
  

 

I. INTRODUCTION 

eal world industrial and environmental processes are 

prone to non-stationary phenomena induced by ageing 

effects, drifts, soft or hard faults inducing a change over time 

of the probability density function of acquired measurements 

[1]. As a consequence, classification systems built over these 

processes cannot be granted to work properly since the 

stationarity hypothesis assumed during the parameter 

configuration phase a priori does not hold any more.   

The changes, or concept drift, might degrade the accuracy 

of the classification system up to a point that the expected 

quality of service of the envisaged application is impaired. 

As stated in [2], concept drifts can be grouped into two main 

families: abrupt and gradual. The former type refers to 

situations where changes can be modeled as step-like 

changes affecting the environment in which the 

classification system is deployed. The latter models 

situations where the process slowly evolves over time, for 

example, due to ageing effects or degradation of the sensors, 

e.g.,  due to temperature and humidity. 

 The need to deal with concept drifts [1], [2] has pushed 

the research toward the development of classification 

systems able to work in nonstationary environments by 
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adapting their knowledge base (e.g., the training set, the 

parameters or the model family) to track the process 

evolution. In this direction, FLORA and FLORA2 [3] 

include additional supervised samples in stationary 

conditions, while remove a fixed percentage of the oldest 

training pairs from the knowledge base when a change is 

suspected (i.e., the accuracy of the classifier decreases below 

a user-defined threshold). Similarly, [4] suggests to adapt the 

knowledge base by weighting old samples according to their 

age or their relevance in terms of classification accuracy 

(computed on supervised samples). The classifier presented 

in [5] assesses variations in the classification accuracy to 

adapt to changes in the data generating process and treats 

concept drifts as sequences of stationary states 

Multiple Classification Systems [6]-[12] rely on an 

ensemble of classifiers whose decisions are combined to 

form the final output (e.g., with voting or weighting 

mechanisms). These also exploit management techniques to 

add, remove, and reactivate working classification systems. 

 The work [1] introduces the Just-in-Time (JIT) adaptive 

classifier, which integrates a change-detection test to 

identify variations in the distribution of the data generating 

process and remove obsolete training samples. This 

approach allows the classifier for automatically improving 

the accuracy in stationary conditions (by introducing 

supervised samples during the operational life) and promptly 

reacting to changes in nonstationary ones. Finally, [13] 

extends [1] by proposing an adaptive weighted k-NN 

classifier providing a fine-grain adaptation to smooth drifts; 

[14] suggests a method for identifying a suitable training set 

to be considered after detecting a change. 

It was demonstrated that JIT classifiers naturally, and 

effectively, address the abrupt concept drifts which imply a 

transition from a stationary state to a new one. 

Unfortunately, gradual concept drifts are seen as a sequence 

of nonstationarities, due to the resolution of the change-

detection test. In turn, this behavior induces frequent 

removal of supervised samples from the knowledge base of 

the classifier. 

We propose a novel JIT adaptive classifier for gradual 

concept drifts that extends [14] by introducing: 

• a novel change-detection test that deals with processes 

whose expectation follow a polynomial trend, and that 

reveals a change when such trend varies, as well as 

when other statistical properties of the i process 

change (e.g., the variance of the detrended process).

An Effective Just-in-Time Adaptive Classifier  

for Gradual Concept Drifts 

Cesare Alippi, Giacomo Boracchi and Manuel Roveri 

R 

Abstract –Classification systems designed to work in 

nonstationary conditions rely on the ability to track the 

monitored process by detecting possible changes and adapting 

their knowledge-base accordingly. Adaptive classifiers present 

in the literature are effective in handling abrupt concept drifts 

(i.e., sudden variations), but, unfortunately, they are not able to 

adapt to gradual concept drifts (i.e., smooth variations) as these 

are, in the best case, detected as a sequence of abrupt concept 

drifts. To address this issue we introduce a novel adaptive 

classifier that is able to track and adapt its knowledge base to 

gradual concept drifts (modeled as polynomial trends in the 

expectations of the conditional probability density functions of 

input samples), while maintaining its effectiveness in dealing 

with abrupt ones. Experimental results show that the proposed 

classifier provides high classification accuracy both on 

synthetically generated datasets and measurements from real 

sensors.
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• a classifier that effectively handle gradual concept 

drifts affecting the process expectation, as it integrates 

an index estimating the process dynamics. This allows 

us for improving the accuracy of the classifier when 

observations follow such drifts, by exploiting both 

supervised and unsupervised samples. The obtained 

classifier outperforms other adaptive classifiers that 

model and treat instead the drift as a sequence of 

stationary states. 

In addition, the suggested classification system relies on a 

knowledge-base management procedure that, in the case of 

detected variations, updates the knowledge-base to keep the 

classification system coherent with the current state of the 

process. Experiments show that the suggested classification 

system outperforms state of the art adaptive classifiers 

working in nonstationary environments by guaranteeing high 

detection accuracies both in case of gradual and abrupt 

concept drifts. 

The paper is organized as follows: Section II introduces 

the problem statement. The JIT classification system for 

these gradually drifting data is presented in Section III. 

Section IV specifies the methodology by presenting the ICI-

based change-detection test. Experimental results are finally 

given in Section V. 

II. PROBLEM STATEMENT 

For sake of simplicity we initially consider a two-class 

classification problem and mono-dimensional observations. 

Extensions to multi-class classification problems and multi-

dimensional observations will be discussed later. 

The operational framework can be formalized as follows. 

Let ! ! ! be the input sample and ! ! !!!!!  the 

associated binary classification output. The probability 

density function (pdf) of the inputs at time t  

! ! ! ! ! !! ! ! ! !!! ! ! ! !! ! ! ! !!! !  

depends on the pdfs of the outputs!! !! !  and ! !! ! !

! ! !! !! ! , and the conditional probability 

distributions!! ! !!! !  and !! !" !!! ! . We focus on 

gradual concept drifts that can be represented as a -possibly 

slow- time-varying stochastic process whose expectation 

! ! ! !  follows a piecewise polynomial function !!!!!. 

The parametric description of !!!!! is given by !!! !!!!  

where !! is a set of coefficients defining the polynomial 

!!! !  defined on the i
th

 time interval !! (i.e., a subsequence 

of consecutive time instants); M is the number of intervals 

(e.g. see Fig. 1). The expectations of the conditional 

probability distributions can be expressed as 

 ! !! ! !!! ! ! !!! ! ! !!!!         (1) 

 ! !! ! !!! ! ! !!! ! ! !!!!  ! ! !! 

where !!!! and !!!! are the means of the two classes !!!!! 

in the stationary condition. As a consequence, the process 

generating observation !!!! at time ! becomes: 

 

 

Fig. 1. An example of considered gradual concept drifts. The data sequence 

presents a transition !! ! !""!!""  between two stationary states 

!! ! !!!!  and !! ! !""!!""  and is characterized by a linear trend of 

the expected values for both classes. The green lines delimitate the samples 

affected by the concept drift, i.e., time instants ! ! !"" and ! ! !"". While 

the JIT adaptive classifiers proposed in [1], [13], [14] treat the gradual 

concept drift as a sequence of stationary states and, as such, would detect a 

continuous sequence of changes in stationarity between ! ! !"" and 

! ! !"". The proposed classifier, by estimating an index associated with 

the dynamics of the process under monitoring, detects only two changes in 

this dataset at ! ! !"" and ! ! !"". 

 

!! ! !
!!! ! ! !!!! !!!!!! ! ! !!

!!! ! ! !!!! !!!!!! ! ! !!
      (2) 

where !!!! and !!!! are the pdfs characterizing the 

distributions of their respective classes !!!!! in stationary 

conditions with !!!!!!! ! !!!!! and !!!!!!! ! !!!!!. 

We further assume that the probabilities !! !" !!! !  and 

!! ! !!! !  do not change within each interval defining the 

piecewise polynomial function, thus, the pdf of !!!! is 

!! !" ! ! !! !! ! ! !!! ! ! !! !! ! !" !!! ! ! ! ! !!. 

The pdf of the inputs, the conditional distributions and the 

output distributions are unknown. The piecewise-polynomial 

function within each interval !!, i.e., !!!!!!, is also 

unknown, but common between the two classes, as 

expressed in (2). We emphasize that the considered 

framework is an extension of the traditional one that 

assumes 

!!! ! ! !"#$%!!!!!!!!!! ! !!! !!. 

Fig. 1 shows an example where observations have been 

generated by a gradual drifting process corresponding to a 

smooth transition between two stationary states.  

While a multi-class classification problem can be easily 

accommodated by the k-NN classifier considered Section 

III.D, handling multi-dimensional observations is more 

critical due to the need to consider multivariate change-

detection tests. However, to a first approximation, this can 

be addressed by considering each dimension independently 

[15]. 
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III. JIT ADAPTIVE CLASSIFIERS FOR GRADUAL CONCEPT 

DRIFTS 

A. The General Approach 

The key point of the proposed approach is to extend 

observation model traditionally assumed in classification 

problems, by allowing the expectation of the conditional 

probability density functions to evolve over time as a 

piecewise polynomial function, as expressed in (1). Under 

such a hypothesis, we develop a change-detection test to 

assess variations in the (polynomial) trend of the process 

under monitoring, rather than in the value of its expectation. 

If the test does not detect variations, we perform a 

polynomial regression of the input samples and use the 

regression coefficients to modify on-line the knowledge base 

of an adaptive classifier. Differently, when a change is 

detected, the obsolete samples are removed from the 

knowledge base and the change-detection test is restarted. 

Thus, the proposed classification system follows the JIT 

approach [1], [13], [14], which combines a change-detection 

test that identifies variations in the data generating process, 

and a knowledge-base management procedure that provide 

the classifier with the knowledge-base that correctly 

interpret the current state of the process. JIT classifiers allow 

for promptly detecting variations in the pdf of !, and react 

consequently by removing obsolete training samples from 

the knowledge base. Other JIT classifiers (e.g., [1], [13], 

[14]) well accommodate for abrupt changes but are not 

optimal for handling gradual concept drifts, which would be 

seen as  sequences of stationary states hence inducing the 

JIT classifier to continuously detect changes and reset its 

knowledge-base accordingly. 

To overcome such a shortcoming we introduce a novel 

JIT adaptive classifier, which combines a change-detection 

test able to deal with changes in stationary processes and 

concept drifts inducing polynomial trends in the processes 

expectation, and an adaptive k-NN classifier able to operate 

in these conditions, compensating such gradual concept 

drifts.  

As presented in Algorithm 1, the proposed approach 

exploits polynomial regression to estimate, for each input 

(both supervised and unsupervised) sample, how the 

expectation of the data generating process varies over time 

(line 4), thus estimating !!!!!!, the deterministic additive 

component that represents the drift in (2). This allows the 

classifier (line 9) for properly updating the training samples 

during the classification phase according to the time instant 

in which each training sample has been acquired.  

When the proposed change-detection test, which analyzes 

both supervised and unsupervised samples (line 5), detects a 

change in the process distribution or a change in the 

expectation trend, both the test and the classifier are re-

configured (lines 6, 7). On the contrary, when no change is 

detected, the classification system improves the regression 

estimates by exploiting both unsupervised samples to be 

classified and supervised samples. Moreover, as it happens 

in stationary conditions, supervised samples available during 

the operational life are integrated in the knowledge-base of 

the classifier (line 8) to improve its classification accuracy.  

It is worth noting that the proposed approach represents an 

extension of the traditional JIT classifier since, in stationary 

conditions or in case of abrupt changes, the classification 

system behaves as [1], [13], [14], while it differs only when 

the process undergoes the considered gradual concept drifts. 

In fact, an abrupt change represents a particular case where 

the functions !!!!!! in (2) are constants. Note also that when 

concept drift induces non-polynomial trends, the test would 

reveal a sequence of nonstationarities. 

 We now detail the three main components of the 

proposed approach: the change-detection test, polynomial 

regression method and the adaptive classifier. 

B. The Change Detection Test for Gradual Concept Drifts 

The literature about change-detection tests is very well-

established e.g., see [17], [18], and in the classical 

formulation, most of these tests aim at assessing stationarity 

of the data-generating process. However, ad-hoc techniques 

aim at detecting variations in observations generated 

according to linear models [18], [19]. Here we exploit the 

ICI-based change-detection test (ICI CDT) [20], which is 

natively able to deal with polynomial trends in the process 

under monitoring and provides high detection accuracy, 

promptness in detecting changes, and low computational 

complexity. Furthermore, it preserves good detection ability 

when reduced training sets are available and this makes the 

ICI CDT a particularly appealing candidate for the suggested 

JIT adaptive classifier working in gradual concept drifts (see 

Section IV for its use in a specific classification system). 

Nevertheless, other tests providing similar abilities could be 

considered as well.  

C. Polynomial Regression 

In principle, any regression technique can be used for 

fitting a polynomial to the observations, thus estimating the 

trend of the expectations !!!!!! in (2). However, since the 

ICI-based change-detection test exploits least square 

regression, we use, at each time instant ! a least square 

Algorithm 1: General JIT Adaptive Classifier for 

Gradual Concept Drifts 

1. Configure the classifier and the change detection test; 

2. while  (1){ 

3.   New observation arrives; 

4.   Estimate the process expectation by polynomial 

  regression; 

5.   if (change-detection test detects a change in the 

     process distribution or a change in the expectation  

     trend) { 

6.            Characterize the new process state;  

7.            Configure the classifier and the test on the 

           new process state; } 

8.  else integrate the new information (if available) in  

        the knowledge base; 

9.  Classify the input sample by exploiting the 

 output of the polynomial regression;    

10. } 



  

estimator for computing the polynomial coefficients ! !  to 

be used in Algorithm 2, line 7. 

D. Extended k-NN Classifier for Gradual Concept Drifts 

As stated in [1], among the classification families present 

in the literature, k-NN classifiers [16] are the most suited for 

being embedded in JIT adaptive classification systems 

because they do not need a proper training phase and their 

knowledge-base can be easily managed. The proposed JIT 

adaptive classifier encloses a modified k-NN classifier that 

exploits polynomial estimates of the process under 

monitoring (which are obtained through a regression phase) 

to remove the deterministic additive component !!!!!! in (2): 

in such a way, the classification system is able to handle, at 

each time instant !, both the observation !!!! and the 

classifier’ knowledge-base as if these were generated by the 

same process, thus considering only the terms !!!! and !!!! 

in (2). 

In more detail, let !! ! ! ! !! ! ! ! ! ! !!  be the 

sequence of all the supervised couples ! ! !! !  available 

at time !, together with their acquisition time !: ! !  is the 

classification label associated with the sample !!!! acquired 

at time !, and !! the set of arrival times. Let us set ! ! ! the 

maximum polynomial order that is used to compensate for 

the gradual concept drift, and let !!!! be the set of 

coefficients of the polynomial function that provides the best 

fit of samples ! ! ! ! ! ! , which are estimated with a 

polynomial regression on both supervised and unsupervised 

samples up to time instant !. 

 The suggested extended k-NN classifier for gradual 

concept drifts is presented in Algorithm 2. It is easy to see 

that the only difference w.r.t. the traditional k-NN classifier 

is the computation of the distance between the input sample 

and the training samples (line 4): here we correct each term 

in the traditional !!-norm with the value assumed by the 

fitted polynomial. In particular, the distance between the 

current sample !!!! and the training sample !!!!! is 

computed after subtracting the values of the (estimated) 

polynomial having coefficients !!!! in their corresponding 

time instants (i.e.!
!!!!!!! and !

!!!! !! ). Note that !
!!!!!!!  

and !
!!!! !!  are indeed the estimates of the expectation of 

the data generating process at the current time instant T, and 

at !!, when the !!" training sample has been received, 

respectively. This procedure allows the classifier for 

removing a polynomial trend from all the training samples 

that are hence brought back to a common expectation whose 

value is  

! !! !!!! ! ! !! !!!!. 

Then, the traditional k-NN classifier can be applied (line 6 

and 7). 

IV. A SPECIFIC SOLUTION: THE ICI-BASED CLASSIFIER 

This section presents the JIT adaptive classifier for 

gradual concept drifts, which combines the extended k-NN 

classifier of Section III.D, and an ICI-based change-

detection test introduced in [20]. Process stationarity is thus  

 

Algorithm 2: Extended k-NN Classifier for Gradual 

Concept Drift (!! ! ,!!, !!!!,!!) 

1. ! ! !!!!; 

2. ! ! !; 

3. while  (!! ! !){ 

4. !! ! ! ! ! !
!!!!!!! ! ! !! ! !

!!!! !! ; 

5. ! ! ! ! !!} 

6. Identify the nearest k training samples according to 

the distances !!!!!!!!!!!!. 

7. Classify ! !  as the most represented class among 

the ! nearest training samples. 

monitored by means of the Intersection of Confidence 

Intervals (ICI) rule which embeds a polynomial fitting 

operator [21], [22]; thus, the ICI CDT is natively able to 

assess variations in the polynomial trend of the process 

expectation . Without loss of generality, we handle in the 

following a gradual concept drift by means of 1
st
order 

polynomials, i.e., we approximate the process expectation 

with a piecewise linear function (i.e.,!! ! !). Any gradual 

concept drift characterized by a 2
nd 

or higher order 

polynomial would indeed result in a sequence of detections, 

as the regression model paired with the ICI rule cannot 

properly fit the observations. Details concerning the change-

detection test are discussed in Section IV.A, while the JIT 

adaptive classifier is formulated in Algorithm 3 and detailed 

afterwards. 

Let !! ! ! ! !! ! ! ! ! ! !!   with !! ! !!! !!!  be 

the initial training set used for configuring both the change-

detection test and the extended k-NN classifier. The training 

phase (lines 2-4) includes the estimation of the regression 

parameters of the process within the training set: since we 

use 1
st
 order polynomials, the regression coefficients at time 

!! are denoted by !!!!!, !!!!!. The training samples are 

also used to compute the initial value of k in the extended k-

NN classifier by means of leave-one-out procedure (LOO, 

line 4). Even during the training phase, the distances in the 

k-NN classifier are computed as expressed in Algorithm II 

(line 4), using the regression estimates (for the LOO 

procedure we use !!!!!, !!!!!). 

After the initial training phase, the suggested 

classification system works on line by introducing, 

whenever available, additional supervised samples or 

classifying the input samples, otherwise. In particular, when 

new knowledge is available, this is inserted in the 

knowledge base of the classifier (lines 8 and 9), and the 

parameter k is updated according to Equation (3) of [1] (line 

10). Then, the ICI CDT verifies possible occurrences of 

changes in the process w.r.t. the configuration phase (line 

14). As detailed in Section IV.A, such variations are both 

changes in the process trend (i.e., changes in the piecewise 

polynomial function !!! which rules the expectation of !), as 

well as changes in the variance of the de-trended process 

!!!!!!!!.  

The change-detection test works on sub-sequences of 

observations (line 14): whenever a change is detected in the 

subsequence containing the input data X!!!, the ICI-based 



  

knowledge management procedure (presented in Algorithm 

3 of [14]) is executed to identify the time instant  !!"# in 

which the variation begun (line 15). This estimate is then 

used to reconfigure both the test from the observations 

arrived within !!"#! !  (line 16) and the classifier by 

removing the obsolete training samples, i.e., those acquired 

before !!"# (lines 17 and 18). The new value of k is then 

estimated from the new training set with LOO (line 20) by 

using the new regression parameters estimated from the new 

training set (line 19).  

The classification phase (lines 21 and 22) consists of 

computing the regression parameters !!!!, !!!! (line 21) 

from all the observations generated by the process in the 

current conditions (i.e., all the samples received since !!"#), 

and classifying !!!! with the k-NN classifier described in 

Algorithm 2, by relying on the updated knowledge-base !!, 

the current value of !, and the regression coefficients  

! ! ! !!!!! !!!!  (line 22). 

A. Details  

The ICI CDT requires a feature-extraction phase, which is 
followed by the ICI rule for assessing the process 
stationarity by monitoring the feature values. This general 
approach can be customized by defining particular features 
to be employed, which determine the nature of detectable 

changes in !. Features have to provide values !"#$ that are 
Gaussian distributed as: 

!!!!!!!!!!!! !!!,   (3) 

where!! !  is its expectation, which is time-dependent, and 

!! indicates the feature standard deviation, which is indeed 
constant. 

In particular, [17] details a solution for change-detection 
that exploits two features: the sample mean and the sample 
variance transformed according to a power-law, which 
guarantees the transformed values (i.e., the second feature) 
to satisfy the (3). In what follows we discuss how to modify 
this test to cope with observations distributed as in (2): in 
fact the original test has been devised for solving a classic 
change-detection problem, where observations, in stationary 
conditions, are i.i.d. 

The first feature, the sample mean computed on disjoint 

subsequences of observations, has a distribution that 

approaches to (3), even when the expectation of the 

observations follows a polynomial trend as in (2). The test 

has to be slightly modified w.r.t. the one presented in [17], 

since a 1
st
 order polynomial function has to fit values of the 

sample mean: thus, the ICI rule determines the largest 

neighborhood where ! !  can be considered as linear. Note 

that the regression coefficients obtained from the sample 

mean are indeed estimates of the regression coefficients on 

the observations, and can be rightly used instead of !!!!, 

!!!!. It follows that the change-detection test provides the 

regression estimates required by the adaptive classifier, 

hence reducing the processing and memory requirements. 

The transformed sample variance is not Gaussian 

distributed when observations are distributed as in (2). In 
fact, Gaussian distribution holds solely when observations 
are i.i.d. Therefore, in order to compute the sample variance 
(and the coefficient of the power-law transform) we perform 

a preliminary de-trend of the observations. De-trending is 
accomplished by convolving the observations with a high-

pass filter having coefficients [-1 , 1], which removes the 
linear component in the observations, followed by a 

downsampling. Further details concerning the detection test 

can be found in [17], Section IV.  

B. Comments  

A peculiarity of the JIT classification systems is their 
ability to adapt the classifier to evolving processes, without 
need to inspect the classification performance. As such, any 

change that does not alter the distribution of ! cannot be 
perceived. For example, the change-detection test embedded 
in the JIT classifier is not able to identify situations where 

two classes having !!!!! ! !!!!! swap their pdfs. 
Approaches that exploit the classification accuracy (e.g., [3]-
[8]) are instead able to correctly deal with these situations, 
but require several supervised samples to effectively 
estimate the classifier performance.  

Nevertheless, JIT approaches are preferable in certain 
circumstances as they do not rely on supervised samples to 
detect variations in the operating conditions. Furthermore, in 
case of the considered gradual concept drifts, when the two 
classes undergo a common trend, a straightforward analysis 
of the process trend (as in Algorithm 2), is beneficial for 

Algorithm 3: ICI-based JIT Adaptive Classifier  

1. !! ! !!! !!! !!! ! ! ! !! ! ! ! ! ! !! ! 

2. configure the ICI change detection test using ! ! ! ! !

!! ; 

3. estimate !!!!!, !!!!!the regression coefficients from 

! ! ! ! ! !! ; 

4. estimate k  with the extended  k-NN by means of LOO 

on !!, using !!!!!, and !!!!!; 

5. ! ! !! ! !, !!"# ! !; 

6. while (1) {  

7. if (new knowledge on!! ! is available) { 

8.       !! ! !!!! ! !!!; 

9.      !! ! !!!! ! ! ! ! !! ! ! ! !; 

10.      update k using Equation (3) of [1]} 

11. else { 

12.      !! ! !!!!; 

13.      !! ! !!!!;} 

14. if (ICI test (sub-sequence containing !! ! ) detects a 

variation) { 

15. Run the ICI-based knowledge-base management 

procedure (Algorithm 3 of [14]) to identify !!"#; 

16. Configure the ICI change detection test using the 

observations in !!"#! ! ; 

17. Set !! ! !! ! !! ! ! ! !!"#! 

18. Set !! ! ! ! ! !! ! ! ! !! ! !!!; 

19. Estimate the regression parameters !!!! and !!!! 

from ! ! ! ! ! !!"# . 

20. Estimate k with the extended k-NN by means of 

LOO on !! using !!!! and !!!!}. 

21.   Estimate !!!! and !!!! from ! ! ! ! ! !!"# . 

22.   Classify using the extended k-NN on!!!,  

   using !!!! and !!!!. 

23.        1;}t t= +



  

classification performance, as shown in the experimental 
section.  

Note, finally, that the proposed system can easily include, 
in the process monitoring (line 14 of Algorithm 3), 
additional change-detection tests that consider only 
supervised samples of a specific class each. These would 
allow the proposed system for reacting even to classes’ 
swaps, which otherwise would not be detected.  

V. EXPERIMENTS 

The performance of the proposed JIT adaptive 

classification system for gradual concept drift has been 

compared with those of JIT [1], JIT soft [13], and the ICI-

based Adaptive Classifier [14] in the case of synthetically 

generated data (Application D1) and measurements coming 

from X-ray sensors (Application D2). 

Application D1 contains three classification datasets each 

of which presents a different change in stationarity: abrupt, 

drift, and transient. Each dataset is composed of 200 

sequences of 24000 real valued observations drawn from 

two equiprobable Gaussian distributed classes !! and !!,  

that, in the initial stationary state, are distributed as 

!!!!!!! ! !!!!!! and !!!!!!! ! !!!!!!. Each sequence 

of the abrupt dataset presents a change at sample 12000, 

which increases the mean of both classes by 15. In drifts 

sequences, the change starts at time 12000, increasing the 

means of both classes linearly, reaching +15 at the end of the 

sequence. Finally, each sequence of the transient dataset is 

characterized by a change occurring at 8000, which produces 

a linear trend increasing both classes’ means of 15 at sample 

16000. Fig. 2- 4 show sequences taken from each dataset. 

Application D2 refers to a dataset composed of 250 

sequences of measurements taken from couples of 

photodiodes. Each sequence is composed of 5500 16-bit 

measurements (2750 per sensor) that, after sample 2000, 

undergo a gradual concept drift. The distribution of the 

samples both before and after the change-point may however 

vary within the dataset: we have manually aligned the 

sequences to guarantee that the change points coincide. The 

considered classifiers have been used to classify the 

observations according to the sensor. An example of such a 

sequence is shown in Fig. 5. 

In both applications D1 and D2, the length of the initial 

training set is  samples; after time we provide 

each classifier with 1 supervised observation out of 5 to 

update the knowledge base. We imposed a minimum size of 

80 observations to the training sets adaptively identified by 

ICI-based knowledge-base management procedure; JIT soft 

has been configured with a minimum training set size of 80 

observations for the classifier and 400 for the test (as 

required in [13]), while the JIT requires 400 observations 

both for the classifier and the test (as stated in [1]). The 

parameters of the ICI CDT and the ICI knowledge-base 

management procedure have been set as in [14], with ! ! !, 

!!"# ! ! and ! ! !. 

The classification performance is measured by the 

classification error at time t, averaged over the available 

experiments. Fig. 2-5 present these percentages averaged 

over a window of the 1000 previous values (for D1) and 50 

(for D2) for the four considered classifiers. 

A. Discussions 

In stationary conditions (i.e., before the change), the 

classification error typically decreases, asymptotically 

approaches the Bayes one, thanks to the introduction of 

additional supervised samples. Thus, any detection (false 

positive) results in an unnecessary removal of new training 

samples, which may reduce the classifier accuracy. Here, the 

JIT soft shows the highest classification error due to the 

occurrence of false positives that reduce the training set size 

(and hence the classification accuracy). Classifiers enforcing 

the ICI CDT perform better, as this provides less false 

positives then the CI-CUSUM test (see [17]), which is used 

in JIT [1]and JIT soft. 

The abrupt dataset (Fig. 2) shows the promptness of the 

considered classification systems in detecting occurred 

changes. When an abrupt change occurs, the classifier has to 

promptly remove the obsolete knowledge-base: thus, 

detection delays decrease the accuracy since the 

classification phase relies on an obsolete knowledge-base. 

The ICI-based classification systems provide similar 

performance, while the JIT shows the highest classification 

error because the training set identified after detecting the 

change has fixed size, and therefore could include training 

samples generated by the process in the previous state. 

 The drift dataset (Fig. 3) shows the effectiveness of the 

considered classification system in adapting to data 

undergoing a linear trend. As expected, the proposed 

classification system presents the lowest errors as it 

compensates the drift and, at the same time, does not detect 

further changes allowing to achieve the same classification 

accuracies of the previous stationary conditions. Instead, the 

ICI-based classifier enforcing a 0
th

 order polynomial 

approximation treats the drift as a sequence of abrupt 

changes: this motivates the performance gap between the 

two classifiers. Similarly, JIT and JIT soft classifiers suffer 

from the continuous detection of changes (hence inducing 

the continuous editing of the knowledge base) that induces 

an increasing classification error. 

 The transient case (Fig. 4) shows results coherent with the 

previous ones: the proposed classifier shows two bumps in 

the classification error plot in correspondence with the time 

instants where the process expectation changes its trend. At 

these time instants, the model assumed by the considered 

classification systems becomes obsolete and it is not able for 

explaining the current state of the process. This results in an 

immediate increase of the classification error, which 

decreases only when the system is able to explain the new 

operating conditions. In this case (as in the drift dataset), 

only the proposed classifier is able to achieve the 

classification accuracies provided in stationary conditions. 

When the data generating process returns in stationary  

0
500T = 0
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conditions a second change is perceived with a consequent 

increase in the classification error. Note that after the second 

change, the 0
th

 order ICI-based classification system 

provides best performance as the corresponding ICI CDT 

presents lower detection delays since during the drift it has 

continuously detected changes (emptying the knowledge 

base, without reach the performance of the proposed 

classifier). 

 Experimental results on X-ray sensor measurements (Fig. 

5) are consistent with synthetically generated datasets of D1. 

Note that, since the drift here is nonlinear, the proposed 

classifier is not able to recover, during drift, the same 

performance as in stationary conditions. The process 

expectation in these (possibly non polynomial) drifts is 

approximated by a means of a piecewise linear function, and 

both the change-detection test and the classifier act 

accordingly. However, the proposed solution provides 

higher classification accuracy than the others. 

VI. CONCLUSIONS 

This paper presents a novel JIT adaptive classifier that, 

differently from traditional adaptive classifiers working in 

nonstationary environments, is able to work with gradual 

concept drifts by enforcing a change-detection test able to 

detect variations in the polynomial trend of the expectation 

of the data generating process, and a classifier that 

effectively deals with gradual concept drifts by integrating 

estimates of the drift dynamics. Experiments both on 

simulated and real data show the advantages of the proposed 

approach both in case of drift and abrupt changes. 
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