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Abstract— Detecting changes in data-generating processes
is a primary requirement for adaptive and flexible systems
endowed with computational intelligence abilities. In order to
maintain/improve their performance in evolving or dynamic
environments, these systems have to detect any variation in
the data-generating process and react and adapt to the new
operating conditions. The problem of detecting changes in
streams of data is generally addressed by means of Change-
Detection Tests (CDTs) and, recently, a family of CDTs based
on the Intersection-of-Confidence-Interval (ICI) rule has been
presented. ICI-based CDTs monitor data streams by extracting
Gaussian distributed features from non-overlapping data win-
dows. The drawback of such a window-wise operational mode
is a structural delay, which is particularly evident when the
change magnitude is large.

We present a novel ICI-based CDT that overcomes this
problem by operating in an element-wise manner thanks to a
Gaussian transform of the acquired data. Such an element-wise
CDT is characterized by a high change-detection ability and a
reduced computational complexity, which makes it suitable for
the execution on low-power embedded systems. The proposed
CDT is also provided with a reconfiguration mechanism that,
after any detected change, allows the CDT to be reconfigured on
the new working conditions to detect further changes. A wide
experimental campaign shows the effectiveness of the proposed
element-wise CDT both on synthetic and real datasets.

I. INTRODUCTION

The ability to detect variations in the statistical behavior
of a data-generating process is a primary and distinguishing
feature of adaptive and flexible systems for environmental
monitoring, engineering and industrial applications. In fact,
detecting changes in the data-generating process allows to
promptly react and adapt to variations of the environment
where the system operates, or to activate countermeasures
when the change affects the cyber-physical system itself
(e.g., a fault affecting the sensors or the electronic boards).
Therefore, change detection and adaptation are necessary
characteristics of any intelligent system aiming at maintain-
ing/improving its quality of service in dynamic and evolving
environments.

Detecting changes in data-generating processes becomes
even more important when the systems implement compu-
tational intelligence techniques, since these often assume,
either implicitly or explicitly, that the data-generating process
is stationary. This assumption assures that the knowledge
acquired during the initial training phase remains valid
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during the operational life. Therefore, when the stationarity
assumption is violated, the performance of these systems
might decrease, even dramatically. As a relevant example of
adaptive and flexible systems that relies on change-detection
abilities, we mention active classifiers [1]–[5], where change-
detection mechanisms act as triggers to refresh the classifier
knowledge base. In the classification scenario, changes in the
data-generating process are commonly referred to as concept
drift.

To obtain adaptive systems that operate effectively and
efficiently on data streams, the change-detection activity has
to be performed 1) in a truly nonparametric manner, 2)
with a reduced computational complexity and 3) on streams
of data that may undergo a sequence of changes. The
first requirement is motivated by the fact that often, when
monitoring streaming data, no information about the data-
generating process is provided and the effects of changes
are unpredictable. The second requirement is due to the fact
that, as for example in distributed scenarios such as wireless
sensor networks or networked embedded systems, processing
units are characterized by constraints on the computational
power, memory availability and energy consumption. The
third requirement entails that, after detecting a change, the
system has to automatically reconfigure itself on the novel
operating conditions, to be ready to detect any next change.

Changes on streaming data are typically detected by means
of Change-Detection Tests (CDTs) that are statistical tech-
niques able to assess, in an online and sequential manner, the
stationarity of a data-generating process. The literature con-
cerning CDTs is very wide [6]–[10] and, recently, a family
of CDTs relying on the Intersection-of-Confidence Interval
(ICI) rule [11], [12] as core technique has been presented
[2], [13]. ICI-based CDTs are nonparametric CDTs that
are particularly effective despite their reduced computational
complexity and, furthermore, they can be easily reconfigured
after each detection: these peculiarities make the ICI-based
CDTs very suitable for addressing the change-detection task
in flexible and adaptive systems.

Unfortunately, all the ICI-based CDTs operate in a
window-wise manner by extracting features from non-
overlapping data windows. These features, representing rele-
vant and condensed information about the data-generating
process, are modeled as independent and identically dis-
tributed (i.i.d.) realizations of a Gaussian random variable.
The ICI rule is then applied on the sequence of features to
detect nonstationarity in the data-generating process. On the
one hand, employing large windows guarantees an increased
signal-to-noise ratio of the change to be detected, because the



noise in the extracted features is better suppressed and the
change magnitude becomes more evident. On the other hand,
the window-wise processing induces a structural detection
delay, since changes can be detected with window coarseness
rather than at each single sample. Such a delay might not be
acceptable when the change magnitude is large, and might
represent a problem in those scenarios where the detection
delay is a critical figure of merit such as the detection of a
contaminant in an intelligent building [14] or the detection
of variations in the topology or in the working conditions of
a sensor network [15].

To address this problem, we develop an ICI-based CDT
operating in an element-wise manner. Such an element-
wise CDT learns a specific transform to make the data
approximately Gaussian distributed. Then, the ICI rule is
directly applied to the transformed data (without extracting
features) to detect changes in their expected value. Such an
element-wise CDT achieves lower detection delays than its
windowed-counterpart, since decisions about the (possible)
change are taken at every sample. In particular, the ad-
vantages provided by the element-wise CDT become more
evident when short training sequences are provided for CDT
configuration.

According to [13], we embed the element-wise CDT
into a hierarchical, two-layered, architecture to address both
the change-detection and the reconfiguration tasks. In fact,
from such a hierarchical architecture, it naturally follows
a reconfiguration mechanism that allows the element-wise
CDT to reconfigure itself once a change has been detected,
to be able to detect further changes from the new working
conditions.

The paper is organized as follows: Section II details the
problem statement, while Section III describes the use of
the ICI rule for change-detection purposes. The proposed
element-wise CDT is described in Section IV and the exper-
imental results are presented in V. Conclusions are finally
drawn in Section VI.

II. PROBLEM STATEMENT

Let x(t) ∈ R be the scalar data acquired at time t that is
generated from a process X . We assume that X is a random
process, generating over time a stream of i.i.d. data X =
{x(τ), τ = 1, . . . }. The general change-detection model
assumes that, at an unknown time instant T ∗, the probability
density function (pdf) of X changes, i.e.,

x(t) ∼

{
φ0 t < T ∗

φ1 t ≥ T ∗ , (1)

where φ0 and φ1 (with φ1 6= φ0) are the pdfs before and after
the change, respectively. Since we pursue a nonparametric
approach, we do not assume φ0 and φ1 to be known.

The aim of any CDT is to analyze the stream X and detect
changes in the pdf of X like those in (1). CDTs operate in a
sequential manner and assert, at each time instant t, whether
the sequence

Xt = {x(τ), τ ≤ t} (2)

contains a change point, i.e., if a change in X has occurred.
Let T̂ be the time instant when a change is detected. The goal
of any CDT is to detect such changes with a short delay (i.e,
T̂ −T ∗), while reducing the false positive and negative rates,
namely the percentage of detections not corresponding to an
actual change in X and the percentage of missed detections,
respectively.

III. CHANGE DETECTION USING THE ICI RULE

A. The ICI Rule

The Intersection of Confidence Intervals (ICI) rule [11],
[12] is a technique to define adaptive supports for polyno-
mial regression. The ICI rule operates on observations z(i)
corrupted by Gaussian white noise:

z(i) ∼ N
(
µ(i), σ2

)
, i ∈W (3)

where µ(·) is the noise-free signal, which is to be estimated
by means of polynomial regression, σ is the noise standard
deviation and W ⊂ Z is a uniformly spaced sampling grid.

The ICI rule selects, for each specific i0 ∈W , a neighbor-
hood Uh+ within a predefined set of nested neighborhoods
{Uh, h ∈ H}, where H determines the admissible sizes of
these neighborhoods1. Neighborhood selection is performed
by analyzing {µ̂h(i0), h ∈ H}, that is a set of point-wise
estimates of µ(i0) computed via polynomial regression over
the corresponding {Uh, h ∈ H} 2. The variance of these
polynomial estimators is σ2/|Uh|2, and therefore decreases
with |Uh|, the cardinality (size) of Uh, because the number
of data involved in the polynomial regression increases. In
contrast, their bias is non-decreasing with respect to |Uh|,
since µ(·) might not anymore be a polynomial over Uh.
There is indeed a bias-variance trade off ruled by h, which in
practice determines the risk of the corresponding estimates
{(µ(i0)− µ̂h(i0))2, h ∈ H}.

The ICI rule can be stated as follows. Denote with σh the
standard deviation of the polynomial estimator over Uh and
with Ih the confidence interval of µ̂h(i0) defined as

Ih = [µ̂h(i0)− Γ · σh ; µ̂h(i0) + Γ · σh], (4)

where Γ > 0 is a tuning parameter. Then, the estimate
µ̂i+(i0) ∈ {µ̂h(i0), h ∈ H} minimizing the risk corresponds
to the largest neighborhood Uhi+

for which the intersection
of confidence intervals

Ii+ =
⋂
i≤i+

Ihi
(5)

is not empty.

1The conditions on the neighboorhood collection {Uh, h ∈ H} are
formally expressed as i0 ∈ Uh, ∀h ∈ H and Uhj

⊂ Uhj+1
⊂ W

provided that hj < hj+1, ∀hj , hj+1 ∈ H . Furthermore, the smallest
considered neighborhood has to be {i0}. For the sake of notation we do
not report the subscript i0 in the neighboorhoods Uh.

2In principle, the estimates µ̂h(i0) have to be compute via least square
regression of a polynomial function of order m over the corresponding
support. However, in practice, also different polynomial estimators, such as
the Local Polynomial Approximation (LPA) [16] have been used.



B. Change Detection on streaming using the ICI rule

The ICI rule has not been originally designed to perform
change detection on streaming data but the definition of
adaptive neighborhoods can be used for change-detection
purposes. To more clearly describe the use of ICI rule for
change detection we assume X to be a Gaussian stationary
process, i.e.,

x(t) ∼ N
(
µ, σ2

)
. (6)

In this scenario, the ICI rule can be used to estimate µ,
identifying the best neighborhood for 0-th order polynomial
regression among the set of nested neighborhoods {Xt, t =
1, . . . }, defined as in (2). In stationary conditions, the bias
of the polynomial regressor over Xt is always zero3, while
the variance decreases as 1/t2. Therefore, in stationary
conditions, the intersection of confidence intervals (5) is
expected not to be empty. In contrast, an empty intersection
(5) indicates that the polynomial estimator became biased:
the data expectation is no more constant and, hence, a
change in the expected value of X occurred. This is the core
mechanism of all the ICI-based CDTs.

Interestingly, when data are not Gaussian, i.e., (6) does not
hold, it is possible to perform a preliminary feature-extraction
to compute Gaussian-distributed features providing relevant
and condensed information about X over time. In addition,
to guarantee the values of each feature to be independent,
the ICI-based CDT presented in [2] originally adopted fea-
tures extracted from non-overlapping windows of data. More
specifically, in [2], the sample mean and the sample variance
on non-overlapping data windows were considered (the sam-
ple mean approaches the Gaussian distribution thanks to the
Central Limit Theorem, while the sample variance is made
approximately Gaussian by means of an ad-hoc power-law
transformation [17]).

The ICI-rule allows us to perform change detection when
the expectation of features follows a polynomial µ(·), and are
not just constant as in (6). Assuming that the features follow
a polynomial trend actually extends the model typical of the
change-detection framework (1), including polynomial trends
among stationary conditions and detecting changes affecting
these trends, as in [21].

Unfortunately, feature extraction entails a window-wise
processing and as such the ICI-based CDT makes decisions
about the process stationarity only on each window of data,
rather than at each sample. In Section IV we introduce a
Gaussian transform on the data x(t) to obtain an element-
wise ICI-based CDT.

IV. THE ELEMENT-WISE ICI-BASED CDT

We illustrate the element-wise ICI-based CDT by detail-
ing its two core functionalities: the change-detection and
reconfiguration. Change-detection consists in transforming
the acquired data to be approximately Gaussian distributed,

3In the change-detection scenario there is no need to specify at which
sample µ is estimated (i.e, the location i0 reported in the previous section),
since µ is expected to be constant. It is enough to specify the sequence Xt

used for regression.

1- input: TSx = {x(t), t = 1, . . . , L}, Γ, reconfigure;
2- Estimate λ of (7) on TSx;

3- µ̂L =
L∑
t=0
Mλ(x(t))/L ,

σ̂ =

√
L∑
t=0

(
Mλ(x(t))− µ̂L

)2
/(L− 1);

4- IL = [µ̂L − Γ · σ̂/
√
L , µ̂L + Γ · σ̂/

√
L];

5- t = L+ 1;
6- while (x(t) arrives) do
7- y(t) =Mλ(x(t));
8- µ̂t =

(
(t− 1) · µ̂t−1 + y(t)

)
/(t);

9- It = [µ̂t − Γ · σ̂/
√
t , µ̂t + Γ · σ̂/

√
t] ∩ It−1;

if (It == ∅) then
10- A change is detected at time T̂ = t;

if (reconfigure == 1) then
11- Estimate Tref, using the refinement

procedure, Algorithm 3 in [2];
TSx = {x(t), t = Tref, . . . , T̂};

12- Estimate λ of (7) on TSx;
L = T̂ − Tref + 1;

13- µ̂t =
T̂∑

t=Tref

Mλ(x(t))/L ,

σ̂ =

√
T̂∑

t=Tref

(
Mλ(x(t))− µ̂L

)2
/(L− 1);

14- It = [µ̂L − Γ · σ̂/
√
L , µ̂L + Γ · σ̂/

√
L];

else
Report the detection and exit;

end
end

15- t = t+ 1;
end

Algorithm 1: The Element-wise ICI-based CDT.

and then assessing the stationarity of the transformed data
by means of the ICI rule. Both the Gaussian transformation
and the distribution of the transformed data in stationary
conditions are learned from an initial training set TSx
containing data generated by X in stationary conditions.
After each detection, a new training set is automatically
identified form the recent data and the element-wise ICI-
based CDT can be reconfigured on the new state of the data-
generating process to detect further changes. The element-
wise ICI-based CDT is detailed in Algorithm 1 and described
in the rest of the section.

A. The Element-wise Change-Detection

As stated in Section II, the aim of the CDT is to sequen-
tically analyze the stream X to detect variations in the data-
generating process X . In contrast with the ICI-based CDT
presented in [2], which aggregates data into non-overlapping
windows to extract i.i.d. Guassian features, the proposed
CDT is able to process data x(t)s in an element-wise
manner thanks to a suitable transformation that makes them
approximately Gaussian distributed. Most of the Gaussian
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Fig. 1. Test on the Synthetic dataset. The plots present the (FPR,DD) achieved when Γ = {1.5, 1.75, 2, 2.25, 2.5, 2.75, 3}.

transformations in the literature are power transforms [18]
and, probably, the most known transformation is the Box-
Cox one [19]. The drawback of such a transform is that it
requires data to be positive or bounded below by a known
value. Unfortunately, these may represent a serious limitation
when analyzing data streams. Manly [20] introduced an
exponential transform which can be applied also to negative
data, and that was proved to be effective in turning skewed
unimodal distributions into nearly-symmetric Gaussian ones.
The Manly transform is defined as follow

Mλ(x(t)) =

{(
eλx(t) − 1

)
/λ; λ 6= 0

x(t); λ = 0
(7)

where the λ ∈ R parameter is estimated from the training set
TSx following the maximum likelihood approach in [20].

The configuration phase of the element-wise CDT is
reported in lines 1-4 of Algorithm 1. The CDT requires an
initial training set TSx, the parameter Γ that regulates the
detection promptness in all the ICI-based CDTs, and the flag
parameter reconfigure, which determines whether the CDT
has to be automatically reconfigured after each detection (line
1). The parameter λ of the Manly transform is estimated
from TSx (line 2) as in [20]. The CDT configuration phase
consists in computing the confidence interval for the 0-th
order polynomial fit of the transformed training set (lines 3
and 4) as described in Section III-B.

During the operational life (line 7), samples x(t)s are
transformed into y(t)s by means of Mλ (7). Then, the
estimate of µ̂t from all the transformed data is computed
(line 8) as well as the corresponding confidence interval. The
intersection of all the confidence intervals until t is computed
as in (5) (line 9). As soon as this intersection becomes empty,
a change in the expected value of the transformed data (and
hence in X ) is detected (line 10) and the reconfiguration
phase is eventually activated (lines 11 - 14).

B. Reconfiguration after a change
Every time a change has been detected, a reconfiguration

phase is activated (when reconfiguration == 1) to re-

configure the element-wise ICI-based CDT on the new state
to detect further changes. This reconfiguration phase relies
on an estimate Tref of the change point T ∗ (line 11). To
compute this estimate we exploit the refinement procedure
described in Algorithm 3 of [2]. This procedure consists in
repeatedly invoking the ICI-based CDT on shorter sequences
of (transformed) data.

Remarkably, all the samples between Tref and T̂ can be
safely associated with the new state of the data-generating
process and represent a new training set TSx to reconfigure
the element-wise ICI-based CDT. Hence, a new value of the
parameter λ (7) is estimated on TSx (line 12) and µ̂L and
σ̂ for configuring the ICI-based CDT are computed from the
new transformed observations (line 13). Finally (line 14), the
confidence interval for the new estimator is computed, and
the element-wise ICI-based CDT is ready to detect further
changes of X .

V. EXPERIMENTS

In the experiments we contrast the proposed element-wise
CDT with the ICI-based CDT in [2], which monitors the
sample mean over windows of ν = 20 samples. We con-
sidered both synthetic and real-world datasets and measured
the CDT performance according to the following figures of
merit:

• False Positive Rate (FPR), the percentage of runs
where a change was erroneously detected in stationary
conditions, i.e., T̂ < T ∗.

• False Negative Rate (FNR), the percentage of runs
where a true change in X was not detected.

• Detection Delay (DD), the average of T̂−T ∗ (expressed
in samples) computed on runs where T̂ > T ∗;

A. Datasets Description

Synthetic Dataset refers to data-generating process X
that in stationary conditions follow either a Gaussian or a
Laplace distribution. Each sequence in the dataset lasts 6000
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samples and at T ∗ = 4000, an abrupt additive perturbation
of magnitude δ affects the mean value of X , i.e.,

x(t) ∼

{
φ t < T ∗ = 4000

φ+ δ t ≥ T ∗ = 4000
, (8)

being φ the pdf of either a standard normal distribution
(i.e., N (0, 1)) or a zero-mean, unitary variance, Laplacian
distribution (i.e, L(0, 1/

√
2)). We set δ = 0.5 and δ = 2

corresponding to half and twice the variance of X , respec-
tively. Figures of merit have been computed over datasets of
5000 sequences each. Gaussian sequences were considered
to compare the core mechanism of the CDTs where the
Gaussian transform and feature extraction operate in their
ideal conditions. In this dataset, we considered two different

training sequence length L for both CDTs, i.e., L = 100 and
L = 500. We used Γ ranging from 1.5 to 3 for both CDTs
and no reconfiguration is activated after each detection (i.e.,
reconfigure= 0).

Real-world dataset is composed of 430 sequences of
measurements acquired from photodiodes. Each sequence
lasts 30000 samples and contains 5, artificially introduced,
additive shifts like (8) of magnitude δ = 0.5 · S2, being S2

the sample variance of data in stationary conditions. This
dataset was prepared to test both the CDTs performance
on non-Gaussian data (Fig. 2 shows two examples of data
from fairly skewed and heavy tailed distribution) and theirs
reconfiguration abilities when changes occur in a sequence.

Both CDTs have been configured with Γ = 2.5 (Γ = 2



in the refinement procedure) and reconfigure= 1. After each
detection, for both CDTs, we require a minimum training set
length of 100 samples for the reconfiguration purposes.

B. Discussion

Experimental results on the Synthetic datasets are reported
in Fig. 1, where it is shown that, for all the considered values
of δ, the element-wise CDT outperforms the window-wise
CDT both in terms of DD and FPR (in all the experiments
FNR = 0). Interestingly, the red dotted curve (element-wise
ICI-based CDT) is always below the blue solid one (ICI-
based CDT) in all the (FPR, DD) plots, indicating that
the performance of the element-wise ICI-based CDT cannot
be achieved by the window-wise CDT by simply adjusting
Γ. The advantages of the element-wise CDT become more
evident when the training set is small (L = 100). In fact,
operating on non-overlapping windows implies less training
samples for the configuration (i.e., only L/ν features): this
becomes a critical issue when the training set is small.

The performance of both CDTs on the Laplacian and
the real-world dataset are in line with those of the Gaus-
sian distribution, meaning that the Manly transform and
the feature extraction allow to correctly operate on non-
Gaussian data. In particular, the histograms in Fig. 3 shows
the empirical distributions, over the whole dataset, of the
first 4 detections on each sequence (solid blue line) and
the corresponding refined estimates Tref (the dashed green
line) of both the element-wise and the window-wise CDTs
on the real-world dataset. In these runs, both CDTs are
automatically reconfigured, after each detection, to detect
next changes. Interestingly, the element-wise ICI-based CDT
reveals to be more effective than the window-based one, since
the detections have lower spread and are closer to T ∗ (the
dotted magenta lines). Moreover, the element-wise CDT is
characterized by a lower number of false positive detections,
as the area of the histograms before T ∗ is lower for the
element-wise than for the window-wise CDT. The values of
Tref computed by the element-wise CDT are also closer to
T ∗ than those of the window-wise CDT, hence guaranteeing
better reconfiguration abilities.

We experienced that in situations where the data distribu-
tion over TSx is multi modal or suffers from heavy outliers,
the transformed data may be far from being Gaussian, and
this may seriously impair the performance of the element-
wise CDT. The feature extraction is then a viable option to
cope with these situations, and the ICI-based CDT executed
on the sample mean over non-overlapping data windows
achieves satisfactory change-detection performance.

VI. CONCLUSIONS

The paper presented a novel ICI-based CDT that, thanks to
a Gaussian transformation learned during the initial training
phase, makes decisions about the stationarity of the data-
generating process at every new acquired sample. Such
element-wise CDT overcomes the limitations of the ICI-
based CDTs performing feature extraction, and represents a
viable alternative to detect changes in the expected value of

an unknown data-generating process. The element-wise CDT
is particularly suited for streaming data, thanks to its reduced
computational complexity and its automatic reconfiguration
capabilities. The advantages provided by the element-wise
ICI-based CDT have been confirmed both on synthetic and
real-world datasets.
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