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Abstract—Assessing the quality of images acquired by nodes
of a Wireless Multimedia Sensor Network (WMSN) is a critical
issue, especially in outdoor applications where external distur-
bances such as the presence of water, dust, snow or tampering
on the camera lens may seriously corrupt the acquired images. In
this paper we address the problem of determining when the lens
of a microcamera mounted on a WMSN node is affected by an
external disturbance that produces blurred or obfuscated images.
We show that such a problem can be solved by considering
change detection tests applied to a measure of the blur intensity.
Interestingly, both measuring the blur and the change detection
test do not require any assumption about the content of the
observed scene, its nature or the characteristics of the blur. The
proposed methodology is thus flexible and effective for a large
class of monitoring applications. In particular, it is attr active
when nodes cannot continuously acquire images (e.g., because
of energy limitations) and background subtraction methodsare
not feasible. Two solutions, with different hardware costs, have
been designed which can detect disturbances on the camera lens
either/both at the node or/and the remote station level.

Index Terms—Wireless multimedia sensor networks (WMSNs),
digital image analysis, degradation detection, change detection
tests, digital image processing.

I. I NTRODUCTION

In recent years Wireless Multimedia Sensor Networks [1],
[2] have gained an increasing interest in the Wireless Sensor
Networks (WSNs) community, e.g., see applications in [3],
[4], [5], [6]. Such networks differ from traditional WSNs for
the presence of audio and visual sensors that provide photos,
videos and audio streams. WMSNs applications range from
tracking and surveillance to traffic control and environmental
monitoring: not rarely, nodes are requested to operate in
outdoor harsh environments. Noticeable examples of nodes
provided with visual sensors are in [7], [8], [9], [10].

The paper addresses an often forgotten problem that reg-
ularly arises in WMSN nodes designed to work in a real
environment: the presence of external disturbances on the
camera lens which affect the acquired image. Possible sources
of disturbances are rain and sprinkle drops, humidity, dust,
tampering attacks, which introduce blur or dim effects in the
acquired images. Figure 1 shows some images taken with
water drops insisting on the camera lens. As one would expect
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there may be a significant loss of the image quality, also
depending on the type and entity of the disturbance. Since
WMSNs are energy-constrained embedded systems, we should
not waste energy in processing or, worst, sending images
to the remote station when the blur intensity impairs its
information content. Furthermore, when such a disturbanceis
detected in a node, different actions can be accomplished to
tackle its presence. For instance, all units in a neighborhood
of the disturbance-affected node can increase their field of
view, the node can activate different sensors (such as micro-
phones, PIR/microwave motion detectors) by using intelligent
control actions, e.g. see [11] or, in the worst case, request
human intervention. In any case, any image-based algorithm
in execution on the node requires a preliminary procedure to
determine whether the acquired image is blurred/obfuscated
or not, to give a confidence to the available information,
and drive consequent actions. The same holds for algorithms
acting at the cluster level. As a consequence, a mechanism for
automatically diagnosing the status of the image acquisition
system is requested in WMSN applications operating in out-
door environments. In particular, in monitoring applications
that perform sporadic image acquisition, blur detection should
not be based on image comparisons (e.g., comparison between
the current image and an estimated background image) since
the scene between two consecutive images can significantly
change.

The detection of external disturbances insisting on the
camera lens remains an open research issue. For instance the
method proposed in [12] aims at detecting tamper attacks that
obscure the camera field of view. Nevertheless, the method
has been designed for systems performing continuous acqui-
sition, and it compares the acquired images with a learned
background of the monitored scene. As previously discussed,
this could be impractical in several WMNS applications.

In principle, any algorithm for automatic blur detection
can be used to determine when disturbances insisting on
the camera lens are corrupting the image acquisition system.
The algorithms presented in [13], [14] move in this direction
by determining if an image is blurred or contains blurred
areas, and by classifying each image/area as out-of-focus or
motion-blurred. Unfortunately, these algorithms are based on
computationally demanding feature extraction steps, which are
hardly executable on low performance WMSN nodes.

The effects of atmospheric elements such as rain, fog and
haze on acquired images have been studied under the assump-
tion that these elements are present between the camera and the
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Fig. 1. An example of images acquired with some drops of wateraffecting the camera lens. Drops introduce blur and dim areas in the resulting images. In
turn, they may affect both the whole image as in a),b) , or onlysome areas of the image as in c),d).

observed scene, i.e., they are not insisting on the camera lens.
In particular, [15] considers the case where water drops appear
in the depth-of-field of the camera with the consequence
that drops can be assumed as optical lenses that reflect and
refract the light, producing a wide-angle view of the envi-
ronment. An algorithm to detect and remove falling raindrops
as time-varying fluctuations in video sequences is presented
in [16]. Other ad-hoc image enhancement algorithms have
been proposed for compensating the effects of bad weather
conditions on images or videos (e.g. [17], [18] introduce
methods to remove fog and haze from a single image). These
algorithms consider the light scattering produced by small
droplets of dust or mist in the atmosphere to perform effective
contrast enhancement. However, images acquired with drops
or other external disturbances insisting on the camera lens
are significantly different from all the aforementioned cases,
as they are significantly blurred and the suggested solutions
are not meant for blur removal, rather they perform contrast
enhancement. The related literature suggests to jointly estimate
and remove blur in a single blurred image (blind deblurring),
to address the blur removal problem. Unfortunately, these
solutions cannot be used to enhance the considered images,
as they assume the blur to be spatially-invariant [19], [20]in
contrast with the spatially-variant nature of the blur introduced
by disturbances on the camera lens (in particular when the
external disturbances do not uniformly cover the camera lens).
In addition, blur removal algorithms assume the input image
to be blurred, and do not provide hints for deciding whether
that is the case or not.

This paper proposes a novel method for monitoring the
status of the image acquisition system to detect in advance a
possiblestructural information loss due to perturbations insist-
ing on the camera lens (e.g., drops, tampering, dust, etc.).As
such we do not address the image enhancement issue but signal
the presence of an external disturbance when it arises. In order
to accomplish such a task in a time variant context without
assuming strong hypotheses about the observed scene and its
dynamics we require two independent steps: a) measuring the
blur intensity in the acquired images; b) detecting the change
in blur intensity, i.e., detecting the presence of the disturbance
on the camera lens. Two solutions providing different detection
capability, computational complexity and power consumption
are here proposed to meet the requirements of a typical WMSN
scenario. The solutions act either at

• the node level, where both the blur measure and the

change detection test are executed on a WMSN node,
or

• the network level, with the blur measure computed at the
node level and the outcoming estimate sent to a base
station to undergo the change detection phase.

In other words, the two suggested philosophies use the
same figure of merit to quantify the blur in the acquired
images, but implement different change detection tests based
on the available hardware resources to detect a -possible- blur
presence.

This paper extends the work presented in [21] as it in-
troduces the node level solution, provides the analysis of
its algorithmic complexity, and strengthens the experimental
section.

The structure of the paper is as follows. Section II intro-
duces the observation model, and Section III describes the
blur change detection solutions in detail. The experimental
campaign, which includes both real and synthetic testbeds,is
finally presented in Section IV; experiments will be tailored
to the drop case but the methodology can be easily extended
to cover similar types of external disturbances.

II. OBSERVATION MODEL

We have already seen in Section I that disturbing elements
insisting on the camera lens are typically out-of-focus and
induce a blur or dim effects on the acquired imagez. This
phenomenon can be modeled as the result of a degradation
operatorD applied to the error-free and unknown imagey
(the original image),

z = D [y] . (1)

The squared brackets are used to the indicate the argument
of an operator. HereD takes into account blur and noise
according to the widely accepted additive model [22]:

z(x) = D [y] (x) = B [y] (x) + η(x), x ∈ X , (2)

where x indicates the pixel coordinates,X is the discrete
image grid,B is the blurring operator, andη is the noise term.
Typically, the blurring operatorB is assumed to be linear (e.g.,
see [23]) leading to the final model

B [y] (x) =

∫

X

y(x)h(x, s)ds ; (3)

h(x, ·) represents the blur Point Spread Function (PSF) atx

which is assumed to be a non-negative function, as it performs
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local smoothing ony. The model described in Equation (3)
is very general and hosts different behaviors induced by the
presence of drops/dust on the camera lens.

We then consider the general case where each sensor node
of the network acquires a sequence ofN observations{zi} i =
1, . . . , N

zi(x) = Bi [yi] (x) + η(x), i = 1, . . . , N , (4)

with η(x) a stationary noise. The sequence of the original
images{yi} i = 1, . . . , N may significantly change in their
content, depending on the monitored scene. As a consequence,
a naive approach exploiting direct comparisons among two
consecutive observationszi and zi+1 may easily fail, being
difficult to distinguish if different observations are due to
different original images (i.e.yi 6= yi+1) or to a change in
the blurring operator (Bi 6= Bi+1).

III. D ETECTING CHANGES IN THE DEGRADATION

PROCESS

The proposed method requires to analyze the observations
in {zi} i = 1, . . . , N to determine a possible change of the
degradation operatorD (change associated with an external
presence on the camera lens). Since the noise is assumed to be
stationary, a structural change in the image acquisition system,
as the presence of drop/dust is, reflects a change of the blur
operatorB: detecting a change in the blur operator implies
detection of a structural change affecting the image acquisition
system.

A. Measuring the Blur

As one could imagine it is hard to devise an index or
figure of merit able to measure the actual blur of an image
given a generic blurring operatorB. What the related literature
suggests instead is to measure the blur indirectly, by relying on
some details or frequency information present in the observed
imagezi, as done when identifying the optimal camera param-
eters (e.g., focal length, aperture and exposure) before taking
a shot [24], [25], [26], [27]. The underlying philosophy onto
which these measures rely reflects the intuitive idea that the
blur suppresses the high frequency components of an image
by local smoothing. Based on such observation, most of blur
measures are actually estimates of the energy content of the
image in high frequency. In the same direction, here, we
consider the blur measure

mi = M [zi] =

∫

X

||∇zi(x)||1dx , (5)

where|| · ||1 refers to theL1 norm. In the discrete domain, the
image derivatives are computed by means of differentiating
filters (here the Sobel ones [22]). Note thatM is indirectly a
measure of the total energy of the image details; as such, it
is particularly sensitive to the image content (M is low when
computed on blur-free images having few details as well as
in images heavily corrupted by blur). However, this measure
can be also used on partially blurred images and it guarantees
a very low computational complexity.

Let us discuss how the noise termη influences a sequence
of blur measures{mi} i = 1, . . . , N . Typically, noisy images
have larger blur measures compared to the corresponding
noise-free ones: the larger theσ, the larger the blur measure is.
In addition, since the noise is stationary, it does not introduces
anomalies in the sequence of blur measures. We expect that
when the blur measure is dominated by the noise, detecting a
decrease in the blur measure according toB becomes much
more challenging.

B. Detecting the Change

Change detection tests are statistical techniques which, by
monitoring the behavior of a process over time, detect a possi-
ble change in its behavior. In the considered case the process
under monitoring is the degradation operatorD that corrupts
the sequence of unknown original images{yi} i = 1, .., N
and gives the observation sequence{zi} i = 1, .., N , see
[28] for another application of change detection tests in WSN.
Among the large range of solutions (data-driven, analytical or
knowledge-based) present in the literature to assess a change of
a processes [29], we focus on data-driven techniques since they
do not require any a priori information about the process under
investigation. The most common data-driven techniques for
change detection generally require a design-time configuration
phase to configure the test parameters either by exploiting a
priori information or through a trial-and-error approach [29],
[30], [31]. In our problem we suggest to use two adaptive
self-configuring statistical tests, the Adaptive CUSUM andthe
CI-CUSUM [32] for their effectiveness in detecting abrupt
changes and smooth drifts. Both tests are general, do not
require any information about the process under monitoring,
and exploit an initial sequence{mi} i = 1, . . . , T of blur
measures computed fromT external disturbance-free images,
for the automatic configuration of their parameters. Such a
sequence allows the tests for both estimating the probability
density function (pdf) ofmi in absence of external disturbance
(i.e., the null hypothesisΘ0) and defining alternative hypothe-
sesΘ1s representing the ”not being inΘ0” to address any
type of nonstationary change (the alternative hypotheses are
automatically defined during the training phase).

To guarantee an accurate estimate of test parameters, the
authors suggest to consider a reasonable large training se-
quence, e.g.,T > 400. Both tests work on subsequences of
blur measures (in our experiments we considered subsequences
of 20 blur measures) and estimate the transition fromΘ0 toΘ1

by measuring the log-likelihoods between the pdf in absence
of drop/dust and the pdfs of all the alternative hypotheses at
subsequenceτ (one at a time)

r(τ) = ln
NΘ1(φτ )

NΘ0(φτ )
, (6)

whereφτ is the average value of the blur measures of theτ -th
subsequence, andNΘ is a multivariate Gaussian distribution
parameterized inΘ.

The log-likelihood ratio has an important property: a change
in the pdf of the process under monitoring can be detected
by analyzing the sign of the log-likelihood ratios. Both tests



4

Fig. 2. An example of synthetically generated observations. First row: the
blur affects the whole image,σ = 0.08 andν = 1, 4, 8, respectively. Second
row: the blur affects only some part of the image,σ = 0.02 andν = 1, 4, 8,
respectively.

are able to detect the presence of drops in the images by
sequentially checking whether theφτs have been generated
according to a pdf associated withΘ0 or one of the alternative
hypotheses. When one of the cumulative sums of ther(τ)
overcomes an automatically-defined threshold, the test detects
a change in the statistical behavior of theφτs (a detailed
description of both the tests is given in [32]). Since the log-
likelihood ratio compares couples of pdf, both tests have a
number of running log-likelihood ratios that is equal to the
number of alternative hypotheses defined by the test (i.e., each
log-likelihood ratio compares the null-hypothesis with one
of the alternative hypotheses). The main difference between
the Adaptive and the CI-CUSUM test consists in the set of
considered features. More specifically, the Adaptive CUSUM
assesses changes in the mean and the variance of the process
under monitoring, while the CI-CUSUM exploits a larger set
of features (i.e., not only mean and variance but also features
derived from the pdf and the cumulative density function as
well as features inspired by change detection tests presentin
the literature) and it is more accurate at the expenses of a
significant increase in computational complexity. Obviously,
a higher number of alternative hypotheses guarantees a more
effective exploration of the hypotheses space and, hence, a
larger change detection ability. The selection between the
Adaptive and the CI-CUSUM test is thus strictly related to
the available computational resources and the desired detection
accuracy. We suggest to consider the Adaptive CUSUM test
for the node solution (i.e., the change detection test is executed
directly on nodes), while the CI-CUSUM test is the suitable
choice for the network solution either at the cluster heads or
at the remote control station.

IV. EXPERIMENTS

The proposed methods have been tested on two applications.
The first benchmark refers to a sequence of synthetically
generated observations (Application D1); the second refers to
a real sequence of images (Application D2). In both cases our
goal is to detect the presence of water drops. Four figures of

TABLE I
THE NETWORK LEVEL SOLUTION: FP AND FN EVALUATED ON DATA

SYNTHETICALLY GENERATED IN APPLICATION D1

ν

Blur σ Detection
1 2 3 4 5 6 7 8

FP(%) 10 18 18 7 10 10 14 7
FULL 0.02 FN(%) 1 0 1 0 4 2 0 0

FP(%) 14 13 9 9 12 16 11 13
FULL 0.04 FN(%) 6 0 0 1 0 3 0 1

FP(%) 8 15 9 9 9 6 9 17
FULL 0.06 FN(%) 2 2 3 1 3 2 0 0

FP(%) 9 11 4 12 4 13 10 8
FULL 0.08 FN(%) 6 0 1 1 1 0 1 0

FP(%) 11 8 6 11 8 15 15 13
PART 0.02 FN(%) 34 17 13 11 11 3 6 5

FP(%) 12 11 10 7 4 11 10 9
PART 0.04 FN(%) 37 16 10 12 7 7 6 5

FP(%) 12 11 19 12 10 8 8 14
PART 0.06 FN(%) 38 19 4 12 7 8 8 5

FP(%) 5 12 8 12 13 8 13 16
PART 0.08 FN(%) 36 20 8 11 11 7 7 4

merit have been suggested to assess the performance of the
proposed solutions:

DL Detection Latency. It represents the number of im-
ages required to detect a change in the blurring
process after the drop arrival.

FP False Positives. It measures the number of blur
changes erroneously detected by the test.

FN False Negatives. It measures the number of blur
changes not detected by the test.

ET Execution Time (in seconds) of the Adaptive
CUSUM and the CI-CUSUM tests estimated with
Matlab2.

Execution times have been evaluated separately for the
training phase needed to configure the test parameters (ET
training) and for the operational phase (ET operational). The
configuration set accounts for 500 blur measures computed
from blur-free observations, the validation set for 1500 ones.

A. Application D1

A set of sequences of observations have been generated
according to Equation (4). Each sequence contains2000
observations obtained from75 grayscale512 × 512 pix-
els original images, scaled in the[0, 1] value interval. In
each sequence, the first1000 observations are blur-free i.e.,
Bi = I i = 1, . . . , 1000, where I stands for the identity
operator; the others have been affected by a blurring operator
Bi i = 1001, . . . , 2000 having the PSFs of Equation (3)
defined as:

h(x, s) =

{

δ(x− s), x ∈ X0

g(x− s), x ∈ X1

,X0 ∪ X1 = X , (7)

whereX0 ∩ X1 = ∅, δ is the Dirac’s delta function andg
a Gaussian kernel of standard deviationν. SetsX0 and X1

denote blur-free and blurred areas, respectively. Therefore, the

2Reference platform: Intel Core 2 Duo 2.53GHz CPU, no parallel threads
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TABLE II
THE NODE LEVEL SOLUTION: FP AND FN EVALUATED ON DATA

SYNTHETICALLY GENERATED IN APPLICATION D1

ν

Blur σ Detection
1 2 3 4 5 6 7 8

FP(%) 21 17 18 10 19 13 18 10
FULL 0.02 FN(%) 2 0 0 0 0 0 0 0

FP(%) 15 14 14 17 8 20 15 15
FULL 0.04 FN(%) 3 0 0 0 0 0 0 0

FP(%) 16 19 16 10 17 15 17 13
FULL 0.06 FN(%) 3 0 0 0 0 0 0 0

FP(%) 7 18 9 13 12 17 15 18
FULL 0.08 FN(%) 2 0 0 0 0 0 0 0

FP(%) 16 11 14 20 17 19 12 15
PART 0.02 FN(%) 69 41 34 24 25 27 23 19

FP(%) 16 11 19 17 19 16 19 16
PART 0.04 FN(%) 65 51 38 32 27 22 23 23

FP(%) 18 15 16 20 15 15 19 14
PART 0.06 FN(%) 71 50 33 25 27 31 23 21

FP(%) 16 16 10 18 14 14 10 24
PART 0.08 FN(%) 70 42 33 33 32 24 24 21

considered blur may affect only some parts of the original
image and, within the blurred areas, the blurring operator is
space invariant. We considered two different cases: in the first
the blurring operator affects the whole image (i.e.,X1 = X ,
FULL blur); in the second the blurring operator affects only
some parts of the image (i.e.,X1 ⊂ X , PART blur). In this
latter case, the setsX0 andX1 are the same for all sequences.
In each sequence, the noise term is Gaussianη ∼ N(0, σ2)
added to both the blur-free and the blurred images.

For both the FULL and the PART blur we considered8
values of the standard deviation of the Gaussian kernelg

of Equation (7) ν = 1, 2, . . . , 8, and 4 values of σ, the
standard deviation ofη ranges from0.02 to 0.08 (step0.02).
For each parameters pair(ν, σ) we generated 100 different
sequences in order to compute the figures of merit for the
two solutions. Figure 2 shows that observations generated with
such parameters, at least for high values ofν, are very similar
to images acquired with a drop on camera lens, such as those
of Figures 1 and 5.

Tables I and II show the change detection ability of the
network and the node level solutions, respectively. On one
hand, the network level solution guarantees lessFPs than the
node level one, thanks to the superior detection ability of the
CI-CUSUM test. This is particularly evident in the ”PART”
case at low values ofν, where the node level solution is not
able to detect the presence of blur (FNs in the last rows of
Table II). On the other hand, the node level solution guarantees
very low detection delays (the test is very quick in detecting
changes) and a reduced computational complexity. Figures 3
and 4 show the detection latency on the considered dataset
for both the node and the network level solutions. In both
cases, the amount of images required to detect the presence of
blur decreases asν increases. We observe that theFP values
are independent from the values ofν (the standard deviation
of Gaussian PSF), whileFNs decrease asν increases: the
higher the blur, the easier its detection. In particular, when

the blur corrupts only part of the image (the ”PART” case)
the values ofFN are higher than when the blur corrupts the
whole image (the ”FULL” case). Moreover, at low values of
ν, the node level solution is not able to reliably detect the
presence of drops (see theFN in the last rows of Table II).
Both the network and the node-level solutions are able to cope
with the considered noise levels: the values ofFPs, FNs and
DLs show that the detection performance is not altered. We
comment that it is extremely important to provide a reduced
number ofFPs, as these false alarms are sent over the network
and they may result in a waste of resources. Policies at the
unit and at cluster level could be implemented to reduceFSs
by exploiting information coming from neighboring units. The
execution time averaged over the algorithm runs is given in
Table III, and shows that the node solution is considerably
faster than the network one both during the training and the
operational phases.

B. Application D2

The second application refers to a set of 25 uncompressed
video sequences acquired in 5 different dynamic scenarios
(three outdoor and two indoor). Each sequence is composed
of 2000 frames (320× 240 pixels) recorded by an integrated
webcam of a laptop computer. Each frame has been converted
into grayscale by averaging theRGB values of each pixel.
The first 1000 frames are drop-free, while the next 1000 have
been acquired with some water drops on the camera lens.
Figure 5 shows, along rows, six frames taken from a video
sequence (one per each scenario). Similarly to Application
D1, the training phase of both tests exploits the first 500 drop-
free images of each sequence. The figures of merit have been
evaluated by averaging the results of the 25 video sequences;
the comparison between the performance of the two solutions
is presented in Table IV.

The experimental results on this dataset are in line with
those of Application D1: the network level solution guarantees
lower FPs than the node solution which, on the contrary,
provides a prompter detection ability (lower values ofDL)
and reduced execution time. When processing these video
sequences, theFPs are determined by accidental and unpre-
dictable occluding objects that do not appear in the training
set, as for example the shadowed face or the transparent plastic

TABLE III
APPLICATIOND1: ET AVERAGED OVER THE2× 8× 4× 100 ALGORITHM

RUNS FOR BOTH THE NETWORK LEVEL AND THE NODE LEVEL SOLUTIONS.

solution ET training (s) ET operational (s)
network 0.125s 0.461s

node 0.010s 0.003s

TABLE IV
APPLICATION D2: DETECTION PERFORMANCE EVALUATED FOR BOTH THE

NETWORK LEVEL AND THE NODE LEVEL SOLUTIONS. FP AND FN HAVE

BEEN COMPUTED OVER25 VIDEO SEQUENCES, WHILE THE VALUES OF DL
AND ET HAVE BEEN AVERAGED OVER THE25 RUNS.

solution FP(%) FN(%) DL ET training (sec) ET operational (s)
network 16 4 181.0 0.127s 0.461s

node 24 4 44.667 0.009s 0.003s
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Fig. 3. DL of the network solution as a function ofν (the standard deviation of Gaussian PSF), computed for different values ofσ (the noise standard
deviation). The plot (a) shows theDL when the blur affects the whole image while (b) theDL when the blur affects only some areas.

Fig. 4. DL of the node solution as a function ofν (the standard deviation of Gaussian PSF), computed for different values ofσ (the noise standard deviation)
The plot (a) shows theDL when the blur affects the whole image while (b) theDL when the blur affects only some areas.

bag appearing in the sequence illustrated in the third and in
the fourth row of Figure 5, respectively. In fact, differently
from the synthetically generated sequences of ApplicationD1,
here the training set might not be fully representative of all
the original imagesyi that the WMSN node has to face in
working conditions. Occluding objects may also induceFN
when they are shown in the training set, as the decay in the blur
measures due to the drop arrival could. Motion-blur, which
frequently occurs in images of dynamic scenes acquired in
low-light conditions, may also cause bothFPs andFNs since it
causes loss of details in the observations and subsequent decay
of the blur measures. This challenging problem could be (at
least) partially addressed by integrating lighting information
and exposure times in the change detection tests. The detection
performance can be improved by considering longer training
sequences and, when possible, by updating the training set
with user-supervised and disturbance-free images acquired
during the test execution.

Figure 6 shows the blur measuresmi associated with the
sequence including the frames depicted in the second row of
Figure 5: in this case both solutions detect the drop arrival

within the subsequence ending at frame 1180 (DL = 180).
Figure 7 shows the blur measuresmi computed from the
sequence illustrated in the third row of Figure 5: in this
case the network solution detects the drop arrival within the
subsequence ending at frame 1240 (DL = 240), while the
node solution bears a false positive at frame 880, because of
a sudden decay in the blur measures.

C. Computational Complexity of the Node Level Solution

As expected, the execution times reported in Tables III
and IV show that the Adaptive CUSUM has a significantly
lower computational complexity than the CI-CUSUM both in
the training and the operational phases. In fact, the Adaptive
CUSUM assesses changes by solely inspecting variations in
the mean and variance ofφτs, while the CI-CUSUM considers
a larger set of features to improve the detection ability.

We present a detailed analysis of the computational com-
plexity on the Adaptive CUSUM to justify its use at the node
level. The evaluation of the blur measure by (5) is discretized
and implemented with(2(s − 1) + 4) integer operations per
pixel, being s the number of non-zero coefficients of the



7

Fig. 5. Example of observations composing the video sequences. Each row shows six frames taken from an acquired video sequence. In all sequences the
drops appear at frame 1001.

convolutional filter used for computing image derivatives.
In our Matlab implementations = 6 (requiring 14 integer
operations per pixel);s can be reduced to2 when a one
dimensional filter is used (6 integer operations per pixel).

The operational phase of the Adaptive CUSUM, which con-
stitutes the computational load in working conditions requires,
for each subsequence of 20 blur measures, to:

• compute the mean of the 20 blur measures of the frame
(20 floating point operations);

• compute 2 logarithms (2× 35 floating point operations)
• evaluate a one-dimensional standard Gaussian function in

3 points (3× 28 floating point operations).

The number of floating point operations has been estimated
with Matlab. It follows that the execution of the Adap-
tive CUSUM test requires 175 floating point operations per
each subsequence of 20 blur measures. Such a reduced and
computationally-light sequence of operations can be realisti-
cally executed on a WMSN node having limited hardware and
energy resources such as the [7], [8], [9], [10] node platforms.

V. CONCLUSIONS

This paper presents two different solutions for detecting the
presence of external disturbances on camera lens in WMSN
nodes. Such aspect is particularly relevant in the WMSNs

Fig. 6. Blur measures (5) computed in the sequence shown in the second
row of Figure 5.

community since nodes quite often operate outdoor in harsh
environments and it is important to continuously assess the
status of the image acquisition system. The proposed solutions
combine a simple and easy-to-compute blur measure and a
change detection test and have been proven effective both on
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Fig. 7. Blur measures (5) computed in the sequence shown in the third row
of Figure 5.

synthetically generated images and video sequences acquired
from a webcam.

The analysis of the computational complexity shows that
the node level solution can be implemented on WMSN nodes
deployed in critical environments. Ongoing work regards the
implementation of the node level solution on a STMicroelec-
tronics prototype board, which represents the current state
of the art in low-power smart cameras [10]. This board is
equipped with the ST-VS6724 2 Mpx camera [33] and the
ST STR912FA micro controller [34], running at 96MHz with
96Kb SRAM. The board is able to process in real time
images, delivering video stream at 30fps. Furthermore, we
are investigating strategies at the cluster level to improve
the detection performance and reduce the number ofFPs by
exploiting local knowledge; such clusters can be generatedas
in [35].
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