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Abstract—Data streams from remote monitoring systems such
as wireless sensor networks show immediately that the ”you
sample you get” statement is not always true. Not rarely, thedata
stream is interrupted by intermittent communication or sensors
faults, resulting in missing data in the received sequence.This has
a negative impact in many algorithms assuming continuous data
stream; as such, the missing data must be suitably reconstructed,
in order to guarantee continuous data availability. We suggest
a general methodology for reconstructing missing data that
exploits both temporal and spatial redundancy characterizing the
phenomenon being monitored and the distributed system, a situ-
ation proper of many monitoring systems constituted by sensor
and actuator networks. Temporal and spatial dependencies are
learned through linear and non-linear non-parametric models,
also encompassing neural -possibly recurrent- networks, which
become the spatial transfer functions connecting the different
views of the phenomenon under investigation. Missing data are
finally reconstructed by exploiting the forecasting ability provided
by such transfer functions. The experimental section showsthe
effectiveness of the proposed methodology.

Index Terms—Missing data; non-linear reconstruction; fault
accommodation; distributed monitoring systems, recurrent neu-
ral networks.

I. I NTRODUCTION

In real-world distributed monitoring systems, permanent
or transient faults can affect units, sensors or transmission
lines so as to induce fault-affected (perturbed) or missing
data. For instance, embedded electronics can be affected by
faults inducing errors in the measurements processing, while
sensors might suffer from ageing effects and thermal drift that
slowly change their behaviors over time. Faults at the physical,
network or transmission level, as well as lack of energy at the
units result in communication errors, which prevent units and
their base stations for sharing data and commands required
for continuous communication. Finally, software faults (i.e.,
bugs in the software) might induce unpredictable behaviorsat
the sensing units in specific conditions, as well as incorrect
interpretations at the remote control room.

Perturbed, incorrect and missing data can heavily affect
the subsequent analysis and control phases so as to possibly
induce incorrect decisions or on-the-field reactions. Distributed
monitoring systems designed to work in real-life scenarios
must thus be able to deal with these perturbed values or
missing data to guarantee, over time, the quality-of-service

of the application.
Though the ability to detect and identify perturbed values

is an interesting and challenging issue (we invite the reader to
refer to [1], [2] for a review), here we focus on the missing
data aspect. Furthermore, what here proposed is tailored for
sensor/actuator networks where the number of units is reduced
and insufficient to reconstruct the overall function representing
the monitored (physical) phenomenon. In the case of many
units or when assumptions about the regularity of the under-
lying function can be made, ad-hoc function-reconstruction
techniques such as those based on neural networks (e.g., [3])
can be considered to solve the problem.

Several reconstruction techniques able to fill missing data
in distributed monitoring applications have been presented in
the literature. The most immediate solutions carry out a sensor
replication scheme at the units: a redundant number of sensors
guarantees both robustness in mission-critical applications
and reconstruction of missing data (thus assuming that the
data are lost at the sensor level). The drawback is that the
complexity and the cost of the sensing units increase, and
become unacceptably high whenever the application requires
non silicon-integrated (low-cost) sensors. Still, communication
faults are not covered by this mechanism.

More advanced techniques, e.g., see [4]–[9], reformulate
the reconstruction of missing data as a forecasting problem.
In this direction, a recurrent algorithm for the reconstruction
of missing data in auto-regressive (AR) models is suggested
in [4]. The algorithm proposed in [5] exploits a least-square
recurrent estimate of the parameters of output-error (OE)
models in case of irregularly missing output data. In [6],
missing data are reconstructed through a weighted average
of the estimates of two AR models operating forward and
backward in time so as to fill the ”information hole”. A
validation and reconstruction framework for flowmeter data
in a water distribution network is described in [7]. There,
temporal redundancy is exploited to reconstruct missing data
by combining the time series analysis (i.e., an autoregressive
integrated moving average ARIMA model) with the short-term
prediction of the water consumption. The solutions presented
in [8], [9] rely on a parameter-estimation technique for auto-
regressive models with exogenous inputs (ARX) subject to
missing data. There, the idea is to construct a state-space



formulation of the system and apply the Kalman filter in case
of on-line reconstruction and a fixed-interval smoother in case
of batch (or off-line) reconstruction.

Several solutions adopt neural networks for reconstructing
missing data in multivariate time-series, e.g., see [10] and [11].
In particular, [10] suggests to use recurrent neural networks
to reconstruct missing values, while the use of radial basis
function neural networks is proposed in [11].

A different approach is suggested in [12]–[14] where the
addressed problem requires either data regularization or com-
pensation. A reconstruction algorithm for hydrometric time
series based on AR models and Kalman filters has been
proposed in [12], while [13] suggests a fuzzy solution exploit-
ing redundant sensors. Again, [14] exploits Kohonen maps
and spatial correlation to reconstruct corrupted data. There,
the corrupted value at a sensing unit is reconstructed as the
combination of thek nearest prototypes in the Kohonen map.

In contrast to approaches where a specific model hierarchy
is considered, here we propose a general methodology foron-
line reconstructionof missing data in distributed monitoring
systems where the number of acquired units is limited and no
hypothesis about the phenomenon being monitored is assumed.
This approach encompasses state space and input-output linear
and nonlinear models (including recurrent neural networks,
NARX, NARMAX, NOE, where the nonlinear component is
modeled by feedforward neural networks). The core idea is
to exploit temporal and spatial redundancy among the sensing
units showing a correlated view of the monitored phenomenon.
Temporal and spatial dependencies can be jointly exploitedby
generating models providing thetransfer functionsconnecting
different sensing units deployed in the same environment.
Each estimated transfer function is then considered to explain
the spatial relationship between two (or more) units in the
network, and during the operational life the transfer function
provides predictions for the missing values. In addition, we
consider the propagation delay of the phenomenon being mon-
itored among the sensing units, thus estimating thedependency
graph, which allows us to neglect those units that do not
bring up-to-date information for missing data reconstruction
(causality).

Fig. 1 illustrates a simple example of reconstruction of miss-
ing data at Unit1 at timet: Unit 2 and3 provide their estimates
X̂2,1(t) andX̂3,1(t) for the missing valueX1(t), through the
estimated transfer functionsf2,1 andf3,1, respectively. More
advanced solutions, e.g., encompassing aggregation of multi-
ple estimates or multiple-inputs reconstruction algorithms, are
described in Section III.

Although the paper focuses on the reconstruction of missing
data, the same methodology can be used to detect faults
or changes in the environment by inspecting the residuals
between the values predicted by the transfer functions and the
measurements in each unit. This aspect can be further extended
to monitor, besides the relationship among different units, also
the sequence of measurements in each unit in a stand-alone
manner, so as to speculate between fault in a single unit or a
change in the environment.

Fig. 1: Reconstruction of a missing measurementX1(t) at
sensing Unit1 and timet. Units2 and3 provide two estimates
X̂2,1(t) andX̂3,1(t) obtained by feeding the transfer functions
with past measurements coming from Unit1 and the current
and previous data coming from Units2. and3

The paper is organized as follows. Section II introduces
the problem statement, while the proposed methodology for
the on-line reconstruction is presented in Section III. Section
IV defines the dependency graph and describes its use for the
reconstruction of missing data. Experimental results are shown
in Section V.

II. PROBLEM STATEMENT

Let us consider a distributed monitoring system composed
of N sensing units and defineXi(t) ∈ R, with 1 ≤ i ≤ N , a
measurement acquired by thei-th sensing unit at timet (units
are assumed here to gather synchronous acquisitions). In line
with the framework presented in [12] we define the variable

ki(t) =

{
0, if Xi(t) is missing;

1, otherwise.

to model missing data. When all data are correctly received,
ki(t) = 1, ∀t > 0. Random missing data (e.g., due to inter-
mittent communication errors) can be modeled by considering
ki(t) as a random variable following the Bernoulli distribution,
i.e., ki(t) ∼ B(pi) wherepi is the probability of missing a
measurement at time instantt in the i-th sensing unit. A finite
sequence of missing data (e.g., due to a transient fault affecting
the units) is thus modeled by defining a temporal profile for
ki(t) through two time instantstinit and tend for which

ki(t) =

{
0, tinit ≤ t ≤ tend

1, elsewhere.

In the following, we assume that an initial training sequence
TSj = {Xj(1), . . . , Xj(t0)} is available for each unit1 ≤
j ≤ N and that the training sequences of different units have
the same length. We further assume that the relationships as-
sociated with measurements coming from any pair of units are
time-invariant in the training sequence. To ease the description,
we further assume that at each time instantt only one unit
may be affected by a fault resulting in data loss (single fault
assumption). Let us assume that thei-th unit is affected by a
fault at timet (i.e., ki(t) = 0), and denote bŷXi(t) the best
forward estimate whenXi(t) is missing. In this casêXi(t) is



TABLE I: Model hierarchies considered in the methodology.

Linear Non-linear
Model type Estimation

technique
Model type Learning

technique

Input-output

ARX Non-iterative
least-square
method

NARX Levenberg-
Marquardt

ARMAX
Iterative pre-
diction error
method

NARMAX
(FFNN model)

OE Algorithm
minimizing
prediction
errors

NOE (RNN
model)

Recurrent
Levenberg-
Marquardt

State space
models
(SSMs)

Linear
SSMs N4SID [15]

Nonlinear
SSMs (RNN
& FFNN
model)

Recurrent
Levenberg-
Marquardt

considered to fill the gap, otherwise the unit measurement is
kept; the reconstruction process can thus be summarized as:

Xi(t) = ki(t)Xi(t) + (1 − ki(t))X̂i(t).

Thus, at timet, Xi(t) is either the acquired measurement
Xi(t) or its best estimateX̂i(t). The estimateX̂i(t) is
typically a forward estimate, which can be possibly improved
offline, as soon as the connection is re-established, e.g., by
following the backward approach presented in [6].

We emphasize that the best forward estimateX̂i(t) could be
considered also when noisy measurementXi(t) are processed
by regularization techniques (e.g., [13], [14]) intoXr

i (t), i.e.,

Xi(t) = ki(t)X
r
i (t) + (1− ki(t))X̂i(t).

III. T HE PROPOSEDMETHODOLOGY

The estimateX̂i(t) can be derived by suitably fusing the
predicted valueŝXj,i, j = 1, . . . , N, j 6= i of Xi(t) provided
by the transfer functionsfj,i connecting the genericj-th
unit with the i-th faulty one. The considered time-invariant
dynamic models, together with the corresponding estimation
techniques [15], are reported in Table I: the transfer functions
are obtained by training these models on the training sequences
using the learning techniques described in Table I, and by
selecting the best one for predictinĝXj,i. Linear, non-linear,
input-output and state-space models (SSMs) have been also
considered to enrich the modeling expressive power of the
considered model hierarchies.

The procedure for identifying the best transfer function
fj,i for the j-th unit, provided from a training set, is rather
standard and is given in Algorithm 1, where a model hierarchy
is at first selected, the model family chosen and the trained
model finally derived. The algorithm relies on the sample-
partitioning approach where the available data set is partitioned
into training SD and validationSE sets. The best estimate
X̂i(t) can now be derived from the above models by following
three different strategies which automatically fuse the spatial
redundancy information. Such strategies will be presentedin
the subsequent subsections.

input : a training set, a set of model hierarchies, the
model order

output: the model minimizing the validation error

Partition the available data setTSj into SD andSE ;
for eachmodel hierarchyin the set of model hierarchies
do

for eachmodel family in the model hierarchydo
Estimate the parameterŝθ of the model
minimizing theone-step-aheadprediction error
overSD

θ̂ = argmin
θ

[v(θ)] with

v(θ) =
1

|SD|

|SD|∑

t=1

(
Xi(t)− X̂i(t)

)2
;

Compute the validation error of̂θ overSE ;
end

end
Select the best model as the one minimizing the
validation error overSE ;

Algorithm 1: The algorithm to identify the best modelfj,i

A. Solution A: Best Couple

Generate, for each sensing uniti, N−1 single-input single-
output (SISO) modelsfj,i, j = 1, . . . , N j 6= i, and selectfj̄,i
corresponding to the unit providing the highest reconstruction
ability, i.e. i andj̄ are thebest couple. For each pair(i, j), the
SISO modelfj,i is estimated as in Algorithm 1, settingTSi as
output stream andTSj, 1 ≤ j ≤ N andj 6= i as the input one.
Only the SISO modelfj̄,i guaranteeing the lowest validation
error onSE is considered for describing the behavior of unit
i; the SISO models obtained from other units are discarded.
During the operational modality, missing data at uniti at time
t are reconstructed as

X̂i(t) = fj̄,i(Xi(t− 1), Xi(t− 2), . . . , Xi(t− τi),

Xj̄(t), Xj̄(t− 1), Xj̄(t− 2), . . . , Xi(t− τj̄))

where τi and τj̄ are the orders of the autoregressive and
the exogenous components, respectively. When a sequence
of data is missing (e.g.,ki(t) = 0, t ∈ [tinit, tend]), the
past reconstructed data are considered as a correct measure-
ments for reconstructing the next missing measurements, i.e.,
X̂i(tinit + ν), with ν ≤ tend − tinit, is given by

X̂i(tinit + ν) = fj̄,i(X̂i(tinit + ν − 1), . . . , X̂i(tinit),

Xi(tinit − 1) . . . , Xi(t− τi),

Xj̄(t), Xj̄(t− 1), Xj̄(t− 2), . . . , Xi(t− τj̄)).

A graphical description of the best couple solution is presented
in Fig. 2.

The best couple solution is optimal in case of linear models
under the identifiability hypothesis. Other solutions could rely
on the Output Error model, which generally provides a more



Fig. 2: Solution “A”: best couple. Unit1 is affected by missing
data and the unit guaranteeing the highest reconstruction
ability is Unit 3 (i.e., j̄ = 3), then only the transfer function
f3,1 is used to predict missing data at Unit1.

Fig. 3: Solution “B”: weighted instances. The estimates of
all the transfer functions{fj,1}j 6=1 are averaged to estimate
missing data at Unit 1.

stable estimate of the parameters (in case of nonlinear models).
These considerations, which are here described for solution
“A”, are obviously valid also for Solution “B” and “C”,
presented in the sequel.

B. Solution B: Weighted Instances

A different method for reconstructing a missing value would
consider the use of all the generated models suitably weighted.
More in details, the missing measurement at Uniti at timet is
computed as a weighted average of the estimates provided by
theN−1 SISO modelsfj,i, j = 1, . . . , N, j 6= i estimated as
in Algorithm 1. The weights could be function of the validation
errors (e.g., high validation errors would result in low weights)
or of the correlation (e.g., high correlation among the units
results in high weights). The missing value is reconstructed as

X̂i(t) =

N∑

j=1

j 6=i

wjfj,i(Xi(t− 1), Xi(t− 2), . . . , Xi(t− τi),

Xj(t), Xj(t− 1), Xj(t− 2), . . . , Xi(t− τj)),

with
∑
j 6=i

wj = 1.

An example of weighted average is presented in Fig. 3
where the missing value at Unit1 is reconstructed by means
of the weighted instances of the estimates provided by Unit
2, 3, 4 and5.

Fig. 4: Solution “C”: multiple inputs. Measurement from all
the units are considered into a MISO model to predict missing
values at Unit 1.

C. Solution C: Multiple Inputs

Here, instead of consideringN − 1 SISO models we use
a more general MISO model receiving inputs from all the
units. We generate the MISO model for thei-th Unit by
considering as outputTSi and as input all the otherTSj,
j = 1, . . . , N, j 6= i. During the operational modality each
missing value at Uniti is estimated as

X̂i(t) = fi(X1(t), X1(t− 1), X1(t− 2), . . . , X1(t− τ1),

. . . ,

Xi(t− 1), Xi(t− 2), . . . , Xi(t− τi),

. . . ,

XN (t), XN (t− 1), XN(t− 2), . . .XN (t− τN )).

Fig. 4 shows a graphical reconstruction of Unit1 by consider-
ing a single MISO model in which Unit2, 3, 4 and5 represent
the inputs.

IV. T HE DEPENDENCYGRAPH

In the above we considered, for data reconstruction pur-
poses, a situation where eachi-th unit was connected with
N − 1 units, thus assuming a full unit dependency over the
network. However, it is convenient to consider only the most
meaningfulNi units (Ni ≤ N − 1) for reconstructing data
at thei-th unit: in fact, causality and correlation allow us for
limiting the units constituting the dependency cluster toNi

units only.
This situation is rather common in distributed monitoring

systems where the units sense the physical phenomenon
(which is generally time-dependent) with intrinsic delays, de-
pending on the dynamics of the phenomenon and the location
of the units. For example, if the system aims at measuring
temperature and luminosity, the influencing sequence depends
both on the units position and the trajectory of the sun.
Form this example it emerges clearly that the first unit ra-
diated by the sun is able to provide information to all the
other units, which, in turn, enforcing a predictive model,
may forecast their future measurements (the characteristics
of the deployment area and the distance among the units
influence the propagation of the phenomenon). Of course, due
to causality, the last unit radiated by the sun cannot provide



Fig. 5: Exploiting the dependency graph to reconstruct data.

useful information to other units and the first radiated unit
cannot exploit measurements from other units.

It comes out that there are two important and related steps
that need to be tackled: identifying the expected propagation
delay of the phenomenon between two generic units, and
generating the causal dependency graph.

To evaluate the temporal dependency among the units we
estimate the expected delayτi,j between two generic unitsi
andj by considering the value of the lag for which the cross
correlation of their measurements is maximum. Whenτi,j is
positive, the Uniti is in advance w.r.t.j it may provide useful
information to Unit j. On the contrary, whenτi,j < 0, the
measurements at Uniti are delayed w.r.t. Unitj and Unit i
cannot deliver useful information to Unitj.

A temporaldependency graphcan then be generated com-
pleting the causality graph with delays information. An exam-
ple of dependency graph is presented in Fig. 5 where Unit5
is the first unit perceiving the physical phenomenon and Unit
3 the last.

The Ni units to be considered for predicting missing data
at thei-th Unit are straightforwardly selected from the depen-
dency graph. Referring to Fig. 5, to reconstruct missing data
at Unit 1 we consider only the measurements from Units2
and 5, which constituteS1, the effective subsetfor Unit 1,
thusN1 = 2. The effective subsetSi of Unit i contains Units
ji
1
, . . ., jiNi

, i.e.,Si = {ji
1
, . . . , jiNi

}, that may provide useful
information for reconstructing missing data at Uniti. Then,
a MISO modelfeff

i can be generated by consideringTSi as
output and the training sequences of the units belonging toSi

as inputs. It follows that, during the operational life, a missing
measurement in thei-th unit at timet can be reconstructed by
relying onfeff

i that takes as inputs the previous measurements
of Unit i and the current and the previous measurements of
units inSi, i.e.,

X̂i(t) = feff
i (Xi(t− 1), Xi(t− 2), . . . , Xi(t− τi),

Xji
1

(t), Xji
1

(t− 1), Xji
1

(t− 2), . . . , Xji
1

(t− τji
1

),

. . . ,

Xji
Ni

(t), Xji
Ni

(t− 1), Xji
Ni

(t− 2), . . . , Xji
Ni

(t− τji
Ni

)).

V. EXPERIMENTS

To evaluate the effectiveness of the suggested reconstruction
methodology we considered both synthetically generated data
(Application D1 and D2) and measurements from a rock

Fig. 6: ApplicationD3: real measurements from 8 temperature
sensors acquired from the rock collapse forecasting system
deployed on the St. Martino mount, northern Italy.

collapse forecasting system deployed in the Alps, Italy (Ap-
plication D3).

Application D1andD2 refer to linear and nonlinear synthet-
ically generated data, respectively. Both applications consider
N = 4 units sharing the same SISO model family and
the same input signalu(t), but they differ for the model
parameters. In particular, ApplicationD1 refers to the linear
state space model (the model is SISO, henceai and bi are
scalar values)

xi(t+ 1) = aixi(t) + biu(k),

yi(t) = xi(t) + ηi,

while Application D2 refers to the nonlinear state space
model

xi(t+ 1) = aixi(t) + biu(k),

yi(t) =
1

2
(xi(t) + e

aixi(t)) + ηi,

where in both casesai and bi are drawn from uniform
distribution within [0.2, 0.3] and [0.5, 0.6], respectively,ηi is
white Gaussian noiseηi ∼ N (0, 0.02), and x(0) = 0. The
input signalu(t) is the set of temperature measurements in
the Sensor1 of the monitoring system described in application
D3.

ApplicationD3 refers to measurements acquired by the rock
collapse forecasting monitoring system deployed on the St.
Martino Mount, Lecco, Nothern Italy [16]. In particular, we
consider the temperature sensors of theN = 8 sensing units.
The dataset, depicted in Fig. 6, is composed of approximately
9000 samples covering36 days of acquisition (fromMay, 16th,
2010 to June, 21th, 2010; the acquisition rate is one sample
every five minutes1. The first 1000 samples have been used
to train the missing data reconstruction procedure, while the
performance are evaluated by removing one sample at-a-time
in the remaining sequence, and by computing the1-step ahead
prediction.

1These dataset are available for download at http://home.dei.polimi.it/roveri/
software/



We assess the effectiveness of our solutions through two
figures of merit concerning the reconstruction accuracy and
the whiteness of the residuals. In particular, we consider:

• the prediction fit defined in [15] to evaluate the recon-
struction accuracy, i.e.,

prediction fit = 100×




1−

√
T∑

t=t0

(Xi(t)− X̂i(t))2

√
T∑

t=t0

(
Xi(t)− X̄i

)2




,

whereX̄i =
T∑

t=t0

Xi(t). The index ranges from−∞ to

100 (perfect fit);
• the prediction residual autocorrelation indexto evaluate

the whiteness of the residual. It represents the core of the
Anderson whiteness test [15], and it is defined as

max
τ>0

|rǫ(τ)|

p1−α

,

whererǫ(τ) is the autocorrelation function at lagτ of the
residualǫ(t) = Xi(t)− X̂i(t) andp1−α is the maximum
of the confidence interval defined by the Anderson white-
ness test at confidence1 − α. This index ranges from0
to +∞ (values between0 and1 corresponds white noise,
the higher the number the more biased is the residual).

Simulation results of Application D1 are presented in Tables
II and III for solutions “A” (best couple) and “C” (multiple
inputs), respectively. In particular, Table II(a) shows the best
linear models for each couple of sensors. Table II(b) and (c),
presenting the prediction fit and the whiteness index for the
best linear models, show that the reconstruction accuracy is
high and that the whiteness indexes lie below1, thus indicating
that the underlying model has been effectively estimated.
Table III show that the MISO models estimated according to
Solution “C” achieve reconstruction accuracy similar to those
of the SISO models of Solution “A”. Solution “B” provided the
lowest performance both with uniform weights and weights
proportional to the units correlation, and its experimental
results are omitted for brevity. The drawbacks of this solutions
are twofold: at first, the average of the SISO estimates provides
a lower performance compared to the best couple estimate,
and second, the multiple input solution better exploits the
correlation among the measurements.

Tables IV and V show the simulation results for the nonlin-
ear dataset of Application D2. In particular, Table IV presents
the best linear models for Solution “A” and the corresponding
prediction fit and whiteness index. As expected, linear models
in Application D2 are not able to fully identify the system
(which shows a strong nonlinearity) since the residual is not
white. If we consider nonlinear models the results improve
significantly, as shown in Table V where the nonlinear NARX
model (which exploits a feedforward neural network for the
nonlinear part), is considered. As expected, a nonlinear model
is able to provide higher performance than linear models since
it is able to properly identify the nonlinear relations between

Sensor 1 Sensor 2 Sensor 3 Sensor 4

Sensor 1 - ARMAX ARMAX ARMAX
Sensor 2 ARMAX - ARMAX ARMAX
Sensor 3 ARMAX ARX - SSM
Sensor 4 OE ARMAX ARX -

(a) Best linear models.

Sensor 1 Sensor 2 Sensor 3 Sensor 4

Sensor 1 - 97.34 97.26 97.34
Sensor 2 97.23 - 97.18 97.03
Sensor 3 97.14 97.17 - 97.19
Sensor 4 97.22 97.04 97.15 -

(b) 1-step ahead prediction fit

Sensor 1 Sensor 2 Sensor 3 Sensor 4

Sensor 1 - 0.7286 0.7918 0.5070
Sensor 2 0.7019 - 0.5570 0.5410
Sensor 3 0.6321 0.7814 - 0.4435
Sensor 4 0.7421 0.5873 0.5119 -

(c) 1-step ahead whiteness index

TABLE II: Application D1 - Solution “A”.

Sensor 1 Sensor 2 Sensor 3 Sensor 4

N-1 ARMAX ARMAX OE OE

(a) Best linear models.

Sensor 1 Sensor 2 Sensor 3 Sensor 4

N - 1 97.77 97.60 97.60 97.58

(b) 1-step ahead prediction fit

Sensor 1 Sensor 2 Sensor 3 Sensor 4

N - 1 0.8140 0.9471 0.9537 0.8347

(c) 1-step ahead whiteness index

TABLE III: Application D1 - Solution “C”.

Sensor 1 Sensor 2 Sensor 3 Sensor 4

Sensor 1 - ARMAX ARMAX ARMAX
Sensor 2 SSM - ARX ARMAX
Sensor 3 ARMAX ARMAX - ARX
Sensor 4 ARMAX ARMAX ARX -

(a) Best linear models.

Sensor 1 Sensor 2 Sensor 3 Sensor 4

Sensor 1 - 97.10 96.05 97.33
Sensor 2 96.99 - 95.82 97.12
Sensor 3 95.21 95.27 - 95.39
Sensor 4 97.22 97.14 95.97 -

(b) 1-step ahead prediction fit

Sensor 1 Sensor 2 Sensor 3 Sensor 4

Sensor 1 - 1.096 1.572 1.073
Sensor 2 1.586 - 1.553 1.178
Sensor 3 1.899 1.130 - 1.402
Sensor 4 1.211 1.031 1.235 -

(c) 1-step ahead whiteness index

TABLE IV: Application D2 - Solution “A”: linear models

the data: prediction fits are higher than in Table IV and the
residual is now white.

Tables VI and VII show that neither linear and non-linear



Sensor 1 Sensor 2 Sensor 3 Sensor 4

Sensor 1 - 97.54 96.86 97.43
Sensor 2 97.40 - 96.20 97.23
Sensor 3 96.03 95.65 - 95.94
Sensor 4 97.44 97.27 96.32 -

(a) 1-step ahead prediction fit

Sensor 1 Sensor 2 Sensor 3 Sensor 4

Sensor 1 - 0.6596 1.2010 0.9829
Sensor 2 0.6050 - 0.6486 0.7906
Sensor 3 0.8908 0.9699 - 0.5366
Sensor 4 0.7893 0.9153 0.9067 -

(b) 1-step ahead whiteness index

TABLE V: Application D2 - Solution “A”: NARX model

Fig. 7: The dependency graph for the real measurements of
Application D3.

models are able to fully identify the system underlying the
sensor measurements, as their residual is not white. We provide
two possible justifications for this behavior: at first, the sensor
acquisition is not strictly synchronized (e.g., we have up to
±10s among the measurement timestamps) hence impairing
the reconstruction ability among different units. Second,the
underlying system might be time-variant and, hence, the time-
invariant models we are considering are not able to fully
capture the global dynamics.

Fig. 7 shows the dependency graph for Application D3: it is
worth noting that Unit7 is the first unit to perceive the effects
of the sun during the day. By exploiting the dependencies
shown by this graph we generated the subsets as input of a
MISO model as described in Section IV. Results are presented
in Table VIII and show that, by considering only the effective
subset of units as inputs of a MISO model, it is possible to
reduce the complexity of the model while maintaining the
performance of multiple input solution. Results for Unit7 are
not computed since it is the root of the dependency graph (see
Fig. 7) and its effective subset is empty.

VI. CONCLUSIONS

The reconstruction of missing data is a challenging and
valuable research activity that is preparatory for any fault
detection, isolation and identification action and for the fol-
lowing control action. This paper suggests a methodology
for reconstructing missing data in distributed monitoringsys-
tems encompassing state-space models and input/output linear

and nonlinear models (including recurrent, NARX and NOE
neural-based models). The main idea behind this methodology
is to exploit the temporal and spatial redundancy characterizing
measurements coming from different sensing units that are
monitoring the same physical phenomenon. The dependency
graph, which defines the temporal dependencies among the
acquisition units, allows us for reducing the complexity ofthe
estimated model, while guaranteeing accurate reconstruction.
Experiments shows the effectiveness of the proposed method-
ology both on synthetically generated data and measurements
coming from a real-world sensor network.
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Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8

Sensor 1 - ARX ARMAX ARX NARX ARMAX ARMAX NARX
Sensor 2 NARX - ARMAX NARX NARX ARX NARX NARX
Sensor 3 NARX NARX - NARX NARX ARMAX NARX NARX
Sensor 4 ARMAX ARMAX ARMAX - NARX ARMAX NARX ARMAX
Sensor 5 ARX ARX ARMAX NARX - ARMAX ARX ARMAX
Sensor 6 ARMAX ARX ARX ARX NARX - ARMAX ARMAX
Sensor 7 ARX NARX ARMAX ARMAX ARMAX ARMAX - NARX
Sensor 8 NARX ARMAX ARMAX NARX NARX ARMAX NARX -

(a) Best linear models.

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8

Sensor 1 - 96.48 96.46 96.43 97.03 96.42 97.89 96.99
Sensor 2 96.77 - 96.71 96.76 96.94 96.65 97.20 97.23
Sensor 3 96.92 96.71 - 96.64 96.82 96.59 96.94 96.92
Sensor 4 96.45 96.51 96.43 - 97.16 96.63 96.81 96.78
Sensor 5 96.52 96.50 96.5 96.52 - 96.59 97.19 97.02
Sensor 6 95.87 95.88 95.82 95.81 95.97 - 96.15 96.13
Sensor 7 96.51 96.55 96.51 96.52 97.11 96.78 - 97.16
Sensor 8 96.35 96.37 96.37 96.36 97.11 96.64 97.00 -

(b) 1-step ahead prediction fit

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8

Sensor 1 - 1.980 2.119 2.106 3.393 1.903 1.628 4.031
Sensor 2 6.163 - 2.948 3.017 1.819 2.775 3.426 2.470
Sensor 3 1.665 3.779 - 5.046 2.325 1.513 2.282 2.189
Sensor 4 2.542 2.733 2.300 - 3.160 2.005 3.236 2.048
Sensor 5 1.661 1.638 1.732 1.891 - 1.737 1.736 1.634
Sensor 6 2.126 1.808 2.223 2.277 2.075 - 2.055 2.431
Sensor 7 2.020 3.296 2.030 2.031 2.988 3.259 - 2.300
Sensor 8 2.141 2.228 2.064 2.067 2.265 2.067 1.798 -

(c) 1-step ahead whiteness index

TABLE VI: Application D3 - Solution “A”: linear and nonlinear models

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8

N- 1 ARX ARX ARX ARX ARX ARMAX ARMAX ARMAX

(a) Best linear models.

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8

N- 1 90.83 97.25 97.00 97.09 97.44 96.2 97.34 97.09

(b) 1-step ahead prediction fit

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8

N- 1 1.238 3.935 2.225 3.224 1.453 1.918 3.406 2.735

(c) 1-step ahead whiteness index

TABLE VII: Application D3 - Solution “C”.

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8

Eff. subset 90.81 97.23 97.19 97.11 97.18 96.15 - 96.94

(a) 1-step ahead prediction fit

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8

Eff. subset 2.156 2.615 2.617 3.425 3.706 1.995 - 1.956

(b) 1-step ahead whiteness index

TABLE VIII: Application D3 - MISO solution with effective subsets.


