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Abstract. Classification systems meant to operate in non-stationary 

environments are requested to adapt when the process generating the observed 

data changes. A particularly effective form of adaptation in the abrupt 

perturbation case suggests to release the obsolete knowledge base of the 

classifier (or training set), and consider novel samples to configure the new 

classification model. In this direction, we propose an adaptive classifier based 

on a change detection test used both for detecting changes in the process and 

identifying the new training set (and, then, the new classifier). A key point of 

the proposed solution is that no assumptions are made about the distribution of 

the process generating the data. Experimental results show that the proposed 

adaptive classification system is particularly effective in situations where the 

process generating the data evolves through a sequence of abrupt changes. 
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1   Introduction 

In the real world, data coming from industrial or environmental processes change 

their statistical behavior over time due to thermal drifts, aging effects, transient and 

permanent faults. This evolutionary nature is particularly evident in sensors subject to 

stress such as in X-ray detectors (due to the invasive nature of the radiation), 

electronic noses (due to thermal and humidity effects, as well as degradation of the 

active film) and monitoring system working in harsh environments (e.g., presence of 

water, dust, etc). Whenever a change occurs subsequent data violate that stationary 

hypothesis traditionally assumed in the design of the application solution, here 

assumed to contain a classifier. As a consequence, the classifier accuracy degrades, 

possibly impairing the quality of service of the application.  

The need to deal with nonstationary conditions or concept drift [1][2] led to the 

development of classification systems able to adapt their knowledge base (i.e., 

training set) and in turn their parameters or model family to track the process 

evolution. In particular, [3] suggests the “instance selection” approach to trade-off 

accuracy and computational complexity. There, classifiers provide a classification 



value of a given input by relying on a subset of the knowledge base representing the 

current state of the process. In the same direction, FLORA and FLORA2 [4] suggest 

to remove a fixed 20% of the training samples (e.g., the oldest training pairs) from the 

knowledge base when a change is suspected (i.e., when the accuracy of the classifier 

decreases below a user-defined threshold). Differently, [5] suggests to adapt the 

knowledge base over the last samples which are assumed to contain supervised 

patterns. 

A different and effective approach is proposed in [7] where the Just-in-Time (JIT) 

adaptive classifier integrates a change detection test to detect the change and an 

adaptive knowledge management phase removes obsolete training samples and inserts 

fresh ones.  A soft version extends JIT classifiers to address the smooth drift case [8].  

JIT classifiers consider the CI-CUSUM [6] test both to assess the stationary 

hypothesis and identify the training samples relevant to the classifier. Recently, a 

novel change detection test based on the Intersection of Confidence Interval rule (ICI) 

has been proposed in [9]. The test appears to be very promising as it guarantees a 

higher detection ability with lower detection latency and a contained computational 

complexity compared to the CI-CUSUM test. Moreover, the ICI test revealed to be 

very reliable in critical situations where only a reduced data set is available to 

configure the test. Whichever test we consider to detect the change, a mechanism to 

automatically update the test and the training set after each change detection is 

required. 

 This work provides such a mechanism by presenting a change-detection 

refinement procedure that adaptively identifies, once a change has been detected, the 

data subset representing the new process state. The novelty of the proposed approach 

resides in the change-detection refinement procedure which identifies the training 

subsequence coherent with the current state of the process. The joint use of an 

adaptive classifier and the change detection test allows us for improving the accuracy 

in stationary conditions and promptly reacting to abrupt changes in non-stationary 

ones. 

The structure of the paper is as follows. Section II introduces the change-detection 

refinement procedure. The ICI-based JIT adaptive classifier dealing with both 

stationary and nonstationary situations is presented in Section III. Experimental 

results are finally given in Section IV. 

2   Adaptation via Change Detection Test 

Let ,: d
X d→ ∈ℕ ℝ ℕ  be a stochastic process generating data from two different 

classes of unknown pdf. Denote by { ( ), 1, , }
T

x t t TO = = …  the sequence of data 

(observations) measured up to time T , and assume that the data are independent 

realizations of X . Assume also that the initial 
0

T  observations have been generated 

in a stationary condition, and that the classification system uses 
0T

O observations as 

training set. Since the focus is on abrupt changes, we assume that, after time 
0

T , the  



 
Fig. 1. Detection Latency (DL) as a function of process change time *T : data are processed 

in subsequences of 20ν =  observations, 2,Γ =  and the stationary state is ~ ( , )X µ σN . 

Each curve represents changes in the process obtained by increasing µ of , ,2 3σ σ σ . Results 

have been averaged over 500 executions.  a) The ICI change detection test (i.e., DL 

considering T̂ ); b) the output of refined procedure (i.e., DL considering refinedT ). 

 

process X  either does not change or evolves through a sequence of stationary states 

(whose change times need to be detected with a suitable test).  

2.1 Detecting Changes Using the ICI rule 

The change detection tests presented in [9] require a preliminary feature extraction 

followed by a statistical technique, the Intersection of Confidence (ICI) rule [11], [12] 

to assess the process stationarity.  

At first we compute the sample mean and the sample variance over non 

overlapping subsequences of ν  observations. Thanks to the Central Limit Theorem 

and to an ad-hoc transformation of the sample variance suggested in [13] both 

features
j

z are Gaussian distributed  

 ( )2~ ( ), , 1, , / , 1,2 ,( )
j j j

s sz Ts jµ σ ν= … =N  (1) 

where s indicates the subsequence index and j  is the feature index. The ICI rule, 

combined with a polynomial smoothing operator applied to ,{ ( )}
sj

z s  is then used to 

identify possible changes in 
j

µ  (i.e., the expected values for the sample mean and the 

transformed sample variance) and, in turn, in the stationarity of X . Experiments 

show that the ICI change detection test outperforms state-of-the-art solutions both in 

terms of reliability and computational complexity [9]. A relevant characteristic of this 

test is that it relies only on the tuning parameter 0,Γ >  which does not depend on the 

change. 

 



2.2 Change-Detection Refinement Procedure 

Figure 1 a) shows the average Detection Latency (DL), measured as the number of 

observations required to detect an occurred change, over * ,T the time instant where 

the change occurs. It comes out that the later the change occurs, the larger is the 

number of observations (generated in the novel status of X ) needed to detect it with 

the ICI detection test. Of course, this is an undesirable behavior which needs to be 

addressed to make the test effective in the long run. Such delays cannot be 

analytically compensated during an on-line data analysis, as they depend on the pdf of 

X  before and after the change. Moreover, Figure 1 a) suggests that, once the change 

has been detected, the estimate of *
T can be improved by executing the ICI change 

detection on shorter observation sequences. This is the motivating idea of the change-

detection refinement procedure, which is briefly described in the following and 

detailed in Algorithm 1. 

Whenever the ICI change detection test reveals a process change in T̂ , the 

refinement procedure analyzes the previous observations to identify a more accurate 

estimate of the change time *
T . Operatively, the analyzed interval 0[ , ]ˆT T  is split in 

two intervals 0 1[ , ]T T  and 1,[ ]ˆT T  whose lengths are determined by the parameter 1λ >  

(line 2), and then the ICI change detection test is run on 0 1
ˆ[[0, ]] ,TT T∪  (line 5) 

providing (a possible) detection 1T̂ . This is considered a more accurate estimate of 

*
T , as the test operates on a shorter sequence w.r.t. the former detection.  The 

procedure is then iterated by further splitting 1[ , ]ˆT T  (line 6), until the earliest 

detection is reached by the leftmost interval bound (line 7).  An illustrative example 

of the change-detection refinement procedure is shown in Figure 2.  

Note that this procedure provides the estimate 
refined

T of *
T which is expected to be 

less affected by the systematic delays shown in Figure 1 a). It comes out that the  

Algorithm 1: Change-detection refinement procedure 

1. Let T̂  be the ICI change detection test output; 

2. Compute 1 0 0
ˆ( ) /T TT T λ−= + ; 

3. 1i = ; continue = true; 

4. while  (continue == true){ 

5.      Apply ICI change detection test to 
0

[0, ] [ ]ˆ,
i

T T T∪ ; let ˆ
i

T be the result; 

6.      Compute 1 ( ˆ ) /i i iT TT T λ+ −= + ; 

7.      If ( 1, ,min({ }ˆ )j j iT = … < 1iT +  ) 

8.              continue = false; } 

9. Define 1, ,min({ } )ˆ
refined j j iT T = …= ; (Define 0

ˆT T= ). 



Fig. 2. Change-detection refinement procedure: an example with 2.λ =  Initially (first line) a 

change is detected in ˆ,T  and the refinement starts by computing
1T . The test is thus executed 

on 
0 1

ˆ[[0, ]] ,TT T∪ , resulting in a detection  at 
1

T̂ (second line). This procedure is iterated 

computing 
2T and running the ICI change detection test on 

0 2
ˆ[[0, ]] ,TT T∪ . The procedure is 

terminated when 3 2 ( min{ˆ ˆ })jT T T> = . The output is 2
ˆ

refinedT T= , and 
2

[ ], ˆT T is assumed to be 

generated by X in the novel (stationary) state. 

 

observation interval 
0

,[ ]
refined

TT  can be considered as being generated by X in the 

new stationary state. Figure 1 b) shows that the change-detection refinement 

procedure effectively reduces DL when *T increases.  

3 ICI-based Adaptive Classifier 

The joint use of the ICI change detection test [9] and the change-detection refinement 

procedure allows us for devising a novel classification system following the 

philosophy of the JIT soft adaptive classifier delineated in [7]. Similarly to the JIT soft 

classifier, classification is performed with a k-NN classifier, while stationarity of X is 

monitored through the ICI change detection test.  

The proposed ICI-based adaptive classifier is presented in Algorithm 2. More in 

detail, the sequence {( ( ), ( )), }
T T

Z x t y t t I∈=  consists of all the supervised couples 

( ( ), ( ))x t y t  available and 
T

I  contains their observation time instants. Define  

0 0
{1, , }I T…= so that  

0 0
{( ( ), ( )), }Z x t t t t I∈=  is used as the initial training set for both 

the k-NN and the ICI change detection test (line 1). In particular, the initial value of k 

is estimated by means of the Leave-One-Out (LOO) technique (line 2), while the ICI 

change detection test is configured on the initial training set 
0TO (line 3).  

After the initial configuration phase, the algorithm works on-line by classifying 

upcoming samples and by introducing, whenever available, new supervised data 

( ( ), ( ))x t y t  into the knowledge base of the classifier. In this case (line 6), the algorithm 

stores the time instant t when the sample has been received (line 7), it includes the 

pair ( ( ), ( ))x t y t  in the knowledge base of the classifier (line 8) and updates the 

parameter k according to Equation (3) of [7] (line 9). In stationary conditions, the 

classification accuracy can be always increased by introducing additional supervised 

samples during the operational life [10]. When )(tx  carries no additional information, 

t
I and 

t
Z are not updated (lines 11-12) and )(tx  is classified (line 19). 



 

When the ICI change detection test does not identify changes in the data generating 

process, the current sample )(tx  is simply classified by the k-NN classifier (line 19) by 

using the current knowledge base 
t

Z , and the current value of k . On the contrary, 

when the test detects a variation in the subsequence containing ( )x t  (line 13), the 

change-detection refinement procedure is executed (line 14) and produces 
refined

T . The 

change detection test is then reconfigured on the sequence ,[ ]
refined

tT (line15), which is 

seen as generated by X in the novel status. This information is then exploited to 

remove the training samples that have been acquired before 
refined

T  both from 
t

I  and 

from 
t

Z  (lines 16-17). This is the main difference w.r.t. the JIT adaptive classifiers 

presented in [7] and [8] where the window size was either a-priori fixed by the user (as 

in [7]) or adapted to keep only those training samples that have been acquired in a state 

of the process compatible with the current one. The new value of k is then estimated by 

means of the LOO technique (line 18). Finally, ( )x t  is classified by relying on the 

updated knowledge base (line 19). 

Algorithm 2: ICI-based adaptive classifier (x) 

1. { }0 0
1,..,I T= , { }0 0

( ( ), ( )), ;Z x t y t t I= ∈  

2. estimate  k
 
 by means of LOO on 

0
;Z  

3. configure the ICI change detection test using 
0
;

T
O  

4. 
0

1;t T= +  

5. while (1) {  

6.      if (new knowledge on )(tx  is available) { 

7.           
1

{ };
t t

I I t− ∪=  

8.           { }1
( ( ), ( )) ;

t t
Z Z x t y t−= ∪  

9.            update k  using Equation (3) of [7]. } 

10.      else { 

11.           
1
;

t t
I I −=  

12.           
1
;

t t
Z Z −= } 

13.      if (ICI test ( )( )x t  == “ X is NOT stationary”) { 

14.            run the change-detection refinement procedure (Algorithm 1);  

15.            configure the ICI change detection test using 
0 ];,[ refined TT   

16.            set { }, ;t t refinedI t I t T= ∈ >  

17.            set { }( ( ), ( )), ;
t t

Z x t y t t I= ∈  

18.            estimate k  by means of LOO on ;
t

Z } 

19.      classify ( )x t  using ( )( ), ,
t

k NN x t k Z− ;  

20.      1;}t t= +    



 

Fig. 3 An example of dataset for Application D2. 

4 Experiments 

The performance of the proposed adaptive classification system has been compared 

with those of JIT [7] and JIT soft [8] when classifying both synthetically generated 

data (Application D1), and measurements coming from photodiodes (Application 

D2). 

Application D1 contains three classification datasets each of which presenting a 

change in stationarity: abrupt, transient, stairs. A dataset is composed by 200 

sequences of 12000 real-valued observations drawn from two equiprobable Gaussian-

distributed classes ),( 10 ωω  that, in the initial stationary state, are distributed as 

0( | ) (0,3) ,p x Nω =  and 1( | ) (4,3).p x Nω =  In the abrupt dataset, a change occurring 

at observation 6001 increases the mean of both classes by 15. In the transient dataset, 

the mean of both classes increases by 3 at observation 4001 and then return to the 

original values at observation 8001. The stairs dataset is characterized by a 

concatenation of changes at observations 3001, 6001 and 9001, each one increasing of 

6 the classes’ mean.  

Application D2 refers to a dataset composed of 28 sequences of measurements 

taken from couples of photodiode sensors. Each sequence is composed of 12000 16-

bit measurements (6000 per sensor). We tested the algorithms by classifying the 

observations according to the sensor. An example of such a sequence is shown in 

Figure 3. 

The effectiveness of the three classifiers is measured by the classification error at 

time ,t  which corresponds to the percentage of correct classification of ( )x t  

computed over the whole dataset. Figure 4 shows these percentages averaged over a 

window of the 200 previous values.  

We impose a minimum training set of 80 observations for the ICI-based classifier. 

The JIT soft has been configured with a minimum training set size of 80 observations 

for the classifier and 400 for the test (as required in [8]), while the JIT requires 400 

observations both for the classifier and the test (as stated in [7]).   



 
Fig. 4. Experimental results on applications D1 and D2. The classification error has been 

averaged over a window of 200 values 

 

The length of the initial training set is set to 0 500T =  samples; after time 0T we 

provide each classifier with 1 supervised observation out of 5 to update the  

knowledge base. We set 2Γ =  in the ICI change detection test and 3refinementΓ =  in 

the change-detection refinement procedure to reduce the false positives when the test 

is repeated several times. In the change-detection refinement procedure we also set 

2.λ =  

Plots of Figure 4 show a comparison among the classification errors of the three 

considered classifiers. In stationary conditions (i.e. before the change), the 



classification error typically decreases thanks to the introduction of additional 

supervised samples. Thus, any detection (false positive) results in an unnecessary 

removal of up-to-date training samples, which may significantly reduce the 

classification accuracy. In particular, the JIT soft shows the highest classification 

error due to the fact that false positives significantly reduce the training set size (this 

effect is less evident in JIT since, after a change is detected, the training set  is 

composed of at least 400 samples). On the contrary, the ICI-based classifier 

guarantees a lower classification error since, as stated in [9], the ICI change detection 

test is more robust to false positives than CI-CUSUM.  

In nonstationary conditions (i.e., an abrupt change occurs in the data generating 

process), the ICI-based classifier shows the lowest classification error thanks both to 

the prompter detection provided by the ICI test [9] and the change-detection 

refinement procedure, which identifies a timely knowledge base subset of 

observations representative of the new status. We emphasize that the ICI-based 

classifier provides an adaptive training set evolving with the process and the 

occurring changes, whereas in JIT classifiers the CI-CUSUM test is configured with a 

fixed window containing the last 400 observations. This latter, after an abrupt change, 

might then contain samples not coherent with the current state of the process and, 

hence, produce a loss in classification accuracy, as presented in Figure 4a. 

When the nonstationary behavior is characterized by a sequence of abrupt changes 

(the transient and stairs datasets in Figures 4b and 4c), the improvement provided by 

the ICI-based classifier is even more evident: after the first change, the ICI-based 

classifier successfully adapts both the classifier and the test to the novel operating 

conditions and thus the test is ready to detect further changes. Conversely, after the 

first change, the JIT and the JIT soft cannot successfully adapt to the novel operating 

conditions and this affects the detection abilities on subsequent states. It is interesting 

to note that, in the transient dataset, the JIT classifier outperforms JIT soft and this is 

justified by the fact that the obsolete knowledge may still be present in the training set 

and the test configuration after the first detection. 

Experiments run on photodiode sensor data (Figure 4d) shows classification errors 

in line with the stairs synthetically generated datasets. 

5   Conclusions 

The paper suggests an ICI adaptive classifier able to effectively react to abrupt 

changes in an unknown data generating process. The novel content is the definition of 

the change-detection refinement procedure that allows the integration of the ICI–

based change detection test within the JIT framework. Such a procedure provides an 

effective way to identify, in nonstationary conditions, the training samples coherent 

with the current state of the process that can be used to configure the test and to 

update the knowledge base of the classifier. 

Experimental results show that the proposed classification system provides higher 

classification accuracy than the traditional JIT and the JIT soft adaptive classifiers on 

both synthetically generated sequences, and light sensor measurements presenting 

abrupt perturbations. 
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