
USI, 24th September 2013 

 Foveated Self-Similarity  

in Nonlocal Image Filtering 

A
d
va

n
ce

d
 R

es
ea

rc
h

 

Intelligent  
Embedded  
Systems 

Giacomo Boracchi 

Dipartimento Elettronica, Informazione  

e Bioingegneria, Politecnico di Milano 

giacomo.boracchi@polimi.it 

Università Svizzera Italiana,  24 September 2013 

Joint work with Alessandro Foi from Tampere University of Technology 

mailto:giacomo.boracchi@polimi.it


USI, 24th September 2013 

Outline 

 Nonlocal self similarity and Image Denoising 

 Foveation and the Human Visual System 

 Foveated Nonlocal Self Similarity 

 Foveated NL-Means 

 Experiments and Discussion 

 Anisotropic Foveation 

 Experiments and Discussion 

 Conclusions 

 



USI, 24th September 2013 

Nonlocal Self Similarity 

In Image processing, a brief introduction 
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NonLocal Self Similarity 

In a natural image, for any given patch there exist many other similar 

looking patches at different spatial locations.  
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NonLocal Self Similarity in Image Processing 

 Traced back to fractal models of natural images (Barnsley, 

1993) and fractal block coding (Jacquin, 1992)  

.. self-transformability on a blockwise basis… 

 Texture synthesis and completion (Efros and Leung, 1999; 

Wei and Levoy, 2000). 

 Predicting the central pixel of a patch by exploiting the long-

range correlation of natural images (Zhang and Wang, 2002) 

 Nonlocal self-similarity as an effective regularity assumption 

at the heart of many successful image denoising algorithms 

(NL-means, BM3D, etc.). 

 Nonlocal self-similarity was successfully used for several 

image/video processing tasks.  
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Image denoising (NL-Means)  

a tool to quantitativelly assess the performance of a 

descriptive model 
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Observation Model 

𝑧 𝑥 = 𝑦 𝑥 + 𝜂 𝑥  , 𝑥 ∈ 𝑋  

 𝑧 ∶ 𝑋 →  ℝ observed noisy image 

 𝑦:  𝑋 →  ℝ unknown original image (grayscale) 

 𝜂:  𝑋 →  ℝ i.i.d. Gaussian white noise, 𝜂 ∼ 𝑁 0, 𝜎2  

 ¡ 

 0; ¾2 

 ¢ 

𝑧 𝑦 𝜂 
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Goal of image denoising 

 The purpose of any denoising algorithm is to provide 𝑦 , an 

estimate of the original image 𝑦.  

𝑧 𝑦  
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Goal of image denoising 

 The purpose of any denoising algorithm is to provide 𝑦 , an 

estimate of the original image 𝑦.  

 Denoising is an ill posed problem and requires some form of 

regularization. 

 We consider nonlocal self similarity of image patches 

 Similar patches have to be correctly identified on the basis of 

a suitable patch distance measure  

 Such a distance implies the assumption of a specific 

descriptive model for natural images and their self-similarity. 

 The denoising effectiveness actually depends on the validity of 

such underlying model. 
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Patches 

 Let 𝑈 ⊂ ℤ2 be a spatial neighborhood centered at the origin 

0,0 ∈ ℤ2,  

we de…fine a patch centered at a pixel 𝑥 ∈ 𝑋 in the observation 𝑧 

𝒛𝒙 𝑢 = 𝑧 𝑥 + 𝑢 , 𝑢 ∈ 𝑈 

a patch centered at a pixel 𝑥 ∈ 𝑋 in the original image 𝑦 

𝒚𝒙 𝑢 = 𝑦 𝑥 + 𝑢 ,  𝑢 ∈ 𝑈 

 

 

 



USI, 24th September 2013 

Non Local Means Filter (NL-means) 

The denoised image 𝑦  is a weighted average of all image pixels 

𝑦 𝑥1 =  𝑤

𝑥2∈𝑋

𝑥1, 𝑥2 𝑧 𝑥2 , ∀𝑥1 ∈ 𝑋 

where weights {𝑤(𝑥1, 𝑥2)} are adaptively defined depending on 

the similarity between two noisy patches 𝒛𝑥1 and 𝒛𝑥2 

𝑤 𝑥1, 𝑥2 =
𝑒

−
𝑑(𝑥1,𝑥2)

ℎ2

 𝑒
−
𝑑(𝑥1,𝑥2)

ℎ2
𝑋

  

 𝑑(𝑥1, 𝑥2): distance measure between patches in 𝑥1 and 𝑥2, 

 ℎ >  0  is a smoothing parameter (ℎ = 𝜎). 

 𝒛𝑥1 similar to  𝒛𝑥2 ⇒ 𝑑(𝑥1, 𝑥2) is small ⇒  𝑤(𝑥1, 𝑥2) large 

 NL-means operates pixel-wise  

 A. Buades, B. Coll, and J. M. Morel, “A review of image denoising algorithms, with a new 

one”, Multisc. Model. Simulat., vol. 4, no. 2, pp. 490-530, 2005 
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Windowed Patch Distance in NL-means 

 The distance operator is defi…ned as a windowed quadratic 

distance between patches 

𝑑 𝑥1, 𝑥2 = 𝒛𝑥1 𝒌 − 𝒛𝑥𝟐 𝒌
2

2
= 

                = 𝒛𝑥1 − 𝒛𝑥𝟐
2
𝒌

1
= 

                                                    =  𝑧 𝑥1 + 𝑢 − 𝑧 𝑥2 + 𝑢
2
𝒌(𝑢)𝑢∈𝑈     

 

 𝒌:  𝑈 →  ℝ+  is a windowing kernel  

 

 The idea is to assess the similarity between pixels 𝑦(𝑥1) and 

𝑦(𝑥2) (not available), through the similarity of the 

corresponding noisy patches 𝒛𝑥1 and 𝒛𝑥2. 
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Windowed patch distance in NL-means (cnt.) 

 The windowing kernel 𝒌:  𝑈 →  ℝ+ adjusts the contribution of 

each difference term depending on the position of 𝑢 with 

respect to the patch center. 

 

 

 

 

 

 𝑑 performs a pixel-wise comparison of the patches 

 the decay of 𝒌 refl‡ects how much similarity between 𝑦(𝑥1) and 

𝑦(𝑥2) may be implied from the similarity between 𝑦(𝑥1 + 𝑢) and 

𝑦(𝑥2 + 𝑢) when 𝑢 ≠ 0. 

 

𝒌:  𝑈 → ℝ+ 
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Foveation 

and The Human Visual System 
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Lena foveated at two different …fixation points 

 



USI, 24th September 2013 

Foveation in Image Processing 

 Image compression (Kortum and Geisler, 1996): Any user 

gazing a screen would not notice significant differences 

between: 

• the fully detailed image properly displayed  

• the image foveated with respect to the fixation point. 

 Video compression where fixation point can be tracked or 

estimated (Geisler and Perry, 1998; Lee et al., 2001; Basu and 

Wiebe, 1998). 

 Image coding (Wang and Bovik, 2001) and video coding 

(Wang and Bovik, 2006). 

 Keypoint descriptor (Alahi et al, 2012) inspider to the retina 

layout  
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Foveated Nonlocal Self Similarity 

and Foveation operators 
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Foveated Self-Similarity 

 IDEA: Replace windowing by foveation 

 The windowed distance 

𝑑 𝑥1, 𝑥2 = 𝒛𝑥1 𝒌 − 𝒛𝑥𝟐 𝒌
2

2
 

 Is replaced by the foveated distance  

𝑑FOV 𝑥1, 𝑥2 = ℱ 𝑧, 𝑥1 − ℱ 𝑧, 𝑥2 2
2= 𝒛x1

FOV  − 𝒛𝑥2
FOV

2

2
 

where ℱ is the foveation operator that, given an image 𝑧 and 

a …fixation point 𝑥, outputs a foveated patch 𝒛𝑥1
FOV: 𝑈 → ℝ, i.e. 

ℱ 𝑧, 𝑥1 𝑢 = 𝒛𝑥1
FOV 𝑢 , 𝑢 ∈ 𝑈 

 Foveation operators reproduces foveation effects on image 

patches when the fixation point is the patch centers 
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Foveation Operators 

 Formally, ℱ is a space-variant blurring operator with 

increasing blur (decreasing bandwidth) as we leave the center 

 𝒛𝑥1
FOV 𝑢  is, compared to 𝒛𝑥1, progressively blurrier as 𝑢  grows 
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Foveation Operators 

 Formally, ℱ is a space-variant blurring operator with 

increasing blur (decreasing bandwidth) as we leave the center 

 𝒛𝑥1
FOV 𝑢  is, compared to 𝒛𝑥1, progressively blurrier as 𝑢  grows 

 If we consider the patch center as a fixation point, 𝑑FOV =

𝒛x1
FOV  − 𝒛𝑥2

FOV
2

2
 mimics the inability of the HVS to perceive 

details at the periphery of the center of attention 

 Foveation operators have to correspond 

to a specific windowing kernels. 

 Thus, it is possible and easy to  

replace 𝑑 with 𝑑FOV 
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Constrained Design of Foveation Operators 

1. Linearity and Translation Invariance: ℱ is a linear operator 

with respect to the image 

ℱ 𝜆1𝑧1 + 𝜆2𝑧2, 𝑥 − 𝜏 = 𝜆1ℱ 𝑧 ⋅ +𝜏 , 𝑥 + 𝜆2ℱ[𝑧 ⋅ +𝜏 , 𝑥] 

2. Non-Negativity: Foveated patches from non-negative images 

are non-negative 

if 𝑧 𝑥 > 0 ∀𝑥 ∈ 𝑋, then ℱ 𝑧, 𝑥 𝑢 ≥ 0 ∀𝑢 ∈ 𝑈, ∀𝑥 ∈ 𝑋 

3. Central acuity ℱ is fully sharp at the center of the patch: 

∃𝛼 > 0 ∶  ℱ 𝑧, 𝑥 0 = 𝛼𝑧 𝑥  

This property aims at mimicking the peak of the visual acuity at 

the fovea. 
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Constrained Design of Foveation Operators (cnt) 

4. Flat-…field preservation ℱ maps a ‡flat image into a flat 

patches 

∃𝛼 > 0 ∶ ∀𝑐 > 0 if 𝑧 𝑥 = 𝑐 ∀𝑥 ∈ 𝑋  

then ℱ 𝑧, 𝑥 𝑢 = 𝛼𝑐 ∀𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 

5. Compatibility 𝑑FOV can replace 𝑑 in NL-means, yielding the 

same expected distance in the ideal case where perfectly 

identical patches are compared. 

  

The mathematical expectation of the windowed distance operator 

is: 𝐸 𝑑 𝑥1, 𝑥2 = 𝐸 𝒛𝑥1 − 𝒛𝑥𝟐
2
𝒌

1
= 

𝒚𝑥1 − 𝒚𝑥𝟐
2

1
+ 2𝜎2 𝒌 1 
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Constrained Design of Foveation Operators (cnt) 

4. Flat-…field preservation ℱ maps a ‡flat image into a flat 

patches 

∃𝛼 > 0 ∶ ∀𝑐 > 0 if 𝑧 𝑥 = 𝑐 ∀𝑥 ∈ 𝑋  

then ℱ 𝑧, 𝑥 𝑢 = 𝛼𝑐 ∀𝑢 ∈ 𝑈 ∀𝑥 ∈ 𝑋 

5. Compatibility 𝑑FOV can replace 𝑑 in NL-means, yielding the 

same expected distance in the ideal case where perfectly 

identical patches are compared. 

If 𝒚𝑥1
FOV = 𝒚𝑥2

FOV then 𝐸 𝑑FOV(𝑥1, 𝑥2) = 2𝜎2 𝒌 1  

where 𝒚𝑥
FOVdenotes the noise-free foveated patches, i.e.    

ℱ 𝑦 𝑥 𝑢 = 𝒚𝑥
FOV 𝑢   ∀𝑢 ∈ 𝑈 

 

 



USI, 24th September 2013 

Construction Of The Foveation Operator 

 To satisfy linearity and non-negativity ℱ admits the following 

representation 

ℱ 𝑦 𝑥 𝑢 =  𝑧 𝑥 𝑣𝑢(𝑥 − 𝑥1 − 𝑢

𝑥∈𝑋

), 𝑢 ∈ 𝑈  

i.e., is a linear blur translation-invariant w.r.t. 𝑥1 and space-

variant w.r.t 𝑢.  

 The foveation operator is univocally determined by 𝑣𝑢 𝑢∈𝑈 

 Thus 𝑣𝑢 > 0 is a point-spread function (PSF) responsible for 

the blurring in the foveated patch at the position 𝑢. 

 The standard-deviation (i.e. the spread) of 𝑣𝑢 is determined by 

the windowing kernel 𝒌 in such a way to ful…ll the above four 

requirements. 
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Construction of the foveation operator 

 IDEA: construct, through suitable dilation and scaling, a family 

of kernels parametrized by 𝑢, where the kernels have same ℓ1 

norm but varying ℓ2 norm determined by 𝒌(𝑢). 

 
𝑣0 ≈ 𝛿0 ⇝ central acuity

ℓ1 norm ≡ 𝛼 ⇝ flat field preservation

ℓ2 norm = 𝒌 𝑢 ⇝ compatibility

  𝛼 = 𝒌 0 ⇝ compatibility 

 

 In what follows we consider foveation operators induced by 

Gaussian, circular symmetric PSFs 
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Visualization of the foveation operator 𝓕  

 for a 5 × 5 windowing kernel 𝒌 

ℱ 𝑦 𝑥 𝑢 =  𝑧 𝑥 𝑣𝑢(𝑥 − 𝑥1 − 𝑢

𝑥∈𝑋

), 𝑢 ∈ 𝑈 

𝑣𝑢(⋅ −𝑢) 
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Foveated NL-means 

a simple modification of NL-means 
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Disclaimer: 

 Our goal is not to introduce a new denoising algorithm. 

 The removal of additive white Gaussian noise is the most 

widely used task for quantitatively assessing the validity of 

any descriptive or generative model of natural images. 

 The denoising performance are here considered as a 

compact indicator of the ability to identify similar patches 

and to distinguish between different ones in noisy 

environments. 
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Foveated NL-means 

 Foveated NL-means is obtained from NL-means by replacing 

the windowed distance 𝑑 with the foveated distance 𝑑FOV 

defi…ned from them same windowing kernel 𝒌 

 Compatibility constraint ensures that the two filters perform 

similarly in areas where nearly all patches are almost 

identical to each other (ideal case of nonlocal self-

similarity),elsewhere the two …filters depart from each other 

 

 Matlab software at http://www.cs.tut.…/~foi/FoveatedNL 
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Windowing vs Foveation 
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Windowing vs Foveation 
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Windowing vs Foveation 
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Windowing vs Foveation 
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Windowing vs Foveation 
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Experiments (1/2) 

Windowing vs Foveation 
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NL-means vs. Foveated NL-means 

• 7 test images 512 × 512 grayscale 8-bit images [0,255] 

• noise standard deviation 𝜎 =  [10;  20;  30;  40;  50; 70] 
• 𝑑 and 𝑑FOV are defined from the same kernel 𝒌 
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Noisy Lena 𝜎 = 40, 𝐏𝐒𝐍𝐑 = 𝟏𝟔. 𝟏 𝐝𝐁   
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NL-Means Lena 𝜎 = 40, 𝐏𝐒𝐍𝐑 = 𝟐𝟕. 𝟖 𝐝𝐁   
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Foveated NL-Means Lena 𝜎 = 40, 𝐏𝐒𝐍𝐑 = 𝟐𝟗. 𝟏 𝐝𝐁   

 



USI, 24th September 2013 

NL-Means (green) vs Foveated NL-Means (red) 

 



USI, 24th September 2013 

Some Fragments of 150 × 100 pixels 
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Some Fragments of 150 × 100 pixels 
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Some Fragments of 150 × 100 pixels 
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Some Fragments of 150 × 100 pixels 
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Some Fragments of 150 × 100 pixels 
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Discussion (1/2) 

Windowing vs Foveation 
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Discussion 

 The foveated self-similarity a far more effective 

regularization prior (or descriptive model) for natural images 

than the conventional windowed self-similarity 

• Typical PSNR improvement in excess of 1 dB, especially at 

low SNR values. 

• Improvement in sharpness and visual perception (con.rmed 

by SSIM score). 

 Foveated NL-Means is obtained as a direct modi…cation of the 

self-similarity measure within NL-means. 

• “Identical” computational complexity as standard NL-means. 
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Windowing vs Foveation 

 Windowing bears no frequency selectivity with respect to 

the patch content 

• typically the spatial autocorrelation of high-frequency 

subbands decays faster than that of low frequency 

components.  

• Likely variations in the high-frequencies may prevent the 

joint nonlocal fi…ltering of otherwise mutually similar patches 

(+ variance);  

• The sensitivity with respect to variations in the low-

frequencies is weakend by windowing (+ bias). 

 In contrast, foveation operators provide a compact 

multiscale representation of each image patch: 

 Foveation can be interpreted as a conical sectioning of the 

scale-space representation of an image 
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Foveation as “conical” sectioning of the scale space 
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Foveation as “conical” sectioning of the scale space 
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Foveation as “conical” sectioning of the scale space 
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Foveation as “conical” sectioning of the scale space 
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Foveation as “conical” sectioning of the scale space 
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Foveation as “conical” sectioning of the scale space 
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Foveation as “conical” sectioning of the scale space 
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Foveation as “conical” sectioning of the scale space 
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Foveation as “conical” sectioning of the scale space 
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Foveation as “conical” sectioning of the scale space 
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Foveation as “conical” sectioning of the scale space 
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Anisotropic Foveation 
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Anisotropic Foveation Operators 

 Generalization of the isotropic ones 

 Use elliptical Gaussian PDF instead of the circularly-symmetric 

Gaussian PDF 

 The covariance matrix of the Gaussians PDFs (yielding 

𝑣𝑢 𝑢∈𝑈) depends on  

• The standard deviation of the kernel (given by |𝑢|) 

• 𝜌 > 1 that determines the elongation of the PDF,  

• 𝜃 an angular parameter (offset) that controls the orientation 

of the axes of the elliptical PDF 
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Isotropic Foveation 

  Use of circularly-symmetric Gaussian PSF 

Isotropic: 𝜌 = 1, 𝜃 = “any” 
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Anistropic Foveation: 

 Replace the circularly-symmetric Gaussian blur PSF with an 

elliptical Gaussian PSF 

Radial: 𝜌 =2, 𝜃 = 0 
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Anistropic Foveation: 

 Replace the circularly-symmetric Gaussian blur PSF with an 

elliptical Gaussian PSF 

Radial: 𝜌 = 4, 𝜃 = 0 
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Isotropic Foveation 

  Use of circularly-symmetric Gaussian PSF 

Tangential: 𝜌 = 4, 𝜃 =
𝜋

2
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Experiments (2/2) 

Anisotropic Foveation 
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PSNR for Anisotrpic Foveation 
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PSNR and SSIM for Anisotrpic Foveation 
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Radial (RED), Isotropic (YELLOW), Tangential (GREEN) 
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Discussion (2/2) 

Anisotropic Foveation 
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Comments 

 Radial foveation is a more effective regularity assumption the 

isotropic foveation or the windowing 

• It preserves the substantial edge structure, since pixels are 

blurred along the edge rather than across the edge. Similar 

arguments lead to Anisotropic NL-means (Maleki et al 2013) 

 The performance gap between radial and isotropic foveation is 

less substantial than foveation against windowing 

 The improvements achived by radial foveation operators recall 

the radial orientation bias of human visual system (Sasaki et al, 

2006, Freeman et al, 2011) 
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Orientation preference in the human visual system 

 The oriented stimuli wich is displayed 

while rotating 

 The brain activity in an annular region of 

V1 is monitored  

 There is a stronger response when the 

stimuli orientation agree with the angular 

position of the retinally mapped voxels of 

V1  (Freeman et al, 2011) 

 Patches blurred by radial foveation 

operators preserves edges and sharp 

details directed towards the patch center 

 PSF layout recalls the orientation 

preference 
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Orientation preference in human primary visual cortex 

 See Figure 3 in  

J. Freeman, G. J. Brouwer, D. J. Heeger, E. P. Merriam, “Orientation Decoding Depends on 

Maps, Not Columns,” J. Neurosc., March 2011. 
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Orientation Preference from NL-means 
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Orientation Preference from NL-means 
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Conclusions and Ongoing Works 

 Radial foveation is a more effective regularity assumption the 

isotropic foveation or the windowing 

 Anisotropic foveation exploits an essential principle from 

human vision. Agrees with recent fi…ndings in neuroscience. 

 

 Ongoing Works 

• Extension to multiscale nonlocal transform-domain …filtering. 

• Analysis of foveated self-similarity in the context of natural 

image statistics. 

• Investigate connection with transaccadic integration 
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