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Disclaimer

� Most of the material shown in these slides is taken from LASIP (Local 
Approximation in Signal and Image Processing) laboratory webpage.

� http://www.cs.tut.fi/~lasip/
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� http://www.cs.tut.fi/~lasip/

� There you can download papers and Matlab sources for most of 

implemented algorithms
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Outline

� Image Formation Model

� Denoising approaches 
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� LPA-ICI Denoising Motivations

� Local Polynomial Approximation

� ICI rule
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� Algorithm Details
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� Observation model is

Image Formation Model

Sensed image
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� For the sake of simplicity we will assume 

Sensed image

Pixel index

Original (unknown) image

noise.
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� The goal is to obtain        , a reliable estimate of        , given          and 
the distribution of     .
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Denoising Approaches

� Parametric Approaches

• Transform Domain Filtering, they assume the noisy-free signal is 
somehow sparse in a suitable domain (e.g Fourier, DCT, Wavelet) 

or w.r.t. some dictionary based decomposition)
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or w.r.t. some dictionary based decomposition)
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Denoising Approaches

� Parametric Approaches

• Transform Domain Filtering, they assume the noisy-free signal is 
somehow sparse in a suitable domain (e.g Fourier, DCT, Wavelet) 

or w.r.t. some dictionary based decomposition)
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or w.r.t. some dictionary based decomposition)

� Non Parametric Approaches

• Local Smoothing / Local Approximation

• Non Local Methods
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Denoising Approaches

� Parametric Approaches

• Transform Domain Filtering, they assume the noisy-free signal is 
somehow sparse in a suitable domain (e.g Fourier, DCT, Wavelet) 

or w.r.t. some dictionary based decomposition)
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or w.r.t. some dictionary based decomposition)

� Non Parametric Approaches

• Local Smoothing / Local Approximation

• Non Local Methods
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Estimating           from          can be statistically treated as regression of      on    
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Non parametric approaches

� Local / Non Local

• Local methods: weights used for the algorithm depends on the 

distance between the estimation point      and the other 
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distance between the estimation point      and the other 
observation points    
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Non parametric approaches

� Local / Non Local

• Local methods: weights used for the algorithm depends on the 

distance between the estimation point      and the other 
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distance between the estimation point      and the other 
observation points    

• Non Local Methods: the weights are function of the differences of 
the corresponding signals. The weight used to estimate       
depends on      . Typically on something related to                  .
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Katkovnik, V., A. Foi, K. Egiazarian, and J. Astola, “From local kernel to nonlocal multiple-
model image denoising”, preprint (July 2009), to appear Int. J. Computer Vision.
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Local vs Non-Local

� Local, weights are determined by the pixel distance (regardless of the 
image content)

11

ISPRA, JRC

With different weights
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Local vs Non-Local

� Non Local, weights are determined by the image similarity
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� Example of observation
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Local vs Non-Local

� Non Local, weights are determined by the image similarity
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� Example of observation
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Local vs Non-Local

� Non Local, weights are determined by the image similarity
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With different weights
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Non parametric approaches

� Pointwise / Multipoint

• Pointwise: the estimation of noise-free signal is computed for the 

central point only,      and not for all the other points considered
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central point only,      and not for all the other points considered

ISPRA, JRC27th October 2009 



Non parametric approaches

� Pointwise / Multipoint

• Pointwise: the estimation of noise-free signal is computed for the 

central point only,      and not for all the other points considered
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central point only,      and not for all the other points considered

• Multipoint : the estimation of the noise-free signal is computed for 

all the points      used by the estimator to estimate      .
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Katkovnik, V., A. Foi, K. Egiazarian, and J. Astola, “From local kernel to nonlocal multiple-
model image denoising”, preprint (July 2009), to appear Int. J. Computer Vision.
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Pointwise vs Multipoint

� Pointwise, the estimate is given for the central point only
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involved
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Pointwise vs Multipoint

� Pointwise, the estimate is given for the central point only
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Pixels where 

the true signal 

is estimated
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Pointwise vs Multipoint

� Multipoint, the original image is estimated in all the pixels considered 
in the filtering
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involved
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Pointwise vs Multipoint

� Multipoint, the original image is estimated in all the pixels considered 
in the filtering
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Pixels where 

the true signal 

is estimated

ISPRA, JRC27th October 2009 



Disclaimer

� This classification holds for the principles that determine the algorithm 
design.

21

� Most of the algorithm are implemented combining methods from 
different approaches.

� Furthermore, some of the most effective denoising algoritms enforce 
parametric assumptions on image areas adatptively selected 

SA-DCT 
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• SA-DCT 

• BM3D
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What are we going to see then,

� A Local, pixel-wise denoising algorithm

LPA-ICI : Local Polynomial Approximation using

Intersection of  Confidence Interval rule.
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Intersection of  Confidence Interval rule.

� We will consider the denoising as a basic problem, although this 

method has been successfully applyied to several other problems 
such as

• Deblurring

• Interpolation

Enhancement 
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• Enhancement 

• Demosaicing

• Deblocking 

• Inverse Halftoning
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Why?

� Why to use such an algorithm as a case study for Cuda 
programming?

• It is Embarrassingly parallel (it is a local pixelwise method).
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• It is Embarrassingly parallel (it is a local pixelwise method).

• It is simple to implement.

• It is motivated by few clear and easy-to-show assumption.

• It has been successfully applied to several image processing 
challenges.
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LPA-ICI basic ideas

� It combines two independent ideas:

• Local Polynomial Approximation (LPA) for designing linear 

filters that performs pixelwise polynomial fit on a certain 
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filters that performs pixelwise polynomial fit on a certain 
neighborhood.
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LPA-ICI basic ideas

� It combines two independent ideas:

• Local Polynomial Approximation (LPA) for designing linear 

filters that performs pixelwise polynomial fit on a certain 
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filters that performs pixelwise polynomial fit on a certain 
neighborhood.

• Intersection of Confidence Interval rule (ICI) is an adaptation 
algorithm, used to define the most suited neighborhood where the 
polynomial assumpions fit better the observations.
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� Local Pointwise weighted averages: the estimate at      is

Local Pointwise Techniques 
26

ISPRA, JRC27th October 2009 



Local Pointwise Techniques 

� Local Pointwise weighted averages: the estimate at      is
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� Can be interpreted as the 0-th order polynomial that performs least 
square fit
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Local Pointwise Techniques 

� Local Pointwise weighted averages: the estimate at      is
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� Can be interpreted as the 0-th order polynomial that performs least 
square fit
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� The weights in the MSE are determined by the averaging window      
and the parameter  scales the window w.r.t. a basic window

27th October 2009 



Local Pointwise Techniques 

� Local Pointwise weighted averages: the estimate at      is
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� Can be interpreted as the 0-th order polynomial that performs least 
square fit
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� The weights in the MSE are determined by the averaging window      
and the parameter  scales the window w.r.t. a basic window 
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Local Pointwise Techniques 

� Local Polynomial Approximation 

• Determine the polynomial expression (of a fixed order m) 
that better fits the observation on a fixed pixel neighborhood  

30
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Local Pointwise Techniques 

� Local Polynomial Approximation 

• Determine the polynomial expression (of a fixed order m) 
that better fits the observation on a fixed pixel neighborhood  

31

• The signal estimate is given by                , the value of this 
polynomial in 
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the weights determines the localization of this fit
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LPA Kernel

� The LPA estimate can be obtained via a convolution with discrete 
LPA kernels

32
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LPA Kernel

� The LPA estimate can be obtained via a convolution with discrete 
LPA kernels
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LPA Kernel

� The LPA estimate can be obtained via a convolution with discrete 
LPA kernels
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� Summarizing, LPA estimates can be obtained via a convolution with 

discrete kernels which are determined by:

• The order of polynomial fit.

• The support of the polynomial fit.

• The weight of the minimization of the polynomial least square fit.
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LPA Kernel

� The LPA estimate can be obtained via a convolution with discrete 
LPA kernels
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� Summarizing, LPA estimates can be obtained via a convolution with 

discrete kernels which are determined by:

• The order of polynomial fit.

• The support of the polynomial fit.

• The weight of the minimization of the polynomial least square fit.
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� This makes LPA a perfect tool for designing adaptive filters.
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LPA-ICI algorithm: ideal neighborhood

� Ideal in the sense that it defines the support of pointwise Least 
Square kernel estimators. 

36
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LPA-ICI algorithm: ideal neighborhood

� Ideal in the sense that it defines the support of pointwise Least 
Square kernel estimators. 
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� Typically, even in simple images, every point has its own different 
ideal neighborhood.
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LPA-ICI algorithm: ideal neighborhood

� Ideal in the sense that it defines the support of pointwise Least 
Square kernel estimators. 
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� Typically, even in simple images, every point has its own different 
ideal neighborhood.
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� For practical reasons, the ideal neighborhood is assumed 
starshaped
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LPA-ICI algorithm: ideal neighborhood

� Ideal in the sense that it defines the support of pointwise Least 
Square kernel estimators. 
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� Typically, even in simple images, every point has its own different 
ideal neighborhood.
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� For practical reasons, the ideal neighborhood is assumed 
starshaped
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LPA-ICI algorithm: ideal neighborhood

� The ideal neighborhood is built in the discrete image domain using 
LPA filters having directional supports

40
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LPA-ICI algorithm: ideal neighborhood

� The ideal neighborhood is built in the discrete image domain using 
LPA filters having directional supports
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Examples of adaptively selected neighorhoods

� Adaptively selected neighborhoods selected using the LPA-ICI rule

42
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Neighborhood discretization

� A suitable discretization of this neighborhood is obtained by using a 
set of  directional LPA kernels                 

43

where     determines the orientation of the kernel support, and

Ideal 

Neighborhood

Directional 

kernels

Discrete Adaptive 

Neighborhood
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where     determines the orientation of the kernel support, and
where     controls by the scale of kernel support.
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Neighborhood discretization

� A suitable discretization of this neighborhood is obtained by using a 
set of  directional LPA kernels                 
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where     determines the orientation of the kernel support, and

Ideal 

Neighborhood

Directional 

kernels

Discrete Adaptive 

Neighborhood
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where     determines the orientation of the kernel support, and
where     controls by the scale of kernel support.

� The initial shape optimization problem can be solved by using 

standard easy-to-implement varying-scale kernel techniques, such 
as the ICI rule.
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Example of LPA Anisotropic Kernels

� Directional Kernel:

• Order along columns: 0.  Order along rows:1

• Direction 0

• Scale 1
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• Scale 1
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rows
Columns
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Example of LPA Anisotropic Kernels

� Directional Kernel:

• Order along columns: 0.  Order along rows:1

• Direction 0

• Scale 3
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• Scale 3
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rows
Columns
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Example of LPA Anisotropic Kernels

� Directional Kernel:

• Order along columns: 0.  Order along rows:1

• Direction 0

• Scale 6
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• Scale 6
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rows
Columns
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Example of LPA Anisotropic Kernels

� Directional Kernel:

• Order along columns: 0.  Order along rows:1

• Direction 0

• Scale 6
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• Scale 6
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rows
Columns
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Example of LPA Anisotropic Kernels

� Directional Kernel:

• Order along columns: 2.  Order along rows: 0

• Direction 0

• Scale 6
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• Scale 6
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rows
Columns
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Example of LPA Anisotropic Kernels

� Directional Kernel:

• Order along columns: 2.  Order along rows: 2

• Direction 0

• Scale 6
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• Scale 6
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rows
Columns
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Example of LPA Anisotropic Kernels

� Directional Kernel:

• Order along columns: 2.  Order along rows: 1

• Direction 0

• Scale 8
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• Scale 8
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rows
Columns
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Example of LPA Anisotropic Kernels

� Directional Kernel:

• Order along columns: 1.  Order along rows: 3

• Direction 0

• Scale 8
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• Scale 8
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rows
Columns
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LPA Kernels for derivatives estimation

� Kernels can be defined also for polynomial derivatives:
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� Also these estimates can be obtaine via a convolutional
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Example of LPA Anisotropic Kernels

� Directional Kernel: 1°derivative along rows

• Order along columns: 2.  Order along rows: 2

• Direction 0

• Scale  6
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• Scale  6
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Example of LPA Anisotropic Kernels

� Directional Kernel: 1°derivative along rows

• Order along columns: 2.  Order along rows: 2

• Direction 0

• Scale  6              Fourier Domain
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• Scale  6              Fourier Domain
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Example of LPA Anisotropic Kernels

� Directional Kernel: 2°derivative along rows

• Order along columns: 2.  Order along rows: 2

• Direction 0

• Scale 
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• Scale 
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Example of LPA Anisotropic Kernels

� Directional Kernel: 2°derivative along rows

• Order along columns: 2.  Order along rows: 2

• Direction 0

• Scale 6      Fourier Domain
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• Scale 6      Fourier Domain
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LPA Benefits

� Unlike many other transforms which start from the continuous domain 
and then discretized, this technique works directly in the 
multidimensional discrete domain;
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� The LPA kernels can be designed of any dimension, non-separable 
and anisotropic with arbitrary orientation, width and length;

� Any desirable smoothness of the kernel can be set.

� The kernel support can be flexibly shaped to any desirable 
geometry. In this way a special design can be done for complex form 
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geometry. In this way a special design can be done for complex form 
objects and specific applications.

� Both smoothing and corresponding differentiating directional 

kernels can be designed.
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LPA Benefits

� These kernels are by definition asymmetric, allowing efficient edge 
adaptation. Traditional symmetric or nearly-symmetric supports tend 
to produce either so-called ringing artifacts or oversmoothing in the 

vicinity of the edges.
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� The Directional LPA allows to consider several different problems 
within a unified framework.

� When using LPA one implicitly assumes that the original signal is 

well-approximated by a polynomial in a neighborhood of each pixel: 
this hypothesis suits perfectly pixel-wise parallelization.
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this hypothesis suits perfectly pixel-wise parallelization.

Katkovnik, V., K. Egiazarian, and J. Astola, ”Local Approximation Techniques in Signal and 
Image Processing”, SPIE Press, Monograph Vol. PM157, September 2006.

Foi, A., ”Anisotropic nonparametric image processing: theory, algorithms and applications,” 
Ph.D. Thesis, Dip. di Matematica, Politecnico di Milano, April 2005.
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Adaptiveness

� The choice of the scale parameter     is crucial as it controls the 
amount of smoothing in the estimation.

� Example on lena image

60

� Example on lena image

ISPRA, JRC

� Large     corresponds to less noisy output (i.e. lower variance) but 

typically it may result in higher bias

� Smaller     corresponds to noiser estimates (i.e. higher variance), less 

biased.
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� Example on lena image
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� Large     corresponds to less noisy output (i.e. lower variance) but 

typically it may result in higher bias

� Smaller     corresponds to noiser estimates (i.e. higher variance), less 

biased.
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Adaptiveness

� The choice of the scale parameter     is crucial as it controls the 
amount of smoothing in the estimation.

� Example on lena image
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� Example on lena image
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� Large     corresponds to less noisy output (i.e. lower variance) but 

typically it may result in higher bias

� Smaller     corresponds to noiser estimates (i.e. higher variance), less 

biased.
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Bias – Variance Trade Off

� Intiutively the scale parameters controls the trade off between bias 
and variance in the LPA estimates:

• Bias

63

• Variance

� The following upper bound holds for the mean squared error
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� Furthermore,the following asymptotic expressions hold for bias and 

the variance
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Thus 

� In practice this hypothesis are enough for applying the ICI rule to 
determine the optimal scale 

64
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Thus 

� In practice this hypothesis are enough for applying the ICI rule to 
determine the optimal scale 
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� The ICI rule is used to determine kernel scale      that approximates  
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The ICI rule

� Consider a fixed kernel direction    :

� For each pixel     , the estimates              are computed on a set of 

increasing scales  
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increasing scales  

� For each estimate we can build a confidence interval as follows

where              is a tuining parameter

� The ICI rule yields a pointwise adaptive estimate  such that 
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in a sense that 

Goldenshluger, A., and A. Nemirovski, “On spatial adaptive estimation of nonparametric 
regression”, Math. Meth. Statistics, vol. 6, pp. 135-170, 1997
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The ICI rule

� The ICI rule can be state as follows:

Consider the intersection of confidence intervals 

67

where                                                                                    .

Then let       be the largest of the scale indexes for which                    

and                       : then,      is defined as                  and the adaptive 

estimate is                .
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Goldenshluger, A., and A. Nemirovski, “On spatial adaptive estimation of nonparametric 
regression”, Math. Meth. Statistics, vol. 6, pp. 135-170, 1997
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The ICI rule
68
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Goldenshluger, A., and A. Nemirovski, “On spatial adaptive estimation of nonparametric 
regression”, Math. Meth. Statistics, vol. 6, pp. 135-170, 1997
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Examples of adaptively selected neighorhoods

� Adaptively selected neighborhoods selected using the LPA-ICI rule

69
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LPA-ICI Denoising Algorithm Details

1. Compute the ICI-selected scales along each direction

2. ICI-selected scales filtering and Update Directional Estimates

70

2. ICI-selected scales filtering and Update Directional Estimates

3. Fusing of directional estimates
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ICI scale selection - Matlab implementation-

� It is typically faster to perform 2D-convolution  - given a kernel 
direction -

71
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Compute H image 

convolutions, one per 

each kernel length

Compute the 

confidence intervals  

For each pixel, 

compute the 

Intersection of 

Confidence Intervals
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Example ICI selected Scales and Directional Estimates
72
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Example ICI selected Scales and Directional Estimates
73
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Step 2: ICI-selected scales filtering

� Use a median filter or a Weight Order Statistics filter on the ICI 
selected scales 

• This operation is typically performed separately for the scales 
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• This operation is typically performed separately for the scales 
selected along each direction

• When using WOS, these are directed “orthogonally” to anisotropic 
LPA-Kernels

� The “old” directional estimates are replaced by the LPA estimates and 
the standard deviations corresponding to the scales filtered.
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the standard deviations corresponding to the scales filtered.

� In such a way we remove isolated pixels where the ICI selected 
“the wrong scale”
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Example ICI selected scales
75
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Example ICI selected scales
76
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Example ICI selected scales
77
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Step 3: Fusing of directional estimates

� For each pixel 

• Fuse the directional estimates with a convex linear combination
the weights are determined by the inverse of the directional 

estimates variance

78

estimates variance

ISPRA, JRC

• In such a way, larger weights are assigned to the less noisy 
estimates
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Example of Final Estimate

� Directional Estimates Fused Estimate

79
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Denoising Performance
80
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� Details: original image (top left), anisotropic LPA-ICI, ISNR=8.2dB 

(top right), TI wavelets (DB4), ISNR=7.4dB (bottom left), TI wavelets 
(Haar), ISNR=7.8dB (bottom right).
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Implementation Details

1. Compute the ICI-selected scales along each direction

2. ICI-selected scales filtering and Update Directional Estimates
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2. ICI-selected scales filtering and Update Directional Estimates

3. Fusing of directional estimates

These instructions will be performed on a Cuda Kernel, and parallelized 
for each pixel.
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for each pixel.
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Step 1 + 3 : Compute ICI-selected scales

� For each pixel 

• For each LPA kernel direction d

• // initialize the ICI selected scale

− For each scale kernel 

82

− For each scale kernel 

// Compute the LPA estimate at x and its standard deviation

− // Determine confidence interval

− // Determine Intersection of Confidence Intervals
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− If

− // The ICI selected scale is h-1

−

− Break

• // fuse the directional estimates
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Implementation Details

� The     parameter determine the width of Confidence Intervals:

• Larger      tend to select larger scales

• Smaller      tend to select smaller scales

83

� The convolution has to be computed also at image boundaries.

• An efficient and practical solution in this case consist of padding 
the original image with a value much smaller than 0 (e.g. -10000)
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Implementation Details

� The     parameter determine the width of Confidence Intervals:

• Larger      tend to select larger scales

• Smaller      tend to select smaller scales
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� The convolution has to be computed also at image boundaries.

• An efficient and practical solution in this case consist of padding 
the original image with a value much smaller than 0 (e.g. -10000)

Add PADDING area
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Implementation Details

� The     parameter determine the width of Confidence Intervals:

• Larger      tend to select larger scales

• Smaller      tend to select smaller scales
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� The convolution has to be computed also at image boundaries.

• An efficient and practical solution in this case consist of padding 
the original image with a value much smaller than 0 (e.g. -10000)

Add PADDING area
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Compute convolution 

against the padded image
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Implementation Details

� The     parameter determine the width of Confidence Intervals:

• Larger      tend to select larger scales

• Smaller      tend to select smaller scales
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� The convolution has to be computed also at image boundaries.

• An efficient and practical solution in this case consist of padding 
the original image with a value much smaller than 0 (e.g. -10000)

Compute scales on 

PADDING free  image
Add PADDING area
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Compute convolution 

against the padded image
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Implementation Details

� The     parameter determine the width of Confidence Intervals:

• Larger      tend to select larger scales

• Smaller      tend to select smaller scales
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� The convolution has to be computed also at image boundaries.

• An efficient and practical solution in this case consist of padding 
the original image with a value much smaller than 0 (e.g. -10000)

� The value of the noise standard deviation is assumed known (and 
here it will be provided). Typically it can be estimated using MAD 
estimator
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estimator

Donoho, D.L., and I.M. Johnstone, “Ideal spatial adaptation via wavelet shrinkage”, Biometrika, 
n. 81, pp. 425-455, 1994

27th October 2009 



Implementation Details

� The     parameter determine the width of Confidence Intervals:

• Larger      tend to select larger scales

• Smaller      tend to select smaller scales
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� The convolution has to be computed also at image boundaries.

• An efficient and practical solution in this case consist of padding 
the original image with a value much smaller than 0 (e.g. -10000)

� The value of the noise standard deviation is assumed known (and 
here it will be provided). Typically it can be estimated using MAD 
estimator
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estimator

� As an error metric you can use RMSE
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Other Applications

� Deblurring

89
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Other Applications

� Deblurring
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ISNR
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Other Applications

� Inverse Halftoning 

91
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Other Applications

� Inverse Halftoning

92
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original grayscale image (top left), binary Floyd-Steinberg halftone (top right), anisotropic LPA-

ICI estimate, PSNR=32.4dB (bottom left) and wavelet-based WinHD estimate (Rice Univ.), PSNR=32.1dB (bottom 

right)
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