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from Motion Blur
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Abstract—When dealing with motion blur there is an inevitable
trade-off between the amount of blur and the amount of noise
in the acquired images. The effectiveness of any restoration
algorithm typically depends on these amounts, and it is difficult
to find their best balance in order to ease the restoration task. To
face this problem, we provide a methodology for deriving a statis-
tical model of the restoration performance of a given deblurring
algorithm in case of arbitrary motion. Each restoration-error
model allows us to investigate how the restoration performance
of the corresponding algorithm varies as the blur due to motion
develops.

Our modeling treats the point-spread-function trajectories
as random processes and, following a Monte-Carlo approach,
expresses the restoration performance as the expectation of
the restoration error conditioned on some motion-randomness
descriptors and on the exposure time. This allows to coherently
encompass various imaging scenarios, including camera shake
and uniform (rectilinear) motion, and, for each of these, identify
the specific exposure time that maximizes the image quality after
deblurring.

Index Terms—Motion Blur, Camera Shake, Deconvolution,
Image Deblurring, Imaging System Modeling.

I. INTRODUCTION

MOTION blur and noise are strictly related by the ex-
posure time: photographers, before acquiring pictures

of moving objects or dim scenes, always consider whether
motion blur may occur (e.g., due to scene or camera motion),
and carefully set the exposure time. The trade-off is between
long exposures that reduce the noise at the cost of increasing
the blur, and short exposures that reduce the blur at the
cost of increasing the noise. Often there is no satisfactory
compromise, and the captured image is inevitably too blurry
or too noisy.

Many approaches to digital restoration of motion-blurred
images [1]–[7] can be reduced to deblurring an image where
the point-spread function (PSF) is known, by leveraging
a standard deconvolution algorithm (e.g., [8]–[11]). While
the actual PSF is often unpredictable, there are nevertheless
several techniques to estimate the PSF by analyzing either
the captured image alone [5], [6], [12], accelerometers and
gyroscopes output [13], or additional extremely noisy images
acquired with a short exposure [1], [2], [4]. Approaches relying
on a single blurred image often enforce iterative procedures
that alternate PSF estimation and image deblurring [14]–[16],
whereas the restored image is always obtained by deconvolu-
tion of the observation and the final estimate of the PSF.
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The restoration performance of any deblurring algorithm is
determined by several concurrent factors: perhaps, the most
relevant one is the exposure time, as this balances the amount
of blur and noise in the observations. It is important to
emphasize that the blurred image to be restored is never free
of noise, and even a small amount of noise may compromise
the effectiveness of the deblurring algorithm. Other elements,
such as the scene or the specific trajectory generating the PSF,
may significantly influence the restoration performance but
these, differently from the exposure time, are difficult (if not
impossible) to control in advance.

In our previous work [17] we studied how the performance
of any image deconvolution algorithm varies w.r.t. the expo-
sure time in the special case of rectilinear blur, for which
an analytical formulation can be obtained. Here, we provide
a more general result, addressing arbitrary motion blur. Our
core contribution is a methodology for deriving a statistical
model of the restoration error of a given deblurring algorithm
in case of arbitrary motion, including random motion. More
specifically, each restoration-error model describes how the
expected restoration error of a particular image-deblurring
algorithm varies as the blur due to camera motion develops
over time along with the PSF trajectory, which we effectively
handle by means of statistical descriptors. The peculiarity of
the proposed methodology is that it simultaneously takes into
account the exposure time, its interplay with the sensor noise,
and the motion randomness.

Each specific restoration-error model allows us to identify
the proper acquisition strategies that maximize the perfor-
mance of the corresponding deblurring algorithm. In particular,
in controlled imaging scenarios where the evolution of the PSF
trajectory along with the exposure time can be statistically
studied or analytically formulated, the restoration-error model
can tell whether there exists an optimal exposure, i.e. an
exposure time that minimizes the restoration error achievable
by the corresponding deblurring algorithm; then, whenever
the optimal exposure time exists, the restoration-error model
provides its value. This issue, to the best of our knowledge, has
so far been neglected, mainly because of the unpredictability
of the PSF trajectory.

The proposed methodology is general, and customized
restoration-error models can be derived for any type of de-
blurring algorithm although in what follows we focus on
convolutional blur, thus mainly considering image deconvolu-
tion. Furthermore, it is convenient to decouple blur estimation
from blur removal, as these two problems are typically faced
by different algorithms that may behave differently w.r.t. the
motion development: the proposed methodology is then mostly
suited for non-blind deconvolution algorithms.
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As an illustration of the proposed methodology, we model
the restoration performance of three relevant deconvolution
algorithms: the Anisotropic LPA-ICI Deblurring [10], the
Deconvolution using Sparse Natural Image Priors [7], and the
Richardson-Lucy Deconvolution [8]. Each derived restoration-
error model expresses the expected restoration error of the
corresponding algorithm as a function of the exposure time
and the PSF standard deviations [18]: two simple, yet effective,
descriptors of the blur PSF. We test these models in two
situations: the uniform-motion blur and the camera-shake. In
the former case, it is possible to describe the relation between
the PSF standard deviations and the exposure time with an
analytical expression, while in the latter case this relation
follows from a statistical formulation. The resulting optimal
exposure times agree with the acquisition strategies adopted in
practice to cope with camera shake, and with our independent
theoretical and experimental analysis of uniform-motion blur
presented in [17].

The effectiveness of the proposed methodology is validated
by comparing the outputs of these three restoration-error
models against results of experiments on camera raw data,
revealing that the actual performance of the corresponding
algorithms follow, qualitatively as well as quantitatively, the
trends outlined by their restoration-error models.

The reminder of the paper is organized as follows. We first
present the related works and we outline some applications
of our modeling approach. Then, in Section II we present
the image formation model and we state the problem. The
methodology for deriving restoration-error models is presented
in Section III and, as meaningful examples, in Section IV
we compute the restoration-error models for the Anisotropic
LPA-ICI Deconvolution [10], the Deconvolution using Sparse
Natural Image Priors [7], and the Richardson-Lucy Decon-
volution [8]. Section V presents the results of deblurring a
large dataset of camera raw images corrupted by uniform-
motion and camera-shake blur. The proposed approach is
validated in Section VI, by comparing the outputs of the
three restoration-error models previously computed with the
restoration performance measured on the considered dataset
of raw images. Discussions concerning the different blur/noise
trade-off for camera-shake and uniform-motion blur, as well as
the model practical applicability are reported in Section VII,
while concluding remarks are given in Section VIII.

A. Related Works
To put our contribution in perspective, let us briefly summa-

rize some of the most important related works, where ad-hoc
devices and controlled or customized acquisition strategies are
devised to ease the restoration task. Differently from image
stabilization techniques, which counteract/prevent the blur,
most computational-photography techniques leverage particu-
lar acquisition strategies (or settings) that make the algorithmic
inversion of the blurring operator easier. These algorithms
can be divided into two classes: the first class consists of
algorithms that couple the blurred image with some additional
information [1], [3], [4], [19], [20], while the second class
consists of algorithms that tweak the camera acquisition [21]–
[25] to obtain PSFs that are easier to invert.

The first class of algorithms includes [3], [26], which exploit
hybrid imaging systems (provided with two cameras having
different resolutions) that are able to measure their own motion
during the acquisition. The blur PSF is then computed from
these motion information, and the blur is inverted using the tra-
ditional Richardson-Lucy Deconvolution [8]. Other techniques
do not require ad-hoc hardware, and exploit images acquired
with different exposures [1], [4]. These works focus on camera
shake and pair a long-exposure image, which is dominated
by blur, with a short-exposure one, which is corrupted by
overwhelming noise: the short-exposure image is treated as
blur-free, and used for computing the blur PSF. Differently,
the algorithm proposed in [19] focuses on rectilinear PSF,
and combines several blurred images acquired with different
exposure times to compensate the frequencies suppressed by
blur in each observation.

Algorithms of the second class aim at actively controlling
the camera during the acquisition, thus piloting the resulting
PSF, so that the blur inversion becomes a well-conditioned
problem. In [21], [23] it is shown that the motion blur can
be effectively handled by fluttering the camera shutter during
the acquisition, following a coded-exposure. Such a coded
exposure makes the resulting blur easier to invert. Other
solutions consist of moving the camera (or the camera sensor)
according to a parabolic motion during the exposure [24]: by
combining the sensor and target motion one obtains a blur that
can be inverted using a single PSF.

Our contribution can be an aid to techniques that rely on
an estimate of the PSF for the deblurring, by supporting
them with guidelines to design the acquisition settings for
maximizing the restoration performance. These techniques
include algorithms of the first class described above, as well
as fully blind algorithms such as [5] and [6].

II. PRELIMINARIES

A. Observation Model

We model an image zT acquired with an exposure time T
as

zT (x) = κ (uT (x) + η(x)) , x ∈ X, (1)

where X ⊆ R2 is the sampling grid and κ > 0 is a
factor that can be used for scaling the signal into a usable
(limited) dynamic range, thus mimicking the amplification
gain in digital sensors (typically, κ ∝ T−1). The two terms
uT (x) and η (x) are independent random variables distributed
as

uT (x) ∼ P

(
λ

∫ T

0

y (x− s(t)) dt

)
, (2)

η(x) ∼ N
(
0, σ2

)
,

where P and N denote respectively the Poisson and Gaus-
sian distributions, and λ > 0 is a parameter characterizing
the quantum efficiency of the sensor [27]. The function y :
R2 → [0,M ], 0 < M < ∞, represents the original image,
having range [0,M ] (the boundedness of y is always verified in
practical applications). As this work focuses on motion blur,
the function s is assumed to be a curve s : [0, T ] → R2,
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which identifies the apparent motion taking place between the
scene and the imaging sensor during the exposure time. In
what follows we refer to s as the PSF trajectory, or simply
the trajectory.

The motion blur in (2) is modeled by a linear and shift-
invariant operator, as s is the same for the whole image. Thus,
by using generalized functions, the argument of the Poisson
distribution in (2) can be rewritten as

λ

∫ T

0

y(x− s(t))dt = λ

∫ T

0

(
y ~ δs(t)

)
(x)dt =

= λ

(
y ~

∫ T

0

δs(t)dt

)
(x) = λ (y ~ hT ) (x), (3)

where δs(t) denotes the Dirac delta function at s(t) ∈ R2

and hT is the motion blur PSF:

hT (·) =

∫ T

0

δs(t)(·)dt . (4)

Since hT > 0, we have∫
R2

hT (x)dx = T. (5)

Although the PSFs are often assumed to have unit mass,
in our model their mass, given by the integral in (5), equals
the exposure time T : in such a way we take into account
how the signal expectation varies with the exposure time.
The parameter κ in (1) will eventually take care of the
normalization. Thus, (2) can be rewritten as

uT (x) ∼ P (λ (y ~ hT ) (x)) , x ∈ X. (6)

Since we restrict to motion blur, other time-independent
blurs such as out-of-focus or blur due to camera optics are
neglected. Furthermore, we concentrate on PSFs resulting
from trajectories characterized by random motions.

Note that the definition of zT in (1) includes actually
two noise terms: the time-dependent (and image-dependent)
noise E{uT }− uT inherent to the photon-acquisition process
and modeled by the Poissonian distribution, and the time-
independent (and image-independent) noise η, which accounts
for electric and thermal noises and that is modeled by a
Gaussian distribution. The signal-to-noise ratio at x, i.e.
SNR(zT (x)) becomes

SNR(zT (x)) =
E{zT (x)}

std{(zT (x))}
=

λ (y ~ hT ) (x)√
λ (y ~ hT ) (x) + σ2

,

(7)
where the numerator corresponds to (3) and the denominator
can be derived after trivial calculations. When both y and σ
are zero, the SNR(zT (x)) is formally defined as zero. Since
SNR(zT (x)) is monotonically increasing w.r.t. λ (y ~ hT ) (x),
the average of SNR(zT (x)) on the whole image is also
monotonically increasing w.r.t. T . This implies that the corre-
sponding observations become less noisy when the exposure
time increases, which however does not necessarily imply that
they improve, since, unfortunately, the amount of blur typically
increases with T .

Probably, the best known example of observations modeled
by (1) are the images acquired during the shake of a hand-
held camera, which becomes particularly relevant at low-light
conditions and in dim environments, where long exposure
times are typically used to reduce the noise in the observations.

B. Problem Statement

The aim of this work is to model how, in presence of
motion blur, the restoration error of a given deblurring al-
gorithm varies as the motion develops with the exposure
time. In practice, the performance of every algorithm depends
on several elements other than the exposure time, and in
particular it depends on the original image y, on the noise
parameters, and on the trajectory s generating the PSF. While
the noise parameters and the original image can be considered
as deterministic elements and as such fixed (as for example
when one takes a picture of a particular scene, with a particular
camera, and with known acquisition settings), the PSF hT
cannot be typically predicted and thus it needs to be treated
as a random process. Therefore, the analysis of the restoration
error shall be carried out in a statistical manner, and for this
purpose we pursue a Montecarlo approach where we assume
that the PSFs hT are drawn from a generating distribution HT
(i.e. hT ∼ HT ). It follows that our model does not provide the
restoration error achieved/achievable for a specific trajectory
s or PSF hT , but as the expected restoration error over HT ,
which in practice can be computed as the average error over
a large number of random motion PSFs drawn from HT .
To make such expectation useful and meaningful, we shall
condition it on few descriptors of these PSFs. The restoration-
error model, which is the main objective of our analysis, is an
estimate of the conditional expectation of the restoration error
given some meaningful PSFs descriptors.

III. RESTORATION-ERROR MODEL: THE METHODOLOGY

Here are the key elements required to build a restoration-
error model for a given deblurring algorithm D:
• A collection HT of m motion PSFs that are representative

of the blur that may occur in the considered application
scenario. These PSFs are considered as independently
drawn from HT , in the sense that

HT = {hjT s.t. hjT ∼ HT , j = 1, . . . ,m}. (8)

• The restoration error r, which is the metric for measur-
ing the deblurring performance. This metric is a scalar
function of the restored image and of the original image
(when available) such as the RMSE, the PSNR, as well
as perceptual metrics as the MSSIM [28]. In computing
these metrics, we assume that the images are normalized
to a standard intensity range (e.g., [0,255]), in order to
get consistent error measurements across potentially very
different ranges of intensities.

• An operator Θ that, for each PSF, provides a vector of n
descriptors [θ1, . . . , θn], which can be effectively used to
condition the expected restoration error. In order to obtain
a meaningful restoration-error model, the values assumed
by the PSF descriptors have to faithfully encompass
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Fig. 1. Standard deviations associated to four motion-blur PSFs: a) ςL = 5.71 and ςS = 0.75 , b) ςL = 5.65 and ςS = 1.53, c) ςL = 4.91 and ςS = 3.08,
d) ςL = 5.95 and ςS = 3.20, e) ςL = 5.44 and ςS = 5.26. The red segments (principal axes) have length 2ςL and the green segments (minor axes) have
length 2ςS . Values are expressed in pixels.

the characteristics of the PSF that mostly influence the
performance of D.

• A statistical method E to estimate the conditional expec-
tations from several realizations of the restoration errors
on HT . For instance, E can be an adaptive parametric or
non-parametric smoother.

The restoration-error model consists in the expected restora-
tion error r over hT ∼ HT , conditioned w.r.t. the PSF
descriptors θ1, . . . , θn, i.e.

Rλ,σ,y(θ1, . . . , θn, T ) = E
hT∼HT

{r(zT )|θ1, . . . , θn}, (9)

where the dependency of zT on hT (and on T , λ and σ)
is expressed in (1) and (6). Note that λ, σ and y in (2) are
considered fixed. In what follows, the conditional expectation
is always intended given the PSFs descriptors.

A. Computation of the Restoration-Error Model

The restoration-error model is computed by estimating the
expectation in (9) using E to smooth the restoration errors
measured on the outputs of D, when D is applied on obser-
vations generated from PSFs in HT (8). This means that (9)
becomes

Rλ,σ,y(θ1, . . . , θn, T ) = E
hT∈HT

{r(zT )|θ1, . . . , θn}, (10)

where by E
hT∈HT

we indicate that the smoothing E takes

place over the restoration errors obtained ∀hT ∈ HT . More
specifically, D is applied on observations that are synthetically
generated according to (1) where hT varies in HT , y is a test
image, λ and σ are fixed.

Note that the smoothed values of the restoration errors result
in an approximation of the conditional restoration error defined
for any arbitrary value of the descriptor [θ1, . . . , θn]. The
smoothed values corresponding to a fixed time instant T , i.e.
Rλ,σ,y(· · · , T ), is referred to as the restoration-error surface
at the exposure time T . Similarly, the restoration-error surfaces
can be computed for any arbitrary value T ′, defining HT ′ by
scaling the norms of the PSFs in HT . In practice, to define
a restoration-error model, it suffices to consider a selected
finite set of exposure times and resort to interpolation for the
restoration-error surfaces corresponding to different values of
T .

B. Evolution Through Time

While the restoration-error model Rλ,σ,y considers the PSF
descriptors θ1, . . . , θn and the exposure time T as independent,
these in practice are always related because, when we consider
motion blur, the PSF evolves over time. Thus, assume that
the descriptors can be expressed as function of the exposure
time θi = θi(T ), i = 1, . . . , n: these functions might
be estimated empirically or, in some specific applications,
these can be determined analytically. Then, upon substitution,
the restoration-error model Rλ,σ,y (10) becomes a univariate
function of time:

Rλ,σ,y(T ) = Rλ,σ,y(θ1(T ), . . . , θn(T ), T ) . (11)

As an important consequence, we can use Rλ,σ,y(T ) to ana-
lyze how the restoration performance of D varies with respect
to the exposure time. Thus, in practice, Rλ,σ,y(T ) provides a
guideline to choose, before the acquisition, the exposure time
yielding, after restoration, a higher image quality. Whenever
such exposure time is unique and finite, we refer to it as the
optimal exposure time T ∗, formally defined as

T ∗ = argmin
T

[
Rλ,σ,y(T )

]
. (12)

C. Different Images

So far we have presented how to compute the restoration-
error model for a given image y, which however is always
unknown in deblurring applications. One way to circumvent
this issue is to enforce an image prior, for example by
computing the expected restoration error for multiple images
drawn from the same prior distribution, and not for a specific
image y. In practice, this means that E is applied to r(zT ),
computed from a bunch of images. Nevertheless such approach
is rather cumbersome, as the amount of images to be drawn
for accurately modeling the prior is potentially huge.

A more appealing situation would arise when the qualitative
behavior of the surfaces does not significantly change with
respect to the original image; the ideal situation being when
different images yield the same surfaces modulo an additive
constant or scaling factor because in this case the optimal
exposure time, T ∗ of (12), is the same regardless of the
specific image y. While this condition might seem improbable
at a first glance, as a matter of fact it has been already
experimentally verified in [17] for the case of uniform-motion
blur. Whenever this condition holds, it is enough to smooth



SUBMITTED TO IEEE TIP 5

using E the restoration errors computed from observations
generated by different original images, which are conveniently
chosen having the same range [0,M ], then (10) becomes

Rλ,σ,M (θ1, . . . , θn, T ) = E
hT∈HT

{r(zT )|θ1, . . . , θn}, (13)

being zT generated from a set of original images having the
same range [0,M ].

D. Model Portability

So far, all the assumptions made imply that the surfaces
refer to the behavior of the restoration-error r for a specific
deblurring algorithm D, for specific noise parameters λ and
σ, and for original images in a specific range [0,M ]. Note
that a linear scaling of the image range by multiplication of
y against an arbitrary constant c > 0 is formally equivalent to
using a sensor having noise parameters cλ and σ, due to the
linearity of the operations in (2). It follows that

Rλ,σ,M (θ1, . . . , θn, T ) = RλM,σ,1(θ1, . . . , θn, T ) (14)

thus, the restoration-error models (13) are more conveniently
parametrized, upon normalization of the image range, by the
product λM and σ only. Equation (14) shows that it is
possible to avoid the re-computation of the surfaces when
the observations are in different ranges, a situation that would
arise, for instance, because of light changes in the scene.

Likewise, it can be shown that the exposure time T and the
parameter λ can be interchanged. Indeed, a restoration-error
surface Rλ,σ,M (· · · , T ′) corresponding to a specific exposure
time T ′ is formally equivalent to a restoration-error surface
Rλ′,σ,M (· · · , T ), where λ′ = λT/T ′. This is because in (6)
the factor λ scales hT (having norm T from (5)), exactly as
T ′/T scales each PSF in the set HT to yield the set HT ′ . It
follows that

Rλ,σ,M (θ1, . . . , θn, T ) = RλMT,σ,1(θ1, . . . , θn, 1). (15)

Therefore, up to scaling the values of T , the same surfaces
can be used to describe how the restoration error varies on
sensors characterized by different values of λ. This is not
surprising since the same observation zT can be interpreted as
acquired by a more quantum-efficient sensor having parameter
2λ and moving two times faster along the same fixed trajectory
(thus with an exposure time T/2).

From (14) and (15) follows that the same restoration-error
model allows us to describe the restoration performance on
observations having different ranges, as well as on sensors
having different values of λ, up to accordingly scaling the
exposure time. More precisely, we have that, for any λ′ > 0
and M ′ > 0,

Rλ′M ′,σ,1(θ1, . . . , θn, T ) = RλM,σ,1(θ1, . . . , θn,
λ′M ′

λM
T ).

(16)
Let us remark that the equations (14)-(16) are valid for

a fixed value of σ. There is no direct scaling equation that
relates restoration-error surfaces corresponding to different
values of σ. Therefore, different restoration-error models have
to be computed for different values of σ. Additional details

concerning the use of these models in practical applications
are detailed in Section VII-C.

Unless otherwise noted, in what follows we assume a
normalized image range and, for the sake of notation, we
do not specify the unitary image range in the more compact
notation RλM,σ.

E. Desiderata
In principle, it is possible to derive a restoration-error model

(10) for any deblurring algorithm D and any choice of HT , r,
Θ and E, by following the procedure described in Section III.
Nevertheless, the resulting model does not necessarily provide
meaningful results since, for instance, the PSF descriptors
Θ may not properly condition the restoration error, the set
of considered PSFs HT may not fully represent the blur of
the considered problem, or the smoother E may not provide
reliable estimates of the expected restoration error. To obtain
a meaningful restoration-error model it is then convenient to
check whether the following conditions hold:

C1 The PSF descriptor Θ has to correctly interpret the
way the restoration error varies when varying the
PSF. This means that PSFs having similar descriptor
values yield similar restoration errors when the
observations are generated from the same original
image y. This allows the expected restoration error
to be rightly conditioned on these descriptors.

C2 The distributions of the restoration errors (for a
fixed y) must be as localized as possible about their
conditional expectation given [θ1, . . . , θn].

C3 Finally, according to the considerations from Section
III-C, it is desirable that the qualitative behavior of
the conditioned restoration errors is not significantly
altered when changing the original image y.

As an illustrative example, in what follows we derive
the restoration-error models for three specific deconvolution
algorithms. The proposed methodology is then extensively
validated by comparing the trends of the predicted restoration
errors with the RMSEs measured when restoring, with the
corresponding deconvolution algorithms, a large dataset of
camera raw images. The experiments show that outcomes of
these models allow to reliably determine the best exposure to
be used in practice.

IV. RESTORATION-ERROR MODEL: THREE EXAMPLES

In this section we compute the specific restoration-error
models for three different deconvolution algorithms D. These
models are meant to illustrate how the proposed methodology
can be exploited in practice, and they allow us to assess
its effectiveness, as shown in Section VI. Before briefly
recalling these algorithms, we introduce the restoration error
r underlying the three models.

A. Restoration Error
We define the restoration error r associated to an observa-

tion zT as the ideal root mean squared error (RMSE)

r (zT , y) =
255

M

‖y − ŷT ‖2√
#X

, (17)
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where #X is the number of image pixels, and ŷT stands for
the ideal restored image. The image ŷT is obtained by applying
D on zT when the PSF is exactly known and the regularization
parameters of D have been chosen by an oracle, i.e. they are
those that minimize (17). The same error metric has been also
utilized in [17] for the case of rectilinear blur. Note also that,
since ŷT represents the ideal restored image, (17) provides an
upper-bound of the restoration performance achievable by D
on zT , which implies that each restoration error model assumes
a correct use of the deconvolution algorithm.

B. The Deconvolution Algorithms

The considered deconvolution algorithms are the
Anisotropic LPA-ICI Deconvolution for signal-dependent
noise [10], the Deconvolution using Sparse Natural Image
Priors [7], and the Richardson-Lucy Deconvolution [8].

1) LPA-ICI Deconvolution for Poissonian Images: The
Anisotropic LPA-ICI Deconvolution for signal-dependent
noise1 [10] relies on a nonparametric Poisson maximum-
likelihood modeling and it couples a Tichonov regularized
inverse in Fourier domain with an adaptive anisotropic filtering
in space domain. Here, capital letters are used to indicate
the Fourier transform of the corresponding quantities. The
regularized inverse is thus expressed as

Ŷ RIT,ε = ZT
κHT

κ2|HT |2 + PSDT ε2
, (18)

where ε > 0 is the regularization parameter, and PSDT is the
power spectral density of the noise characterizing observations
acquired with exposure time T . It follows that

PSDT =
∑
x∈X

var {zT (x)} = κ2
∑
x∈X

(
λ(y ~ hT )(x) + σ2

)
,

(19)
which is in practice approximated by

PSDT ≈ κ
∑
x∈X

(
zT (x) + κσ2

)
.

The filtering is realized in spatial domain, using directional
polynomial-smoothing kernels gθi,h+(θi) having pointwise-
adaptive support-size h+ (θi) along the different directions
{θi}: the final restored image ŷT is computed as

ŷT (x) =
∑
θi

β
(
x, h+ (θi) , θi

) ∫
ŷRIT,ε (ξ) gθi,h+(θi) (x− ξ) dξ,

where x ∈ X , ŷRIT,ε is the inverse Fourier transform of Ŷ RIT,ε

(18), and the convex weights β (x, h+ (θi) , θi) are used to
combine the directional estimates into an anisotropic one. For
details we refer the reader to [11] and especially to [29].

The ideal RMSE is computed by selecting the parameter ε
with an oracle, i.e. by minimizing (17).

1Available at http://www.cs.tut.fi/∼lasip/

2) Deconvolution Using a Sparse Prior: This algorithm2

[7] formulates the deconvolution problem as determining the
maximum a-posteriori estimate of the original image, given the
observation zT . Furthermore, the algorithm exploits a prior
enforcing spatial-domain sparsity of the image derivatives.
The resulting non-convex optimization problem is solved
using an iterative re-weighted least square method. Although
this algorithm has not been natively devised for Poissonian
observations, it has been rather successfully applied to raw
images, thanks to the oracle selection of the smoothness-
weight parameter and by allowing a sufficient number of
iterations (i.e. 200).

3) Richardson-Lucy Deconvolution: This classical decon-
volution algorithm3 [30] assumes Poisson-distributed obser-
vations and the deconvolved image is obtained from zT by
an iterative expectation-maximization procedure. The ideal
RMSE has been computed by selecting with the oracle the
number of iterations.

C. PSF Generation

The PSFs constituting the collections HT , which are used
to compute the restoration-error models, are obtained by
sampling continuous trajectories on a (regular) pixel grid. Each
trajectory consists of the positions of a particle following a
2-D random motion in continuous domain. The particle has
an initial velocity vector which, at each iteration, is affected
by a Gaussian perturbation and by a deterministic inertial
component, directed toward the current particle position. In
addition, with a small probability, an impulsive perturbation
aiming at inverting the particle velocity arises, mimicking a
sudden movement that occurs when the user presses the cam-
era button or tries to compensate the camera shake. At each
step, the velocity is normalized to guarantee that trajectories
corresponding to equal exposures have the same length. Each
perturbation (Gaussian, inertial, and impulsive) is ruled by its
own parameter and each set HT contains PSFs sampled from
trajectories generated by parameters spanning a meaningful
range of values; rectilinear trajectories are generated when all
the perturbation parameters are zero.

Each PSF hT ∈ HT consists in discrete values that are
computed by sampling a trajectory on a regular pixel grid,
using sub-pixel linear interpolation. Collections corresponding
to different exposure times are obtained by scaling the values
of each PSF by a constant factor. In our simulations, each set
HT contains m = 7471 different PSFs.

Fig. 2 shows an example of a considered trajectory and
the corresponding sampled PSF. The code generating the
trajectories and the PSFs is publicly available for download4.

D. PSFs Standard Deviations

We adopt the PSF standard deviations proposed in [18] as
a (bivariate) descriptor Θ; these can be computed as follows.
Each PSF hT is normalized to unit mass by dividing it by T .

2Available at http://groups.csail.mit.edu/graphics/CodedAperture
3Implemented by the Matlab command deconvlucy.
4Available at http://home.dei.polimi.it/boracchi/software/ .



SUBMITTED TO IEEE TIP 7

Fig. 2. An example of PSF trajectory generated from a random motion
and the corresponding sampled PSF. This trajectory presents an impulsive
variation of the velocity vector, thus mimicking the situation where the user
presses the button or tries to compensate the camera shake. Another example
of PSF clearly affected by a similar abrupt variation in the trajectory is shown
in Fig. 1(e)

The normalized PSF is then treated as a bivariate probability
distribution, for which we compute the covariance and hence
the standard deviations along its principal axes, ςL and ςS .
Specifically, for each PSF hT , the values of ςL and ςS
are computed as the square root of the eigenvalues of the
covariance matrix of the normalized PSFs:

(ςL, ςS) =

√
Eig

(
Cov

(
hT
T

))
. (20)

Fig. 1 illustrates four examples of PSFs with the corresponding
principal axes; the corresponding values of ςL and ςS are
reported in the figure caption. The main axis follows the
direction along which the variance of the distribution is
maximized: in each of the PSFs shown Fig. 1 it is represented
by the red segment having length 2ςL. The minor axis is
represented by the green segment having length 2ςS ; of course,
(20) guarantees that the two axis are orthogonal. A similar
characterization of the PSFs has been used also in [31].

Fig. 3 illustrates some of the PSFs in HT positioned in the
Cartesian plane so that the center of each PSFs coincides with
its values of ςL and ςS . As one can notice, there are almost no
PSFs having ςS < 1/

√
6 ≈ 0.4. The value ςS = 0 would in

fact correspond to rectilinear trajectories along horizontal or
vertical directions that are perfectly centered with respect to
the pixel grid. In any other case, the discretization of the tra-
jectory s yields PSFs having larger values of ςS . It is possible
to model the effects of sampling the continuous trajectories on
the regular pixel grid through a bivariate random distribution
with independent marginals both having symmetric triangular
density on [−1, 1]: this formulation justifies the choice of the
value 1/

√
6, which corresponds the standard deviation of such

distribution. Further details are provided in Section VI-B.

E. Restoration-Error Surfaces

The cloud of points in Fig. 4(a) represent the restoration
errors obtained by applying the Anisotropic LPA-ICI Decon-

Fig. 3. An example of synthetically generated random motion PSFs. The
plot shows 278 PSFs that have been randomly selected within the dataset HT

of cardinality m = 7471. Each PSF is drawn in the ςL , ςS plane; the center
of each PSF is located in the corresponding values of ςL and ςS (values
expressed in pixels). As one can notice, there are almost no PSFs having
ςS < 1/

√
6. The value ςS = 0 would correspond to rectilinear trajectories

along horizontal or vertical directions that are perfectly centered with respect
to the pixel grid; in all other cases, the discretization of the trajectory s yields
PSFs having larger values of ςS .

volution on observations synthetically generated from the PSFs
in H1/2 (corresponding to T = 1/2 sec.). Each point in this
cloud is determined by a distinct PSF and has coordinates
(ςL, ςS , r(zT , y)), where ςL and ςS are the PSF standard
deviations, and r(zT , y) is the ideal restoration error (17). Here
λ = 3000, σ = 0, and the original image y corresponds to the
standard test image Lena, normalized so that black equals 0
and white equals 1 (thus M = 1). Here and throughout the
paper, the smoothing operator E is a third order, nonparametric
polynomial smoother for data corrupted with Gaussian noise,
having adaptive bandwidth defined by the Anisotropic LPA-
ICI technique [29] 5. As stated in Section III-A, the smoothed
restoration errors constitute the restoration-error surfaces: the
surface R3000,0(·, ·, 1/2), computed from the above mentioned
restoration errors, is shown in Fig. 4(a) and 4(c).

Fig. 5 illustrates how distinct clouds are separated: the three
histograms show the distances between the restoration-error
surface at T = 2 sec., and
• the cloud of restoration errors at T = 2 sec. (solid line),
• the cloud of restoration errors at T = 1/2 sec. (dashed

line),
• the cloud of restoration errors at T = 1/8 sec. (dotted

line).

5The choice of this smoother is irrespective of the deconvolution algorithm
that yielded the cloud of RMSE values.
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Fig. 4. (a) The restoration-error surface R3000,0(·, ·, 1/2), and the cloud of restoration errors r(zT , y) obtained applying the Anisotropic LPA-ICI
Deconvolution on observations generated from Lena image (having range [0, 1]) and PSFs in H1/2, when λ = 3000, σ = 0, and T = 1/2 sec. (b)
The comparison between surfaces corresponding to observations generated from different original images (Lena and Cameraman) at different exposure times:
these surfaces qualitatively show the same behavior, and their differences can be roughly referred to an additive constant term. The label next to each surface
indicates the corresponding exposure time. (c) The same surface shown in (a) as seen from above, i.e. displayed in the plane (ςL, ςS), and using colors to
represent the elevation of the surface. The other considered deconvolution algorithms yield qualitatively similar data and surface.
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Fig. 5. Distribution of the residuals of the restoration-error surfaces corresponding to the Anisotropic LPA-ICI Deconvolution when λ = 3000, σ = 0, and
y is Lena image (M = 1). The solid (blue) line represents the distribution of the residuals of the restoration-error surface at T = 2 sec. The dashed (red)
line represents the distribution of the differences between the cloud of restoration errors measured at T = 1/2 sec., and the surface at T = 2 sec. Similarly,
the dotted (black) line represents the distribution of differences between the cloud of errors measured at T = 1/8 sec. and the surface at T = 2 sec. Similar
behaviors characterize the other deconvolution algorithms considered.

The shifts between these histograms show that the dispersion
suppressed by the smoothing can be considered as nuisance,
which can be neglected when comparing restoration-error
surfaces having sufficiently different exposure times. Thus, the
clouds are well clustered about their respective surfaces and
the dispersion is relatively small: in other words, the surfaces
correctly interpret the cloud behavior with respect to ςL
and ςS . The PSFs standard deviations are indeed particularly
effective PSF descriptors as PSFs having similar values of
ςL and ςS yield similar restoration errors. Therefore, the
restoration-error surfaces can be rightly used as a surrogate of
the expected restoration error conditioned on ςL and ςS , and
the conditions C1 and C2 of Section III-E can be assumed as
satisfied. Note also that the distributions of the errors in Fig.
5 are not far from a Gaussian bell, thus confirming that the
smoother E operated correctly.

Fig. 4(b) compares the surfaces obtained from the test image
Cameraman with those from Lena: note that these surfaces
do not differ qualitatively, although they have been computed
using essentially different original images. Hence, also the
condition C3 of Section III-E is satisfied and, as discussed
in Section III-C, we assume that the overall behavior of
each restoration-error surface is independent of the original
image: the restoration-error surfaces are then computed using
the smoother E on the restoration errors averaged over four
standard test images (Lena, Cameraman, Peppers, Boat).

Fig. 4 shows the restoration error surfaces corresponding to
the Anisotropic LPA-ICI Deconvolution while the same plots

for the Deconvolution using Sparse Natural Image Priors and
the Richardson-Lucy Deconvolution have not been displayed
due to space limitation. However, the corresponding surfaces
are qualitatively very similar, as shown in Fig. 6.

F. The Restoration-Error Models

Since bivariate PSF descriptors are used, the restoration-
error model RλM,σ is a trivariate function that expresses
how, in a camera having noise parameters λ, σ, the expected
restoration error varies with respect to the PSFs standard
deviations and the exposure time for images having range
[0,M ]. According to (10), the model is formalized as

RλM,σ(ςL, ςS , T ) = E
hT∈HT

{r(zT , y)|ςL, ςS}. (21)

For each deconvolution algorithm in Section IV-B we follow
the approach described in Section III-A and we compute the
restoration-error surfaces corresponding to a set of values of T
that are powers of 2. This specific choice aims at mimicking
the exposure stops typically used in photography and in
particular, for the Anisotropic LPA-ICI and the Richardson-
Lucy Deconvolution we take T = 2−10, . . . , 210 sec., while
we had to compute fewer surfaces for the Deconvolution using
Sparse Natural Image Priors, due to its much longer computing
time. Then, the model outcomes corresponding to different
exposure times are obtained by resorting to interpolation.

Fig. 6 shows the surfaces of the three restoration-error
models with λ = 3000 and σ = 0, and using test images
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Fig. 6. Each row shows a different view of the restoration-error models for the three deconvolution algorithms. These models have been computed from
the restoration errors corresponding to observations generated from test images having range [0, 1] and noise parameters λ = 3000, σ = 0. The label next
to each surface indicates the corresponding exposure time. To improve visualization, some surfaces are drawn in a darker shade.

having range [0, 1]. We wish to remark that, in this figure, the
apparent negative RMSE values obtained for σL ≈ 0 are due
to the extrapolation of the fitted surfaces. In fact, HT contains
nearly pointwise PSFs having values of σL ≈ 1/

√
6, for which

exact deconvolution is possible and these yield RMSE ≈ 0
when T (and hence the observation SNR) tends to infinity.

V. THE BLUR/NOISE TRADE-OFF AND THE
DECONVOLUTION PERFORMANCE ON RAW IMAGES

In this section we consider two specific sorts of motion
blur that are often encountered in practical applications: the
camera-shake and the uniform-motion blur. To study how the
blur/noise trade-off affects the deconvolution performance, we
have acquired a large dataset of raw images in a controlled
scenario and we have computed the ideal restoration error (17)
for the three deconvolution algorithms presented in Section
IV-B. In what follows we focus on the experimental settings
and on the achieved restoration performance, then in Section
VI we show that the outcomes of the restoration-error models
derived in Section IV are coherent with the RMSEs com-
puted from the dataset of raw images, thus proving that the
proposed methodology is general and provides representative
restoration-error models.

A. Raw Image Acquisition

Motion-blurred images have been acquired by fixing a
Canon EOS 400D DSLR camera on a tripod, in front of
a monitor running a short movie where a natural image is
progressively translated along a motion trajectory. While the

movie was playing, we acquired several images that are rightly
modeled by (1): the resulting blur is space-invariant since we
have accurately positioned the camera to ensure parallelism
between the monitor and the imaging sensor (in particular, we
verified that in each picture the window displaying the movie
was accurately rectangular).

Fig. 7 depicts the six trajectories used to render the movies:
four of them represent camera-shake blur (from b to e), while
the first one (a) corresponds to the uniform-motion blur6. The
top row of Fig. 8 shows the four original images used; note
that none of these is a standard test image or has been used
to derive the restoration-error models in Section IV. For each
trajectory/image pair we rendered a 3-second movie and we
acquired several pictures according to the settings reported in
Table I; a few examples are shown in the bottom row of Fig.
8. The respective ground-truth images, used to compute the
restoration errors, have been acquired from the paused movies
with 4-second exposure and ISO 100.

We independently process each image, cropping from each
channel of the Bayer pattern an observation of 256 × 256
pixels to be deconvolved. The PSF was estimated via para-
metric fitting, through the minimization of the RMSE of the
restored image, leveraging the knowledge of the continuous
trajectory. The camera-raw dataset is finally composed of
about 17007 raw images (together with their relative PSF

6There is no need to consider uniform motion along different directions
since any deblurring algorithm would provide essentially the same restoration
quality when the blur direction varies, as discussed in [17].

7We excluded the few observations where the PSF estimation failed.
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a) b) c)

d) e) f)

Fig. 7. Trajectories used to generate motions for the experiments on camera
raw data. Trajectory (a) corresponds to uniform (rectilinear) motion, while
the remaining (b - e) represent blur due to camera-shake.

TABLE I
ACQUISITION SETTINGS OF THE CAMERA RAW IMAGES.

setting ISO T # of shots
1 1600 1/125 s 3
2 1600 1/60 s 3
3 1600 1/30 s 3
4 1600 1/15 s 3
5 1600 1/8 s 3
6 800 1/4 s 3
7 400 1/2 s 3
8 200 1 s 3
9 100 2 s 3

10 100 2.5 s 3

estimates), of which 270 corrupted by uniform-motion blur8.
For each acquisition, we estimate the noise parameters λ and
σ using the algorithm in [27]. Both the Anisotropic LPA-ICI
[10] and the Richardson-Lucy [8] Deconvolution explicitly
use these estimates, while the Deconvolution using Sparse
Natural Image Priors [7] implicitly address the noise model
by the selection of weights, which are chosen by an oracle
that minimizes (17). Thus, all the restoration errors have been
computed under comparable ideal conditions for the three
algorithms. This experimental setup is analogous to that used
in [17] to deconvolve raw images corrupted by uniform-motion
blur.

Fig. 9 shows the ideal restoration errors (17) computed from
the dataset of raw images, plotted as a function of the exposure
time T . Each row reports the results from the red, green,
and blue channels for the three considered deconvolution
algorithms: it is important to present the RMSEs separately
for each channel as these have very different ranges, thus very
different SNR. Each marker refers to the restoration errors
from either camera-shake (i.e. related to trajectories b - f )
or uniform-motion blur (i.e. related to trajectory a). The two
curves are obtained by a third-order nonparametric polynomial
regression of the respective restoration errors, expressed w.r.t.
the exposure time (to ease the visualization in Fig. 9, we
slightly displaced the restoration errors about the true exposure
times).

Fig. 10 - 12 illustrate the evolution of the observations and
of the corresponding restored images as the blur develops in

8The raw images and the estimated PSFs are available at
http://home.dei.polimi.it/boracchi/software/ .

time along three distinct trajectories. These examples show
that there is a clear blur/noise trade-off in the observations and
that the way it affects the restoration performance significantly
depends on the type of PSF trajectory: one can clearly see that
in case of blur due to camera shake the considered deconvo-
lution algorithms can achieve good deblurred estimates even
at the longest exposures, in contrast to the case of uniform-
motion blur, for which the deblurred estimates degrade past
relatively short exposures. The same conclusions hold for the
three deconvolution algorithms on the three channels of the
Bayer pattern, as one can clearly see from the plots of Fig. 9
and the RMSEs values reported in the captions of Figs. 10 -
12.

VI. METHODOLOGY VALIDATION

To validate the proposed methodology for computing
restoration-error models, we demonstrate that the outcomes
of the restoration-error models obtained in Section IV are
consistent with the trend of the RMSE curves computed from
the dataset of raw images, shown in Fig. 9.

To this purpose, we need to take care of two aspects. First,
the model parameters have to reflect the raw-data acquisition
conditions; in particular, these are the noise parameters λ
and σ, and the parameter M that specifies the image range.
Second, we have to determine suitable expressions of the PSF
standard deviations as functions of the exposure time for the
considered types of motion blur. Denoting these functions as
ςL(T ) and ςS(T ), the computed restoration-error models can
be thus expressed according to (11) as univariate functions of
the exposure time T :

RλM,σ(T ) = RλM,σ(ςL(T ), ςS(T ), T ). (22)

Then, the validation of the proposed methodology can be
carried out by comparing, on a suitable range of exposure
times, the functions RλM,σ(T ) obtained from the restoration-
error models of [7], [8], [10], with the RMSE curves in Fig.
9.

A. Selection of Model Parameters

The noise parameters λ and σ have been estimated directly
from the raw data by using the procedure [27]. Based on this
analysis, we selected λ = 3000 and, since for these images
the signal-independent noise appeared much weaker than the
signal-dependent one, we selected σ = 0. This approximation
is supported by the experiments in [17], where it is shown that,
at least in the case of uniform-motion blur, different amounts
of noise η do not lead to qualitative differences in the trend
of the deconvolution performance. The noise parameters are
referred to a normalized camera dynamic range [0, 1] over
which the intensities of the raw data cover different ranges
depending on the channel of the Bayer pattern. In particular,
we found the following values for M : MR = 0.58 (red),
MG = 0.86 (green), and MB = 0.40 (blue).
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Fig. 8. Top row: the natural images (Balloons, Liza, Jeep and Salamander) that were used to render the movies for the experiments. Bottom row: examples
of the captured raw images demonstrating that there is a clear blur/noise trade-off; these four images have been acquired with settings 10, 8, 6, 4, 2 (see
Table I), and come from the trajectory f), d), b), e) and a), respectively. Images were taken from the blue channel and rescaled for visualization purposes.

B. Sampling/using the Restoration Error Model

As stated in Section IV-C, the restoration-error models are
constructed using PSFs sampled on a regular pixel grid and
the values of the PSF standard-deviations ςL and ςS (20) have
been computed from these sampled PSFs. Thus, any analytical
formulation ς̃L(T ) and ς̃S(T ) that expresses on a continuous
(i.e. non discrete) domain how the PSF standard deviations
vary with respect to time, needs to adequately take into account
the effects of sub-pixel interpolation, which become significant
at low values of ςL and ςS . To this purpose, we model the
effects of the sub-pixel linear interpolation, which is used
for sampling a continuous trajectory on a regular grid, as
an additive random vector following a bivariate distribution
with independent marginals, each of which has a symmetric
triangular density on the interval [−1, 1]. The 2 × 2 covariance
matrix of this distribution is equal to I/6. It follows that
the formulas relating the standard deviations of the sampled
PSFs to the exposure time (i.e. ςL(T ) and ςS(T )) can be
approximated as the sum of the eigenvalues of the covariance
matrix of the PSFs standard deviations in continuous domain
(i.e. ς̃L(T ) and ς̃S(T )) with the eigenvalues of the covariance
matrix of the distribution modeling the sub-pixel interpolation:

ςL(T ) =
√
ς̃L(T )2 + 1/6,

ςS(T ) =
√
ς̃S(T )2 + 1/6.

(23)

Note that (23) implies that there exist a portion of the ςL,ςS
plane, corresponding to the rectilinear PSFs (i.e. ςS < 1/

√
6)

that should be practically empty, as shown in Fig. 3. We can
in fact observe that even straight PSFs have values of ςS
which are strictly positive (and not zero, as one would expect
from the formulation of the PSFs in continuous domain). We
remark that when sampling the restoration-error model at a
point (ςL(T ), ςS(T ), T ), like in (22), the values of ςL and ςS
need to be those that correspond to the sampled PSFs, thus
it is necessary to use (23) to compensate the functions ς̃L(T )
and ς̃S(T ), which have been instead derived from continuous

domain formulations.

C. PSF Standard Deviations Evolution in Time

In this section we present how to express, in the specific
cases of uniform and camera shake blur, the PSFs standard
deviations as functions of time, i.e. as the two functions ςS(T )
and ςL(T ).

1) Camera Shake: In [18], a statistical study of several
blurred images acquired at different exposure times by differ-
ent users (or groups of users), shows that the following power
law reliably expresses the standard deviations as functions of
the exposure time in case of camera shake:

ς̃L(T ) = γ · aLT b,
ς̃S(T ) = γ · aST b,

(24)

where γ > 0 is a conversion factor between degrees (which is
the unit used in [18]) and pixels (which are used here). It is
found that the value b = 0.5632 can be rightly used in every
experimental condition considered in [18], while the values of
aL and aS vary depending on the user photographic skills and
on the camera mass. We choose aL = 0.092 and aS = 0.0453,
which correspond to a DSLR camera [18]. Given (23) and (24),
we can then compute a robust estimate of γ as

γ̂2 = med



(
ς
(j)
L

)2
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 , (25)

where the index j runs through the dataset of acquired raw
images and ς(j)L , ς

(j)
S , T (j) are the measured values of the PSF

standard-deviation and the exposure time for a the j-th raw
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Fig. 9. Restoration performance of the three considered deconvolution algorithms on a dataset of camera raw data. The markers represent the measured
values of the ideal RMSE: the red squares refer to the uniform-motion PSF, while the green circles refer to camera-shake PSFs. The curves are obtained by
third-order nonparametric polynomial regression of their respective values. As one can clearly notice, the behavior in case of uniform-motion blur is coherent
with the results in [17] and significantly different from the one of camera shake.

image of the dataset, respectively; the symbol q stands for
the concatenation of the two vectors. From the dataset of raw
images used in Section V, we computed γ̂ = 27.20; such value
is required to correctly substitute (24) in the restoration-error
model.

2) Uniform-Motion Blur: The PSF standard deviations in
case of uniform-motion blur evolve with T as

ς̃L(T ) = γ · aLT,
ς̃S(T ) = 0,

(26)

where γ > 0 is the motion speed, which determines the length
γT of the PSF at time T and aL = 1√

12
is the standard de-

viation of the uniform distribution in [0, 1]. These expressions
can be easily derived from the uniform-motion equations in
continuous domain. Analogous to (25), an estimate of γ can
be computed from the acquired raw images as

γ̂ =

√√√√√med


[(

12
(
ς
(j)
L

)2
− 2

)(
1

T (j)

)2
]
j

,

obtaining γ̂ = 17.81.

D. Validation
Fig. 13 illustrates the surfaces of the three considered

restoration-error models corresponding to the green channel

(yielding λMG = 930) in the 3D space having coordinates(
ςL, ςS , R930,0(ςL, ςS , T )

)
. The colored dots represent the

points
(
ςL, ςS , R930,0(ςL(T ), ςS(T ), T )

)
, which correspond

to the curves given by the right-hand side of (22). Note that
the exposure times associated to the surfaces have changed
w.r.t. to those in Fig. 6, since here λM = 930.

The restoration errors predicted by the computed models
are better shown in the plots of Fig. 14, where are reported,
for each channel of the Bayer pattern and for each considered
restoration-error model, the outcomes for both the camera-
shake and uniform-motion blur.

By comparing the trends of the corresponding plots in Fig.
9 and 14 it emerges a substantial similarity – in terms of
qualitative behavior – between the outcomes of the restoration-
error models and the RMSEs measured on the dataset of
camera raw images after restoration with the corresponding
algorithm. Furthermore, we can observe that the predicted
RMSE values shown in Fig. 14 are indeed very close to those
measured from the dataset of raw images.

Most importantly, the optimal exposure times identified by
our model are consistent with those that emerge from the tests
on camera raw images. Therefore, the hints provided by the
restoration-error model are substantial, and in practice these
allow to pilot the image acquisition in order to maximize the
performance of the deblurring algorithm employed.
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Fig. 10. An example of raw data acquired from Balloons (blue channel). The top row contains the estimated PSFs: the blur develops along trajectory f). The
second row contains the camera raw data, acquired with settings (from left to right): 3, 4, 5, 6, 8, 10. The remaining rows show the restored images using
different deconvolution algorithms. Third row: Anisotropic LPA-ICI Deconvolution, RMSE values (from left to right): 13.10, 7.23, 5.72, 5.76, 6.57, 6.89.
Fourth row: Deconvolution using Natural Image Priors, RMSE values (from left to right): 12.33, 7.77, 6.30, 6.16, 6.18, 6.78. Bottom row: Richardson-Lucy
Deconvolution, RMSE values (from left to right): 33.68, 22.41, 15.14, 11.04, 9.51, 9.10. Image intensities have been rescaled for visualization purposes.

In this sense, the derived models show satisfactory general-
ization properties on raw data, proving that the desiderata of
Section III-E are satisfied by the choices that lead to computing
these models, and in particular by the PSF descriptors and the
smoothing operator used.

VII. DISCUSSION

A. Camera Shake vs. Rectilinear Blur

From the plots in Fig. 9 we can conclude that the camera-
shake and the uniform-motion blurs require different acquisi-
tion strategies to maximize the quality of the restored image.

In case of camera shake the exposure time can be sig-
nificantly increased, eventually improving the quality of the
restored image, as the restoration error practically stabilizes
after reaching its point of minimum. This also proves that the
practice of minimizing the noise by using long exposure times
(as in [2], [4], where a long-exposure image is deconvolved
and the PSF is estimated exploiting an additional short-
exposure image) is indeed an effective strategy to obtain good
restoration quality out of images acquired with a hand-held
camera in low-light conditions.

In case of uniform-motion blur, contrary to camera shake,
the restoration errors show a clear minimum, which corre-

sponds to the optimal exposure time: beyond such optimal
value, the error definitively increases. This result is coherent
with the experimental validation in [17], and with analytical
results concerning this qualitative behavior which indeed char-
acterizes any deblurring algorithm D when the observations
are corrupted by uniform-motion blur. A very recent preprint
by Tendero et al. [32] provides further mathematical proofs of
this phenomenon.

B. Space-variant blur

The modeling used in our work relies on a space-invariant
(convolutional) blur (2), (3) assumption, which implies that
the PSF is the same at every location in the image. This sim-
plification was employed rather successfully in many works
concerning camera-shake removal (see e.g., [1], [4], [5]), and
it is probably justified by the fact that, in most practical
cases, the motion can be treated in first approximation as
purely translational, therefore leading to space-invariant PSFs
for sufficiently distant targets [31]. Even though methods and
models for space-variant blur have lately gained popularity
(see, e.g., [13], [26], [33]–[36]), we resorted to the space-
invariant blur modeling for the sake of simplicity.
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Fig. 11. An example of raw data acquired from Liza (green channel). The top row contains the estimated PSFs: the blur develops along trajectory e). The
second row contains the camera raw data, acquired with settings (from left to right): 2, 3, 5, 6, 8, 10. The remaining rows show the restored images using
different deconvolution algorithms. Third row: Anisotropic LPA-ICI Deconvolution, RMSE values (from left to right): 10.01, 7.56, 5.19, 5.61, 6.09, 8.99.
Fourth row: Deconvolution using Natural Image Priors, RMSE values (from left to right): 9.79, 7.57, 5.18, 5.16, 5.54, 8.16. Bottom row: Richardson-Lucy
Deconvolution, RMSE values (from left to right): 28.43, 18.25, 8.47, 7.33, 7.12, 9.43. Image intensities have been rescaled for visualization purposes.

On the one hand, based on the examples of space-variant
PSFs from camera-shake blur shown in very recent works [13],
[34], [35], [37], we argue that even though blur PSFs can be
different at different locations in the image, typically they all
share essentially the same values of the standard deviations
ςL, ςR. Thus, our analysis may be applied also to such more
general case, provided that the employed deconvolution algo-
rithm D for space-invariant PSF is replaced by one designed
for the removal of space-variant blur.

On the other hand, scenes that include targets at close
range on a distant background or targets with different relative
motions, cannot be modeled by the proposed methodology, at
least without introducing some form of image segmentation.

C. Practical Applicability

Let us discuss how to face few practical issues that need
to be considered for using a suitably trained restoration-error
model to determine the optimal exposure time before acquiring
a picture.

Firstly, the restoration-error model assumes that the param-
eters λ, σ and M are known. The noise parameters λ and
σ depend on the sensor hardware and (to a lesser extent) on
the temperature. In practice, these parameters can be profiled

beforehand and stored in a look-up table, or they can be
automatically estimated from a single auxiliary image (e.g.,
following the approach presented in [38]). The image range
M can be easily estimated from an auxiliary exposure or by
using a light meter.

Then, it is necessary characterize the specific motion blur af-
fecting the acquisition, obtaining equations ςL(T ) and ςS(T ),
like, e.g., (24) and (26). In the specific case of camera-
shake blur, customized parameters aL and aS for (24) can be
estimated for each camera user, studying the way the camera
typically shakes, following the approach of [18] and possibly
leveraging accelerometers. It is therefore worth stressing that,
in the specific case of camera shake, the parameter γ depends
on the camera optics and on the scene distance, while, in the
case of uniform-motion blur, γ is determined by the apparent
speed of the motion: in both cases it needs to be estimated
before the acquisition. However, this is not a real issue for
modern digital cameras that may estimate these using the
target tracking or autofocus functionalities. Other exotic sorts
of motion blur may be handled following the general approach
presented in [18], or, in case the motion source is well known,
through an analytical formulation.
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Fig. 12. An example of raw data acquired from Salamander (red channel). The top row contains the estimated PSFs: the blur develops along trajectory a).
The second row contains the camera raw data, acquired with settings (from left to right): 2, 3, 5, 6, 8, 10. The remaining rows show the restored images using
different deconvolution algorithms. Third row: Anisotropic LPA-ICI Deconvolution, RMSE values (from left to right): 18.20, 13.44, 8.41, 9.86, 16.33, 22.89.
Fourth row: Deconvolution using Natural Image Priors, RMSE values (from left to right): 18.10, 13.07, 7.90, 8.89, 14.67, 20.31. Bottom row: Richardson-Lucy
Deconvolution, RMSE values (from left to right): 34.77, 25.53, 12.43, 12.11, 17.23, 22.93. Image intensities have been rescaled for visualization purposes.

VIII. CONCLUSIONS

We have detailed a methodology for deriving a statistical
model of the performance of a given deblurring algorithm,
when used to restore motion blurred images. Differently from
our earlier work on rectilinear blur [17], we do not enforce
any analytical formulation for the trajectories generating the
motion-blur PSFs and we deal with random motion, which is
effectively handled by means of statistical descriptors of the
PSF.

Thanks to extensive experiments on camera raw images we
investigated the blur/noise trade-off that rules the restoration
performance in presence of motion blur, and we show that the
computed restoration-error models provide estimates that are
coherent with the results on real data.

In practice these models, combined with functions ex-
pressing how the PSF descriptors vary w.r.t. the exposure
times, provide concrete guidelines for predicting the exposure
time that maximizes the quality of the image restored by
the corresponding algorithm. The outcomes of the restora-
tion error models obtained from three different deconvolution
algorithms (namely the Anisotropic LPA-ICI Deconvolution,
the Deconvolution using Sparse Natural Image Priors, and the
Richardson-Lucy Deconvolution), agree with the results shown

in [17], with the acquisition strategies followed in the practice
to cope with camera shake, and with an extensive experimental
evaluation performed on camera raw images.
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