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Abstract6

We propose an algorithm for estimating the 3D motion direction of a camera that un-7

dergoes a pure translation. This algorithm exploits a single blurred image, and recovers the8

3D translation direction thanks to an accurate analysis of the motion blur, whichis char-9

acterized by rectilinear smears whose directions and extents typically vary throughout the10

image. The core of our algorithm is the estimation of the direction of these smearswithin11

small image regions that are automatically selected according to the image content.The12

algorithm has been succesfully tested on camera images and extensively validated with13

different amount of noise in the images.14
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PACS:17

1 Introduction18

Motion-blurred images embody information about the motionthat took place dur-19

ing the exposure. Nevertheless, it is a challenging problemto estimate the camera20

3D-motion given a single motion-blurred image whose content is unknown. We21

present a novel algorithm for estimating the 3D direction ofa translating camera22

by analyzing a single blurred image, acquired during the camera translation. The23

core idea of our algorithm is to exploit the blur as a cue for estimating the camera24

ego-motion. Our motivations are similar to those in [19], where an algorithmic gy-25

roscope based on the analysis of a rotationally blurred image is presented. In case26

of translation, the blur becomes a crucial information for estimating the camera27

ego-motion as translational motion cannot be sensed by accelerometers, whereas28

other motions (such as the shake and the rotation) can be handled exploiting mea-29

surements from these sensors.30
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As a matter of fact, images are usually motion blurred when the light is not enough31

(this often occurs in a dim indoor environment) thus, the estimation of the blur32

Point-Spread Function (PSF) has been widely studied in the last decades [7,20].33

Most of the PSF estimation algorithms assumes spatially-invariant blur: recently34

Ferguset al. [12] proposed an algorithm for enhancing photographs corrupted by35

camera shake that estimates the PSF exploiting a prior on thedistribution of gra-36

dient magnitudes in natural images. Levin [21] considers images where PSFs have37

rectilinear supports and constant direction, and segmentsthese images into regions38

where the PSFs have the same extent. Jia [17] uses transparency maps for esti-39

mating the PSF, while the algorithms in [27,33,37] exploit ashort-exposure noisy40

image, paired with a long-exposure blurred image. All the aforementioned works,41

like most of the PSF estimation algorithms, focus on the image restoration, although42

PSF estimation has been addressed for other purposes like the measurement of tar-43

gets speed [23,24], or planar scene distance [25].44

Some of the algorithms that consider spatially-variant blur focus on the estimation45

of the depth map of a static scene. These algorithms typically exploit either an46

image sequence [11,16] acquired controlling the camera settings, or a single image47

[22] acquired with a coded aperture camera. Nagyet al. proposed an algorithm48

[29] for restoring astronomical images corrupted by spatially variant blur. Sorel49

et. al [32] restore a sequence of blurred images, acquired during acamera motion50

along an arbitrary curve parallel to the image plane, without any rotations.51

In general, the blur caused by camera motion is spatially variant: for example the52

rotational [4,19,30], the radial [5,34], and the angular [18] blur are spatially variant.53

Also the camera shake results in spatially-variant blur when the depicted scene is54

not planar [32]. Among the related works, the work of Rekleitis [31] is the clos-55

est to the proposed algorithm, as it addresses the optical flow computation from a56

single spatially-variant blurred image. This task can be considered as equivalent to57

estimating direction and extent of a spatially-varying PSF. In [31] the blurred image58

is divided into a tessellation of blocks, and in each block the PSFs parameters are59

estimated in Fourier domain. However, this tessellation isfixed and, since the PSF60

parameters are estimated in Fourier domain, the block size has to be significantly61

larger than the PSF extent. On the contrary in the proposed algorithm the regions62

where the PSF is estimated are adaptively selected depending on the image content.63

More importantly, in [31] the camera 3D ego-motion is not recovered, while this is64

the main goal of our work.65

The paper structure reflects the design of the proposed algorithm and is as follows.66

Initially, we derive the blurred image formation model by analyzing the effect of a67

3D translation of a perspective camera during the acquisition. Thus we show that68

the resulting blur is spatially variant, characterized by rectilinear smears (Section69

2). The directions of these smears are determined by the coordinates (on the image70

plane) of the epipole, i.e. the vanishing point of the cameramotion direction, from71

now one. The proposed algorithm estimates the smear directions at some automati-72
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cally selected image regions using two sorts of blur estimators, which are described73

in Section 3. The coordinates ofe are determined from these local estimates using a74

voting procedure (Section 4). We can then compute the viewing ray throughe (we75

assume the camera is calibrated) and thus, the direction of the 3D translation of the76

camera. Section 5 presents the experimental validation on aset of camera images,77

and the performance evaluation when the amount of noise in the image increases.78

2 Problem Formulation79

Figure 1a illustrates the considered image capture scenario. When theshutter opens,80

the camera viewpoint is inO, the origin of the canonical 3D reference frameR 1 .81

During the exposure interval[0, T ] the scene is static, while the camera translates82

at constant speed, until it reachesF when the shutter closes. Our goal is to esti-83

mate, by only analyzing the resulting blurred imageI, the 3D direction of
−→
OF .84

We assume that the camera intrinsic calibration matrixK is known, so that the 3D85

direction of
−→
OF in R is the direction ofK−1e, the viewing ray through the epipole86

e. The core of our algorithm thus consists in the estimation ofthe coordinates ofe,87

i.e. the vanishing point of the direction of the camera translation direction. In what88

follows we indicate the camera translation withOF , as a single blurred image does89

not allow us to determine whether the translation was
−→
OF or

−→
FO.90

2.1 Blurred Image Model91

We assume that the camera sensor has linear response, and we represent a motion-
blurred imageI as the integration of an infinite number of still imagesIt, each
one captured with the camera viewpoint in a different position in the space. The
equation that describes the blurring process, i.e. the blurred image formation, is

I(x) =
∫ T

0
It(x)dt + η(x), x = (x|1, x|2) ∈ X , (1)

where,x is a pixel location on the 2D image gridX ⊆ Z, x|1 andx|2 indicate the92

projection ofx on the axes of the image coordinate system,It : X → R represents93

the light intensity that reaches each pixel at timet, [0, T ] is the exposure interval,94

andη is Gaussian white noiseη(x) ∼ N(0, σ2
η).95

Whenever there are no occlusions due to camera translation, the blurring process
can be also described as applying a blur operatorK on the original (and unknown)

1 The z axis ofR is aligned with the camera principal axis, and the other two axes are
aligned with the image coordinate system.
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Fig. 1. (a) Camera translation during the exposure. When the shutter opens, the originO

of the3D axis is in the camera viewpoint, with thez axis orthogonal to the image plane.
When the shutter closes, the camera viewpoint reachesF ; the resulting blurred image is
shown in (b).

imageI0. In this caseI0 ideally corresponds, up to a scalar factor, to the image of
the same scene, captured from the same camera still inO. Equation (1) becomes

I(x) = K
(

I0

)

(x) + η(x) . (2)

We assumeK is a linear operator, that can be written as [1]

K
(

I0

)

(x) =
∫

X
k(x, s)I0(s)ds , (3)

wherek(xi, •) corresponds to the PSF at pixelxi. In case of pure camera transla-
tion, k(xi, •) is

k(xi, •) = Rθi

(χ[−li/2,li/2]

li

)

(• − xi) , (4)

whereχ[−li/2,li/2] is the characteristic function of the segment{−li/2 < x|1 <
li/2, x|2 = 0} andRθi

is the rotation ofθi degrees around the first image axis.
Furthermore, the PSF directionθi is

tan(θi) =
xi|2 − e|2
xi|1 − e|1

, beinge = (e|1, e|2) . (5)

The proof that the PSFs vary as described in Equations (4) and(5) can be easily96

derived from Equation (1) by means of epipolar geometry[15]. In fact, any couple97

of imagesIt1 andIt2, t1, t2 ∈ [0, T ] forms a stereo pair, and thus the corresponding98

points in these images are related by the epipolar constraints. LetI0 andIT be the99

two images acquired at the initial and at the final camera position, and let the points100

e0 andeT be the images of the line throughOF in I0 and IT , respectively. The101

pointse0 andeT correspond to the epipoles of the pairI0 andIT . Since the camera102
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undergoes a pure translation,e0 andeT have the same coordinates inI0 andIT ,103

and thus in the resulting imageI they collapse in the epipolee, as illustrated in104

Figure 1b. It follows that all pairs of corresponding points (one inI0 and the other105

in IT ) are collinear withe. Therefore, the support of the PSF atxi is a straight line106

segment having directionθi as shown in Equation (5).107

Note that the PSF extentsli are instead determined by the position ofXi, the scene108

point that is imaged onxi. Except few particular cases, e.g. those considered in109

Section 2.2 or in [5,34], it is not possible to provide a similar description for the110

PSF extents. In what follows we refer to PSFs of this kind as rectilinear PSFs.111

In our model the camera translation is the only cause of blur:defocus, lens aberra-112

tions, camera shake, and other blurring factors are not considered.113

2.2 Examples of Blur Produced by Camera Translation114

The most frequently considered situation is whene belongs to the infinite line of the115

image plane, and the captured scene is planar and parallel tothe image plane. Then116

all the PSFs have the same direction and extent, and the blur becomes spatially117

invariant, as shown in Figure 2a.

Fig. 2. Images acquired during camera translation. Spatially invariant blur (a): the scene
is planar, parallel to image plane ande → ∞. Spatially variant blur (b): e belongs to the
image plane and the scene is planar, the PSF extents are given by Equation (6). Spatially
variant blur (c): e → ∞ but the scene is not planar, note that PSF directions are constant.
Spatially variant blur (d), the scene is not planar ande lies on the image plane.

118

When the camera translationOF has a component orthogonal to the image plane,
e becomes a point on the image plane (i.e. not at infinity), possibly out of the image
grid X . When the scene is planar and parallel to the image plane, the PSF at pixel
xi has extentli proportional toxie, the distance betweenxi ande. Being|OF | the
length of the camera translation, andd the distance between the camera viewpoint
and the scene plane, we obtain

li = xie
|OF |

d + |OF |
. (6)

In this case we refer to radial blur [5,34]: an example of radial-blurred image is119

shown in Figure 2b.120

Typically, only the PSFs directions are determined bye, while the extent atxi121
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Fig. 3. Image model within a blurred corner region: the displacement vectorṽ, and the
difference between the corner and the background∆.

depends on the position ofXi, the corresponding scene point. Thus, even when122

e → ∞, if the scene is not planar, the blur is spatially variant as shown in Figures123

2c and 2d.124

3 Local Blur Analysis125

We treat the blur as locally spatially-invariant [1], i.e. we assume that∀xi ∈ X ,
exists a neighborhoodUi ⊂ X , of xi, and a PSFvi, such that

K
(

I0

)

(x) ≈

∫

X
vi(x − s)I0(s)ds ∀x ∈ Ui . (7)

Furthermore, we assume thatvi is a rectilinear PSF having directionθi and extent126

li. These assumptions allow us to use methods meant for parametric and spatially127

invariant blur for estimating the PSF withinUi.128

The coordinates ofe, and thus the camera 3D translation direction, are obtainedby129

estimating the PSF directions within some automatically selected image regions.130

For this purpose we exploit two different PSF direction estimation methods, and a131

procedure for determining the method to be used in each region.132

3.1 Local Estimation of PSF Direction133

Fourier domain methods, which are widely used for PSF parameters estimation, do134

not perform adequately on small image regions as they assumeperiodic signals.135

Thus we adopt two methods that work in the image domain. Within regions con-136

taining an image corner we estimate the PSF direction using the method proposed137

in [3]. This method estimates the corner displacement vector ṽ, which represents138

the PSF parameters within a image region that contains a corner and that has been139

blurred with a rectilinear PSF. The method analyzes the image gradient within the140
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Fig. 4. At corner smears the Harris measure is larger than on blurred edges; examples
for two kind of blurred corner regions. Pixels on the corner smears have been manually
highlighted (a andd), the Harris measure in red (b ande), Harris measure is displayed over
the blurred image (c andf).

blurred-edges and estimates∆, the intensity gap between the corner and the back-141

ground, as shown in Figure 3.142

Within regionsUi where no blurred edges are present and the image is not flat,
the PSF direction is estimated with the method proposed in [36]: the PSF direction
θi, is given by the direction of the directional derivative filter dθ having minimum
ℓ1-norm response, i.e.

θi = arg min
θ∈[0,2π]

(

∑

x∈Ui

|(dθ ⊛ I)(x)|
)

, (8)

where⊛ denotes the 2D convolution.143

The regionsUi are selected around some particular pixels: the salient points. Among144

all the salient points we identify the blurred corners by using the procedure de-145

scribed in the next section.146

3.2 Salient Points147

We take as salient points the local maxima of the Harris measure [14], which have148

been used in several feature detection algorithms [26,28].At pixels having large149

Harris measure, the Hessian matrix of the sum of square differences has two large150

eigenvalues and vice versa [14]. Therefore the image in a patch of these pixels is151

significantly different from any neighboring patch.152

Within a blurred corner region, the Harris measure is largeron the corner smears153

than on the blurred edges. As illustrated in Figure 4, the corner smear is a set of pix-154

els between two blurred edges. Near the corner smears, the image is different w.r.t.155

any neighboring patch, and thus the Harris matrix has two nonzero eigenvalues. On156

the contrary, into the blurred edges the Harris measure is negative or zero, as the157

derivative along the edge direction is zero and one eigenvalue is zero. It follows158

that, provided that in the original image the corner is binary like those of Figure159

4a, each corner smear presents at least a salient point. This could be at any pixel on160

the corner smear; however this is enough for initializing the adaptive corner-region161
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Fig. 5. Blurred corner detection:a a blurred image,b the maskΓ used to identify blurred
edges,c blurred-corner candidates.

Fig. 6. Salient points in blurred images belong to areas having large Harris measure in the
original image:a salient points in a test image and,c salient points infj , a blurred image
having PSF direction 60◦ and extent 20 pixels. The average Harris measure of the original
image within the red squaresd, divided by the average Harris measure in the whole original
image ismj = 1.98. Near the salient point of the original image, the green squares ofb,
this ratio becomes2.75.

.

selection procedure described in Section 3.3.162

We consider as blurred-corner candidates those salient points belonging to blurred
edges. The blurred edges are identified by the maskΓ,

Γ = {x s.t. ||∇I(x)|| > T} , (9)

whereT is a threshold parameter, tuned on the minimum acceptable slope for a163

blurred edge. We also post-processΓ with ordinary morphological operators [13]164

both to remove isolated points, small areas, thin lines and to widen larger areas.165

Let the blurred-corners candidates (the salient points inΓ) be{xi}, i = 1, ...,m:166

around these points we run the adaptive corner-region selection procedure of Sec-167

tion 3.3, and we discard those that have too small corner area. The remaining168

{xi}, i = 1, ...,M M ≤ m, represent the blurred corners and the PSF direc-169

tions {θi}, i = 1, ...,M are estimated using [3] within the adaptively selected170

corner region. Figure 5a shows a camera image used as running example, Fig-171

ure 5b shows the correspondingΓ, and Figure 5c the blurred corner candidates.172

Around the salient points that have not been identified as blurred corners (be-173

cause they do not belong toΓ or because they do not have a corner region large174

enough) we select circular regionsUi. Let {xi}, i = M, ..., N be the remaining175

salient points having Harris measure over a fixed threshold:we estimate the PSF176
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Fig. 7. Salient Points on blurred images:a the values ofmj as a function of the PSF extent,
b the mean Harris measure as a function of blur extent,c the mean number of salient point
as a function of blur extent.

directions{θi}, i = M, ..., N using Equation (8) within the corresponding circular177

neighborhoodsUi, i = M, ..., N .178

Equation (8) returns reliable estimates within regions where the original imageI0179

has similar, and non zero,ℓ1-norm response to any directional derivative filter. The180

original imageI0 typically shows significant variations along any directionwithin181

regions centered in a salient point. Therefore Equation (8)takes as the PSF di-182

rection, the direction presenting less variations within these regions in the blurred183

imageI. However it is not guaranteed that a salient point of the blurred imageI184

corresponds to a salient point ofI0, the original image.185

The following experiment shows that salient points in blurred images typically be-186

long to areas where the original image has a large Harris measure. We consider a187

dataset of 12 common (256× 256 and 512× 512) grayscale test images, rescaled188

in [0, 1], and two setsΘ = {0, 10, · · · , 170, 180} andL = {1, 2, · · · , 29, 30} for189

the PSF directions and extents, respectively. We synthetically blur each test image190

with a convolution against each PSF generated from the parameter pairs inΘ × L,191

obtaining{fj} j = 1, ..., 12 · #(Θ × L) blurred images. The Harris measure is192

thresholded againstτ = 0.0005 in order to remove low-relevance salient points; we193

then extract the salient points in each blurred imagefj and we crop, from the cor-194

responding original image, a square of 10 pixels side centered in the salient point.195

We computemj as the average of the Harris measure of the original image within196

these squares, divided by the average Harris measure of the whole original image,197

as described in Figure 6. Figure 7a showsmj averaged between images having the198

same PSF extent: the Harris measure within these squares decreases as the blur ex-199

tent increases but, even in heavily blurred images, the salient points belong to areas200

where the original image still presents significant variations. In fact, the average of201

mj in the original image (PSF extent 1 pixel) is about 3, and it remains 1.6 in im-202

ages blurred with a 30 pixels extent PSF. Figures 7b and 7c show how the mean of203

the nonzero Harris measure and the number of salient point decrease with the blur204

extent. Note thatmj is correctly averaged among images having PSF with different205

direction, as the Harris measure is rotational invariant [14].206

This experiment consides spatially invariant blur but, since the Harris measure is a207

local measure, a similar result holds for the spatially variant blur (although in this208
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Fig. 8. Shapes of the supports of wedge masksWj,α (red solid line) and their differences
Dj,α (blue dotted line).

case the salient points tend to concentrate in the least blurred areas).209

3.3 Adaptive Corner Region Selection210

The corner region is constructed exploiting the fact that a convolution against a211

rectilinear PSF produces areas (the blurred edges) where the gradient is constant.212

The gradient uniformity is analyzed using wedge-shaped binary masksWj,α, where213

j ∈ {j0, ..., J} represents the wedge size andα ∈ {2iπ/A}i=0,...,A the wedge direc-214

tion. As illustrated in Figure 8, all the wedges have the vertex in the blurred corner,215

and wedges along the same direction are nested, i.e.Wj,α ⊂ Wj+1,α,∀α,∀j =216

1, ..., J − 1. Roughly speaking, we compare the average gradient in each wedge217

Wi,α, with the average gradient in the area in between the next nested wedge218

Dj+1,α = Wj+1,α − Wj,α , in order to prevent discontinuities in the region. The cor-219

ner region is built repeating the following iterative procedure along each direction.220

221

step1 Computewj,α =
∑

x∈Wj,α
∇I(x)/#Wj,α, the average gradient inWj,α; where222

#Wj,α denotes the number of elements inWj,α.223

step2 Computedj+1,α =
∑

x∈Dj+1,α
∇I(x)/#Dj+1,α, the average of∇I on Dj+1,α .224

step3 If ( |wj − dj+1| > M1ση) or (|dj+1| < M2ση), takejα = j and repeatstep1225

from α + 1, j = 3.226

step4 if j 6= J , repeatstep1 from j + 1, α; otherwisejα = J , and repeatstep1227

from α + 1, j = 3.228

After having considered all directions inA, we takeUi =
⋃

α∈A Wjα,α, and we mask229

Ui with Γ.230

This procedure builds regions that are star-shaped w.r.t. the salient point, although231

it may happen that the blurred corner region is not star-shaped (see the blurred232

corner in Figure 4d). To provide non star-shaped regions, we repeat this procedure233

in 9 neighboring pixels of each blurred corner, and then we take asUi those pixels234

that have been selected at least twice. Note that the procedure does not consider235
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Fig. 9. Selected corner regions where the estimated corner displacement vector has accept-
able length.

the smallest wedges in each direction, since on the corner smears the gradient is236

discontinuous. The parametersM1,M2 > 0 are fixed, whileση is estimated using237

[9].238

3.4 Remarks239

The corner-region selection procedure allows us to separately estimate the PSF240

direction in those areas containing two neighboring corners, see Figure 9 box2.241

Moreover, the selected regions exclude both possible details and blurred edges that242

do not belong to the corner, since these ones could bias the PSF direction estimation243

(Figure 9 box3). However, textured areas where the average gradient is constant244

may be erroneously selected (e,g. Figure 9 box1). Sometimes spots near a blurred245

edge are erroneously taken as a salient points, and the blurred edge is identified as246

corner region. Often, in this case, the estimated PSF has unacceptable extent (e.g.247

larger than the maximum region size), and thus these estimates are not considered248

for estimating the epipole. Figure 9 shows only corner regions where the estimated249

displacement vector has acceptable length. Finally, although the procedure is re-250

peated to construct non star-shaped regions, corner regions like that one in box3 of251

Figure 9 are sometimes partially missed.252
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4 Estimation of the Epipole253

The coordinates ofe are determined by fusing all the local estimates. From the254

experimental evidence it emerges that, because of noise or image details that in-255

fluence the PSF direction estimates, this fusing needs to be done by using a robust256

procedure. In [19] this issue is addressed by the RANSAC algorithm, while here257

we solve the equivalent point-fitting problem using an Houghapproach. In this case258

the parameter space, i.e. the space containing all the admissible solutions (the lo-259

cation ofe), is the whole image plane, including the line at infinity. For each data260

(θi, xi), i = 1, ..., N , we assign one vote in the parameter space to each parameter261

(i.e. point of the parameter space) belonging to the straight line having direction262

θi and passing throughxi. After having considered all the data, the parameter that263

received the largest number of votes is taken ase.264

This approach allows us to design an ad-hoc weight functionℓ, which can be used
instead of straight line for considering errors in the estimation of both the PSF
direction and the corner location. The idea is to assign a full vote to parameters
on the aforementioned straight line and a lower vote to nearby parameters. As in
[4], the weight functionℓxi,θi

associated to thei-th data is obtained rotating ofθi

degrees and centering inxi the function

ℓ(x|1, x|2) = exp
[

−
(

x|2

(1 + h|x|1|)k

)2]

. (10)

The two parametersh, k > 0 determine the vote spread from the exact solutions265

and the localization error, respectively.266

As typical in Hough approaches, the votes are assigned in a discrete and finite267

parameter space, which in our experiments is a grid three times larger than the268

image. We usedk = ση for the estimates coming from Equation (8), andk = k0+ση269

for the estimates at corners, withk0 > 0 a fixed tuning parameter. Figure 10 shows270

the parameter space in the area of the image grid; the estimated epipole is illustrated271

in Figure 11.272

5 Experiments273

The proposed algorithm has been tested on images acquired with a Canon EOS274

400D 10-Mpixel camera in two different scenarios. All theseimages have been275

acquired with small aperture to reduce the out-of-focus blur, and have been con-276

verted in grayscale (in the range [0-255]) and downsampled to half-size, before277

being processed. In the first scenario, two triplets of images (shown in Figure 12)278

have been acquired in a controlled environment, mounting the calibrated camera279

on a 2 DOF planar robot, developed at the AIRLab of Politecnicodi Milano [2].280
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Fig. 10. The region of the parameter space corresponding to the image grid, and the votes
corresponding to all the estimates shown in Figure 5.

Fig. 11. The estimated epipole corresponds to the intersection of the cyan lines.
Fixed-length segments indicate PSF direction estimates: in yellow using [3], in red using
Equation (8).

The robot motors are controlled with a proportional integral derivative controller281

that ensures pure translation at controlled speed, and thusallows us to compare the282

estimated 3D direction with the ground truth. The ground truth of the 3D motion283

direction has been computed from each image by appropriately placing a square284

marker, so that its edges perfectly line up with the camera motion direction; then,285

we manually select these edges (blue dashed lines in Figure 12) and we compute286

the viewing ray through their intersection (blue solid lines Figure 12). The esti-287

mation error is measured as the amplitude of the angle between the estimated 3D288

translation direction and the ground truth. The first imagesof each triplet (Figure289

12a,d) have been acquired with translation speedv0, the second ones (Figure 12b,e)290
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Fig. 12. Experiments on images acquired in an automatically controlled environment. The
camera tranlation speed doubles in each column. The blue dashed lines represent the man-
ually selected borders of the square marker, the blue solid ones the fitted lines, and their
intersection is the vanishing point of the ground truth. The cyan lines connect the estimated
epipolee with the image borders, and the 30 pixels segments are the PSF direction esti-
mates: yellow for estimates at blurred corners [3], and red using Equation(8). The angular
errors are:a 0.56 ,b 0.84 ,c 1.15d 0.45 ,e 0.21 ,f 0.52.

with 2v0 and the third ones (Figure 12c,f) with 4v0. The 3D translation direction, all291

the camera camera settings, as well as the opening position of the camera shutter,292

were the same in all these images2 , while the depicted scene and location ofe293

has been changed between the two image triplets. In each image of Figure 12 (like294

in all the other images of Figures 14 - 19 ), the cyan lines connect the estimated295

epipolee with the image borders, while the 30 pixels segments within the image296

show the PSF direction estimates: yellow for estimates at blurred corners (obtained297

using method [3]) and red for estimates given by Equation (8).298

We assume these images as noise free and, to test the algorithm on noisy images,299

we add a noise termη with standard deviation valuesση = 0, 1, · · · , 5. Figure 13300

shows how the angular error varies with the noise standard deviation; the results301

have been averaged over 20 different noise realizations.302

In the second scenario we acquired images by translating thecamera both manually303

(Figures 5 and 14), and on a wheeled device (Figures 15 - 18). Even if in this case304

the ground truth was not available, the cyan lines and the enlarged sections show305

that the blur directions are correctly represented by the line passing through the306

estimated epipole. Figures 15- 18b shows the selected regions around the detected307

blurred corners. A squared box of 100× 100 pixels around some blurred corner has308

been zoomed to prove the effectiveness of the adaptive region selection procedure.309

Figure 19 presents some results in presence of noise withση = 5.310

2 We controlled the camera shutter with a mechanical trigger so that the acquisitionstarted
in a fixed position, where the robot speed was stabilized.
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Fig. 13. Angular errors (in[0, 90]) as a function ofση: a triplet of the first row of Figure 12,
b triplet of the second row. The plots report the average over 20 different noise realizations.
The solid red lines correspond to images acquired with translation speedv0, the dotted
green lines with speed2v0, and the dashed blue lines with speed4v0.

Fig. 14. A radial blurred image: although there are no corners and this produces several
outliers, the blur is correctly interpreted as illustrated in the detail. The enlarged section
shows that the estimated epipole is correctly in a low-blur area.

The wedge masks used for corner selection have maximum size of 50 pixels, the cir-311

cular neighborhoods used for estimating PSF direction using Equation (8) have 25-312

pixels radius. Directional derivatives have been computedusing 7-tap filters [10],313

and the camera has been calibrated by using the Matlab toolbox [6]. In order to314

exclude low-significance features when the noise increases, we fixed a maximum315

number of local estimates: we sort the salient point depending on their Harris mea-316

15



sure, and we take only the 40 most significant blurred cornersand the 100 most317

significant salient points where PSF direction is estimatedas in Equation (8).318

5.1 Discussion319

While it is clear that the noise reduces the PSF direction estimation accuracy, there320

is no straightforward relation between the noise amount andthe epipole localization321

error. Plots of Figure 13 and images of Figure 19 show that thenoise is not the only322

factor determining the algorithm accuracy, and that also the following ones have to323

be considered:324

• Blur: the plots of Figure 13 show that the algorithm can better cope with noise325

in heavily blurred images. In fact, when the scene and the camera settings (and326

thus the exposure) are fixed, we obtain better results at higher camera tranlsation327

speeds. The plots of Figure 13 and a comparison of the resultsin Figures 15328

and 19d show that low-blur areas (which are determined by both the camera329

displacement and the scene depth) make the algorithm more sensitive to noise.330

• Salient points: the number of salient points and the way how these are distributed331

in the image may significantly influence the epipole estimation. Salient points332

spread in all part of the image usually provide better results. The good perfor-333

mance on noisy images shown in Figures 16 and 19c and in plots of Figure 13a,334

is justified by the salient point distribution.335

• Scene content: when a salient point is located near an edge or a line, Equation (8)336

typically returns the edge or the line direction. This may produce outliers (as in337

Figures 15 and 17) or correct estimates, in case the line is pointing to the epipole338

(like the robot structure on the right side of the images of the second row in339

Figure 12). Note that it is not unusual that blurred images contain lines or edges340

that are pointing to the epipole, as these lines are blurred along themselves, and341

thus may survives even heavy blur. We also experienced that the noise increases342

the number of salient points by typically introducing new salient points near343

edges or lines. These two factors motivate the high noise robustness in the images344

in the second row of Figures 12, as well the corrupted estimates in the images of345

Figure 19e,f.346

The considered PSF estimation methods are robust to additive white Gaussian347

noise: the results of Equation (8) are not influenced by AWGN, and the corner348

method provided satisfying performance in presence of AWGN [3]. However, it349

may happen that also PSF directions correctly estimated at blurred corners may be350

far from pointing toe, because of occlusions and shadows. In fact the blur pro-351

duced by occlusions during the translation does not satisfythe epipolar constraints,352

while shadows may be erroneusly interpreted as blurred corner edges. An example353

of blur produced by occlusion is shown in Figure 18 (box1), while shadows that354

have been considered as blurred corner regions are shown in Figure 17b. Note that355
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Fig. 15. The PSFs in the left part of the image have short extents as the scene contains
far away objects: the PSF directions are not reliably estimated in this area. The corner
region selection procedure allows us to estimate separately the PSF direction intwo nearby
corners, as shown in two enlarged sections.

Fig. 16. This image contains two highly textured objects on the foreground that are heavily
blurred, and that allow a reliable PSF direction estimation. The epipole estimates inthis
image are accurate even in presence of noise (see Figure 19c) as the salient points are
spread enough.

in all our experiments the PSF directions have been estimated on small regions,356

where the blur can be reasonably approximated as spatially invariant: each corner357

region highlighted in Figures 15b - 18b is included in a 100× 100 pixels square.358

Figure 14 shows the effectiveness of the voting algorithm: even if there are no cor-359

ners and all the 40 estimates coming from [3] are erroneous, the voting procedure360

is able to cope with such outliers with 100 inliers.361

The overall computation time depends on the number of regions where PSF di-362

rection is estimated: this is the computationally heaviestpart. The corner-region363

selection procedure is based on local averages and comparisons, therefore its com-364

putation cost is linear w.r.t. the number of pixel in the region, like the PSF estima-365

tion at corners. Finally the directional derivatives of Equation (8) are computed by366

using separable filters [10], however theℓ1-norm minimization can be sped up with367

a multiscale implementation.368
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Fig. 17. Several PSF directions estimates have been influenced by the horizontal edges
in the central part of the image, resulting in a less accurate estimates of the epipole. The
leftmost enlargement ofb shows how shadows could be erroneusly considered as blurred
edges. Note that when noise is introduced, the number of salient points along these lines
increases (compare with Figure 19f).

Fig. 18. An example of blur produced by occlusion (box1).

6 Conclusions369

In a blurred image acquired from a translating camera, the PSF directions and ex-370

tents are varying through the image pixels according to the camera 3D motion and371

the scene depth. In this work we devise an image formation model for these images,372

and we present a single-image algorithm for estimating the camera 3D translation373

direction, assuming that the camera is calibrated. The algorithm relies on the es-374

timation of the PSF direction within small image regions that are automatically375

selected according to the image content.376

The algorithm can be included in robot vision systems based on frame analy-377

sis since these systems (e.g. [8]) have often to handle blurred frames at reduced378

lightning conditions in indoor environments. Instead of discarding blurred frames,379

where it is not possible to match map features, the blur can bethus exploited for380

estimating the camera ego-motion. Moreover, the blur carries information about381

the intra-frame motion, i.e. the motion that the camera undergoes during the ac-382

quisition, which in long exposure frames is more meaningfulthan theinter-frame383
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Fig. 19. Algorithm performance in presence of noise (ση = 5). In general, the noise makes
the PSF direction estimation less accurate, however this impacts differently on the depicted
images:a,c the algorithm results are close to those on the respective noise-free imagesas
there are several salient point distributed in different image areas;b the image structures
help the epipole estimation, several salient points have been detected on the robot structure
which is parallel to camera translation;d the low-blur area in the left part of the image
does not allow accurate estimates ofe when the image is noisy;e,f because of noise several
salient points are determined near some image structures that are not pointingat the epipole.

motion, which is typically estimated from a video sequence.The algorithm can384

be also used to initialize blind-deblurring methods that consider spatially variant385

blur such as [35], and for estimating the radial blur center [5,34] given a single386

radial-blurred image.387

Here we considered pure camera translation, as the estimation of the 3D motion di-388

rection does not require to know the local motion orientation. Future works concern389

the extension of this approach to analyze the blur produced by other rigid motions.390

We are also studying robust methods for estimating the PSF within small image391
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regions, in order to extract additional information from a single blurred image. For392

example, the PSF extents in the considered case allow us to compute the scene393

depth map, exploiting the relation between the PSF extent ineach pixel and the394

depth of the corresponding scene point. Reliable estimates of the PSF extents allow395

also to estimate all the radial blur parameters [5,34], and thus to implement a blind396

radial-deblurring algorithm.397
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