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Abstract—Data streams from remote monitoring systems such
as wireless sensor networks show immediately that the "you
sample you get” statement is not always true. Not rarely, thelata
stream is interrupted by intermittent communication or sensors
faults, resulting in missing data in the received sequenc&his has
a negative impact in many algorithms assuming continuous da
stream; as such, the missing data must be suitably reconstated,
in order to guarantee continuous data availability. We suggst
a general methodology for reconstructing missing data that
exploits both temporal and spatial redundancy characteriing the
phenomenon being monitored and the distributed system, a tsi-
ation proper of many monitoring systems constituted by serar
and actuator networks. Temporal and spatial dependenciesra
learned through linear and non-linear non-parametric modéds,
also encompassing neural -possibly recurrent- networks, kich
become the spatial transfer functions connecting the diffent
views of the phenomenon under investigation. Missing datara
finally reconstructed by exploiting the forecasting ability provided
by such transfer functions. The experimental section showghe
effectiveness of the proposed methodology.

Index Terms—Missing data; non-linear reconstruction; fault
accommodation; distributed monitoring systems, recurrert neu-
ral networks.

|I. INTRODUCTION

of the application.

Though the ability to detect and identify perturbed values
is an interesting and challenging issue (we invite the retale
refer to [1], [2] for a review), here we focus on the missing
data aspect. Furthermore, what here proposed is tailored fo
sensor/actuator networks where the number of units is estiuc
and insufficient to reconstruct the overall function repréing
the monitored (physical) phenomenon. In the case of many
units or when assumptions about the regularity of the under-
lying function can be made, ad-hoc function-reconstrurctio
techniques such as those based on neural networks (e)3., [3]
can be considered to solve the problem.

Several reconstruction techniques able to fill missing data
in distributed monitoring applications have been prestirie
the literature. The most immediate solutions carry out @en
replication scheme at the units: a redundant number of sgnso
guarantees both robustness in mission-critical apptioati
and reconstruction of missing data (thus assuming that the
data are lost at the sensor level). The drawback is that the
complexity and the cost of the sensing units increase, and
become unacceptably high whenever the application regjuire
non silicon-integrated (low-cost) sensors. Still, comination

In real-world distributed monitoring systems, permaneifaults are not covered by this mechanism.

or transient faults can affect units, sensors or transomssi

More advanced techniques, e.g., see [4]-[9], reformulate

lines so as to induce fault-affected (perturbed) or missinge reconstruction of missing data as a forecasting problem
data. For instance, embedded electronics can be affectedlipyhis direction, a recurrent algorithm for the reconstiare
faults inducing errors in the measurements processindewhif missing data in auto-regressive (AR) models is suggested

sensors might suffer from ageing effects and thermal drét t
slowly change their behaviors over time. Faults at the piaysi

in [4]. The algorithm proposed in [5] exploits a least-squar
recurrent estimate of the parameters of output-error (OE)

network or transmission level, as well as lack of energy at ttmodels in case of irregularly missing output data. In [6],
units result in communication errors, which prevent unitd a missing data are reconstructed through a weighted average
their base stations for sharing data and commands requitfdthe estimates of two AR models operating forward and

for continuous communication. Finally, software faultse (i

backward in time so as to fill the "information hole”. A

bugs in the software) might induce unpredictable behawdbrsvalidation and reconstruction framework for flowmeter data
the sensing units in specific conditions, as well as incorréa a water distribution network is described in [7]. There,

interpretations at the remote control room.

temporal redundancy is exploited to reconstruct missing da

Perturbed, incorrect and missing data can heavily affdey combining the time series analysis (i.e., an autoreyess
the subsequent analysis and control phases so as to possiiiggrated moving average ARIMA model) with the short-term

induce incorrect decisions or on-the-field reactions.rikisted

prediction of the water consumption. The solutions presnt

monitoring systems designed to work in real-life scenarids [8], [9] rely on a parameter-estimation technique forcaut
must thus be able to deal with these perturbed values regressive models with exogenous inputs (ARX) subject to
missing data to guarantee, over time, the quality-of-servimissing data. There, the idea is to construct a state-space



formulation of the system and apply the Kalman filter in cas Unit 1 @ Xi(t)

of on-line reconstruction and a fixed-interval smootherase

of batch (or off-line) reconstruction. Xaa(t) = foa(Xa(t-1) X, (t-2),.., Kos(t) = o o(X(t-2) X, (t-2) .,
Several solutions adopt neural networks for reconstrgctit Xoft) Xolt-1) Xsft-2)..) Xo(t) Xo(t-2),Xs(t-2),...)

missing data in multivariate time-series, e.g., see [1d][ad].

In particular, [10] suggests to use recurrent neural neéksvor Unit 2 Xe(t)
to reconstruct missing values, while the use of radial bas Xs(t) ,Q
function neural networks is proposed in [11]. Unit 3

A different approach is suggested in [12]-[14] where the
addressed problem requires either data regularizatiommr c Fig. 1: Reconstruction of a missing measureméntt) at
pensation. A reconstruction algorithm for hydrometric géimsensing Unitl and timet. Units 2 and3 provide two estimates
series based on AR models and Kalman filters has be&n(t) and X3 (t) obtained by feeding the transfer functions
proposed in [12], while [13] suggests a fuzzy solution ekplo with past measurements coming from Unhignd the current
ing redundant sensors. Again, [14] exploits Kohonen mapsd previous data coming from Uni#s and3
and spatial correlation to reconstruct corrupted data.r&he
the corrupted value at a sensing unit is reconstructed as the
combination of thek nearest prototypes in the Kohonen map. The paper is organized as follows. Section Il introduces

In contrast to approaches where a specific model hierardhg problem statement, while the proposed methodology for
is considered, here we propose a general methodologyrfor the on-line reconstruction is presented in Section lll.ti®ec
line reconstructionof missing data in distributed monitoringlV defines the dependency graph and describes its use for the
systems where the number of acquired units is limited and reconstruction of missing data. Experimental results hosva
hypothesis about the phenomenon being monitored is assumedection V.
This approach encompasses state space and input-ougart lin
and nonlinear models (including recurrent neural networks Il. PROBLEM STATEMENT
NARX, NARMAX, NOE, where the nonlinear component is Let us consider a distributed monitoring system composed
modeled by feedforward neural networks). The core idead$ N sensing units and defin&;(¢t) € R, with 1 <i < N, a
to exploit temporal and spatial redundancy among the sgnsimeasurement acquired by th¢h sensing unit at timeé (units
units showing a correlated view of the monitored phenomenanre assumed here to gather synchronous acquisitionshdn li
Temporal and spatial dependencies can be jointly expldied with the framework presented in [12] we define the variable
generating models providing thensfer functionsonnecting ) o

a(t) = 0, if X;(¢) is missing;
’ 1, otherwise.

different sensing units deployed in the same environment.
Each estimated transfer function is then considered toa@xpl

the spatial relationship between two (or more) units in tt}e del missina d h I d | ved
network, and during the operational life the transfer fiorct © model missing data. When a ata are correctly received,
' ki(t) =1, Vt> 0. Random missing data (e.g., due to inter-

Eg?]\g%i? t?};ed'r?oansa{i%rntg;amlsfslﬁg Vﬁ:eune;h:;::gg'iﬁm r::vn?]igtent communication errors) can be modeled by considerin
. propagati ay phenol 9 %Z—(t) as a random variable following the Bernoulli distribution,
itored among the sensing units, thus estimatingiiygendency . _ _ o . o
raph, which allows us to neglect those units that do ot ki(t) ~ B(p;) wherep,; is the probability of missing a
grap . ) glect ) measurement at time instanin the i-th sensing unit. A finite
bring up-to-date information for missing data reconsinrct

(causality) sequence of missing data (e.g., due to a transient fautitafte
Fig. 1 illustrates a simple example of reconstruction ofsmisthe units) is thus modeled by defining a temporal profile for

ing data at Unitl at timet: Unit 2 and3 provide their estimates i(t) through two time instantsi;; andt.na for which

X2,1(t) and X3 1 (t) for the missing valueX; (¢), through the 0,  tinit <t <tena

estimated transfer function,; and fs ;, respectively. More ki(t) =

advanced solutions, e.g., encompassing aggregation ai-mul

ple estimates or multiple-inputs reconstruction alganghare In the following, we assume that an initial training sequeenc

described in Section III. TS; = {X;(1),...,X,(to)} is available for each unit <
Although the paper focuses on the reconstruction of missifig< NV and that the training sequences of different units have

data, the same methodology can be used to detect fatite same length. We further assume that the relationships as

or changes in the environment by inspecting the residualsciated with measurements coming from any pair of units are

between the values predicted by the transfer functions famd time-invariant in the training sequence. To ease the datsmni,

measurements in each unit. This aspect can be further edende further assume that at each time instamnly one unit

to monitor, besides the relationship among different yaitso may be affected by a fault resulting in data loss (singletfaul

the sequence of measurements in each unit in a stand-alasgumption). Let us assume that théh unit is affected by a

manner, so as to speculate between fault in a single unit ofaalt at timet (i.e., k;(t) = 0), and denote byX;(?) the best

change in the environment. forward estimate whetX;(¢) is missing. In this cas&;(t) is

1, elsewhere.



TABLE I: Model hierarchies considered in the methodology. input : a training set, a set of model hierarchies, the

Linear Non-linear model order o ) )

Model type | Estimation | Model type | Learning output: the model minimizing the validation error
technique technique . . .

o Nomieratve T NARX Tovenberg. Partition the aval.lable da_lta SEtS; into Sp and_SE, _
least-square Marquardt for eachmodel hierarchyin the set of model hierarchies
method

Input-output ARMAX lterative pre- | NARMAX do o .
diction error | (FFNN model) for eachmodel familyin the model hierarchydo
method . o

OE Algorithm NOE (RNN | Recurrent E§t|_me_1t(_e the paramete@SOf the mo_de_l
minimizing model) Levenberg- minimizing theone-step-aheagrediction error
prediction Marquardt
errors over SD

State spacel|| Linear Nonlinear Recurrent ~ . .
models SSMs N4SID [15] SSMs (RNN | Levenberg- ¢ = argmin [U(@)] with
(SSMs) & FENN | Marquardt ¢
model) 1 |Sp|
S 2
v(0) = 5= 2 (Xilt) = Xi(0))
5ol =
considered to fill the.gap, otherwise the unit measure_ment is Compute the validation error & over Sp:
kept; the reconstruction process can thus be summarized as: | gng

end
Select the best model as the one minimizing the

Thus, at timet, X,(t) is either the acquired measurement validation error overS: ;

X;(t) or its best estimateX;(t). The estimateX,(¢) is Algorithm 1: The algorithm to identify the best modg| ;
typically a forward estimate, which can be possibly impibve

offline, as soon as the connection is re-established, eyg., b

Xi(t) = ki(®)Xi(t) + (1 — ks()) X (t).

following the backward approach presented in [6]. A. Solution A: Best Couple
We emphasize that the best forward estimitet) could be  Generate, for each sensing uhitV — 1 single-input single-
considered also when noisy measuremgp() are processed output (SISO) modelg;; ;, j = 1 N j # i, and selectf; ,
X3 ) ’ 7t

by regularization techniques (e.g., [13], [14]) inkY (t), i.e., corresponding to the unit providing the highest reconsimac

ability, i.e.i and;j are thebest coupleFor each paiti, j), the

SISO modelf; ; is estimated as in Algorithm 1, settifgS; as

output stream and'S;, 1 < j < N andj # i as the input one.

Only the SISO modef; ; guaranteeing the lowest validation
The estimateX;(t) can be derived by suitably fusing the€mor onSg is considered_ for describing the _behavior_ of unit

predicted values\; ;, j = 1,..., N,j # i of X,(t) provided % the SISO models obtained from other units are discarded.

by the transfer functionsf;; connecting the generig-th During the operational modality, missing data at urat time

unit with the i-th faulty one. The considered time-invariant are reconstructed as

dynamic models, together with the corresponding estimatio ¢ .\ _ » L i e

techniques [15], are reported in Table I: the transfer fiomst Xilt) = f4(X(t = 1), Xt = 2),.. Xi(t = i),

are obtained by training these models on the training sempsen X5(), X5(t = 1), X5(t = 2),..., Xi(t — 75))

using the learning techniques described in Table I, and Qere r; and ; are the orders of the autoregressive and

selecting the best one for predictidg; ;. Linear, non-linear, e exogenous components, respectively. When a sequence

input-output and state-space models (SSMs) have been &jqata is missing (e.gki(t) = 0, ¢ € [tinit, tend]), the

considered to enrich the modeling expressive power of thgst reconstructed data are considered as a correct measure

considered model hierarchies. ments for reconstructing the next missing measuremeats, i.
The procedure for identifying the best transfer functiop?i(ﬁmt +v), With v < teng — tinit, iS given by

f;, for the j-th unit, provided from a training set, is rather _ N R

standard and is given in Algorithm 1, where a model hierarchyXi(tinit +v) = f5:(Xi(tinit +v — 1), ..., Xi(tinit),

is at first selected, the model family chosen and the trained Xi(tinit — 1) ..., Xi(t — ),

mod_gl f|_nally derived. The algorlth_m relies on the_ sar_nple— X;(t), X5(t— 1), X;(t = 2),..., Xs(t — 1))

partitioning approach where the available data set istjparéd

into training Sp and validationSy sets. The best estimateA graphical description of the best couple solution is pnése

X;(t) can now be derived from the above models by followinm Fig. 2.

three different strategies which automatically fuse thatisp The best couple solution is optimal in case of linear models

redundancy information. Such strategies will be presemtedunder the identifiability hypothesis. Other solutions cbrdly

the subsequent subsections. on the Output Error model, which generally provides a more

Xi(t) = ki(0) X7 () + (1 — k(1) Xi ().

IIl. THE PROPOSEDMETHODOLOGY
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Fig. 4: Solution “C": multiple inputs. Measurement from all
the units are considered into a MISO model to predict missing
r]ues at Unit 1.

Fig. 2: Solution “A”: best couple. Unit is affected by missing
data and the unit guaranteeing the highest reconstructio
ability is Unit 3 (i.e., 7 = 3), then only the transfer function ¥
f3,1 is used to predict missing data at Unit

C. Solution C: Multiple Inputs

- o ‘ Here, instead of consideringy — 1. SISQ models we use
Unit 2 : Unit 1 . U"'t a more general MISO model receiving inputs from all the
ﬁ 51 . . .
— : i ... 1 unlts: Wg generate the MISO m(_)del for theh Unit by
Unit 3 : Unit 1 considering as outpuf’S; and as input all the othef's,,
. : i r - f,1 Unit2 j = _1,...,N, j# z‘:.I_During the operational modality each
ik L T T missing value at Unit is estimated as
Unit 4 i -~
s —[]|— = e Xi(t) = fi(X1 (), Xa(t = 1), X1 (t = 2),..., X1 (t = 71),
Unit 5 Unit1l
Fig. 3: Solution “B”: weighted instances. The estimates of Xit-1),X;(t—2),..., Xt — 1),

all the transfer functiong f;1};21 are averaged to estimate
missing data at Unit 1.

cey

XN(t),XN(tf 1),XN(t7 2),...XN(t7’TN)).

Fig. 4 shows a graphical reconstruction of Uhiby consider-

stable estimate of the parameters (in case of nonlinearisjodeng a single MISO model in which Unit, 3, 4 and5 represent
These considerations, which are here described for salutide inputs.

“A’, are obviously valid also for Solution “B” and “C”,
presented in the sequel. IV. THE DEPENDENCYGRAPH

In the above we considered, for data reconstruction pur-
poses, a situation where eaclth unit was connected with

A different method for reconstructing a missing value wouldy — 1 units, thus assuming a full unit dependency over the
consider the use of all the generated models suitably weightnetwork. However, it is convenient to consider only the most
More in details, the missing measurement at Urt timet is  meaningful V; units (V; < N — 1) for reconstructing data
computed as a weighted average of the estimates providedap¥he-th unit: in fact, causality and correlation allow us for
the N —1 SISO modelsf; ;,j = 1,..., N, j # i estimated as |imiting the units constituting the dependency clusterNp
in Algorithm 1. The weights could be function of the validati ynits only.
errors (e.g., high validation errors would result in low gfes)  This situation is rather common in distributed monitoring
or of the correlation (e.g., high correlation among the sinitystems where the units sense the physical phenomenon
results in high weights). The missing value is reconstdiet® (which is generally time-dependent) with intrinsic delagte-
pending on the dynamics of the phenomenon and the location

B. Solution B: Weighted Instances

Zwifﬂ (Xt —1), Xt —2), ..., Xs(t — 1), of the units. For example, if the system aims at measuring
temperature and luminosity, the influencing sequence dkpen

J?“ both on the units position and the trajectory of the sun.
X;(t), X;(t=1), X;(t —2),..., Xi(t — 75)), Form this example it emerges clearly that the first unit ra-

with 3 w; = 1. diated by the sun is able to provide information to all the

iZi other units, which, in turn, enforcing a predictive model,
An example of weighted average is presented in Fig. Bay forecast their future measurements (the characteristi
where the missing value at Unitis reconstructed by meansof the deployment area and the distance among the units
of the weighted instances of the estimates provided by Umiifluence the propagation of the phenomenon). Of course, due
2, 3, 4 and5. to causality, the last unit radiated by the sun cannot peovid



Unit 2 Causality

3 Unit 3 - [ un |
=) .
: Unit5 5 |
Unit 5 ‘ 2 |
= §f |
1 Unit 1 L
=) nit %
Unit 2 =] = . il
J Unit4 Unit 1

Fig. 5: Exploiting the dependency graph to reconstruct.data

useful information to other units and the first radiated unit
cannot exploit measurements from other units.

It comes out that there are two important and related steps
that need to be tackled: identifying the expected propagati
delay of the phenomenon between two generic units, aftg. 6: ApplicationD3: real measurements from 8 temperature
generating the causal dependency graph. sensors acquired from the rock collapse forecasting system

To evaluate the temporal dependency among the units @@ployed on the St. Martino mount, northern Italy.
estimate the expected delay; between two generic units
andj by considering the value of the lag for which the cross
correlation of their measurements is maximum. Whenis collapse forecasting system deployed in the Alps, Italy-(Ap
positive, the Uniti is in advance w.r.tj it may provide useful plication D3).

information to Unit;j. On the contrary, whem; ; < 0, the Application D1and D2 refer to linear and nonlinear synthet-
iy ' L .. ically generated data, respectively. Both applicationssater
measurements at Unitare delayed w.r.t. Unif and Uniti "2 %7 e sharing the same SISO model family and

cannot deliver useful information to Unjt the same input signak(t), but they differ for the model

A temporaldependency graphan then be generated comparameters. In particular, ApplicatiaR1 refers to the linear
pleting the causality graph with delays information. Anmxa State space model (the model is SISO, heaceand b; are
ple of dependency graph is presented in Fig. 5 where wnjScalar values)
is the first unit perceiving the physical phenomenon and Unit zit+1) = aizi(t) + bu(k),
3 the last. yi(t) _ :cl(t) +mi,

The N; units to be considered for predicting missing data o )
at thei-th Unit are straightforwardly selected from the depen-While Application D2 refers to the nonlinear state space
dency graph. Referring to Fig. 5, to reconstruct missin@darlnOdeI
at Unit 1 we consider only the measurements from Urgits zi(t+1) = awi(t) + biu(k),
and 5, which constituteS;, the effective subsetor Unit 1, 1 gz (1)
thus N; = 2. The effective subsef; of Unit i contains Units wt) = @) +e )+,
Jir oo Jn,e €48 ={j1, ..., jy, }, that may provide useful where in both cases; and b; are drawn from uniform
information for reconstructing missing data at UnitThen, distribution within [0.2,0.3] and [0.5, 0.6], respectively; is
a MISO modelff" can be generated by considerifig; as white Gaussian noise; ~ A(0,0.02), and z(0) = 0. The
output and the training sequences of the units belongirtg t0input signalu(t) is the set of temperature measurements in
as inputs. It follows that, during the operational life, &8iNg  the Sensot of the monitoring system described in application
measurement in theth unit at timet can be reconstructed by 3.
relying on f£" that takes as inputs the previous measurementsapplication D3 refers to measurements acquired by the rock
of Unit ¢ and the current and the previous measurements Qfjlapse forecasting monitoring system deployed on the St.

units in S;, i.e., Martino Mount, Lecco, Nothern Italy [16]. In particular, we
X)) = FMX(t— 1), Xi(t—2), ... Xi(t— 1 consider the temperature sensors of Me= 8 sensing units.
(1) = f (Xl R Joooss Xilt =), The dataset, depicted in Fig. 6, is composed of approximatel
K (0, Xji (8 = 1), X (8 = 2), 0, Xy (0 = 730), 9000 samples covering6 days of acquisition (fronviay, 16",

ceey 2010to June, 21, 201Q the acquisition rate is one sample
X, (t)’XJ‘}'V (t — 1)7)%V (t—2),.. X (t—71;:)). every five minutes The first 1000 samples have been used
i i i to train the missing data reconstruction procedure, witite t
performance are evaluated by removing one sample at-a-time
V. EXPERIMENTS in the remaining sequence, and by computinglttfetep ahead

: . rediction.
To evaluate the effectiveness of the suggested reconsmuc{J

meth‘?do!Ogy we considered both synthetically generaté@l da 11hese dataset are available for download at http://hornpddieni.it/roveri/
(Application D1 and D2) and measurements from a rockftware/



We assess the effectiveness of our solutions through two
figures of merit concerning the reconstruction accuracy and
the whiteness of the residuals. In particular, we consider:

« the prediction fit defined in [15] to evaluate the recon-
struction accuracy, i.e.,

T ~
> (Xu(t) = Xi(t))
prediction fit =100 x |1 - 122 ,
I SN2
> (Xi(t) - Xa)

t=tq

B T
whereX; = " X;(¢). The index ranges from-co to

100 (perfect ftit)t;U

« the prediction residual autocorrelation indeto evaluate
the whiteness of the residual. It represents the core of the
Anderson whiteness test [15], and it is defined as

max|[re(7)|
Pl-a ’

wherer.(7) is the autocorrelation function at lagof the
residuale(t) = X;(t) — X;(¢t) andp;_,, is the maximum
of the confidence interval defined by the Anderson white-
ness test at confidende— «. This index ranges from
to +oo (values betweefi and1 corresponds white noise,
the higher the number the more biased is the residual).

Simulation results of Application D1 are presented in Table
II'and Il for solutions “A’ (best couple) and “C” (multiple
inputs), respectively. In particular, Table li(a) showe thest
linear models for each couple of sensors. Table Il(b) and (c)
presenting the prediction fit and the whiteness index for the
best linear models, show that the reconstruction accurmscy i
high and that the whiteness indexes lie belqwhus indicating
that the underlying model has been effectively estimated.
Table Il show that the MISO models estimated according to
Solution “C” achieve reconstruction accuracy similar togé
of the SISO models of Solution “A’. Solution “B” provided the
lowest performance both with uniform weights and weights
proportional to the units correlation, and its experimenta
results are omitted for brevity. The drawbacks of this sohg
are twofold: at first, the average of the SISO estimates pgesvi
a lower performance compared to the best couple estimate,
and second, the multiple input solution better exploits the
correlation among the measurements.

Tables IV and V show the simulation results for the nonlin-
ear dataset of Application D2. In particular, Table IV prase
the best linear models for Solution “A” and the correspogdin
prediction fit and whiteness index. As expected, linear rnede
in Application D2 are not able to fully identify the system
(which shows a strong nonlinearity) since the residual is no

| Sensor1 Sensor2 Sensor3  Sensor 4
Sensor 1 - ARMAX  ARMAX  ARMAX
Sensor 2| ARMAX - ARMAX  ARMAX
Sensor 3| ARMAX ARX - SSM
Sensor 4 OE ARMAX ARX -

(a) Best linear models.

| Sensor1  Sensor 2  Sensor 3  Sensor 4
Sensor 1 - 97.34 97.26 97.34
Sensor 2| 97.23 - 97.18 97.03
Sensor 3| 97.14 97.17 - 97.19
Sensor 4]  97.22 97.04 97.15 -

(b) 1-step ahead prediction fit

| Sensor1  Sensor 2  Sensor 3  Sensor 4
Sensor 1 - 0.7286 0.7918 0.5070
Sensor 2| 0.7019 - 0.5570 0.5410
Sensor 3| 0.6321 0.7814 - 0.4435
Sensor 4] 0.7421 0.5873 0.5119 -

(c) 1-step ahead whiteness index

TABLE II: Application D1 - Solution “A’.

| Sensor1  Sensor2 Sensor 3  Sensor 4
N-1 [ ARMAX ARMAX OE OE
(a) Best linear models.
| Sensor1  Sensor2 Sensor 3  Sensor 4
N-1] 9777 97.60 97.60 97.58
(b) 1-step ahead prediction fit
| Sensor1  Sensor 2  Sensor 3  Sensor 4
N-17] 0.8140 0.9471 0.9537 0.8347

(c) 1-step ahead whiteness index

TABLE III: Application D1 - Solution “C”.

| Sensor 1 Sensor 2 Sensor 3 Sensor 4
Sensor 1 - ARMAX ARMAX ARMAX
Sensor 2 SSM - ARX ARMAX
Sensor 3| ARMAX  ARMAX - ARX
Sensor 4| ARMAX  ARMAX ARX -

(a) Best linear models.

| Sensor 1  Sensor 2 Sensor 3  Sensor 4
Sensor 1 - 97.10 96.05 97.33
Sensor 2| 96.99 - 95.82 97.12
Sensor 3| 95.21 95.27 - 95.39
Sensor 4| 97.22 97.14 95.97 -

(b) 1-step ahead prediction fit

| Sensor1  Sensor2  Sensor 3  Sensor 4
Sensor 1 - 1.096 1.572 1.073
Sensor 2| 1.586 - 1.553 1.178
Sensor 3| 1.899 1.130 - 1.402
Sensor 4| 1.211 1.031 1.235 -

(c) 1-step ahead whiteness index

white. If we consider nonlinear models the results improveTABLE IV: Application D2 - Solution “A’: linear models

significantly, as shown in Table V where the nonlinear NARX
model (which exploits a feedforward neural network for the

nonlinear part), is considered. As expected, a nonlineatanothe data: prediction fits are higher than in Table IV and the

is able to provide higher performance than linear modelsesinresidual is now white.

it is able to properly identify the nonlinear relations beem

Tables VI and VII show that neither linear and non-linear



| Sensor1  Sensor 2  Sensor 3  Sensor 4

and nonlinear models (including recurrent, NARX and NOE

Sensor 1 - 97.54 96.86 97.43 e ) .

Sensor 21 9740 - 9690 9753 _neural-ba;ed models). The main _|dea behind this me_thoylolog

Sensor 3| 96.03 95.65 - 95.94 is to exploit the temporal and spatial redundancy charaater

Sensor 4] 97.44 97.27 96.32 - measurements coming from different sensing units that are
(a) 1-step ahead prediction fit monitoring the same physical phenomenon. The dependency

graph, which defines the temporal dependencies among the

Sensor 1  Sensor 2 Sensor 3  Sensor 4 . . . .
| acquisition units, allows us for reducing the complexityttod

Sensor 1 - 0.6596  1.2010  0.9829 ! 4 model. whil . "
Sensor 21 06050 - 06486 0.7906 estimated model, while guaranteeing accurate reconatruct
Sensor 3| 0.8908 0.9699 - 0.5366 Experiments shows the effectiveness of the proposed method
Sensor 4| 0.7893  0.9153  0.9067 - ology both on synthetically generated data and measurement
(b) 1-step ahead whiteness index coming from a real-world sensor network.
TABLE V: Application D2 - Solution “A”;: NARX model ACKNOWLEDGEMENTS
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| Sensor1 Sensor2 Sensor3 Sensor4 Sensor5 Sensor6  Sensorrsor &e

Sensor 1 - ARX ARMAX ARX NARX ARMAX  ARMAX NARX
Sensor 2| NARX - ARMAX NARX NARX ARX NARX NARX
Sensor 3| NARX NARX - NARX NARX ARMAX NARX NARX
Sensor 4| ARMAX ARMAX  ARMAX - NARX ARMAX NARX ARMAX
Sensor 5| ARX ARX ARMAX NARX

- ARMAX ARX ARMAX
Sensor 6| ARMAX ARX ARX ARX NARX - ARMAX  ARMAX
Sensor 7| ARX NARX ARMAX ARMAX ARMAX ARMAX - NARX

Sensor 8] NARX ARMAX  ARMAX NARX NARX ARMAX NARX -
(a) Best linear models.

| Sensor1  Sensor2 Sensor3 Sensor4 Sensor5 Sensor 6 Sensomsor &e

Sensor 1 - 96.48 96.46 96.43 97.03 96.42 97.89 96.99
Sensor 2| 96.77 - 96.71 96.76 96.94 96.65 97.20 97.23
Sensor 3|  96.92 96.71 - 96.64 96.82 96.59 96.94 96.92
Sensor 4|  96.45 96.51 96.43 - 97.16 96.63 96.81 96.78
Sensor 5| 96.52 96.50 96.5 96.52 - 96.59 97.19 97.02
Sensor 6] 95.87 95.88 95.82 95.81 95.97 - 96.15 96.13
Sensor 7|  96.51 96.55 96.51 96.52 97.11 96.78 - 97.16
Sensor 8] 96.35 96.37 96.37 96.36 97.11 96.64 97.00 -
(b) 1-step ahead prediction fit

| Sensor1  Sensor2 Sensor3 Sensor4 Sensor5 Sensor 6 Sensomsor &e
Sensor 1 - 1.980 2.119 2.106 3.393 1.903 1.628 4.031
Sensor 2|  6.163 - 2.948 3.017 1.819 2.775 3.426 2.470
Sensor 3| 1.665 3.779 - 5.046 2.325 1.513 2.282 2.189
Sensor 4|  2.542 2.733 2.300 - 3.160 2.005 3.236 2.048
Sensor 5| 1.661 1.638 1.732 1.891 - 1.737 1.736 1.634
Sensor 6] 2.126 1.808 2.223 2.277 2.075 - 2.055 2.431
Sensor 7| 2.020 3.296 2.030 2.031 2.988 3.259 - 2.300
Sensor 8] 2.141 2.228 2.064 2.067 2.265 2.067 1.798 -

(c) 1-step ahead whiteness index

TABLE VI: Application D3 - Solution “A’: linear and nonlineamodels

| Sensor1  Sensor2 Sensor3 Sensor4 Sensor5 Sensor 6 Sensorrisor &e
N-1] ARX ARX ARX ARX ARX ARMAX  ARMAX  ARMAX

(a) Best linear models.

| Sensor1  Sensor2 Sensor 3 Sensor4 Sensor5 Sensor 6 Sensomgor e
N-1 ] 90.83 97.25 97.00 97.09 97.44 96.2 97.34 97.09

(b) 1-step ahead prediction fit

| Sensor1  Sensor 2 Sensor 3 Sensor4 Sensor5 Sensor 6 Sensomgor e
N-1] 1.238 3.935 2.225 3.224 1.453 1.918 3.406 2.735

(c) 1-step ahead whiteness index

TABLE VII: Application D3 - Solution “C".

| Sensor1  Sensor2 Sensor3 Sensor4 Sensor5 Sensor 6 Sensomsor &e

Eff. subset] 90.81 97.23 97.19 97.11 97.18 96.15 - 96.94

(a) 1-step ahead prediction fit

| Sensor1  Sensor2 Sensor3 Sensor4 Sensor5 Sensor 6 Sensomsor &e

Eff. subset] 2.156 2.615 2.617 3.425 3.706 1.995 - 1.956

(b) 1-step ahead whiteness index

TABLE VIII: Application D3 - MISO solution with effective shisets.



