
 

 

 

  

Abstract – Design of applications working in nonstationary 

environments requires the ability to detect and anticipate 

possible behavioral changes affecting the system under 

investigation. In this direction, the literature provides several 

tests aiming at assessing the stationarity of a data generating 

process; of particular interest are nonparametric sequential 

change-point detection tests that do not require any a-priori 

information regarding both process and change. Moreover, 

such tests can be made automatic through an on-line inspection 

of sequences of data, hence making them particularly 

interesting to address real applications. Following this 

approach, we suggest a novel two-level hierarchical change-

detection test designed to detect possible occurrences of 

changes by observing incoming measurements. This 

hierarchical solution significantly reduces the number of false 

positives at the expenses of a negligible increase of false 

negatives and detection delays. Experiments show the 

effectiveness of the proposed approach both on synthetic 

dataset and measurements from real applications. 

I. INTRODUCTION 

espite the fact that change detection tests, i.e., methods 

used to assess the stationary hypothesis of a data 

generating mechanism, have been studied for several 

decades, research has never been interrupted because of their 

relevance in real-world applications (e.g., fault detection, 

quality analysis of products, clinical trials,…). Change-

detection tests (CDT) can be grouped into three main 

families [1]: statistical hypothesis tests, sequential 

hypothesis tests, and change-point detection tests. 

 Statistical hypothesis tests work by accepting/rejecting the 

stationarity hypothesis of a process by analyzing a finite set 

of samples and building up an estimator for 

confuting/accepting such hypothesis. In particular, these 

tests either require to verify the validity of an assumption 

abut the pdf (e.g., the Z-test and t-test [2]) or partition the 

available samples into two disjoint subsets for evaluating 

statistical discrepancies between them (e.g., the Mann-

Whitney U test [3] or the Kolmogorov-Smirnov test [4]). 

Unfortunately, as stated in [5], the partitioning strategy used 

on the available samples affects the change-detection 

performance; at the same time, partitioning becomes a 

critical issue in on-line classification systems. In fact, the 

need of a continuous inspection of data streams makes 

difficult to propose a good partitioning even when 

considering sliding windows, whose size definition would 
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require a-priori knowledge of the change dynamics. 

Differently from statistical hypothesis tests, where the 

number of considered samples is fixed, in sequential 

hypothesis tests the number of samples depends on available 

data, thus it is a random variable. These tests (e.g., the 

Sequential Probability Ratio Test [6], [7] and the Repeated 

Significance Test [8], [9]) sequentially analyze acquired 

samples one by one, until the decision to accept or refuse the 

“no-change” hypothesis can be taken with a given level of 

confidence. Sequential hypothesis tests are theoretically well 

grounded but suffer from the need to make a decision about 

the null hypothesis when a given confidence level is reached. 

This is not a drawback in general, as often it is required to 

take a decision about a null hypothesis (e.g., in medical 

applications one has to decide if a certain drug is or is not 

effective). However, this can be an issue in quality analysis 

where the aim of the change-detection test is to identify 

when the process under monitoring changes its statistical 

properties.  

Sequential change-point detection tests [1] monitor the 

process by looking at indications for the occurrence of a 

change (i.e., the null hypothesis is rejected) without the need 

to make a decision as soon as an acceptable confidence level 

is granted. The concept of state of statistical control has 

been introduced by Shewhart [10] to model the statistical 

behavior of selected characteristics of the process at a 

specific time instant. Any change from the control state, 

which indicates a variation in the pdf of the process under 

monitoring, is detected by means of predefined thresholds on 

the monitored characteristics. To increase the robustness of 

the Shewhart chart (i.e., reduce the false positives), several 

moving average mechanisms have been proposed (e.g., 

[11]). A different approach is suggested by the CUSUM test 

[12], [13], which exploits the log-likelihood ratio between 

the pdfs of the null and the alternative hypotheses. This test 

guarantees an high detection ability but requires knowledge 

of the pdf before and after the change, thus belonging to the 

class of parametric change-detection tests. Assuming that the 

pdf is given is often impractical in real-world applications, 

and nonparameteric extensions of the CUSUM test have 

been presented in the literature (e.g., see [14], [15], [16]). In 

particular, [14] suggests a distribution-free CUSUM test 

aiming at detecting abrupt changes in the median of a 

distribution, [15] presents a nonparametric CUSUM-based 

test for the detection of changes in the mean value, and [16] 

proposes a self-configuring and nonparametric CUSUM test 

following a computational-intelligence approach. 

Differently, [17] presents a nonparametric sequential 

change-point detection test that uses the Intersection of 

Confidence Intervals (ICI) rule to monitor the evolution of 
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Fig. 1. The architecture of the proposed hierarchical, change-detection 

test. 

 the data generating process. 

This work proposes a novel approach in the field of 

sequential change-point detection by suggesting a two-level 

hierarchical change-detection test. The first-level consists in 

a change-detection test that activates, when a change is 

detected, a second-level change-detection test to confirm (or 

not) the suspected change. If the change is confirmed, the 

change-detection mechanism signals a detection, otherwise 

the first-level detection output is considered to be a false 

positive and the test (eventually retrained) restarts to assess 

further changes. It should be noted that the proposed change-

detection test differs from the mere execution of two 

subsequent tests. In fact, by referring to Fig. 1, the first- and 

the second-level change-detection tests are able to cooperate 

by exchanging information/evaluations about the detected 

change to improve on-line the detection abilities. 

Experiments show that the suggested change-detection-

test outperforms state of the art tests by significantly 

reducing false positives and guaranteeing a low false 

negatives and detection delays. 

The paper is organized as follows: Section II introduces 

the problem statement, while the general approach of the 

suggested change-detection test is presented in Section III. 

Section IV specifies the general approach by describing a 

hierarchical ICI-based change-detection test. Experimental 

results are shown in Section V. 

II. PROBLEM STATEMENT 

In stationary conditions, the process under monitoring 

!!! ! ! generates independent and identically distributed 

(i.i.d.) observations over time !, extracted from an unknown 

probability density function (pdf). Let !! ! !! ! ! ! !

!!! !!! be the sequence of observations up to time ,T  and 

let us assume that (at least) the first !! observations come 

from the process ! in a stationary state. Let !!! be the 

training set of the change-detection test, i.e., a set of 

observations generated in stationary conditions used to 

configure the test parameters. The suggested approach does 

not require the pdfs of the process before and after the 

change, which remain unknown. Moreover, the pdf after the 

change may be time independent (abrupt changes) or evolve 

with time (drifts). 

The goal of the change detection test is to identify the 

time instant !! where the process ! changes its statistical 

properties. A good test has to reduce the detection delays 

(i.e., the time needed to detect the change) and minimize 

both false positives and negatives. 

III. A HIERARCHICAL CHANGE-DETECTION TEST:  

THE GENERAL APPROACH 

According to the hierarchical approach illustrated in Fig. 

1, the process is steadily monitored by a first-level CDT. 

Whenever this test detects a change, it activates a second-

level test to validate its proposal. If the detection is 

confirmed, then that is the outcome of the hierarchical test 

and a change is detected in the process. On the contrary, if 

the detection is not confirmed, the first-level test is 

reconfigured to keep on monitoring the forthcoming data. 

The first-level CDT has to guarantee prompt detection 

abilities, even at cost of a relatively high false-positive rate, 

while the second-level acts only when triggered by a change 

detected at the first-level, to confirm or confute the first-

level detection. 

The hierarchical CDT is summarized in Algorithm 1. 

More in detail, the hierarchical CDT starts by configuring 

the first-level CDT on the training sequence !!! (line 1). 

Then, during the operational life (line 2), each new received 

observation (line 3) is analyzed by the first-level CDT, 

which assesses stationarity for the data generating process. If 

the first-level test identifies a change in the incoming 

observations (line 4), the data are further analyzed to provide 

the estimate !!"# of the change time instant !! (line 5). The 

second-level CDT exploits !!"# to assess differences in the 

statistical behavior of the process under monitoring before 

and after !!"# (line 6). Whenever the second-level CDT 

states that samples generated before and after !!"# comes 

from two different probability density functions, the 

detection raised by the first-level CDT is confirmed (line 7): 

thus the hierarchical test reveals a change in the data-

generating process and the hierarchical test is reconfigured 

on the new state (as done, for example, in [18] and [19]). On 

the contrary, when the second-level CDT does not detect a 

variation (line 8) then the first-level test is said to have a 

false positive. Hence, the first-level CDT is stopped and 

reconfigured to improve its performance (while keeping !!! 

as training sequence).  

The interaction between the two levels can be further 

improved, if needed, by modifying the parameters of the 

first-level CDT, thus reducing the probability of having a 

false positive in forthcoming data (e.g., by increasing a 

threshold).  

We now separately illustrate the requirements of the first-

level CDT and the second-level one. 

A. First-Level Change-Detection Test 

The first-level requires an on-line CDT to promptly detect 

changes in the process under monitoring, possibly without 

relying on a-priori information about the process distribution 



 

 

 

before and after the change. Since this test has to be 

executed on-line, its computational complexity might be a 

critical issue if the code is running on an embedded system. 

These requirements led us to consider nonparameteric 

sequential change-point detection tests (see Section I), which 

generally are nonparameteric versions of traditional 

parametric sequential change-point detection tests. As an 

additional requirement, the first-level test should provide, 

together with each detection, an estimate !!"# of the change 

time-instant !!. 

B. Second- Level Change-Detection Test 

The second-level CDT aims at validating detections raised 

by the first-level, as such this does not operate on-line, and it 

is executed only when a first-level detection occurs. In 

particular, we rely on the value !!"# provided by the first-

level CDT to partition the available observations into two 

disjoint subsequences (aiming at representing observations 

before and after the suspected change !!"#) and then we 

apply a statistical hypothesis tests for comparing the two 

subsequences, assessing possible variations in the data-

generating process. Hypothesis tests are theoretically well 

founded and, in their nonparametric versions, do not require 

a priori information about the monitored process or nature of 

the change. The literature about statistical hypothesis tests is 

rich (e.g., [2]-[4], and [20]): we point out that the choice of 

the particular hypothesis test to be used at the second-level is 

strictly related test at the first-level. In fact, the second-level 

test must be able to validate a hypothesis on (at least) the 

same statistical quantities monitored by the first-level test 

(e.g., the pdf, the mean, the median, the variance). For 

example, if the first-level CDT assesses variations in the 

mean of the monitored process, the second-level hypothesis 

test should compare the means (or possibly the distributions) 

of the process that generated the two aforementioned 

observation subsequences. In this case, a second-level test 

that compares the higher-order moments of these two 

populations (and not their means) is useless, as this would 

not be able to validate the outputs of the first-level. 

IV. A HIERARCHICAL ICI-BASED 

CHANGE-DETECTION TEST  

This section presents a hierarchical CDT, which relies on 

the ICI-based CDT [17] at the first-level, and on a 

multivariate hypothesis test exploiting the Hotelling’s T-

square statistic [20] for the second one. The ICI-based CDT 

monitors the stationarity of an unknown data-generating 

process by means of features (e.g. the sample mean and 

variance computed on disjoint subsequences of 

observations), as detailed in [17]. Features are suitably 

defined by means of ad-hoc transformations (when needed) 

to guarantee Gaussian distribution of their values. Then, the 

Intersection of Confidence Intervals (ICI) rule is applied to 

assess the stationary of the features values. Differently from 

other nonparameteric sequential change-point detection tests, 

the ICI-based CDT is endowed with a refinement procedure 

[19] that, once a change is detected, provides (by relying on 

repeated executions of the test on shorter observation 

subsequences) an accurate estimate !!"# of the time instant 

!
!. 

The second-level multivariate hypothesis test exploits !!"# 

and the feature values provided by the ICI-based CDT to 

conclude whether a null hypothesis on the mean value of 

Gaussian multivariate random variable can be rejected or 

not. Every time a change is detected, the null hypothesis 

consists in assuming that the means of the features values 

before and after !!"# are the same (i.e., their statistical 

difference is null), to validate the detection at the first-level. 

As stated in [19], the ICI-based CDT is particularly 

effective in detecting changes (low false positives and 

negatives) and it requires a low-computational complexity, 

but it suffers from an increase of the detection delays when 

!
! increases. Lower detection delays could be obtained by 

reducing the test parameter ! (!!"# in the refinement 

procedure), at the expenses of higher false positive rate. The 

second-level hypothesis test aims at mitigating the 

occurrence of false positives, while maintaining the first-

level change-detection test promptness. Thus, for a given 

false positive rate, the second-level CDT allows to use lower 

values of !, hence providing prompter detections. The 

suggested hierarchical ICI-based CDT is detailed in 

Algorithm 2. 

More in detail, during the training phase (line 1) the test 

computes the feature values and their confidence intervals on 

!!!
. For each new sample !!!! (line 3), the ICI-based CDT 

assesses the stationary of the data-generating process (it 

processes disjoint observation subsequences). Every time a 

change is detected (line 4), the refinement procedure [19] is 

activated to estimate !!"# (line 5). Then, the feature values in 

!!! !! are partitioned into two subsequence, as those 

belonging to !!!!!"#! and [!!"#!! !!. Let !! and !! be the 

mean of ICI-based CDT features on !!!!!"#! and [!!"#!! !!, 

respectively. The covariance matrix ! of the features is 

computed (line 6) by pooling the covariances [20] estimated 

before and after the change (since in stationary conditions ! 

is i.i.d., we can assume, as a null hypothesis, that the 

covariances are the same). Then, the Hotelling’s T-square 

statistic is used to assess if the null hypothesis “!! ! !! 

ALGORITHM I: 

HIERARCHICAL CDT(THE APPROACH) 

1. Configure the first-level CDT on !!! 

2. while (1){ 

3. input receive a new observation 

4. if (first-level CDT detects a nonstationary 

behavior){ 

5. Estimate !!"# 

6. if (second-level test detects a different statistical 

behavior before and after !!"#) { 

7. The first-level detection at ! is validated} 

8. else{ 

9. The first-level detection is discarded and first-

level CDT is reconfigured. 

10. Restart the first-level CDT} 

11. } 

12. } 

 



 

 

 

equals 0” can be rejected according to a defined significance 

level ! (line 7). 

When the multivariate hypothesis test validates the first-

level detection (i.e., the null hypothesis is rejected), the 

hierarchical CDT reveals a change in the subsequences 

containing !!!! (line 8). On the contrary, when the 

multivariate hypothesis test does not detect a variation 

between the two subsequences, the ICI-based CDT is newly 

configured from the original training set !!!, and restarted 

on !!! ! !! (line 10). 

A. Discussion 

The multivariate hypothesis test, which aims at reducing 

the false positive rate of the ICI-based CDT, relies on a 

partitioning of the observations in two subsequences 

generated by the process in stationary, and in the (suspected) 

nonstationary conditions. The more accurate the estimate of 

!!"#, the more effective the multivariate hypothesis test is. In 

other words, an inaccurate estimate !!"# of !! might induce 

either, when !!"# ! !
! the presence of feature values 

computed on samples coming from stationary conditions in 

!! or, when !!"# ! !
!, the presence of feature values 

computed on samples coming from nonstationary ones in !!. 

In both cases, the multivariate hypothesis test might not be 

effective in detecting a change in the process, hence, 

resulting in a false negative of the hypothesis test. This 

effect is more evident for small perturbations (e.g., an 

increase of the process mean about 10% of the process 

standard deviation) where the power of the multivariate 

hypothesis test is limited even by errors in estimating !!"#. 

On the contrary, in case of higher magnitude perturbations, 

an accurate estimate of !!"# is not so critical since variations 

are more easily detectable. 

We emphasize that other partitioning strategies are 

possible: for example a more conservative choice would be 

to compute !! from the original training set !!!, without 

considering features in !!!!!!"#!. However, we experienced 

that this latter choice is not successful for validating 

detections induced by small perturbations. 

V. EXPERIMENTS 

To validate the effectiveness of the suggested change-

detection test we consider both synthetically generated 

datasets (application D1) and measurements recorded from 

photodiodes (application D2). We compare the performance 

of the proposed hierarchical CDT with the ICI-based CDT 

[17], the CUSUM test [13], and the NP-CUSUM test [15]. 

Three indexes are used to assess the performances of the 

tests: 

• False positive index (FP): it counts the times a test 

detects a change in the sequence when there it is not. 

• False negative index (FN): it counts the times a test 

does not detect a change when there it is. 

• Mean Delay (MD): it measures the time delay in 

detecting a change. It is therefore an estimate of 

!!! ! !!!!, being ! the change-detection outcome, 

and !!! the mathematical expectation. 

Application D1 - refers to a simple mono-dimensional 

process ruled by a Gaussian pdf (with ! ! !, ! ! !). The 

process lasts 60000 samples. We considered two kinds of 

perturbations having intensity of !!! affecting the mean 

value at !! ! !"""": an abrupt perturbation (i.e., the mean 

becomes ! ! ! in !!!), and a drift (i.e. the mean increases 

linearly from !! ! !"""" to achieve ! ! ! at the end of the 

sequence). For each kind of perturbations we considered the 

following intensity values ! ! !!!!!! !!!!!!! !!!. 

Application D2 - refers to a dataset composed of 250 

sequences of light measurements acquired from photodiodes. 

Dataset of abrupt changes is composed of observation 

sequences that are similar to the synthetic ones: they last 

60000 samples and have been selected to provide a 

perturbation affecting the mean at sample 30000 in the 

! ! !!!!!!! !!! range (being ! the sample standard 

deviation of estimated from observations in [0,30000]). 

However, the sample distribution can be far from being 

Gaussian, as shown in Fig.4-6. Drift dataset is composed of 

shorter sequences: they last about 6000 samples and they 

have been manually aligned to guarantee that their change-

points lie at sample 2050. Examples of such sequences are 

shown in Fig 7, 8. 

The proposed hierarchical CDT, the ICI-based CDT, and 

the NP-CUSUM tests have been configured with the first 

400 samples of each dataset as a training sequence. The 

CUSUM has been configured assuming the pdf of X  as 

known both before and after the change: for this reason it 

has not been used on the drift datasets in D1 and for 

application D2. In both application D1 and D2 we 

experimentally fixed ! ! !!!"# ! ! in the hierarchical CDT, 

and we considered two different configurations of the 

parameter ! in the second-level hypothesis test: ! !!!" , and  

ALGORITHM II: 

ICI-BASED HIERARCHICAL CDT 

1. Configure the ICI CDT on !!! 

2. while (1){ 

3. input receive a new observation !!!! 

4. if (ICI CDT(subsequence containing !!!!) detects 

a nonstationary behavior){ 

5. Run the refinement procedure to estimate !!"# 

6. Compute !! and !!, the mean features in 

!!! !!"#! and [!!"#!! !!. Compute the features 

covariance !. 

7. if (multivariate hypothesis test rejects the null 

hypothesis “!! ! !! equals 0”) { 

8. The first-level detection is validated: the 

hierarchical CDT detects a change in !} 

9. else{ 

10. Restart the ICI CDT .} 

11. } 

13. } 

 



 

 

 

! ! !!!. To ease the comparison we set ! ! ! also in the 

ICI-based CDT. The threshold of the CUSUM test has been 

experimentally fixed to 20. We tuned the NP-CUSUM to 

guarantee a mean delay comparable with the one provided 

by the hierarchical CDT, and we had to use two different 

configurations for each application scenario, since the data 

ranges are significantly different (in application D1, 

! ! !!!" and ! ! !"", while in application D2,!! ! !" and 

! ! !", being ! and ! specified as in [15]). On the contrary, 

the ICI-based CDT and the hierarchical CDT use the same 

configurations in both applications.  

Table I shows the comparison among the considered 

change detection tests: performance values are averaged 

over 250 runs. The label “NA” denotes a “not applicable” 

situation as the CUSUM cannot be properly used when the 

process distribution is unknown (i.e., in those situations 

where, after the change, the process undergoes a drift or in 

application D2).  As far as the abrupt sequences of  

application D1 are concerned, the proposed hierarchical 

CDT provides a lower false positive rate than the ICI-based 

CDT, and the NP-CUSUM. As expected, the hierarchical 

CDT shows lower FP when ! ! !!!" and ! ! !!!. On the 

contrary, in this latter configuration it provides lower FN and 

MD. In both configurations, the hierarchical CDT shows 

higher FNs than the ICI-based CDT: such increase in FNs is 

particularly evident for very low perturbations (! ! !!!!) 

and disappears for higher magnitude perturbations. We 

emphasize that this drawback is well compensated by the 

meaningful reduction in the false positives. Note that, 

although the hierarchical CDT employs the ICI-based CDT 

at its first-level, it may provide lower MDs than the sole ICI-

based CDT, as this may have false detections that are instead 

filtered out by the second-level. 

The suggested hierarchical CDT outperforms the NP-

CUSUM in terms of FPs, FNs, and MDs. This is particularly 

relevant since the NP-CUSUM detects variations only in the 

TABLE I 

SIMULATION RESULTS FOR THE CONSIDERED DATASETS 

   
CUSUM ICI CDT 

Hierarchical CDT 
NP -CUSUM 

   !=0.05 !=0.1 

D1 

Abrupt 

!"!#!$%&' 

FP (%) 0 35.2 4.4 10 21.2 

FN (%) 0 0 10 6 14.8 

MD (sample)  3687.4 6822.6 7135.3 7089.6 10067.8 

Abrupt 

!"!#!$%(' 

FP (%) 0 35.2 4.4 1 21.2 

FN (%) 0 0 0 0 0 

MD  (sample)  153.7 1206.1 1041.0 1070.3 1052.5 

Abrupt 

!"!#!&' 

FP (%) 0 35.2 4.4 10 21.2 

FN (%) 0 0 0 0 0 

MD  (sample)  39.6 606.0 525.6 540.8 494.8 

Abrupt 

!"!#!)' 

FP (%) 0 35.2 4.4 10 21.2 

FN (%) 0 0 0 0 0 

MD  (sample)  10.6 311.7 275.0 282.0 241.9 

Drift 

!"!#!$%&' 

FP (%) NA 35.2 4.4 10 21.2 

FN (%) NA 2.8 38.8 30.0 42.4 

MD  (sample)  NA 20655.8 22227.1 22097.5 20999.4 

Drift 

!"!#!$%(' 

FP (%) NA 35.2 4.4 10 21.2 

FN (%) NA 0 2.7 1.8 0 

MD  (sample)  NA 8876.7 9591.9 9267.7 10144.6 

Drift 

!"!#!&' 

FP (%) NA 35.2 4.4 10 21.2 

FN (%) NA 0 0 0 0 

MD  (sample)  NA 6099.0 6287.4 6227.3 6622.4 

Drift 

!"!#!)' 

FP (%) NA 35.2 4.4 10 21.2 

FN (%) NA 0 0 0 0 

MD  (sample)  NA 4246.8 4123.8 4138.6 4377.4 

D2 

Abrupt 

FP (%) NA 35.2 5.6 10 26.8 

FN (%) NA 0 0 0 2 

MD (sample) NA 614.4 510.9 521.7 2763.7 

Drift 

FP (%) NA 8.4 2 2.4 3.6 

FN (%) NA 0 0 0 0 

MD (sample) NA 151.1 150.8 150.8 93.9 



 

 

 

mean value of the process under monitoring, while the 

suggested hierarchical test allows for assessing changes both 

in mean and in variance of the data generation process (since 

it relies by on ICI-based CDT and the multivariate 

hypothesis test on its feature values). The CUSUM test 

provides the best performance thanks to the knowledge of 

the pdfs both before and after the change. Obviously, as ! 

increases, all the considered tests decrease both FNs and 

MDs. FPs remain constant in D1 since, to ease the 

comparison, the 250 datasets on which the different 

perturbations have been applied are the same for all the 

experiments% 

Experiments on the drift datasets in application D1 are in 

line with the ones on the abrupt case. We remark that both 

the MDs of the considered tests, as well as the FNs (when 

! ! !!!" and ! ! !!!") increase w.r.t. the abrupt datasets 

since the change affecting the mean is smooth and less easy 

to detect. The performance of the hierarchical CDT and the 

 

Fig. 2. An example of abrupt change sequence (Application D2). 

 

Fig. 3 . An example of abrupt change sequence, generated by an asymmetric process (Application D2). 

 

Fig. 4. An example of abrupt change sequence, generated by a multimodal process (Application D2). 

 

Fig. 5. An example of concept drift almost linear (Application D2). 

 

Fig. 6. An example of concept drift (Application D2). 



 

 

 

ICI-based CDT on application D2 show that both tests can 

effectively cope with data having non-Gaussian 

distributions. In fact, the performance of these tests in the 

abrupt datasets coincides with those of application D1: this  

means that the features computed by the ICI-based CDT 

(which are also used in the multivariate hypothesis test at the 

second CDT level) well approaches the Gaussian 

distribution. We emphasize that both the ICI-based CDT and 

the hierarchical CDT have been executed using the same 

configuration as in application D1, while the NP-CUSUM 

had to be reconfigured since observations in D2 have a 

different range.  

We performed also more detailed comparison to assess the 

advantages of the proposed hierarchical test w.r.t. the ICI-

based CDT, by analyzing how the performance varies w.r.t. 

the parameter !!. We considered ! ranging from 1 to 3 and 

fixed ! ! !!"# and ! ! !!!" for the hierarchical test. We 

executed 1000 runs of ICI-based CDT and of the 

hierarchical CDT on datasets of application D1-abrupt with 

! ! !!! and ! ! !. The relationship between false positives 

and mean delays when ! varies is illustrated in Fig. 2 and 3. 

These results are particularly interesting for the following 

reason: as stated in Section IV.A, by increasing the value of 

! one can reduce the false positives of the ICI-based CDT at 

the expenses of increasing the detection delays. The 

hierarchical CDT outperforms the ICI-based CDT since it 

guarantees low false positives at values of ! significantly 

smaller than the ones of ICI-based CDT. In other words, 

given a fixed percentage of false positives allowed by the 

application, the proposed hierarchical CDT guarantees a 

significantly reduced MD, or, similarly, at equal values of 

MD (for any change !), the hierarchical CDT guarantees 

lower false positives than the ICI-based CDT. 

VI. CONCLUSIONS 

This paper suggests a novel hierarchical approach in the 

field of sequential change-point detection tests. The 

proposed change-detection test relies on a two-level CDT 

composed by a first-level that exploits an on-line change-

detection test aiming at providing prompt detections, and a 

second-level, where a different test (e.g., an hypothesis test) 

Fig. 7. Mean Delay (MD) w.r.t. False Positives (FP) for the hierarchical CDT (with !=0.05) and the ICI CDT test for a perturbation of " = 0.5# 

Fig. 8. Mean Delay (MD) w.r.t. False Positives (FP) for the hierarchical CDT (with !=0.05) and the ICI CDT test for a perturbation of " = 1#. 



 

 

 

validates the detections raised by the first-level. Experiments 

performed on both synthetically generated datasets and 

sequences of photodiodes measurements show that the 

suggested hierarchical change-detection test is able to 

significantly reduce false positives while negligibly 

increasing the amount of false negatives and detection 

delays. 
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