films 

 Detecting anomalies and assessing how large they are is 

very important for supervising the monitoring process 

 All the anomaly detection methods have been manually 

tuned to operate at its best performance 

 Further details can be found in [Boracchi 2014] 

 [Boracchi 2014] Giacomo Boracchi, Diego Carrera, Brendt Wohlberg «Anomaly 

Detection in Images By Sparse Representations» SSCI 2014 

 



Original Image 

 



Anomaly detection by means of 𝒆(⋅) 

 



Anomaly detection by means of 𝒇(⋅) 

 



Anomaly detection by means of [Adler 2013] 

 



Anomaly detection by means of 𝒈(⋅) 
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Anomaly detection by means of 𝒆(⋅) 
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Anomaly detection by means of [Adler 2013] 

 



Anomaly detection by means of 𝒈(⋅) 
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Anomaly detection by means of 𝒆(⋅) 

 



Anomaly detection by means of 𝒇(⋅) 

 



Anomaly detection by means of [Adler 2013] 

 



Anomaly detection by means of 𝒈(⋅) 

 



Environmental Monitoring 

 We consideres acoustic emissions acquired by an 

wired/wireless sensor networks meant to monitor a rock 

faces 

 64 samples signals acquired at 2 KHz by a MEMS.  

 Anomalies have been synthetically modified by randomly 

adding a DB4 wavelet basis atom 
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Environmental Monitoring 

 We consideres acoustic emissions acquired by an 

wired/wireless sensor networks meant to monitor a rock 

faces 

 64 samples signals acquired at 2 KHz by a MEMS.  

 Anomalies have been synthetically modified by randomly 

adding a DB4 wavelet basis atom 

 We perform change detection by means of the Lepage 

CPM using the 𝑒(⋅) change indicator. 

 We synthetically generate sequences containing 500 

signals before and after the change 

 Further details on available in [Alippi 2014]  
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[Alippi 2014] C. Alippi, G. Boracchi, and B. Wohlberg, “Change detection in streams 

of signals with sparse representations,” ICASSP 2014 , pp. 5252 – 5256. 



Distribution of the change indicators 

 To show the detectablity of the change we plot the 

empirical distribution of change indicator before and after 

the change. 

 And compare it with the distirbution of 𝐱𝑖 2 and 𝐱𝑖 1 



Distribution of the change indicators 

 To show the detectablity of the change we plot the 

empirical distribution of change indicator before and after 

the change. 

 And compare it with the distirbution of 𝐱𝑖 2 and 𝐱𝑖 1 

 Change-detection performance using CPM are in line with 

the detectability of the change 

• Using 𝑒 ⋅  all the changes are detected with no false 

positive with an average detection delay of 25 samples 

• Using 𝐱𝐢 1 delay increased at 124, with 33% of FN 

• Using 𝐱𝐢 2 no detections 



CONCLUDING REMARKS 
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Ongoing Works 

 Our preliminary investigation shows that sparse 

representation allows to build effective models for 

performing change/anomaly detection 

 Sparse representations provide models able to fit data 

generating processes that in stationary conditions yield  

heterogenous signals (e.g. belonging to different classes): 

Atoms of 𝐷  might be from different classes. 

 Ongoing works include: 

• the study of customized dictionary learning metods for 

performing change/anomaly detection 

• the application of the proposed system to other 

application domains such as EGC analysis to detect 

arrhythmia. 

 

 

 


