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L _ _ _ _ there may be a significant loss of the image quality, also
Abstract—Assessing the quality of images acquired by nodes depending on the type and entity of the disturbance. Since
of a Wireless Multimedia Sensor Network (WMSN) is a critical WMSNs are energy-constrained embedded systems, we should

issue, especially in outdoor applications where external istur- not waste enerav in brocessing or. worst. sending imade
bances such as the presence of water, dust, snow or tampering"©t WaS gy In processing or, worst, sending Images

on the camera lens may seriously corrupt the acquired imagedn  t0 the remote station when the blur intensity impairs its
this paper we address the problem of determining when the lem information content. Furthermore, when such a disturbamce
of a microcamera mounted on a WMSN node is affected by an detected in a node, different actions can be accomplished to
external disturbance that produces blurred or obfuscated images. tackle its presence. For instance, all units in a neighbmho
We show that such a problem can be solved by considering . ’ . L
change detection tests applied to a measure of the blur intaity. O_f the dlsturbance-aﬁe_cted npde can increase their f'e"_’ of
Interestingly, both measuring the blur and the change deteion  View, the node can activate different sensors (such as micro
test do not require any assumption about the content of the phones, PIR/microwave motion detectors) by using intefiig
observed scene, its nature or the characteristics of the btuThe  control actions, e.g. see [11] or, in the worst case, request
proposed methodology is thus flexible and effective for a l@e  p,man intervention. In any case, any image-based algorithm
class of monitoring applications. In particular, it is attr active . - - S
when nodes cannot continuously acquire images (e.g., becau in exec_utlon on the node requires a preh_mmary procedure to
of energy limitations) and background subtraction methodsare ~determine whether the acquired image is blurred/obfudcate
not feasible. Two solutions, with different hardware costshave or not, to give a confidence to the available information,
been designed which can detect disturbances on the camerante  and drive consequent actions. The same holds for algorithms
either/both at the node or/and the remote station level. acting at the cluster level. As a consequence, a mechanism fo
Index Terms—Wireless multimedia sensor networks (WMSNSs), automatically diagnosing the status of the image acqaisiti

digital image analysis, degradation detection, change dettion gystem is requested in WMSN applications operating in out-

tests, digital image processing. door environments. In particular, in monitoring applicats
that perform sporadic image acquisition, blur detectiooudth
. INTRODUCTION not be based on image comparisons (e.g., comparison between

In recent years Wireless Multimedia Sensor Networks [
[2] have gained an increasing interest in the Wireless Sen
Networks (WSNs) community, e.g., see applications in [3fhange. . . o
[4], [5], [6]. Such networks differ from traditional WSNs rfo The detection qf external dlsturbanc_es |nS|st|ng on the
the presence of audio and visual sensors that provide phofgdnera lens remains an open research issue. For instance the

videos and audio streams. WMSNs applications range frdhfthod proposed in [12] aims at detecting tamper attacks tha
tracking and surveillance to traffic control and environtagn OPscure the camera field of view. Nevertheless, the method

monitoring: not rarely, nodes are requested to operate hﬁs been designed for systems performing continuous acqui-

outdoor harsh environments. Noticeable examples of nodddon, and it compares the acquired images with a learned
provided with visual sensors are in [7], [8], [9], [10]. chkground o_f the mpnltqred scene. As prewou;ly _dlscussed
The paper addresses an often forgotten problem that réys could be impractical in several WMNS applications.

ularly arises in WMSN nodes designed to work in a real In Principle, any algorithm for automatic blur detection
environment: the presence of external disturbances on {i#! be used to determine when disturbances insisting on
camera lens which affect the acquired image. Possible ssurl€ ca@mera lens are corrupting the image acquisition system
of disturbances are rain and sprinkle drops, humidity, dudi"® algorithms presented in [13], [14] move in this direstio
tampering attacks, which introduce blur or dim effects ia thPY determining if an image is blurred or contains blurred
acquired images. Figure 1 shows some images taken wifgas, and by classifying each image/area as out-of-focus o

water drops insisting on the camera lens. As one would exp8tion-blurred. Unfortunately, these algorithms are dase
computationally demanding feature extraction steps, whie

I(c) 2010 IEEE. Personal use of this material is permittedmision from  hardly executable on low performance WMSN nodes.
IEEE must be obtained for all other users, including reprgitrepublishing The effects of atmospheric elements such as rain, ng and
this material for advertising or promotional purposesatirg new collective . . .
works for resale or redistribution to servers or lists, arseof any copyrighted NaZ€ 0N acquired images have been studied under the assump-
components of this work in other works. tion that these elements are present between the cameraeand t

qthe current image and an estimated background image) since
e scene between two consecutive images can significantly



Fig. 1. An example of images acquired with some drops of waiecting the camera lens. Drops introduce blur and dimsaiedhe resulting images. In
turn, they may affect both the whole image as in a),b) , or agne areas of the image as in c),d).

observed scene, i.e., they are not insisting on the camesa le  change detection test are executed on a WMSN node,
In particular, [15] considers the case where water dropsapp or

in the depth-of-field of the camera with the consequencees the network level, with the blur measure computed at the
that drops can be assumed as optical lenses that reflect and node level and the outcoming estimate sent to a base
refract the light, producing a wide-angle view of the envi-  station to undergo the change detection phase.

ronment. An algorithm to detect and remove falling raindrop |n other words, the two suggested philosophies use the
as time-varying fluctuations in video sequences is predentme figure of merit to quantify the blur in the acquired
in [16]. Other ad-hoc image enhancement algorithms hajfages, but implement different change detection testechas
been proposed for compensating the effects of bad weat@g@rthe available hardware resources to detect a -possibie- b
conditions on images or videos (e.g. [17], [18] introducgresence.

methods to remove fog and haze from a Single image). Thesqhis paper extends the work presented in [21] as it in-
algorithms consider the light scattering produced by smafbduces the node level solution, provides the analysis of
drOpletS of dust or mist in the atmOSphere to perform effecti its a|gorithmic Comp|exity, and strengthens the experi'abn
contrast enhancement. However, images acquired with dregstion.

or other external disturbances inSiSting on the camera |enS|'he structure of the paper is as follows. Section Il intro-
are significantly different from all the aforementionedess duces the observation model, and Section Il describes the
as they are significantly blurred and the suggested solitigslur change detection solutions in detail. The experimenta
are not meant for blur removal, rather they perform contraghmpaign, which includes both real and synthetic testhieds,
enhancement. The related literature suggests to jointilyat  finally presented in Section IV; experiments will be taildre

and remove blur in a single blurred image (blind deblurringjo the drop case but the methodology can be easily extended
to address the blur removal problem. Unfortunately, thew cover similar types of external disturbances.

solutions cannot be used to enhance the considered images,
as they assume the blur to be spatially-invariant [19], [20]
contrast with the spatially-variant nature of the bluraaluced ) ) ) )
by disturbances on the camera lens (in particular when thewe_ have already seen in Section | that disturbing elements
external disturbances do not uniformly cover the camers)len/nSisting on the camera lens are typically out-of-focus and

In addition, blur removal algorithms assume the input imad@duce a blur or dim effects on the acquired imageThis

to be blurred, and do not provide hints for deciding wheth&heénomenon can be modeled as the result of a degradation
that is the case or not. operatorD applied to the error-free and unknown image

This paper proposes a novel method for monitoring th((tahe original image),

status of the image acquisition system to detect in advance a z=Dly]. (1)

possiblestructural information loss due to perturbationsinsis'[—_rh d brack q he indi h
ing on the camera lens (e.g., drops, tampering, dust, éts.). | "€ Sduared brac ets are used to the indicate the argument

such we do not address the image enhancement issue but sigﬁaﬁn pperator. H(_ard) takes into ac_cpunt blur and noise
the presence of an external disturbance when it arisesdler orcCording to the widely accepted additive model [22]:

to accr_)mplish such a task in a time variant context without_ 2(z) =Dy (z) = Bly] (z) + n(x), = € X, 2)
assuming strong hypotheses about the observed scene and its

dynamics we require two independent steps: a) measuring YWeere = indicates the pixel coordinatesy is the discrete
blur intensity in the acquired images; b) detecting the geanimage grid,5 is the blurring operator, anglis the noise term.
in blur intensity, i.e., detecting the presence of the dixnce Typically, the blurring operatoB is assumed to be linear (e.g.,
on the camera lens. Two solutions providing different disec See [23]) leading to the final model

capability, computational complexity and power consumpti

are here proposed to meet the requirements of a typical WMSN Byl (z) = /X y(@)h(z, s)ds ; ®3)
scenario. The solutions act either at

II. OBSERVATION MODEL

h(z,-) represents the blur Point Spread Function (PSF) at
o the node level, where both the blur measure and thevhich is assumed to be a non-negative function, as it pedorm



local smoothing ony. The model described in Equation (3) Let us discuss how the noise terrinfluences a sequence

is very general and hosts different behaviors induced by tbéblur measure§m;} i = 1,..., N . Typically, noisy images
presence of drops/dust on the camera lens. have larger blur measures compared to the corresponding
We then consider the general case where each sensor nogiee-free ones: the larger thethe larger the blur measure is.
of the network acquires a sequenceé\Wbbservationgz;} ¢ = In addition, since the noise is stationary, it does not uhfices
1,...,N anomalies in the sequence of blur measures. We expect that
when the blur measure is dominated by the noise, detecting a
zi(x) = Bily] (z) + n(x), i=1,..., N, (4)  decrease in the blur measure according3tdbecomes much

with n(x) a stationary noise. The sequence of the origing?ore challenging.

images{y;} ¢ = 1,..., N may significantly change in their
content, depending on the monitored scene. As a consequeB;€eDetecting the Change
a naive approach exploiting direct comparisons among two
consecutive observations and z;; may easily fail, being
difficult to distinguish if different observations are due t
different original images (i.ey; # y;+1) or to a change in
the blurring operatorff; # B;11).

Change detection tests are statistical techniques which, b

monitoring the behavior of a process over time, detect aiposs

ble change in its behavior. In the considered case the moces

under monitoring is the degradation operafithat corrupts

the sequence of unknown original imaggg} i = 1,.., N

and gives the observation sequengg} i = 1,..,N, see

[1l. DETECTING CHANGES IN THE DEGRADATION [28] for another application of change detection tests inNVS
PROCESS Among the large range of solutiondata-driven, analytical or

The proposed method requires to analyze the observati§fgedge-based) presentin the literature to assess a change of
in {}i=1,...,N to determine a possible change of th& Processes [29], we chu_g on data.—drlven techniques diege t
degradation operatdP (change associated with an externgl© notrequire any a priori information about the processeund
presence on the camera lens). Since the noise is assumed t¥Stigation. The most common data-driven techniques for
stationary, a structural change in the image acquisitistesy, Change detection generally require a design-time configura
as the presence of drop/dust is, reflects a change of the H{}Se to configure the test parameters either by exploiting a
operator3: detecting a change in the blur operator implieBriori information or through a trial-and-error approad®],

detection of a structural change affecting the image aitipris [30], [31]. In our problem we suggest to use two adaptive
system. self-configuring statistical tests, the Adaptive CUSUM &imel

CI-CUSUM [32] for their effectiveness in detecting abrupt
_ changes and smooth drifts. Both tests are general, do not
A. Measuring the Blur require any information about the process under monitoring

As one could imagine it is hard to devise an index ctnd exploit an initial sequencém;} i = 1,...,7 of blur
figure of merit able to measure the actual blur of an imadgeeasures computed froffi external disturbance-free images,
given a generic blurring operaté What the related literature for the automatic configuration of their parameters. Such a
suggests instead is to measure the blur indirectly, bynrglgn sequence allows the tests for both estimating the probgabili
some details or frequency information present in the oleskrvdensity function (pdf) ofn; in absence of external disturbance
imagez;, as done when identifying the optimal camera paranfi-€-, the null hypothesi®®) and defining alternative hypothe-
eters (e.g., focal length, aperture and exposure) befaiega S€S©'s representing the "not being i@°” to address any
a shot [24], [25], [26], [27]. The underlying philosophy ont type of nonstationary change (the alternative hypotheses a
which these measures rely reflects the intuitive idea that tAutomatically defined during the training phase).
blur suppresses the high frequency components of an imagd0 guarantee an accurate estimate of test parameters, the
by local smoothing. Based on such observation, most of blgdthors suggest to consider a reasonable large training se-
measures are actually estimates of the energy content of @€nce, e.g.7" > 400. Both tests work on subsequences of
image in high frequency. In the same direction, here, waur measures (in our experiments we considered subseegienc
consider the blur measure of 20 blur measures) and estimate the transition fefhio ©!

by measuring the log-likelihoods between the pdf in absence
m; = M [z;] = / [V zi(2)||1dz, (5) of drop/dust and the pdfs of all the alternative hypotheses a
X subsequence (one at a time)

where||- ||, refers to theC! norm. In the discrete domain, the
. L. . .. _ N@1(¢7)
image derivatives are computed by means of differentiating r(r) = ln—"—=, (6)
filters (here the Sobel ones [22]). Note thét is indirectly a Neo(¢r)
measure of the total energy of the image details; as suchwitere¢, is the average value of the blur measures ofrttik
is particularly sensitive to the image contenf (is low when subsequence, anlfe is a multivariate Gaussian distribution
computed on blur-free images having few details as well asrameterized if®.
in images heavily corrupted by blur). However, this measure The log-likelihood ratio has an important property: a chaing
can be also used on partially blurred images and it guarant@e the pdf of the process under monitoring can be detected
a very low computational complexity. by analyzing the sign of the log-likelihood ratios. Bothttes



TABLE |
THE NETWORK LEVEL SOLUTION: FP AND FN EVALUATED ON DATA
SYNTHETICALLY GENERATED IN APPLICATIOND1

Blur o Detection

1 2 3 4 5 6 7 8
FP(%) 10 18 18 7 10 10 14 7
FULL 0.02 gy 1 1 0 4 2 0 0
FP(%) 14 13 9 9 12 16 11 13
FULL 004 eyoy 6 0 0 1 0 3 0 1
FP(%) 8 15 9 9 9 6 9 17
FULL 006 eyoy) 2 2 3 1 3 2 0 o0
FP(%) 9 11 4 12 4 13 10 8
FULL 008 Eyos) 6 0 1 1 1 0 0
FP(%) 11 8 6 11 8 15 15 13
PART 0.02
FN(% 34 17 13 11 11 3 6 5
Fig. 2. An example of synthetically generated observatidfist row: the FP((O/;) ; 7 11 10 7 711 10 9
blur affects the whole image; = 0.08 andv = 1,4, 8, respectively. Second  paRT 0.04
row: the blur affects only some part of the image= 0.02 andv = 1, 4,8, FN(%) 37 16 10 12 7 7 6 5
respectively. FP(%) 12 11 19 12 10 8 8 14
PART 006 Ny 38 10 4 12 7 8 8 5
FP(%) 5 12 8 12 13 8 13 16
PART 008 pNogy 36 20 8 11 11 7 7 4

are able to detect the presence of drops in the images -by
sequentially checking whether the s have been generated
according to a pdf associated wiif or one of the alternative .
hypotheses. When one of the cumulative sums ofsthe ~Merit have bee_n suggested to assess the performance of the
overcomes an automatically-defined threshold, the testtiet Proposed solutions:

a change in the statistical behavior of thies (a detailed DL  Detection Latency. It represents the number of im-

description of both the tests is given in [32]). Since the-log ages required to detect a change in the blurring
likelihood ratio compares couples of pdf, both tests have a process after the drop arrival.

number of running log-likelihood ratios that is equal to the FP  False Positives. It measures the number of blur
number of alternative hypotheses defined by the test (aeh e changes erroneously detected by the test.
log-likelihood ratio compares the null-hypothesis witheon FN  False Negatives. It measures the number of blur
of the alternative hypotheses). The main difference beatwee changes not detected by the test.

the Adaptive and the CI-CUSUM test consists in the set of ET ~ Execution Time (in seconds) of the Adaptive
considered features. More specifically, the Adaptive CUSUM CUSUM and the CI-CUSUM tests estimated with

assesses changes in the mean and the variance of the process ~ Matlal?.

under monitoring, while the CI-CUSUM exploits a larger set Execution times have been evaluated separately for the
of features (i.e., not only mean and variance but also featukraining phase needed to configure the test parameEFs (
derived from the pdf and the cumulative density function againing) and for the operational phadeT( operational). The
well as features inspired by change detection tests présentonfiguration set accounts for 500 blur measures computed

the literature) and it is more accurate at the expenses ofrém blur-free observations, the validation set for 150@sn
significant increase in computational complexity. Obvigus

a hlgher number _of alternative hypotheses guarantees a mR.reApplication D1
effective exploration of the hypotheses space and, hence, a
larger change detection ability. The selection between theA set of sequences of observations have been generated
Adaptive and the CI-CUSUM test is thus strictly related tgccording to Equation (4). Each sequence contaifg0

the available computational resources and the desiredtiete Observations obtained fromi5 grayscale512 x 512 pix-
accuracy. We suggest to consider the Adaptive CUSUM te§ original images, scaled in th@,1] value interval. In

for the node solution (i.e., the change detection test isieeel each sequence, the firs000 observations are blur-free i.e.,
directly on nodes), while the CI-CUSUM test is the suitabli = Z ¢ = 1,...,1000, whereZ stands for the identity
choice for the network solution either at the cluster heads @Perator; the others have been affected by a blurring aperat

at the remote control station. B; i = 1001,...,2000 having the PSFs of Equation (3)
defined as:
_f dx—9), zeX -
IV. EXPERIMENTS h(z,s) = { gw—s). zeX SAui=4, (7)

The proposed methods have been tested on two applicatiQpgere Xy N A, = 0, ¢ is the Dirac’s delta function angd

The first benchmark refers to a sequence of syntheticallyaussian kernel of standard deviationSets X, and X,

generated observations (Application D1); the second sefer genote blur-free and blurred areas, respectively. Thezefbe
a real sequence of images (Application D2). In both cases our

goal is to detect the presence of water drops. Four figures ofReference platform: Intel Core 2 Duo 2.53GHz CPU, no pdréiieads



TABLE Il

THE NODE LEVEL SOLUTION. FP AND FN EVALUATED ON DATA the blur corrupts only part of the image (the "PART" case)
SYNTHETICALLY GENERATED IN APPLICATIOND1 the values ofFN are higher than when the blur corrupts the
whole image (the "FULL” case). Moreover, at low values of
i v v, the node level solution is not able to reliably detect the
Blur o Detection

2 3 4 5 6 7 8 presence of drops (see ti@N in the last rows of Table II).
FPCO) 21 1718 10 19 13 18 10 By the network and the node-level solutions are able te cop
I'zﬁ((z//;’; 125 104 f4 ?7 % go 25 25 with the considered noise levels: the valuesd=@%, FNs and
FN(%) 3 0o o o o o o o BDLs show that_ the detection _performance is n_ot altered. We
FP%) 16 19 16 10 17 15 17 13 comment that it is extremely important to provide a reduced

FULL 006 Ny 3 0 o o o o o o nhumberofFPs,asthese false alarms are sent over the network
7 9

FULL 0.02

FULL 0.04

FP(%) 18 13 12 17 15 18 and they may result in a waste of resources. Policies at the
FULL 008 peyo) 2 0 0 0o o o0 0 0 unitand atcluster level could be implemented to redEge
FP(%) 16 11 14 20 17 19 12 15 by exploiting information coming from neighboring unitsh&
PART 002 pnwog) 69 41 34 24 25 27 23 19 execution time averaged over the algorithm runs is given in
PART 0,04 FP(%) 16 11 19 17 19 16 19 16 Taple Ill, and shows that the node solution is considerably
' FN(%) 65 51 38 32 27 22 23 23 faster than the network one both during the training and the
FPOG) 18 15 16 20 15 15 10 14 (o ovoiol ohoces
PART 006  pyogy 70 50 33 25 27 31 23 21 '
FP(%) 16 16 10 18 14 14 10 24
PART 0.08

FN(%) 70 42 33 33 32 24 24 21 B, Application D2

The second application refers to a set of 25 uncompressed
video sequences acquired in 5 different dynamic scenarios
considered blur may affect only some parts of the originghree outdoor and two indoor). Each sequence is composed
image and, within the blurred areas, the blurring operator df 2000 frames (320« 240 pixels) recorded by an integrated
space invariant. We considered two different cases: in the fiwebcam of a laptop computer. Each frame has been converted
the blurring operator affects the whole image (i, = X, into grayscale by averaging theGB values of each pixel.
FULL blur); in the second the blurring operator affects onlfhe first 1000 frames are drop-free, while the next 1000 have
some parts of the image (i.eX; C X, PART blur). In this been acquired with some water drops on the camera lens.
latter case, the set¥, and X; are the same for all sequencesFigure 5 shows, along rows, six frames taken from a video
In each sequence, the noise term is Gaussian N(0,02) sequence (one per each scenario). Similarly to Application
added to both the blur-free and the blurred images. D1, the training phase of both tests exploits the first 50@dro
For both the FULL and the PART blur we considergd free images of each sequence. The figures of merit have been
values of the standard deviation of the Gaussian kegnelevaluated by averaging the results of the 25 video sequences
of Equation (7)v = 1,2,...,8, and 4 values of o, the the comparison between the performance of the two solutions
standard deviation of ranges from0.02 to 0.08 (step0.02). is presented in Table IV.
For each parameters pajr,o) we generated 100 different The experimental results on this dataset are in line with
sequences in order to compute the figures of merit for thigose of Application D1: the network level solution guaeses
two solutions. Figure 2 shows that observations generatiéd wower FPs than the node solution which, on the contrary,
such parameters, at least for high values oére very similar provides a prompter detection ability (lower values i)
to images acquired with a drop on camera lens, such as these reduced execution time. When processing these video
of Figures 1 and 5. sequences, thEPs are determined by accidental and unpre-
Tables | and Il show the change detection ability of thelictable occluding objects that do not appear in the trginin
network and the node level solutions, respectively. On oiét, as for example the shadowed face or the transparetitplas
hand, the network level solution guarantees [EBs than the
node level one, thanks to the superior detection abilityhef t TABLE Ill
CI-CUSUM test. This is particularly evident in the "PART” APPLICATIOND1: ET AVERAGED OVER THE2 X 8 X 4 X 100 ALGORITHM
case at low values Of, where the node level solution is nOtRUNS FOR BOTH THE NETWORK LEVEL AND THE NODE LEVEL SOLUTIONS
able to detect the presence of bliNSs in the last rows of soluion ET training () ET operational (s)
Table II). On the other hand, the node level solution guaest network 0.125s 0.461s
very low detection delays (the test is very quick in detegtin node 0.010s 0.003s
changes) and a reduced computational complexity. Figures 3 TABLE IV
and 4 show the detection Iatency on the Cons_ldered dataESELICATIONDZ:DETECTION PERFORMANCE EVALUATED FOR BOTH THE
for both the node and the network level solutions. In bothyetwork LEVEL AND THE NODE LEVEL SOLUTIONS FP AND FN HAVE
cases, the amount of images required to detect the presénceEgN COMPUTED OVER25 VIDEO SEQUENCESWHILE THE VALUES OF DL
blur decreases as increases. We observe that the values AND ET HAVE BEEN AVERAGED OVER THE25 RUNS.
are independent from the values wf(the standard deviation —soufion FP@s)  FN@) DL ET training (sec) ET operational (5)
of Gaussian PSF), whil&Ns decrease as increases: the ~network 16 4 181.0 0.12% 0.461s
higher the blur, the easier its detection. In particularewh __Nnode 24 4 44667 0.009 0.003s




Network Level Solution: Detection Latency

FULL blur PART blur
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Fig. 3. DL of the network solution as a function of (the standard deviation of Gaussian PSF), computed foerdift values ot (the noise standard
deviation). The plot (a) shows tHBL when the blur affects the whole image while (b) the when the blur affects only some areas.

Node Solution: Detection Latency
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Fig. 4. DL of the node solution as a function of(the standard deviation of Gaussian PSF), computed fardift values o& (the noise standard deviation)
The plot (a) shows th®L when the blur affects the whole image while (b) the when the blur affects only some areas.

bag appearing in the sequence illustrated in the third andviithin the subsequence ending at frame 11BQ (= 180).

the fourth row of Figure 5, respectively. In fact, differgnt Figure 7 shows the blur measures; computed from the
from the synthetically generated sequences of Applicdlidn sequence illustrated in the third row of Figure 5: in this
here the training set might not be fully representative of atase the network solution detects the drop arrival withi th
the original imagegy; that the WMSN node has to face insubsequence ending at frame 1240 (= 240), while the
working conditions. Occluding objects may also indugld node solution bears a false positive at frame 880, because of
when they are shown in the training set, as the decay in thre bdusudden decay in the blur measures.

measures due to the drop arrival could. Motion-blur, which

frequently occurs in images of dynamic scenes acquired @ Computational Complexity of the Node Level Solution
low-light conditions, may also cause bdtRs andFNs since it~ pq expected, the execution times reported in Tables Il
causes loss of details in the observat_ions and subsequeayt dgnq v show that the Adaptive CUSUM has a significantly
of the blur measures. This challenging problem could be (@{yer computational complexity than the CI-CUSUM both in
least) partially addressed by integrating lighting infaffon ¢ {raining and the operational phases. In fact, the Adapti
and exposure times in the change detection tests. The @etecEysym assesses changes by solely inspecting variations in
performance can be improved by considering longer trainigge mean and variance ofs, while the CI-CUSUM considers
sequences and, when possible, by updating the training 56k ger set of features to improve the detection ability.

Wlth user-supervised _and disturbance-free images aaiuire present a detailed analysis of the computational com-
during the test execution. plexity on the Adaptive CUSUM to justify its use at the node
Figure 6 shows the blur measures associated with the level. The evaluation of the blur measure by (5) is discegtiz
sequence including the frames depicted in the second rowansfd implemented wit{2(s — 1) + 4) integer operations per
Figure 5: in this case both solutions detect the drop arrivaixel, being s the number of non-zero coefficients of the



training set validation
0 ‘ ‘ ° ‘ ‘ 500 1000 5 ‘dato ‘Set ‘ ‘ 1500

Fig. 5. Example of observations composing the video se@serieach row shows six frames taken from an acquired videoeseg. In all sequences the
drops appear at frame 1001.

.
convolutional filter used for computing image derivatives. 45

In our Matlab implementatiors = 6 (requiring 14 integer training st validation set
operations per pixel)s can be reduced t@ when a one 4 drop i
dimensional filter is used (6 integer operations per pixel). arrives
The operational phase of the Adaptive CUSUM, which con- as | l ]
stitutes the computational load in working conditions rieeg) '
for each subsequence of 20 blur measures, to: drop
3 detected _

o compute the mean of the 20 blur measures of the fram
(20 floating point operations);

« compute 2 logarithms (% 35 floating point operations) 25

« evaluate a one-dimensional standard Gaussian function in

Blur measures

1

3 points (3x 28 floating point operations). 2|
The number of floating point operations has been estimated
with Matlab. It follows that the execution of the Adap- s

. . . . . . . . .
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Frame Number

tive CUSUM test requires 175 floating point operations per
each subsequence of 20 blur measures. Such a reduced and
computationally-light sequence of operations can be stali Fig. 6. Blur measures (5) computed in the sequence shownreirsehond
cally executed on a WMSN node having limited hardware argd" ° F19ure 5

energy resources such as the [7], [8], [9], [10] node platfr

community since nodes quite often operate outdoor in harsh
V. CONCLUSIONS environments and it is important to continuously assess the

This paper presents two different solutions for detectirg t status of the image acquisition system. The proposed sohiti
presence of external disturbances on camera lens in WM8&bmbine a simple and easy-to-compute blur measure and a
nodes. Such aspect is particularly relevant in the WMSN#&ange detection test and have been proven effective both on
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Fig. 7. Blur measures (5) computed in the sequence showreithttd row
of Figure 5.

[12]
synthetically generated images and video sequences adquir
from a webcam. [13]

The analysis of the computational complexity shows that
the node level solution can be implemented on WMSN nodﬁﬁ]
deployed in critical environments. Ongoing work regards th
implementation of the node level solution on a STMicroelec-
tronics prototype board, which represents the current—:-st?ﬁ]
of the art in low-power smart cameras [10]. This board is
equipped with the ST-VS6724 2 Mpx camera [33] and the
ST STR912FA micro controller [34], running at 96MHz with(®!
96Kb SRAM. The board is able to process in real time
images, delivering video stream at 30fps. Furthermore, Wi&]
are investigating strategies at the cluster level to imerov
the detection performance and reduce the numbdtRsf by [1g]
exploiting local knowledge; such clusters can be generased
in [35]. (19]
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