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Abstract. The prompt detection of faults and, more in general, changes in 

stationarity in networked systems such as sensor/actuator networks is a key 

issue to guarantee robustness and adaptability in applications working in real-

life environments. Traditional change-detection methods aiming at assessing 

the stationary of a data generating process would require a centralized 

availability of all observations, solution clearly unacceptable when large scale 

networks are considered and data have local interest. Differently, distributed 

solutions based on decentralized change-detection tests exploiting information 

at the unit and cluster level would be a solution. This work suggests a novel 

distributed change-detection test which operates at two-levels: the first, running 

on the unit, is particularly reactive in detecting small changes in the process 

generating the data, whereas the second exploits distributed information at the 

cluster-level to reduce false positives. Results can be immediately integrated in 

the machine learning community where adaptive solutions are envisaged to 

address changes in stationarity of the considered application. A large 

experimental campaign shows the effectiveness of the approach both on 

synthetic and real data applications.1 
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1   Introduction 

Networked embedded systems and sensor/actuator networks designed to work in 

real-life environments, e.g., water distribution systems, intelligent buildings, critical 

infrastructure networks, are subject to faults and ageing effects which generally 

induce a change in the statistical properties of the data coming from the field. 

Anticipating the detection of a change is a key issue to support intervention and avoid 

possible fault effects that would induce critical, when not catastrophic, consequences.  

Change detection through quantitative observations of process variables is a hot 

research topic largely addressed in the literature. Among different strategies, refer to 

[1] for a comprehensive review, of particular interest are Change-Detection Tests 

(CDTs) [2][3], i.e., statistical techniques aiming at assessing satisfaction of the 

stationarity hypothesis for the data generating process. These tests generally assume 
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that observations are all available in a centralized fashion at the decision making unit. 

This situation, even if acceptable in some cases, is not valid in general since it 

requires a large data exchange of no interest to the user with a communication cost. 

The problem amplifies in those remote parts of the network where energy is an issue 

despite the presence for energy harvesters, i.e., based on photovoltaic cells. To 

overcome such aspects, intelligence, here to be intended as the change-detection 

ability and solution adaptation, must be distributed among units which cooperate at 

different abstraction levels to build up a decision. 

In the literature, distributed CDTs, can be grouped as distributed detection tests 

with quantized observations and local decisions. In both cases, all sensing units 

communicate with a centralized decision making unit (called data-aggregation 

center), whose goal is to aggregate data to provide the final decision. 

Tests following the former approach (e.g., [4]) rely on the quantization of 

observations at the sensing units followed by a centralized analysis of such data at the 

central station. The use of quantized observations, which aims at controlling the 

power consumption in communication by reducing the bits to be transmitted does not 

generally provide the expected advantage in real-world applications since the bit 

savings is a small percentage of the packet size.  

Differently, distributed tests following the latter approach (e.g., [5][6]) rely on 

independent local CDTs at the unit level whose decisions are transmitted to the unit 

for aggregation and decision. This philosophy fits well with distributed 

sensor/actuator networks. While tests at the sensing-unit level can be any traditional 

(centralized) CDT acting on available data, the key issue is how to effectively 

aggregate local decisions to achieve a final decision with low false positives and 

negatives. The works present in the literature are straightforward and generally 

propose to wait for a fixed number k of detections from the sensing units before 

raising a global variation in the data generating process. Assuming N sensing units in 

the network, traditional solutions set k equals to 1 (i.e., the distributed CDT detects a 

variation when at least one sensing unit detects a change) or N (i.e., the distributed 

CDT detects a variation when all the sensing units detect a change). Other values of k 

could be considered as well; e.g., [7] suggests k=N/2. Obviously, the value of k 

greatly influences the detection performance of the distributed CDT. In fact, low 

values of k guarantee low detection delays at the expenses of higher false positives. 

On the contrary, as k increases, detection delays increase but false positives decrease. 

This work proposes a novel distributed change-detection test where each sensing 

unit performs a CDT and, once a change is detected, a second CDT algorithm is 

activated at the data-aggregation center receiving data from the network’s cluster. If 

the change is confirmed, the CDT signals a global change in the network, otherwise 

the local detection is considered to be a false positive and the sensing units providing 

the wrong assessment are retrained to improve subsequent detection accuracy. We 

comment that the proposed distributed CDT improves over the distributed tests 

present in the literature by substituting the voting mechanism on k with a theoretically 

sound mechanism exploiting correlations among acquired observations. Furthermore, 

the two-levels distributed architecture allows us for being very reactive and prompt in 

detections while keeping under control occurrences of false positives. 



The paper is organized as follows: Section II introduces the problem statement, 

while the suggested distributed CDT is presented in Section III. Experiments on 

synthetic and real applications data are shown in Section IV. 

2   Problem Statement 

Consider a sensor/actuator network composed of N sensing units that observe the 

same physical phenomenon, and a data-aggregation center that is connected with all 

units. The i
th

 sensing unit acquires over time data from a process 	X�: N → R, which 

generates independent and identically distributed (i.i.d.) observations drawn from an 

unknown probability density function (pdf). Under specific assumptions, the case of 

dependent observations w.r.t time could be brought back to this framework by means 

of suitable transformations (e.g., the i.i.d. assumption may concern the parameters of 

a model describing the data under suitable hypotheses [9] or innovation [3]). We 

outline that we do not require independence or the same distribution among 

observations coming from different sensing units. Let Oi,T={Xi(t), t=1,…,T} be the 

sequence of observations acquired by the i
th

 unit up to time T, and assume that (at 

least) the first T0<T observations acquired by all sensing units have been generated by 

the process in a stationary state. Thus, �	,�� represents the training set of the i
th

 unit, 

i.e., a set of observations used to configure the parameters of the test. The proposed 

approach is nonparametric and, therefore, the pdfs of the data acquired in all the 

sensing units are unknown, both before and after the change. Moreover, after the 

change, the pdfs description can be time independent (e.g., abrupt changes) or evolve 

with time (e.g., drifts). We assume that the 
	s under monitoring change their 

statistical properties at time instant t=T
*
 and that all sensing units can, potentially, 

observe the change. However, no assumptions are made about the effect of this 

change on each unit, as the magnitude and the profile of the change may vary from 

unit to unit (e.g., it may even affect only few nodes).  

3   Distributed Change-Detection Test 

The proposed distributed CDT relies on N units that independently monitor the 

process by means of unit-level CDTs, and by a data-aggregation center, which 

validates local detections by analyzing information sent from each node. In particular, 

the designed solution follows the approach delineated in [8] and combines the ICI-

based CDT [10] at the unit-level, with a hypothesis test based on the Hotelling T-

square statistic [11] at the data-aggregation center. 

The proposed solution is outlined in Algorithm 1: during the training phase the 

ICI-based CDTs in execution on sensing units are configured using their respective 

training sequences (line 1). These tests monitor the process by extracting ad-hoc 

features from the observations: features extracted from �	,�� are then sent to the data-

aggregation center (line 2), as they characterize how the i
th

 unit perceives the 

stationary process. During the operational life (line 4), for each new observation, each  



 

unit independently assesses whether the incoming data have been generated by the 

process in its initial (stationary) state or not by relying on the ICI-based CDT. When 

no units detect a change, the process is considered stationary, and each unit waits for 

the next measurements.  

Denote as ST the set of units detecting a variation at time T (line 5): each unit in ST 

runs independently the refinement procedure described in [12] to provide an estimate 

Tref,j , 1≤ j≤ |ST| of the change time-instant T
* 

(line 7). These estimates are sent to the 

aggregation center and there processed (e.g., by choosing the earliest one, or by 

computing their mean) to determine a common unique estimate Tref of T
* 
(line 8).  

The estimated change time Tref is then propagated through the network and made 

available to units. In turn, units send the locally stored extracted features in the 

[Tref,T] temporal interval (line 9) to the data-aggregation center (an internal shift 

buffer is made available to locally store incoming observation). 

At the aggregation center the hypothesis test aims at reducing false positives by 

performing a multivariate analysis to assess if there is a statistical evidence that 

features computed in �	,�� differs from features in [Tref,T], after the suspected change 

(line 10). If the aggregation center validates the detection (line 12), each node is 

retrained to monitor further variations w.r.t. the new process state on the forthcoming 

observations (line 13). In particular, each node restarts the ICI-based CDT using the 

features computed in [Tref,T]. On the contrary, when the aggregation center does not 

validate the detection (line 15), each units in ST  is informed to have provided a false 

positive, and it is retrained using the features estimated from the initial training set �	,��, to keep on monitoring changes w.r.t. the initial status (line 16). We provide now 

further details and comments related to the proposed algorithm. 

3.1   ICI-based change-detection test at the unit level 

Since in most of practical applications the distribution of the process before and 

after the change remains unknown, nonparameteric sequential CDTs have to be 

Algorithm 1: Distributed Change-Detection System  

1. Each unit:configure the ICI-based CDT using {�	,�� , 1≤ i≤ N}; 

2. Each unit: send feature extracted from �	,��  to the aggregation center. 

3. while(units acquire new observations at time T){ 

4. Each unit runs the ICI-based CDT at time T; 

5. let ST be the set of units where the ICI-based CDT detects a change at time T; 

6. if (ST is not empty) { 

7.    Each unit in ST: run the refinement procedure, sent Tref,i  to the aggregation center. 

8.    Aggregation center: compute Tref out of  Tref,i, 1≤ i≤ N , send Tref  to each unit. 

9.    Each unit: send features in [Tref ,T] to the  aggregation center; 

10.    Aggregation center: runs the hypothesis test; 

11.    if (second-level test detects a change){ 

12.          Change is validated. 

13.          Each unit in ST  the ICI-based CDT is re-trained on the new process status} 

14.    else{ 

15.         Change hypothesis is discarded (false positive);  

16.         Each unit in ST: reconfigure the ICI-based CDT to improve its performance }}} 



enforced at the unit level. Among available solutions present in the literature, e.g., see 

[2][3], the ICI-based change-detection test [10] has been selected for its low 

computational complexity and strong theory. Moreover, the test, differently from 

other nonparameteric sequential CDT mechanisms, is endowed with a change-

detection refinement procedure able to provide an accurate estimate Tref of the time 

instant T
*
; such an information is then used in Algorithm 1 (line 7). 

Basically, the ICI-based CDT monitors the data generating process by relying on 

i.i.d. and Gaussian distributed features (in the stationary case); the Gaussian 

hypothesis is satisfied thanks to ad-hoc transformations. The features we use here are 

derived from the sample mean and variance (computed on disjoint subsequences of 

observations) and represent the data transmitted to the aggregation center to validate 

the unit-level detections (line 9). 

3.2   The Change-Detection Test at the Data-Aggregation Center 

The test running at the aggregation center level aims at assessing the detections 

raised by the sensing-units by exploiting group information. In particular, the Tref 

obtained by processing the local estimates Tref,i allows us for selecting the 

observations in [Tref,T] stored in each sensing unit, that are representative of the 

process after the change. A multivariate hypothesis test based on the Hotelling T-

square statistic [11], which is the classical technique to inference a change in the 

mean of a Gaussian multivariate random variable, is executed to assess if there is a 

statistical evidence (according to a defined significance level α) that the mean features 

value in ��� equals that in [Tref,T]. The analysis performed at the aggregation center 

focuses on the feature detecting the change at the sensing units: let F
0
i and F

1
i be the 

sequences of feature values at the i
th

 sensing unit in �	,�� and [Tref,T], respectively; let 

n0 and n1 be their lengths. The inference is performed on the mean vectors ���and ���, 

defined such that their i
th 

components are �����	 = ∑ �	����/�������  and �����	 =
∑ �	����/������� ,with i=1,..,N. The covariance matrix Σ is computed by pooling the 

covariances estimated from the features F
0

i and from F
1
i. The Hotelling T-square 

statistic is 

� = ���� − ���� !" �
�� + �

��$ 	Σ	&
'�

���� − ����, 
and is distributed as  

" ��(��')
��(��'*'�$ 	ℱ�,, �� + �� − , − 1�, 

where ℱ denotes the F distribution. This allows us for verifying if the null hypothesis 

“the difference between ��� − ��� equals 0” needs to be rejected with confidence α. 

The Hotelling T-square statistics require n0>N and n1>N. For this reason, the length 

of the training sequence and the minimum amount of samples to be considered 

between Tref and T should be suitably adapted to the number of sensing units in the 

network. Large networks could be eventually partitioned, only for change-detection 

purposes, into smaller clusters of units. 

  



Table 1. Simulations results. 
   Proposed CDS Traditional k/N CDS 

   α=0.05 α=0.01 α=0.005 k=1 k=5 k=10 

D1 

Abrupt 

δ =.1σ 

FP(%) 16.0 4.6 4.0 69.3 0 0 

FN(%) 0 0.6 2.6 0 0 0 

MD  4456.6 5289.5 5350.2 4618.9 8523.4 14508.2 

Abrupt 

δ=.5σ 

FP(%) 16.0 4.6 4.0 69.3 0 0 

FN(%) 0 0 0 0 0 0 

MD  808.8 793.8 794.2 852.6 1478.1 2179.0 

Abrupt 

δ =2σ 

FP(%) 16.0 4.6 4.0 69.3 0 0 

FN(%) 0 0 0 0 0 0 

MD  449.1 449.1 449.2 442.6 468.9 545.4 

Drift 

δ= .1σ 

FP(%) 16.0 4.6 4.0 69.3 0 0 

FN(%) 5.3 15.3 23.3 0 0 4.6 

MD  34884.8 39642.7 41709.4 21767.1 37743.6 51967.9 

Drift 

δ = .5σ 

FP(%) 16.0 4.6 4.0 69.3 0 0 

FN(%) 0 0 0 0 0 0 

MD  11633.7 12215.4 12861.3 10034.3 14937.8 19263.2 

Drift 

δ = 2σ 

FP(%) 16.0 4.6 4.0 69.3 0 0 

FN(%) 0 0 0 0 0 0 

MD  5019.6 4997.4 5181.3 4624.2 6972.7 8703.8 

D2 Abrupt 

FP(%) 11.3 2.0 0.6 65.3 0 0 

FN(%) 0 0 0 0 0 0 

MD  461.5 463.8 463.8 457.8 555.9 2643.1 

4   Experiments 

To validate the effectiveness of the suggested distributed change-detection test we  

considered both synthetic and real applications applied to a network of N=10 

sensorial units. Performances of the proposed approach are compared with those of 

traditional methods (a global detection is raised when at least k sensing units out of N 

detect a variation [5]-[7]). At the unit level the detection test is the ICI-based CDT 

shown to be particularly effective in the literature [10]. Three indexes have been 

considered to assess the performances of the tests: 

• False positive index (FP): it counts the number of times a test detects a change 

when there it is not. 

• False negative index (FN): it counts the times a test does not detect a change 

when there it is. 

• Mean Delay (MD): it represents the time delay in detecting a change (expressed 

in terms of the number of observations). 

Application D1 – The i
th

 sensing unit receives 90000 observations extracted from a 

Gaussian distribution ,�. = 1, /) = 1� then, to reproduce a scenario where each unit 

has different gain and offset values, these data are scaled by σi>0 (the gain), and a 

constant term µi>0 (the offset) is added. Thus, the data generating process at each unit 

can be described as N(µi + σi, σi
2). We considered two kinds of perturbations having 

magnitude δi∈{0.1σi,0.5σi,2σi} affecting the mean value at sample T
*
=30000: an 

abrupt change, where the mean suddenly increases of δi, and a drift, where the mean 

increases linearly starting at T
*
 and reaches µi + δi + σi at T=90000. 



 
Fig. 1. Mean Delay (MD) w.r.t. false positives for the proposed CDT (with α ranging from 

0.005 to 0.1) and the traditional k out of N detection test with δ = 0.1σ. 

Application D2 – Each sensing unit is a photodiode excited by X-rays. Sequences 

contain 60000 samples and show a perturbation affecting the mean at sample 30000 in 

the δ∈{0.1σ,2σ} range (being σ estimated from samples [0,30000]). As shown in [8], 

these data are far from being Gaussian distributed. 

The ICI-based CDTs in execution on the units have been trained with the first 400 

samples for each dataset. According to [12], we experimentally fixed Γ=2.5 and Γref=3 

(the tuning parameters for the ICI-based CDT and for the refinement procedure, 

respectively). We considered α=0.005, α=0.01 and α=0.05 for the second-level 

hypothesis test (1-α is the test confidence). 

 Table I shows the comparison between the proposed and the traditional approach 

with k ∈{1, N/2, N}; performances are averaged over 150 runs. As far as application 

D1-abrupt is concerned, the proposed CDT provides prompter detections w.r.t. the 

traditional approach, yet guaranteeing lower false positives. As expected, as 

confidence 1-α decreases, the CDT increases both false positives and detection 

delays. The same behavior can be observed when parameter k in the traditional 

approach. Obviously, the detection delays of both approaches decrease as the intensity 

of the perturbation δ increases, since the change is more easily detectable. These 

results are particularly interesting since the proposed approach allows to detect a 

change in the data generating process even when the variation is detected by just a 

sensing unit (and then confirmed at the aggregation center), while in the traditional 

approach the change must be detected by at least k units (which could be critical when 

the change in the process is perceived only by a subset of the N units). 

Experiments on application D1-drift show that both false negatives and the mean 

delay are higher than those in the abrupt change case since the change is smooth and 

more difficult to detect. In particular, with δ = 0.1σ, the suggested approach provides 

lower performance than the traditional approach since, as shown in [8], the 

aggregation center might discard the detections provided by the sensing units due to 

the lack of statistical evidence in rejecting the stationary hypothesis (this might be 

caused both by the small magnitude of the perturbation and by an inaccurate estimate 

of  Tref). To reduce both false positives and detection delays, higher values of α should 

be considered (e.g. α ≥ 0.1). On the contrary, the proposed approach overcomes the 

performance of the traditional methods for larger values of δ. Experimental results of 

application D2 show that the proposed CDT well behaves even with real non-

Gaussian data and that results are in line with those of application D1. 



A more detailed comparison between the proposed and the traditional approaches 

has been performed to evaluate performances when k ranges from 1 to N. Results are 

given in Figure 1 for application D1-abrupt with δ = 0.1σ. Performance improvements 

are appreciable, obtained at the expenses of negligible increases of false negatives as 

presented in Table 1: in particular, given a tolerated percentage of false positives, the 

proposed approach guarantees a lower detection delay once compared to the 

traditional one. Similarly, at equal values of detection delays, the proposed approach 

provides lower false positive rates. For example, considering acceptable a FP rate of 

5%, the suggested test yields MDs about 25% lower than the traditional approach. 

5   Conclusions 

This work presents a distributed nonparametric CDT designed to work in 

networked embedded systems and sensor/actuator networks. The novelty of the 

proposed approach resides in the distributed two-levels CDT where a change is first 

detected (ICI-based method) at the unit level and then assessed at the cluster level by 

exploiting cluster information (Hotelling test). This allows the test for reducing false 

positives, a common problem which arises in sequential CDTs. Experiments applied 

to synthetic and real applications show the effectiveness of the proposed approach. 
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