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Abstract. We present a single-image algorithm for reconstructing the
3D velocity, the 3D spin axis, and the angular speed of a moving ball. Pe-
culiarity of the proposed algorithm is that this reconstruction is achieved
by accurately analyzing the blur produced by the ball motion during the
exposure. We combine image analysis techniques in order to obtain 3D
estimates, that are then integrated into a geometrical model for recover-
ing the 3D motion.
The algorithm is validated with experiments on both synthetic and cam-
era images. In a broader scenario, we exploit this specic problem for
discussing motivations, advantages, and limitations of reconstructing 3D
motion from motion blur.

1 INTRODUCTION

In this paper we propose a technique for estimating the 3D motion of a ball
from a single motion blurred image. We consider the instantaneous ball motion,
which is described by a composition of 3D velocity and spin around a 3D axis:
the proposed technique estimates both these components by analyzing motion
blur.

Our approach differs from a more traditional and intuitive method consisting
in recovering motion by analyzing successive video frames: the expected short-
comings of such modus operandi in realistic operating conditions motivate our
peculiar approach. In fact, depending on equipment quality, lighting conditions
and ball speed, a moving ball often results in a blurred image. Feature matching
in successive video frames becomes very challenging because of motion blur and
also because of repetitive features on the ball surface: this prevents inter-frame
ball spin recovery. Then, it is worth considering intra-frame information carried
by the motion blur. Our single-image approach has the further advantage of
enabling the use of cheap, high-resolution consumer digital cameras, which cur-
rently provide a much higher resolution than much more expensive video cam-
eras. High resolution images are vital for performing accurate measurements as
the ball usually covers a small part of the image.

In this paper, we use an alpha matting algorithm (see Section 3.1) in or-
der to separate the blurring effects produced by the ball translation from those



Fig. 1. Some blurred ball images. Leftmost images are textureless, so their spin can not
be recovered. Central images show textured balls whose spin component dominates the
apparent translation. Rightmost images are the most complete case we handle, showing
a significant amount of apparent translation and spin; note that the ball contours also
appear blurred in this situation, whereas they are sharp in the spin-only case.

produced by the ball spin. The ball 3D translation is then estimated using the
techniques introduced in [1]; once the ball position and velocity are known, we
analyze the blur smears on the blurred image surface, as introduced in [2]. Both
these algorithms exploit the constraints derived from the geometry of the ob-
served scene, and allow us to estimate the ball instantaneous motion, recovering
3D information from a single image.

The blur model derived from the 3D ball motion is presented in Section 2,
while in Section 3 we briefly recall the image analysis algorithms used. The
proposed technique is described in Section 4. Section 5 presents experimental
results and Section 6 concludes with a broader discussion on motion estimation
from blurred images.

1.1 Related Works

Given a single blurred image, the most treated problem in literature is the es-
timation of the point spread function (PSF) that corrupted the image [3–5],
usually with the purpose of image restoration (deblurring).

Our work, on the contrary, takes advantage of motion blur for performing
measurements on the imaged scene. Several other works follow a similar ap-
proach, such as [6], which describes a visual gyroscope based on rotational blur
analysis, or [7], which estimates the scene depth map from an image acquired
with a coded aperture camera. Also, [8] proposes to estimate the optical flow
from a single blurred image. A ball speed measurement method based on a
blurred image has been proposed in [9]. This assumes a simplified geometrical
model that originates space-invariant blur and prevents the estimation of 3D
motion and spin.

On the other hand, the problem of estimating the motion of a ball in the
3D space has been extensively treated in video tracking literature [10–12]. These
methods assume the ball visible from multiple synchronized cameras, in order
to triangulate the ball position in the corresponding frames. In [13] a method



is proposed for reconstructing the ball 3D position and motion from a video se-
quence by analyzing its shadow. In [14, 15], a physics-based approach is adopted,
to estimate the parameters of a parabolic trajectory. Recently, a technique for
estimating the 3D ball trajectory from a single long exposure image has been
presented in [16].

2 PROBLEM FORMULATION

Let S be a freely moving ball centered in C, whose radius R is known1, imaged by
a calibrated camera. The ball instantaneous motion, which is assumed constant
during the exposure time [0, T ], is given by the composition of two factors:

– a linear translation with uniform velocity, u. The translation distance during
the exposure is therefore T · u.

– the spin around a 3D rotation axis a passing through C, with angular speed
ω. The rotation angle which occurs during the exposure is therefore T · ω.

We further assume that the ball projections at the beginning and at the end
of the exposure significantly overlap. Moreover, in order to recover the rotation
axis and speed, we also require that spin is not too fast nor too slow w.r.t. the
exposure time: π/50 < ω · T < π/2. In practice, these constraints allow us to
use an exposure time 5 ÷ 10 times longer than the exposure time which would
give a sharp image. We assume that the blur on pixels depicting the ball is only
due to ball motion. In practice, the distance between the ball and the camera is
close to the focusing distance of the camera.

Our goal is to estimate the ball spin (both a and ω), velocity u, and initial
position by analyzing a single blurred image. The imaging model, underlying our
analysis, is described in the sequel.

2.1 Blurred Image Formation

The blurred image Z can be modeled as the integration of infinitely many (sharp)
sub-images It, t ∈ [0, T ], each depicting the ball in a different 3D position and
spin angle (see Figure 2):

Z(x) =
∫ T

0

It(x)dt + η(x), x ∈ X. (1)

Where x represents the 2D image coordinates, It(x) is the light intensity that
reaches the pixel x at time t, and η ∼ N(0, σ2) is white gaussian noise.

The ball apparent contours γt , t ∈ [0, T ] vary depending on translation only.
Note that each apparent contour γt is an ellipse and that, in each sub-image It, γt
may have a different position and also a different shape because of perspective

1 if the radius is not known, the whole reconstruction can be performed up to a scale
factor



Fig. 2. Blurred image formation model. The blurred image Z is obtained as the tempo-
ral integration of many still images It. The alpha map α of the blurred ball represents
the motion of the object’s contours and is used for recovering the translational motion
component.

effects. In particular, γt=0 and γt=T represent the ball at the beginning (first
curtain) and at the end (second curtain) of the exposure, and will be named
respectively γb and γe from now on. In our reconstruction procedure, we exploit
the fact that the spin does not affect γt , t ∈ [0, T ], and thus the alpha map α is
only determined by how γt changes during the exposure. The ball spin, combined
with the translation, changes the depicted ball surface in each sub-image It, and
obviously the appearance of the ball in Z.

2.2 Blur on the ball surface

We approximate the blur on the ball surface as locally space invariant [17]. In
particular we approximate the blur in a small image region as the convolution of
the sub-image I0 with a PSF having vectorial support and constant value on it.
Hence for any pixel xi belonging to the ball image, we consider a neighborhood
Ui of xi and a PSF hi such that

Z(x) ≈
∫
X

hi(x− s)I0(s)ds+ η(x) , ∀x ∈ Ui (2)

The PSF hi is identified by two parameters, the direction θi and the extent li.

3 IMAGE ANALYSIS

We briefly introduce the main image analysis techniques used in this work.

3.1 Alpha Matting

Alpha matting refers to the procedure leading from an image to its alpha map,
α. For each pixel x we have α(x) = 1 if x is only affected by the foreground,
α(x) = 0 if x is a background pixel, and 0 < α(x) < 1 if x is a mixed pixel, i.e.
a pixel whose intensity is affected by both the foreground and the background,
such as along the object’s border or in semitransparent areas.



In the general case the matting problem is under-constrained, even when
the background is known. Still, in literature many algorithms have been pro-
posed: some of them [18, 19] require a specific background (blue screen matting),
whereas others, with minimal user assistance, handle unknown backgrounds (nat-
ural image matting) and large zones of mixed pixels (0 < α < 1). Although none
of these methods is explicitly designed for the interpretation of motion blurred
images, alpha matting techniques have been recently applied to motion blurred
images with different purposes, including point spread function (PSF) estima-
tion [5] and blurred smear interpretation [20]. As shown in [21], by applying
alpha matting to the motion-blurred image of an object we obtain a meaningful
separation between the apparent motion of the object’s boundaries (alpha map)
and the actual blurred image of the object (color map).

It turns out that in the present scenario the alpha map of a blurred ball is
not influenced by the spin but only by the translation: in practice, the alpha
map is the image we would obtain if the background was black and the ball had
a uniformly-white projection. In another interpretation, the alpha value at each
pixel represents the fraction of the exposure time during which the ball image
covered the pixel. Therefore the alpha map of the blurred ball is used to estimate
the 3D ball position and velocity vector T · u as described in Section 4.2. On
the contrary, the foreground map only shows the blurred ball image, as if it was
captured over a black background.

3.2 Blur Analysis

As mentioned in Section 2.2, we approximate the blur as locally shift invariant,
produced by a convolution with a PSF having vector-like support. We estimate
the blur direction and extent separately on N image regions Ui i = 1, .., N
containing pixels which have been covered by the ball during the entire exposure
time, i.e. α(x) = 1 ∀x ∈ Ui, i = 1, .., N .

We adapt the method proposed by Yitzhaky et al [22] for estimating the
direction and extent of blur smears by means of directional derivative filters.
The PSF direction within each Ui is estimated as the direction of the derivative
filter dθ having minimum energy response

θi = arg min
θ∈[0,π]

∑
xj∈Ui

wj
(
(dθ ~ Z)(xj)

)2
, (3)

where ~ denotes the 2D convolution and w is a window function that determines
Ui. Equation (3) is motivated by the fact that the blur removes all the details and
attenuates the edges of I0 along blur direction, and thus the blur direction can be
determined by the directional derivative filter having minimum energy response.
After estimating the PSF direction, its extent is obtained from the distance
between two negative peaks in the autocorrelation of directional derivatives along
the blur direction. Figure 3 shows some square regions used for blur analysis.



Fig. 3. A synthetic image of a spinning golf ball. Ui neighborhoods and recovered blur
directions and extents are shown. Each segment biei represents the blur parameters θi,
li within the region.

4 RECONSTRUCTION TECHNIQUE

For clarity purposes we illustrate the proposed technique first in the simpler
case, where blur is due to ball spin only. Then, in Sections 4.2 and 4.3 we cope
with the most general case where the ball simultaneously translates and spins.

4.1 Null Translation

Let us assume that during the exposure the ball does not translate, i.e. u =
0, so that, in the blurred image, the ball apparent contour is sharp. The ball
apparent contour γ is an ellipse and it allows us to localize the ball in the 3D
space by means of the camera calibration parameters and knowledge of the ball
radius. Points belonging to γ can be easily found in the image either by ordinary
background subtraction or by extracting edge points in the alpha matte. We
determine then γ by fitting an ellipse to such points, enforcing the projective
constraint of being the image of a sphere captured from the calibrated camera.

Then, as described in Section 3.2, the PSF direction and extent are estimated
within N regions Ui, i = 1, .., N contained inside γ. In order to avoid uniform-
color areas, we select such regions around local maxima xi, i = 1, .., N of the
Harris corner measure [23].

Such directions allows us to recover the 3D motions vi of the ball surface
at points corresponding to each of the regions. Since the camera is calibrated
and the 3D position of the sphere S is known, we can backproject each pixel xi
on the sphere surface. Let Xi be the intersection point, closest to the camera,
between the viewing ray of xi and sphere S: the 3D motion direction of the ball
surface at Xi is described by an unit vector vi (see Figure 4 left). More precisely,
let πi be the plane tangent to S at Xi: then, vi is found as the direction of the
intersection between πi and the viewing plane of the image line passing through
xi and having direction θi.

As shown in Figure 4 (left), all the vectors vi i = 1, .., N must lie on the
same plane, orthogonal to the rotation axis a. Then, let W = [v1|v2|..|vN ], be
the matrix having vectors vi as columns. The direction of a is found as the



Fig. 4. Left: reconstruction geometry for zero translation. Right: reconstruction for full
motion case.

direction of the eigenvector associated to the smallest of W ’s eigenvalues. This
estimate is refined by iterating the procedure after removing the vi vectors that
deviate too much from the plane orthogonal to a (outliers).

Note that, when the ball is not translating, the ball apparent contour γ is
sharp and in this case it is easily localized by fitting an ellipse to image edge
points (possibly after background subtraction) or by using a generalized Hough
transform, without need of alpha matting.

Although the rotation axis can be recovered exploiting θi directions only, in
order to estimate the angular speed we need to consider also the blur length li
estimated within regions Ui. Each of these extents represents the length of the
trajectory (assumed rectilinear) that the feature traveled in the image during the
exposure. For each feature, a starting point bi and ending point ei are determined
in the image as

bi = xi −
l

2
·
(

cos θ
sin θ

)
ei = xi +

l

2
·
(

cos θ
sin θ

)
(4)

and backprojected on the sphere surface S to points Bi and Ei, respectively.
We then compute the dihedral angle βi between two planes, one containing a
and Bi, the other containing a and Ei. Such angles are computed only for those
estimates not previously discarded as outliers. The spin angle is estimated as
the median of the βi angles. If the exposure time T is known, the spin angular
speed ω immediately follows.

4.2 Recovering the Ball 3D Position and Velocity

The ball 3D position and the 3D velocity vector are recovered from the alpha
map by estimating the ellipses γb and γe, the apparent contours of the ball at
the beginning and at the end of the exposure.



Apparent Translation Direction Estimation The apparent translation di-
rection corresponds to the projection on the image plane of the translation vector
u. When perspective effects are negligible, the blur in the alpha map is space
invariant and can be expressed as a convolution of a binary alpha map against
a PSF. Thus, the apparent translation direction of the ball can be estimated by
applying Equation (3) to the alpha map of the whole image. However, because
of the perspective effects the blur becomes space variant and the PSF directions
point at the vanishing point of u. In this case the PSF directions are nearly
symmetric w.r.t. to the apparent translation direction and, when the eccentrici-
ties of γb and γe are small compared to the apparent displacement, Equation (3)
returns sufficiently accurate estimates.

Fig. 5. Intensity profiles along directions approximately parallel to the blur direction
in the image have similar characteristics.

Profile Analysis The procedure used to determine γb and γe is based on an
analysis of the alpha map values along lines (profiles) parallel to the apparent
translation direction. We consider n profiles, as illustrated Figure 5a, and on
each profile we estimate the point these profiles intersects γb and γe.

Because of inaccuracies in the alpha map (see Figure 5b), these intersections
can not be estimated as the end points of the segments having α = 0 and
α = 1. Thus, we apply the iterative procedure described in [1] that is meant for
monochromatic balls on uniform colored background and has been designed to
cope with noise and shading. It exploits profile denoising and robust fitting of
a linear model for the alpha values of pixels within semi-transparent areas; the
result of such procedure on the profile in Figure 5b is illustrated in Figure 5c.

3D Reconstruction Once 2 ·n points belonging to each of γb and γe have been
recovered from the n intensity profiles, these ellipses are estimated by conic
fitting (Figure 5d). In order to reduce the degrees of freedom of the fitting
procedure, we enforce that such ellipses are projections of a sphere (see [1]).



Since γb and γe are now known, the 3D ball position at the beginning and
end of the exposure can be easily reconstructed by means of basic projective
geometry, provided that the sphere radius is known and the camera is calibrated.
The vector connecting their centers is the 3D displacement occurred during the
exposure: this allows us to compute the absolute speed of the ball whenever the
exact exposure time ∆t is known (which is often the case).

4.3 Recovering Spin in the General Case

In order to account for the change in the ball’s position, the procedure for spin
estimation described in 4.2 is modified as follows (see Figure 4 right).

At first, the ball 3D displacement during the exposure is computed from the
alpha map as described in section 4.1; this returns two spheres Sb and Se having
centers Cb and Ce respectively, representing the ball position at the beginning
and end of the exposure.

Blur is then analyzed within image regions Ui, i = 1, .., N whose pixels x
satisfy the condition α(x) = 1, i.e. pixels which have been covered by the ball
during the whole exposure. For each Ui, image points bi and ei are returned,
exactly as described in Section 4.1.

Unfortunately, in this case backprojecting the blur direction on the sphere is
meaningless, since blur is caused by simultaneous translation and spin. There-
fore, the viewing ray of bi is intersected with Sb, which identifies a 3D point Bi
and similarly, ei is backprojected on Se to find Ei (see Figure 4 (right)).

For each region, the 3D vector

vi = (Ei −Bi)− (Ce − Cb) (5)

represents the 3D motion of the ball surface at the corresponding point, due
to the spin component only. The spin axis a and angular velocity ω are now
estimated as in the previous case.

The Orientation Problem Every motion recovered from blur analysis has an
orientation ambiguity. This holds for the ball motion, and also for the blur direc-
tion estimates θi. The ambiguity is explained by Equation (1) where the blurred
image is given by an integration of several sub-images: obviously, information
about the order of sub-images is lost.

In the ball localization step we arbitrarily choose which of the two fitted
ellipses is γb, representing the ball at the beginning of the exposure, and which
is γe. But when each blurred feature xi is considered and its endpoints bi, ei
identified, there is no way to determine which corresponds to the feature location
at the beginning of the exposure. Now the choice is not arbitrary since each must
be backprojected to the correct sphere (Sb and Se, respectively).

We propose the following possible criteria for solving the problem:

– if translation dominates spin, which is often the case in practical scenar-
ios, blurred features should be oriented in the direction of the translational
motion; our experimental validation uses this criterion.



– blur orientations in nearby regions should be similar;
– for features having one endpoint outside the intersection area between γb

and γe only one orientation is consistent.

Another solution is computing the two possible vectors v′i and v′′i for each fea-
ture, then using a RANSAC-like technique to discard the wrong ones as outliers.

5 EXPERIMENTS

(a) (b)

Fig. 6. (a) Reconstruction results on two synthetic images (spin only). (b) A real image
(tennis ball) spinning and translating, and reconstructed motion (right). Note complex
motion of points on the ball surface due to simultaneous spin and translation: red
stripes show reconstructed motion, and correctly interpret the observed blur. Since the
ball was rolling on a table (bottom of the image), features on the bottom of the ball
are correctly estimated as still, and the rotation axis as coplanar with the table.

We validated our technique on both synthetic and camera images. Each syn-
thetic image has been generated according to Equation (1), by using the Blender
3D modeler [24] for rendering hundreds of 800 × 600 sharp frames with inten-
sity values in [0, 255] . Each frame depicts the moving ball in a different time
instant and corresponds to a sub-image It; the blurred image Z is given by the
average of all these sub-images to which a Gaussian white noise is added. In
our experiments we consider the spin angle ω · T ∈ [1◦, 20◦] and the noise stan-
dard deviation σ = 0, .., 3, both in the spin-only and in the spin-plus-translation
cases. Several scenarios (some of them are shown in Figures 6(a) and 7) have
been rendered by varying the spin axes w.r.t to the camera position. In some
cases we use a plain texture on the ball surface, whereas others feature a real-
istic ball surface with 3D details such as bumps, seams, and specular shading;
these affects the blur on the ball surface, resulting in more difficult operating
conditions. The PSF parameters are estimated form the corresponding grayscale
images within disk shaped regions, whose radius increases from 30 to 45 pixels
according to the noise standard deviation σ (which is estimated using [25]).

Table 1 presents the algorithm performance for estimating ω in the spin
only case; some of these test images are shown in Figure 7. As one can see the
algorithm accuracy decreases for low spin, as the low resolution of the image



Table 1. Mean relative error in ω estimation, expressed as a percentage w.r.t the true
value of ω. Columns where σ > 0 shows the average over ten noise realizations.

ω · T \ σ 0 1 2 3

5.00 4.31 4.6222 5.0641 3.9401
6.25 2.26 2.5562 4.7898 4.3915
7.50 2.40 3.1353 2.7236 2.0544
8.75 0.75 1.5163 2.9408 5.0431
10.00 2.15 3.3975 5.3916 11.3800

does not allow reliable PSF estimation within small regions Ui. Figures 8 and 9
show the results on some camera images depicting several spinning balls. Both
in synthetic and camera images, the blur estimates show a variable percent-
age of outliers (5% ÷ 50%), which are correctly discarded in most cases. This
percentage is higher in noisy images, in images with smaller spin amounts and
in images presenting texture with pronounced edges. Finally, we found that, in
general, estimating the PSF extents is much more error-prone than estimating
the PSF directions, without significant differences between real and synthetic
images. This, combined with the orientation problem (see Section 4.3), makes
the analysis of the spin-plus-translation, in general, a much more challenging
case than the spin-only case (where the extents are used only to estimate ω ·T ).

Fig. 7. Synthetic (spin only) image of textured ball at different ω values. From left to
right ω · T = 5◦; 6.875◦; 8.125◦; 10◦

In order to overcome such issues in the general case, we also developed a
user-assisted technique, which can be applied when the ball surface is pigmented
with well-defined shapes; then, relevant information about the scene evolution
can be visualized from the image of the second derivatives, which in our case
clearly shows the initial and final contours of the ball, as well as any clear edges
in the ball texture both at the beginning and at the end of the exposure [20]. An
application of this user-assisted technique is shown and detailed in Figure 10.

6 DISCUSSION AND CONCLUSIONS

We proposed a technique for reconstructing the 3D position, velocity and spin
of a moving ball from a single motion-blurred image, highlighting advantages



Fig. 8. Real images (spin only). Central columns shows axis (blue) and vi directions
from different viewpoints: yellow ones are inliers, magenta are outliers. Corresponding
blur estimates are shown in the rightmost image as yellow segments. Reconstructed
spin axes and speeds correctly explain the blurred image: for example, the spin axis
passes through the sharpest parts of the ball image.

Fig. 9. Other real images, and reconstructed motions (spin only). Display colors are
the same as in previous figures.



Fig. 10. Results after the user-assisted technique for recovering both translation and
spin; a double differentiation of the original image highlights γb and γe, as well as the
contours of the shapes drawn on the ball surface at the beginning and at the end of the
exposure [20] (second image); the system first computes the ball motion from γb and γe,
then asks the user to identify the displacement of at least two features on the ball surface
(third image), which are easily recognizable. Finally, the same geometric technique we
described previously is exploited for recovering spin axis and speed. Note that in this
context, the user solves the orientation problem by exploiting prior knowledge about
the scene; the feature displacements can also be recovered rather accurately.

and disadvantages of an approach based on blur analysis. Experiments show
satisfactory results both in synthetic and real images, especially for translation
estimation. Also the 3D spin axis and the angular speed are effectively recovered
when the ball’s apparent translation is negligible. In fact this scenario, which
is not unusual in practice, does not present the orientation problem, can be
handled with simple alpha matting techniques, and presents higher tolerance to
errors in PSF lengths estimation (which we have found to be quite unreliable).
Unfortunately, due to these issues, we are still far from a fully automated ap-
proach consistently working in the most general case when the ball is spinning
and translating simultaneously; for this purpose, we introduced an user-assisted
technique which seems promising for many realistic scenarios.

In a broader view, our technique retrieves 3D information and solves a non-
trivial motion estimation problem by exploiting the motion blur in a single image.
Although unusual, this approach may result successful in situations where tra-
ditional video-based methods fail; target applications include training support
and match analysis in sport environments.
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