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THE MOTIVATING IDEA 
…and our contribution 



Motivating Idea 

 Detecting changes in the data-generating process is very 

important as these might indicate out of control states 

• Faults in the sensing apparatus 

• Anomalous operating conditions 

• Environmental Changes 
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Motivating Idea (cnt) 

1. Fit a model / build a predictor for the time series 

𝑓𝜃 (𝑡) 

2. For each incoming samples compute the residuals 

 𝑒 𝑡 = 𝑠 𝑡 − 𝑓𝜃 (𝑡) 

3. Monitor the stationarity of the residuals 
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 Unfortunately, it is sometimes difficult to: 

• find good model family (i.e., 𝑓) 

• reliably fit this model (i.e., estimating 𝜃 ) 
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Motivating Idea (cnt.) 

 Often, signals and time series are redundant and exhibit 

self-similarity 
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In case of water consumption,  

the periodicity is due to inhabitants’ 

customary habits 
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Motivating Idea (cnt.) 

 The process, in its normal state, exhibits some structure 

which is redundant, self similar, repeated  
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Normal ∼ self-similarity 



Motivating Idea (cnt.) 

 The process, in its normal state, exhibits some structure 

which is redundant, self similar, repeated  

 Out of of control states instead exhibit patterns that are 

instead different from the normal state. 

• Degree of similarity with the normal state changes 
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Normal ∼ self-similarity Out of Control → 

Change in the similarity 

with the normal state 



Our Contribution 

 We present a Change Detection Test  (CDT) to 

sequentially monitor time series that uses self-similarity to 

• Characterize normal state of the process 

• Detect any departure from normal condition  

 

 

 



Outline 

 Self similarity as a powerful prior  

 Problem Formulation 

 Proposed Solution 

• Change Indicator 

• Search Regions 

• The Algorithm 

 Experiments 

 Dicussion and Conclusions 

 

 

 

 



SELF SIMILARITY 
A powerful prior in signal-image processing 



Self similarity is a powerful prior 

 Texture completion  

 Denoising (Regression) 

 Inpainting (Reconstruction) 

 

 

 

 

 

 

 Never used for discriminative purposes in a sequential 

detection task 

 

 

Image courtesy of Alessandro Foi 

http://www.cs.tut.fi/~foi/ 
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http://www.cs.tut.fi/~foi/


Self similarity as a powerful prior 

 Self-similarity is measured patch-wise 

 We consider 1D datastreams 𝑠 𝜏 , 𝜏 = 1,… , 𝑠 𝜏 ∈ ℝ  

 We define a patch centered at 𝑡 having size 𝜈 as 

𝒔𝑡 = 𝑠 𝑡 − 𝜈 ,… , 𝑠 𝑡 , … , 𝑠 𝑡 + 𝜈  

 

 

 

 

 The distance between two patches is the ℓ2 norm of their 

difference    𝒔𝑡 − 𝒔𝜏 2 =  𝑠 𝑡 + 𝑖 − 𝑠 𝜏 + 𝑖
2𝜈

𝑖=−𝜈  

 

 

 

 

𝑠 𝑡  

𝒔𝑡 



PROBLEM FORMULATION 



Problem Formulation 

 Let us assume that a process 𝑆 generates a datastream 

𝑠 𝜏 , 𝜏 = 1,… , 𝑠 𝜏 ∈ ℝ 

• 𝑆 has to exhibit self similarity in the normal state 

 We say that there is a change at 𝑇∗ if 𝑆 permenently 

shifts from the normal state into an out of control state. 

 We consider out of control states that modifies self-

similarity of 𝑆 

• the patches from 𝑠 𝜏 , 𝜏 = 1,… , 𝑇∗  are not similar to 

patches from 𝑠 𝜏 , 𝜏 = 𝑇∗ + 1,… . 

 Goal: Given a normal training sequence 𝑇𝑆, detect 

changes analyzing, in a sequential and online manner 

𝑠 𝜏 , 𝜏 = 𝐿 + 1,…  

 



PROPOSED SOLUTION 
Exploiting self similarity for performing change-

detection 



The Proposed Solution 

 We build a training set for normal patches 

𝐏 = 𝒔𝑡 , 𝑡 = 𝜈,… ,𝑀 − 𝜈  
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The Change Indicator 

 We need to construct a change indicator 𝑥(𝑡) to 

quantitatively assess our intuition 

 We expect the change indicator 𝑥(𝑡) to satisfy 

• {𝑥 𝑡 , 𝑡 < 𝑇∗} should be i.i.d. realizations of an 

unknown random variable 

• {𝑥 𝑡 , 𝑡 ≥  𝑇∗} should come from a different 

distribution, not necessarily being i.i.d. 

 Out of control states can be detected as changes in the 

distribution of 𝒙  

• We can use any statistical process control technique 



The Change Indicator (cnt.) 

 The compute the change indicator 𝑥(𝑡) we first identify the  

most similar patch in 𝐏  to 𝒔𝑡. 

 We define 𝜋(⋅) as the map that associate to 𝑡 the location 

𝜋(𝑡) of the patch  𝐏  of that is most similar to 𝒔𝑡 

𝜋 𝑡 = argmin
𝜏=𝜈,…,𝑀−𝜈

|| 𝒔𝑡 − 𝒔𝜏||2  

    the values of 𝜋 ⋅  can be com 

 𝑥(𝑡) is the difference between the centers of 𝒔𝑡 and 𝒔𝜋(𝑡) 

𝑥 𝑡 = 𝑠 𝑡 − 𝑠(𝜋(𝑡)) 
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In Ideal Conditions 

 Assume perfect matches in normal conditions, i.e., 𝒔𝑡 and 

𝒔𝜋(𝑡) differ only because of noise 

 Then, ∀𝑡 < 𝑇∗  

  𝑥 𝑡 = 𝑠 𝑡 − 𝑠 𝜋 𝜏 = 𝜂  

    i.i.d random variable and E 𝜂 = 0 

 While ∀𝑡 > 𝑇∗, we do not expect perfect matches: some 

bias appears in 𝑥(𝑡), namely E 𝑥 𝑡 ≠ 0 

 In this case, it is possible to detect changes in 𝑥(𝑡) by 

means of any sequential CDT. 



In the Real Life 

 In the real life, perfect matches are rare  

• Patches do not differ only because of noise 

• Noise affects also the association function 𝜋 ⋅  

 However, there is an experimental evidence that patch 

similarity well correlates with the similarity between 

their central pixels  

• This is the idea behind Non Local Means filter [Buades 

et al 2005], which introduced a well established 

paradigm in signal/image processing 

[Buades et al 2005] A. Buades, B. Coll, and J. Morel, “A review of image denoising 

algorithms, with a new one,” Multiscale Modeling Simulation, vol. 4, no. 2, p. 490, 2005. 



The Search Region 

 Often, self similarity is due to periodic or cyclic nature of 

the phenomenon under monitoring 
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 Search for similar patches should be constrained to the 

same time instants accross the periods 

• This determines what «out of control states» are 

• This improves computational complexity 

 



The Search Region 

 The function 𝜋(⋅) is thus defined  

𝜋 𝑡 = argmin
𝜏∈𝑅𝜙,𝑡,𝛿

|| 𝒔𝑡 − 𝒔𝜏||2  

 Being,  𝑅𝜙,𝑡,𝛿 =  {𝜏,  s. t.  𝑡0 + 𝑖𝜙 − 𝜏 < 𝛿 } 𝑖  

𝜙 
𝛿 



An example 
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The CDT on the change indicators 

 A CDT can be used to detect online and sequentially, 

changes in the distribution of 𝑥. 

 CDTs often require a training sequence containing values 

of 𝑥 that have been computed when 𝑆 is in the normal 

state 

 Change indicators are monitored by a CDT 

• We used the ICI-based CDT [Alippi et al 2010] 

[Alippi et al 2010] C. Alippi, G. Boracchi, and M. Roveri, “A Just-In-Time adaptive 

classification system based on the Intersection of Confidence Intervals rule,” Neural 

Networks, vol. 24, no. 8, pp. 791 – 800, 2011. 



The Algorithm: The Training Phase 

 CDTs often require a training sequence of values of 𝑥, 

computed when 𝑆 is in the normal state 

 Change indicators are monitored by a CDT 

• We used the ICI-based CDT [Alippi et al 2010] 

 The initial training set 𝑇𝑆 is divided in two parts 

 

𝑷 



The CDT Training Set 

𝑷 Training set for CDT 



The Algorithm 

Build the set of 

training patches 𝑷 

T
ra

in
in

g
 P

h
a
s
e
 



The Algorithm 

Compute the change 

indicators over 

normal data 

T
ra

in
in

g
 P

h
a
s
e
 



The Algorithm 

Configure the ICI-
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The Algorithm 
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The Algorithm 

Run the CDT until  a 
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EXPERIMENTS 



The DataSet  

 Flow measured in Barcelona Water Distribution Networks 

• Measurements from different DMA inlets 

• One measure every 10 minutes, daily period 
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The Considered CDTs 

 Residual-based: a predictive model 𝑓𝜃  of a nonlinear 

ARX (wavelet network) is used to compute 

𝑟 𝑡 = 𝑠 𝑡 − 𝑓𝜃 (𝑡) 
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Self-similarity: the proposed solution, 𝜈 = 5, 𝛿 = 5 

Details: 

2 weeks of recordings used for bulding 𝐏 / model fitting / 

template estimation, 400 samples for CDT configuration 



Change indicators in normal conditions 

 The autocorrelation of the considered change indicators in 

normal conditions 
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 The autocorrelation of the considered change indicators in 

normal conditions 



Change indicators in normal conditions 

 The autocorrelation of the considered change indicators in 

normal conditions 



Change Detection Performance 

 FPR: False Positive Rate 

 FNR: False Negative Rate 

 DD: Expected Detection Delay 

5 July 2014 



Offset of +50% the average flow value 
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Source Change 
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Offset of +25% the mean flow (False Positive) 
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CONCLUDING REMARKS 



Concluding Remarks 

 Self similarity seems a promising approach for detecting 

changes in the structure of a self-similar datastream 

• Detection performance and autocorrelation show that 𝑥 

is very good at assessimg self similarity 

• Detection performance indicates that 𝑥 reliably reacts 

to changes 

 Ongoing Works 

• Investigating different change indicators for assessing 

self similarity. 

• Exolploiting self similarity in a collaborative manner 

(multichannel observations) 

• Self similarity when data are not periodic 

• Automatic criteria to identify the best patch size 
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Questions? 
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Codes will be soon available for download at  

http://home.deib.polimi.it/boracchi/Projects/ 
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