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= The Problem Formulation

= Sparse Representations for Change/Anomaly Detection

- Brief overview of Sparse Representations
- Design of Change Indicators
= EXperiments

- Anomaly detection in SEM images
- Change detection in streams of acoustic-emissinos
= Ongoing Works
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PROBLEM FORMULATION
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I
| Data-Generating Process
|

= We assume that in normal (stationary) conditions, we
observe data s € R™ drawn from a stochastic process Py

SN:])N

= We do not know the process, we only assume that data
are I.1.d. realizations from Py .
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| The change-detection problem

= The change-detection problem consists in monitoring a
sequence of data (datastream), vectors of R™

{St}t=1,...

and determining when the data-generating process
changes.

S _{StN?N t<T*
Lt StN“])A tZT*

= Unpredictability of the change, 2, is unknown and
sometimes also Py is unknown.

= T*is denoted the change point
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The change-detection problem

= There is atemporal dimension and we want do detect
permanent shifts of the process
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I
| The Anomaly-Detection Problem
|

= |n the anomaly-detection problem we assume a set of
data (vectors of R™)

{Si}i=1,...l

and we want to detect data that do not conform to the

expected behavior i.e., that are not likely to have been
generated by Py.

= Anomalies are also referred to outliers. “An outlier is an
observation which deviates so much from the other
observations as to arouse suspicions that it was
generated by a different mechanism” [Hawkins 1980]:

[Hawkins 1980] Hawkins, D. Identification of Outliers. Chapman and Hall, 1980.
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The Anomaly-Detection Problem

= |n the anomaly-detection problem:

- There is no an explicit temporal dimension.

- Few anomaly might show up, the change cannot be
considered as persisent.

- Anomalies might comes from different processes.

30 35 40
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In the Random Variable World

= Stationarity means that a data are i.i.d. realizations of a
random variable

= Not all outliers induce a process change

5
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In the Random Variable World

= Stationarity means that a data are i.i.d. realizations of a
random variable

= Not all process changes induce outliers
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| Detection Tools In the Random Variable World

= Sequential Change-Detection Tests (CDTs) can be used
for detecting changes in a datastream [Basseville 93]
- Data are analyzed incrementally

- Decisions are taken online considering in principle the
whole past sequence

= Qutler detection methods:

- Several statistical techniques have been developed
ranging from graphical, confidence intervals-based,
density-based and several others

[Basseville 93] M. Basseville and 1. V. Nikiforov, Detection of abrupt changes:
theory and application. Upper Saddle River, NJ, USA:Prentice-Hall, Inc., 1993.
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|And When Data Are Not Random Variables?

= Model-Based Approach

- We learn a model to describe normal data (My)

- We measure the degree to which the model fits the
data by means of change indicators f (s;)

- We detect changes/anomalies by monitoring the
change indicators as random variables

M

l

Comparison with a

Si model describing f(si)

normal data

- The most straightforward is f(s;) = ||s; — R(s;, M)l
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|A Semi-Supervised Learning Problem

= We assume that a set of normal data is provided for
training purposes:

- Learning a suitable model to compute the change
iIndicators

- Learning the distribution of change indicators in
stationary conditions and run a change/anomaly
detection algorithm on them

= No examples of anomalies/data generated after the
change are instead provided

= |n these settings, anomaly detection is also referred to as
novelty detetection or one class classification

[Pimentel 2014]

[Pimentel 2014] M. A. Pimentel, D. A. Clifton, L. Clifton, and L. Tarassenko, “A
review of novelty detection,” Signal Processing, vol. 99, pp. 215 - 249, June 2014.
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SPARSE REPRESENTATIONS

for performing change/anomaly detection
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| Sparsity

= We say that a sighal s € R™ Is sparse w.r.t. to dictionary
D € R™" je., asetof{d;};-1_, vectors of R™

n

Ix € R's.t. §= indi

=1

and ||x||, = L < n.
or equivalently, in matrix notation s = Dx .

= Sparse signals in R™ live in a union of low-dimensional
subspaces (each having dimension maximum L).

= When the (sorted) coefficients of x follow a power-law
decay the signal is compressible, and can be accurately
approximated by a sparse representation.

- I POLITECNICO DI MILANO
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| Sparse Representations
||

= Sparse representations has shown to be a very useful
method for constructing signal models;

= The underlying assumption is that
s=Dx+v, where v is a noise term

= Where D € R™™ s the dictionary, whose columns are
called atoms, x are the coefficients which are assumed to
be sparse, i.e., ||x]l K n

= There are efficient tools for computing X, the sparse
approximation of a signal s w.r.t. a given dictionary D

S = DX and S = Dx
In a sense that ||Dx — §||, is small

= This operation is referred to as the sparse coding

- I POLITECNICO DI MILANO
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| Sparse Coding

= Sparse coding solving the following constrained problem

PO: X, = argmin [|[Dx —s||; s.t.|[x][p < L
xXeERM

= Exact solutions are computationally intractable.

= Typically solved by means of Greedy Algoritms, such as
the Orthogonal Matching Pursuit (OMP).

= Solving this problem actually corresponds to projecting the
observed data into the union of subspaces (determined by
at most L atoms).

- I POLITECNICO DI MILANO
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| Sparse Coding (cnt)

= Sparse coding solving the following unconstrained
problem

P1: X4, =argmin J; (x,D,s)
xXeRM

where the functional is
J,(x,D,s) = |IDx —sl|3 + AlIx]l;

= The sparsity requirement is relaxed by a penalization term
on the #,- norm of the coefficients

= Under some conditions the solution of PO and P1 do
coincide

= This is a Basis Pursuit Denoising (BPDN) problem: there
are several optimization methods in the literature.

= We adopt Alternating Direction Method of Multipliers

(ADMM)
.




B O
| Dictionary Learning
|

= |tis possible to learn a dictionary D that provides sparse
approximation for a set of training data T € R™!.

= Solution is a joint optimization over the dictionary and
coefficients of a sparse repr. of the training matrix T

D= argmin ||[DX —T||g

De]RmXTL,XeRTle

such that ||xx|lo < L, Vk
- Greedy solutions are obtained by alternating

optimization over the dictionary atoms and the sparse
representations of the training set

- We consider here the KSVD [Aharon 06] that uses
OMP as sparse coding stage

[Aharon 06] M. Aharon, M. Elad, and A. M. Bruckstein, “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” Transactions on
Signal Processing vol. 54, no. 11, November 2006, pp. 4311-4322.



I
| Learning a Dictionary for Modeling Stationarity

= Learning D corresponds to learning the union of subpaces
where signals in T - generated in stationarity - live.

= |n order to measure the extent to which a given signal s is
consistent with the stationary conditions we compute
the sparse coding of sw.r.t. D

s >SS where S=DXands~=s

= We need suitable change-indicators that quantitatively
assess, In the sparse domain, how close s is to stationary

signals.

- In the specific case of sparse representations, the
change indicators have to take into account both
accuracy and sparsity of the representation

- I POLITECNICO DI MILANO
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|Change Indicators

= The following change indicators have been considered:

- When solving PO the reconstruction error

e(s) = ||s — D%ol|,, being &, the solution of PO
- When solving P1, the value of the functional
f(s)=|s— 13)”(1”2 + A||%4|l1 , being &4 the solution of P1
- When solving P1, jointly the sparsity and the error

g(s) = [||s — D&4]|; All&41l1] , being &, the solution of P1

- I POLITECNICO DI MILANO
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|Anomaly Detection from Change Indicators

= We treat change indicators computed from i.i.d.
stationary data as random variables.

= We define high-density regions for the empirical
distribution of change indicators from T

= |n case of 1D-change indicators, an high-density region is
Jo = [qa,q,_a]
2 2

where qga Is the a/2 quantile of the empirical distribution
2
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I
|Anomaly Detection from Change Indicators

= We treat change indicators computed from i.i.d.
stationary data as random variables.

= We define high-density regions for the empirical
distribution of change indicators from T

= |n case of 1D-change indicators, an high-density region is
Jo = [qa,q,_a]
2 2
where qga Is the a/2 quantile of the empirical distribution
2

= We detect anomalies as data yilding change indicators,
out of high-density regions (outliers)

e(s) €7Jg
= The same for change indicators f(:)

POLITECNICO DI MILANO




I
|Anomaly Detection from 2D Change Indicators

= For the bivariate indicator g(-) we build a confidence
region

R, ={§ € R, 5.tV Z7TE — ) <]

where u and X are the sample mean and sample
covariance of the change indicators from T.

Uz
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I
|Anomaly Detection from 2D Change Indicators

= For the bivariate indicator g(-) we build a confidence
region

R, ={§ € R, 5.tV Z7TE — ) <]

where u and X are the sample mean and sample
covariance of the change indicators from T.

= The ChebysheVv’s inequality says that a normal patch falls
outside R, with probability < 2/y*

= Anomalies are detected as

ss.t. /(g(s) —wW'E"1(g(s) — ) >y

POLITECNICO DI MILANO




I
|Anomaly Detection from 2D Change Indicators

= For the bivariate indicator g(-) we build a confidence
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I
| Change Detection from Change Indicators

= We adopt Change-Point Methods (CPMs) [Hawkins 2003]

= CPMs are hypothesis test to assess weather a finite
sequence {x;};-1 .y CONtains a change point, i.e.,

{HO: "all data in the sequence are i.i.d."
H,:"the sequence contains a change point.”

= A change-point is a point such that

X _{xt"’d)o t<T*
g~y £ 2T

[Hawkins 2003] D. M. Hawkins, P. Qiu, and C. W. Kang, “The changepoint
model for statistical process control,” Journal of Quality Technology, vol. 35,

No. 4, pp. 355-366, 2003.
.




I
| Change-Point Methods

= Each point S in the sequence {x;}; = 1, ... is considereded
as a perspective change point

= The two sets

AS — {Xt,t <S}
BS ={xt,SS tSN}

are compared by means of a suitable statistic T

= When the partitioning corresponding the largest value of
the statistics yields enough statistical evidence for
claiming the change, the sequence contains a change
point

- I POLITECNICO DI MILANO
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I
| Change Detection from Change Indicators

= Optimized implementations of CPMs have been recently
presented to operate online in a nonparametric manner

= We adopt the CPM in [Ross 2011] based on the Lepage
Test Statistic

= The Lepage test Statistic detects changes in the scale
and location of an unknown random variable

= To monitor a of data {x;};=; . we compute, at each new
arrival the change indicator e(x;) and use CPM of Lepage
test statistic to detect changes in the location and scale of
the change indicators

[Ross 2011] G. J. Ross, D. K. Tasoulis, and N. M. Adams, “Nonparametric
monitoring of data streams for changes in location and scale,” Technometrics,

vol. 53, no. 4, pp. 379-389, 2011.
.




Alternative Approaches

= There are not so many solution for change/anomaly
detection using sparse representation

= |n the CS scenario there are quite a few works concerning

- the signal detection problem, see references in [Alippi
2013]
- and other methods assuming known changes

= Sparse representations have been though used for
discriminative tasks such as classifications

[Alippi 2014] C. Alippi, G. Boracchi, and B. Wohlberg, “Change detection in streams
of signals with sparse representations,” ICASSP 2014 , pp. 5252 — 5256.

- I POLITECNICO DI MILANO




| | .
|Other Solutions
|

= |n [Adler 2013] the anomaly detection is performed during
the sparse coding. The following model is consider

s=Dx+a+v wherevisanoise term

and a collects all the components of s that cannot be
sparsely approximated.

= Sparse coding is performed solving the following problem

X = argminills — Dx —all, +|lx|[{ + llall;
xeERN

= Normal patches: ||al|, is negligible, anomalous patches:
lal|, is large.
= Anomalies detected comparing ||a||, against a threshold

[Adler 2013] A. Adler, M. Elad, Y. Hel-Or, and E. Rivlin, “Sparse coding with
anomaly detection,” in Proc. of IEEE MLSP, September 2013,
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EXPERIMENTS

Performing change/anomaly detection using
sparse representations
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I
|Anomaly detection in images
|

= Data are 8 x 8 patches extracted from textured images
characterized by a specific structure

- I POLITECNICO DI MILANO
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Test on Synthetic Images
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I
|Anomaly detection in images
|

= Data are 8 x 8 patches extracted from textured images
characterized by a specific structure

= Anomaly detection problems are simulated by assembling
test images that contains patches from different texture
- The left half of each image is used to learn D

- The right half is used for testing and juxtaposed with
other half images

- I POLITECNICO DI MILANO

2 September 2014



Test Images

Test images
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I
|Anomaly detection in images
|

= Data are 8 x 8 patches extracted from textured images
characterized by a specific structure

= Anomaly detection problems are simulated by syntetically
creating test images gathering patches from different
texture

= Each patch is pre-processed by subtracting its mean

= No post-processing to aggregate decision spatially is
performed

= For further details, please refer to [Boracchi 2014]

[Boracchi 2014] Giacomo Boracchi, Diego Carrera, Brendt Wohlberg «<Anomaly
Detection in Images By Sparse Representations» SSCI 2014

> September 2014 e
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| Figures of Merit
|

= FPR: the false positive rate, i.e. the percentage of normal
patches labelled as abnormal

= TPR: the false negative rate, I.e., the percentage of
anomalies correctly detected

- I POLITECNICO DI MILANO




Figures of Merit
|
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Figures of Merit

< True Positives

False Positives
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| Performance evaluation of the considered indicators
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| Why such a performance gap?

o

= =

POLITECNICO DI MILANO




I
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|Anomaly detection in SEM images
|

= Problem Description: we consider the production of
nanofibrous materials by an electrospinning process

= An scanning electron microscope (SEM) is used to
monitor the production process and detect the presence of
- Beads
- Films

= Detecting anomalies and assessing how large they are is
very important for supervising the monitoring process
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|Anomaly detection in SEM images
|

= Problem Description: we consider the production of
nanofibrous materials by an electrospinning process

= An scanning electron microscope (SEM) is used to
monitor the production process and detect the presence of

- Beads
- Films

= Detecting anomalies and assessing how large they are is
very important for supervising the monitoring process

= All the anomaly detection methods have been manually
tuned to operate at its best performance

= Further details can be found in [Boracchi 2014]

[Boracchi 2014] Giacomo Boracchi, Diego Carrera, Brendt Wohlberg «<Anomaly
Detection in Images By Sparse Representations» SSCI 2014
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Anomaly detection by means of f(-)
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| Anomaly detection by means of [Adler ‘2013]
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J Anomaly detection by means of g(-)
|/

1Ny
iz,

STty N P-N S \\/ ‘:1,',.-" " /;' Wote i ‘3' 2l ¥
I AV
A O TS N AN ‘tr’i'.s”; il v S\
R S D N IR X N N K A4 N AR AAK
R A A PN A SRS
A 5%.7__"&.1 AN XX 72 2\ NS UZREAK ‘t s‘e\'w\' RIS
X v o (I o

iy Il 08 AT S

.v“', - f
’;“ D\ Y Ar\. | %

&

RO A
R S
\:\\.';‘ N










Anomaly detection by means of f(+)
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Anomaly detection by means of [Adler 2013_]

g_(;_’_ e

A 3 e, 7. ) £ v
¥ A Ny ’
Al 5
r K 7
[ \ ' S ’
4 é f
3 L - M
) v
B "L {
- '
]

¢




‘Anomaly detection by means of g(:)
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Anomaly detection by means of e(-)
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Anomaly detectlon by means of f(-)
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lAnomaIy detection by means of [Adler 2013]
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Anomaly detection by means of g(-)
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| Environmental Monitoring
|

= We consideres acoustic emissions acquired by an
wired/wireless sensor networks meant to monitor a rock
faces

= 64 samples signals acquired at 2 KHz by a MEMS.

= Anomalies have been synthetically modified by randomly
adding a DB4 wavelet basis atom

2 September 2014

POLITECNICO DI MILANO




Environmental Monitoring

= We consideres acoustic emissions acquired by an
wired/wireless sensor networks meant to monitor a rock
faces

= 64 samples signals acquired at 2 KHz by a MEMS.

Example of Original Bursts Example of Bursts Modified adding atoms from D
Stationary Conditions, reconstr. emror = 0.40007 *NONStationary Condifions*, reconstr. error = 2.2481
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nvironmental Monitoring

We consideres acoustic emissions acquired by an
wired/wireless sensor networks meant to monitor a rock
faces

64 samples signals acquired at 2 KHz by a MEMS.

Anomalies have been synthetically modified by randomly
adding a DB4 wavelet basis atom

We perform change detection by means of the Lepage
CPM using the e(:) change indicator.

We synthetically generate sequences containing 500
signals before and after the change

Further details on available in [Alippi 2014]

[Alippi 2014] C. Alippi, G. Boracchi, and B. Wohlberg, “Change detection in streams
of signals with sparse representations,” ICASSP 2014 , pp. 5252 — 5256.

2 September 2014
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Distribution of the change indicators

= To show the detectablity of the change we plot the

empirical distribution of change indicator before and after
the change.

= And compare it with the distirbution of ||x;||, and ||x;]|;
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| Distribution of the change indicators
|

= To show the detectablity of the change we plot the
empirical distribution of change indicator before and after
the change.

= And compare it with the distirbution of ||x;||, and ||x;]|;

= Change-detection performance using CPM are in line with
the detectability of the change

- Using e(+) all the changes are detected with no false
positive with an average detection delay of 25 samples
- Using ||x;]|; delay increased at 124, with 33% of FN

- Using ||xi]|, no detections
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CONCLUDING REMARKS
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|Ongoing Works

= Our preliminary investigation shows that sparse
representation allows to build effective models for
performing change/anomaly detection

= Sparse representations provide models able to fit data
generating processes that in stationary conditions yield
heterogenous signals (e.g. belonging to different classes):
Atoms of D might be from different classes.

= Ongoing works include:
- the study of customized dictionary learning metods for

performing change/anomaly detection

- the application of the proposed system to other
application domains such as EGC analysis to detect
arrhythmia.
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