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Estimating the 3D Direction of a Translating Camera
From a Single Motion-Blurred Image
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Politecnico di Milano, Dipartimento di Elettronica Informazione Via Ponzio, 34/5 20133
Milano, Italy

Abstract

We propose an algorithm for estimating the 3D motion direction of a camera that un

dergoes a pure translation. This algorithm exploits a single blurred imageeeovers the
3D translation direction thanks to an accurate analysis of the motion blur, wghidfar-
acterized by rectilinear smears whose directions and extents typically vangtiout the
image. The core of our algorithm is the estimation of the direction of these smehins
small image regions that are automatically selected according to the image caient.
algorithm has been succesfully tested on camera images and extenshiddyedawith
different amount of noise in the images.

Key words: Camera Motion Estimation, Motion Blur, Spatially Variant Blur, Blurred
Image Analysis, Blur Estimation, Radial Blur
PACS

1 Introduction

Motion-blurred images embody information about the motiwat took place dur-
ing the exposure. Nevertheless, it is a challenging prolieestimate the camera
3D-motion given a single motion-blurred image whose canierunknown. We
present a novel algorithm for estimating the 3D directioradfanslating camera
by analyzing a single blurred image, acquired during theezantranslation. The
core idea of our algorithm is to exploit the blur as a cue fanegting the camera
ego-motion. Our motivations are similar to those in [19],anran algorithmic gy-
roscope based on the analysis of a rotationally blurred enisigresented. In case
of translation, the blur becomes a crucial information fstireating the camera
ego-motion as translational motion cannot be sensed byexoogeters, whereas
other motions (such as the shake and the rotation) can béeaexploiting mea-
surements from these sensors.

Preprint submitted to Elsevier 10 March 2009
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As a matter of fact, images are usually motion blurred wheritiht is not enough
(this often occurs in a dim indoor environment) thus, thenestion of the blur
Point-Spread Function (PSF) has been widely studied inasiedecades [7,20].
Most of the PSF estimation algorithms assumes spatialigriant blur: recently
Ferguset al. [12] proposed an algorithm for enhancing photographs poediby
camera shake that estimates the PSF exploiting a prior odiskdbution of gra-
dient magnitudes in natural images. Levin [21] considesges where PSFs have
rectilinear supports and constant direction, and segntkese images into regions
where the PSFs have the same extent. Jia [17] uses transpanaps for esti-
mating the PSF, while the algorithms in [27,33,37] explogh@rt-exposure noisy
image, paired with a long-exposure blurred image. All trerehentioned works,
like most of the PSF estimation algorithms, focus on the ragtoration, although
PSF estimation has been addressed for other purposesdikeghsurement of tar-
gets speed [23,24], or planar scene distance [25].

Some of the algorithms that consider spatially-variant fdgus on the estimation
of the depth map of a static scene. These algorithms typieaiploit either an

image sequence [11,16] acquired controlling the cametagst or a single image
[22] acquired with a coded aperture camera. Naggl. proposed an algorithm
[29] for restoring astronomical images corrupted by sfigtizariant blur. Sorel

et. al [32] restore a sequence of blurred images, acquired durcagreera motion
along an arbitrary curve parallel to the image plane, wittamy rotations.

In general, the blur caused by camera motion is spatialliararfor example the
rotational [4,19,30], the radial [5,34], and the angula&][dlur are spatially variant.
Also the camera shake results in spatially-variant blurmtie depicted scene is
not planar [32]. Among the related works, the work of Rek$ej81] is the clos-
est to the proposed algorithm, as it addresses the optigakthonputation from a
single spatially-variant blurred image. This task can besatered as equivalent to
estimating direction and extent of a spatially-varying A8F31] the blurred image
is divided into a tessellation of blocks, and in each bloek SFs parameters are
estimated in Fourier domain. However, this tessellatidixesd and, since the PSF
parameters are estimated in Fourier domain, the block sigedbe significantly
larger than the PSF extent. On the contrary in the propoggatiim the regions
where the PSF is estimated are adaptively selected degemaihhe image content.
More importantly, in [31] the camera 3D ego-motion is notowred, while this is
the main goal of our work.

The paper structure reflects the design of the proposedithigoand is as follows.
Initially, we derive the blurred image formation model byafyrzing the effect of a
3D translation of a perspective camera during the acqomsiilhus we show that
the resulting blur is spatially variant, characterized bgtitinear smears (Section
2). The directions of these smears are determined by thelic@bes (on the image
plane) of the epipole, i.e. the vanishing point of the canmeoéion direction, from
now one. The proposed algorithm estimates the smear directiomsyat automati-



73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

cally selected image regions using two sorts of blur estinsatvhich are described

in Section 3. The coordinates efire determined from these local estimates using a
voting procedure (Section 4). We can then compute the vigwag throughe (we
assume the camera is calibrated) and thus, the directitve & translation of the
camera. Section 5 presents the experimental validationsat ef camera images,
and the performance evaluation when the amount of noiseeimihge increases.

2 Problem Formulation

Figure Aillustrates the considered image capture scenario. Wheshtiteer opens,
the camera viewpoint is i®, the origin of the canonical 3D reference frae' .
During the exposure intervél, 7' the scene is static, while the camera translates
at constant speed, until it reach&swhen the shutter closes. Our goal is to esti-
mate, by only analyzing the resulting blurred imafyehe 3D direction ofOF.

We assume that the camera intrinsic calibration matrils known, so that the 3D
direction of OF' in R is the direction of ~le, the viewing ray through the epipole

e. The core of our algorithm thus consists in the estimatiothefcoordinates of,

i.e. the vanishing point of the direction of the camera tiaien direction. In what
follows we indicate the camera translation willt", as a single blurred image does

. . e —_—
not allow us to determine whether the translation wdsor FO.

2.1 Blurred Image Model

We assume that the camera sensor has linear response, aepresgent a motion-
blurred imagel as the integration of an infinite number of still imagkseach
one captured with the camera viewpoint in a different posiin the space. The
equation that describes the blurring process, i.e. theddumage formation, is

I@)= [ Iyt + @), 7= (o) € X, ®

where,z is a pixel location on the 2D image gritl C Z, z;; andx, indicate the

projection ofz on the axes of the image coordinate systém,X — R represents
the light intensity that reaches each pixel at titné, 7] is the exposure interval,
andr is Gaussian white noisgz) ~ N(0,07).

Whenever there are no occlusions due to camera translatiemlarring process
can be also described as applying a blur oper&ton the original (and unknown)

I The z axis of R is aligned with the camera principal axis, and the other two axes are
aligned with the image coordinate system.
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Fig. 1. (a) Camera translation during the exposure. When the shuttes,dperoriginO

of the3D axis is in the camera viewpoint, with theaxis orthogonal to the image plane.
When the shutter closes, the camera viewpoint reaéhdble resulting blurred image is
shown in (b).

imagel,. In this casel,, ideally corresponds, up to a scalar factor, to the image of
the same scene, captured from the same camera gilll lfquation (1) becomes

I(x) = K(Io) (x) +n(x) . (2)
We assuméC is a linear operator, that can be written as [1]
K (L) (x) = /X k(x, $)Io(s)ds, 3)

wherek(x;, ®) corresponds to the PSF at pixgl In case of pure camera transla-
tion, k(z;, ) is
k(mia .) = Rei (W) (. - xl) ) (4)

where x[_;,/2.,/2) i the characteristic function of the segmént/;/2 < z); <
l;/2, z, = 0} and Ry, is the rotation off; degrees around the first image axis.
Furthermore, the PSF directidnis

tan(;) = M, beinge = (e, ep2) . (5)

Ti1 — €1

The proof that the PSFs vary as described in Equations (4)®3nchn be easily
derived from Equation (1) by means of epipolar geometry[lrbfact, any couple
of imagesl;, and/ly,, t,,t, € [0, 7] forms a stereo pair, and thus the corresponding
points in these images are related by the epipolar consrdiat /, and I be the
two images acquired at the initial and at the final cameratiposiand let the points
ep ander be the images of the line throughF in I, and I, respectively. The
pointsey ander correspond to the epipoles of the pajrand/. Since the camera
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undergoes a pure translation, and e; have the same coordinates inand I,
and thus in the resulting imagethey collapse in the epipole as illustrated in
Figure Db. It follows that all pairs of corresponding points (oneljnand the other
in I7) are collinear withe. Therefore, the support of the PSFais a straight line
segment having directiof) as shown in Equation (5).

Note that the PSF extentsare instead determined by the position\gf the scene
point that is imaged on;. Except few particular cases, e.g. those considered in
Section 2.2 or in [5,34], it is not possible to provide a sanillescription for the
PSF extents. In what follows we refer to PSFs of this kind aslieear PSFs.

In our model the camera translation is the only cause of diefiocus, lens aberra-
tions, camera shake, and other blurring factors are notdersl.

2.2 Examples of Blur Produced by Camera Translation

The most frequently considered situation is whdrelongs to the infinite line of the
image plane, and the captured scene is planar and paratha tmage plane. Then
all the PSFs have the same direction and extent, and the baanies spatially
invariant, as shown in Figurea2

Fig. 2. Images acquired during camera translation. Spatially invariant &@luthe scene

is planar, parallel to image plane aad— oo. Spatially variant blurl§): e belongs to the
image plane and the scene is planar, the PSF extents are given by EqGati®patially
variant blur €): e — oo but the scene is not planar, note that PSF directions are constant.
Spatially variant blurd), the scene is not planar aadies on the image plane.

When the camera translatién/’ has a component orthogonal to the image plane,
e becomes a point on the image plane (i.e. not at infinity), ipbssut of the image
grid X. When the scene is planar and parallel to the image plane SkeaPpixel

z; has extent; proportional taz;e, the distance between ande. Being|OF | the
length of the camera translation, atithe distance between the camera viewpoint
and the scene plane, we obtain

OF]

i = L€ = 6
Y+ [OF ©)

In this case we refer to radial blur [5,34]: an example of akfiurred image is
shown in Figure B.
Typically, only the PSFs directions are determinedebyvhile the extent atr;
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Fig. 3. Image model within a blurred corner region: the displacement véctand the
difference between the corner and the backgrafind

depends on the position df;, the corresponding scene point. Thus, even when
e — oo, if the scene is not planar, the blur is spatially variantlasag in Figures
2cand 4.

3 Local Blur Analysis

We treat the blur as locally spatially-invariant [1], i.eev@ssume thatx; € X,
exists a neighborhood; C X, of x;, and a PSkj;, such that

IC(IO) (r) = /le(x —s)ly(s)ds Yz e U;. @)

Furthermore, we assume thatis a rectilinear PSF having directigh and extent
l;. These assumptions allow us to use methods meant for paraiaed spatially
invariant blur for estimating the PSF withir.

The coordinates of, and thus the camera 3D translation direction, are obtdiged
estimating the PSF directions within some automaticallgcted image regions.
For this purpose we exploit two different PSF directionrastion methods, and a
procedure for determining the method to be used in eachnegio

3.1 Local Estimation of PSF Direction

Fourier domain methods, which are widely used for PSF paemmestimation, do
not perform adequately on small image regions as they aspenedic signals.
Thus we adopt two methods that work in the image domain. Witegions con-
taining an image corner we estimate the PSF direction usiegnethod proposed
in [3]. This method estimates the corner displacement vegtahich represents
the PSF parameters within a image region that contains @&camnd that has been
blurred with a rectilinear PSF. The method analyzes the éntagdient within the
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Fig. 4. At corner smears the Harris measure is larger than on blurressedgamples
for two kind of blurred corner regions. Pixels on the corner smears baen manually
highlighted & andd), the Harris measure in retd Ande), Harris measure is displayed over
the blurred imageqandf).

11 blurred-edges and estimatas the intensity gap between the corner and the back-
12 ground, as shown in Figure 3.

Within regionsU; where no blurred edges are present and the image is not flat,
the PSF direction is estimated with the method proposedah {Be PSF direction

0;, is given by the direction of the directional derivativediltl, having minimum
¢*-norm response, i.e.

6, = arg min}(z [(dy @ I)(2)]), (8)

0el0,2m ol
1z Where® denotes the 2D convolution.

s The regiond/; are selected around some particular pixels: the salientpdmong
us all the salient points we identify the blurred corners byngsihe procedure de-
s ScCribed in the next section.

147 3.2 Salient Points

1us  We take as salient points the local maxima of the Harris ntegd44], which have

us been used in several feature detection algorithms [26&8pixels having large

150 Harris measure, the Hessian matrix of the sum of squarerelifées has two large
151 eigenvalues and vice versa [14]. Therefore the image in @ pzttthese pixels is
12 Significantly different from any neighboring patch.

153 Within a blurred corner region, the Harris measure is laggethe corner smears
15« than on the blurred edges. As illustrated in Figure 4, tha@osmear is a set of pix-
155 els between two blurred edges. Near the corner smears, dyeiis different w.r.t.
1ss - any neighboring patch, and thus the Harris matrix has twaeaaneigenvalues. On
157 the contrary, into the blurred edges the Harris measuregative or zero, as the
158 derivative along the edge direction is zero and one eigaeval zero. It follows
19 that, provided that in the original image the corner is byndee those of Figure
10 44, each corner smear presents at least a salient point. Tili$ loe at any pixel on
161 the corner smear; however this is enough for initializing dldaptive corner-region
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Fig. 5. Blurred corner detectiom:a blurred imageb the maski™ used to identify blurred
edgesc blurred-corner candidates.

Fig. 6. Salient points in blurred images belong to areas having large Harasumeein the
original image:a salient points in a test image armsalient points inf;, a blurred image
having PSF direction 60and extent 20 pixels. The average Harris measure of the original
image within the red squaresdivided by the average Harris measure in the whole original
image ism; = 1.98. Near the salient point of the original image, the green squarbs of
this ratio becomes.75.

selection procedure described in Section 3.3.

We consider as blurred-corner candidates those salientsdoeélonging to blurred
edges. The blurred edges are identified by the nhask

I'={zst ||VI(x)|| >T}, 9)

whereT is a threshold parameter, tuned on the minimum acceptaiybe $br a
blurred edge. We also post-procdssvith ordinary morphological operators [13]
both to remove isolated points, small areas, thin lines angitlen larger areas.
Let the blurred-corners candidates (the salient points)ibe {z;}, i = 1,...,m:
around these points we run the adaptive corner-regiontsmigarocedure of Sec-
tion 3.3, and we discard those that have too small corner. difea remaining
{z;}, i = 1,...,.M M < m, represent the blurred corners and the PSF direc-
tions {0;}, i« = 1,..., M are estimated using [3] within the adaptively selected
corner region. Figure&shows a camera image used as running example, Fig-
ure % shows the correspondinig, and Figure b the blurred corner candidates.
Around the salient points that have not been identified asdducorners (be-
cause they do not belong foor because they do not have a corner region large
enough) we select circular regiobs. Let {z;}, ¢ = M, ..., N be the remaining
salient points having Harris measure over a fixed threshveédestimate the PSF
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Fig. 7. Salient Points on blurred imageghe values ofn; as a function of the PSF extent,
b the mean Harris measure as a function of blur exietite mean number of salient point
as a function of blur extent.

directions{6;}, i = M, ..., N using Equation (8) within the corresponding circular
neighborhood$/;, i = M, ..., N.

Equation (8) returns reliable estimates within regions netibe original imagd,,
has similar, and non zeré}-norm response to any directional derivative filter. The
original imagel, typically shows significant variations along any directigithin
regions centered in a salient point. Therefore Equatiortggs as the PSF di-
rection, the direction presenting less variations withiese regions in the blurred
image/. However it is not guaranteed that a salient point of therbbiimagel
corresponds to a salient point ff, the original image.

The following experiment shows that salient points in kddrimages typically be-
long to areas where the original image has a large Harris unead/e consider a
dataset of 12 common (256 256 and 512< 512) grayscale test images, rescaled
in [0,1], and two set® = {0,10,---,170,180} and L = {1,2,---,29,30} for
the PSF directions and extents, respectively. We syn#ibtiblur each test image
with a convolution against each PSF generated from the pearpairs ino x L,
obtaining{f;} j = 1,...,12 - #(© x L) blurred images. The Harris measure is
thresholded against= 0.0005 in order to remove low-relevance salient points; we
then extract the salient points in each blurred imggand we crop, from the cor-
responding original image, a square of 10 pixels side cedterthe salient point.
We computen; as the average of the Harris measure of the original imagdarwit
these squares, divided by the average Harris measure oftible wriginal image,
as described in Figure 6. Figura $howsm ; averaged between images having the
same PSF extent: the Harris measure within these squanesades as the blur ex-
tent increases but, even in heavily blurred images, thergghoints belong to areas
where the original image still presents significant vaoiasi. In fact, the average of
m; in the original image (PSF extent 1 pixel) is about 3, andrta@s 1.6 in im-
ages blurred with a 30 pixels extent PSF. Figutesiidd € show how the mean of
the nonzero Harris measure and the number of salient poonédse with the blur
extent. Note thatn, is correctly averaged among images having PSF with differen
direction, as the Harris measure is rotational invarias.[1

This experiment consides spatially invariant blur butceithe Harris measure is a
local measure, a similar result holds for the spatiallyasatrblur (although in this
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Fig. 8. Shapes of the supports of wedge madsks, (red solid line) and their differences
D o (blue dotted line).

case the salient points tend to concentrate in the leastblareas).
3.3 Adaptive Corner Region Selection

The corner region is constructed exploiting the fact thabavolution against a
rectilinear PSF produces areas (the blurred edges) whergréidient is constant.
The gradient uniformity is analyzed using wedge-shapedrgimaskdV; ., where

J € {Jo, ..., J} represents the wedge size and {2ir/A},—, 4 the wedge direc-
tion. As illustrated in Figure 8, all the wedges have theeseim the blurred corner,
and wedges along the same direction are nestedili;g. C Wi, Vo, V) =
1,...,J — 1. Roughly speaking, we compare the average gradient in eadbeve
Wi, with the average gradient in the area in between the nexedesedge
Dji1,0 = Wit1,o — W, ,inorder to prevent discontinuities in the region. The cor-
ner region is built repeating the following iterative prdaee along each direction.

stepl Computew;, = Y pew, . VI(z)/#Wj ., the average gradientI; ,; where
#W, ., denotes the number of elementdin) ,.

step2 Computel; 1o = Xsep,,, ., VI(2)/#Dj11.4,the average sV on Dy, -

step3 If (|wj — dji1| > Myoy) or (|dj+1] < Maoy,), takej,, = j and repeastepl
froma+ 1,5 = 3.

step4d if j # J, repeatstepl from j + 1, «; otherwisej, = J, and repeastepl
froma+1,5 = 3.

After having considered all directions iy we takel; = Uqaea W5, @and we mask

This procedure builds regions that are star-shaped wetsalient point, although
it may happen that the blurred corner region is not starathgpee the blurred
corner in Figure d). To provide non star-shaped regions, we repeat this ptweed
in 9 neighboring pixels of each blurred corner, and then e &sU; those pixels

that have been selected at least twice. Note that the proeelbes not consider

10
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Fig. 9. Selected corner regions where the estimated corner displacesstottivas accept-
able length.

the smallest wedges in each direction, since on the cornearshe gradient is
discontinuous. The paramete¥s, M, > 0 are fixed, whiles,, is estimated using

9.

3.4 Remarks

The corner-region selection procedure allows us to seggrastimate the PSF
direction in those areas containing two neighboring carnsee Figure 9 bo{.
Moreover, the selected regions exclude both possibleldatad blurred edges that
do not belong to the corner, since these ones could bias thdiR&tion estimation
(Figure 9 box3). However, textured areas where the average gradient stain
may be erroneously selected (e,g. Figure 9 boxSometimes spots near a blurred
edge are erroneously taken as a salient points, and thetledge is identified as
corner region. Often, in this case, the estimated PSF haxaptable extent (e.g.
larger than the maximum region size), and thus these estinagie not considered
for estimating the epipole. Figure 9 shows only corner negiwhere the estimated
displacement vector has acceptable length. Finally, afhdhe procedure is re-
peated to construct non star-shaped regions, corner ielierthat one in bos of
Figure 9 are sometimes partially missed.

11



253

254

255

256

257

258

259

260

261

262

263

264

265

267

268

269

270

271

272

273

274

275

276

277

278

279

280

4 Estimation of the Epipole

The coordinates of are determined by fusing all the local estimates. From the
experimental evidence it emerges that, because of noiseamd details that in-
fluence the PSF direction estimates, this fusing needs t@be by using a robust
procedure. In [19] this issue is addressed by the RANSAC #lgor while here

we solve the equivalent point-fitting problem using an Hoagproach. In this case
the parameter space, i.e. the space containing all the sitieisolutions (the lo-
cation ofe), is the whole image plane, including the line at infinityr léach data
(0;,z;), i = 1,..., N, we assign one vote in the parameter space to each parameter
(i.e. point of the parameter space) belonging to the sttdigl having direction

0; and passing through;. After having considered all the data, the parameter that
received the largest number of votes is taken.as

This approach allows us to design an ad-hoc weight functievhich can be used
instead of straight line for considering errors in the eation of both the PSF
direction and the corner location. The idea is to assign lavhike to parameters
on the aforementioned straight line and a lower vote to rnepdsameters. As in
[4], the weight functior?,, o, associated to théth data is obtained rotating &f
degrees and centering in the function

ap) 2
Uz, x :ex{—<|>}. 10
The two parameters, k£ > 0 determine the vote spread from the exact solutions
and the localization error, respectively.

As typical in Hough approaches, the votes are assigned is@ete and finite
parameter space, which in our experiments is a grid threestilarger than the
image. We usefl = o, for the estimates coming from Equation (8), dnet ky+o,,

for the estimates at corners, with > 0 a fixed tuning parameter. Figure 10 shows
the parameter space in the area of the image grid; the estireptpole is illustrated
in Figure 11.

5 Experiments

The proposed algorithm has been tested on images acquitecav@anon EOS
400D 10-Mpixel camera in two different scenarios. All thesmges have been
acquired with small aperture to reduce the out-of-focus, lalnd have been con-
verted in grayscale (in the range [0-255]) and downsampielatf-size, before
being processed. In the first scenario, two triplets of insggbown in Figure 12)
have been acquired in a controlled environment, mountiegctiibrated camera
on a 2 DOF planar robot, developed at the AIRLab of Politeculichlilano [2].

12
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Fig. 10. The region of the parameter space corresponding to the imagamglithe votes
corresponding to all the estimates shown in Figure 5.

Fig. 11. The estimated epipole corresponds to the intersection of the cyam line
Fixed-length segments indicate PSF direction estimates: in yellow using [3]] insiag
Equation (8).

The robot motors are controlled with a proportional intégiexivative controller

that ensures pure translation at controlled speed, andatlowgs us to compare the
estimated 3D direction with the ground truth. The groundhtraf the 3D motion

direction has been computed from each image by appropriptating a square
marker, so that its edges perfectly line up with the cameraamalirection; then,

we manually select these edges (blue dashed lines in Fi@)rant we compute
the viewing ray through their intersection (blue solid Brieigure 12). The esti-
mation error is measured as the amplitude of the angle battieeestimated 3D
translation direction and the ground truth. The first imagiesach triplet (Figure

12a,d) have been acquired with translation spegdhe second ones (Figureld,2)

13
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Fig. 12. Experiments on images acquired in an automatically controlled envirnie
camera tranlation speed doubles in each column. The blue dashed lireserdggghe man-

ually selected borders of the square marker, the blue solid ones the fitteddimek their
intersection is the vanishing point of the ground truth. The cyan lines cotmeestimated
epipolee with the image borders, and the 30 pixels segments are the PSF direction esti-
mates: yellow for estimates at blurred corners [3], and red using Equ&jiofhe angular
errors area 0.56 ,b 0.84 ,c1.15d 0.45 ,e0.21 ,f 0.52.

with 2v, and the third ones (Figure &2) with 4v,. The 3D translation direction, all
the camera camera settings, as well as the opening posftithe camera shutter,
were the same in all these imagéswhile the depicted scene and locationeof
has been changed between the two image triplets. In eacleiofdggure 12 (like
in all the other images of Figures 14 - 19 ), the cyan lines echthe estimated
epipolee with the image borders, while the 30 pixels segments withanitnage
show the PSF direction estimates: yellow for estimatesuatddl corners (obtained
using method [3]) and red for estimates given by Equation (8)

We assume these images as noise free and, to test the alyonthoisy images,
we add a noise term with standard deviation values, = 0,1, --- , 5. Figure 13
shows how the angular error varies with the noise standarititen; the results
have been averaged over 20 different noise realizations.

In the second scenario we acquired images by translatingatinera both manually
(Figures 5 and 14), and on a wheeled device (Figures 15 - ¥8n Ein this case

the ground truth was not available, the cyan lines and thargedl sections show
that the blur directions are correctly represented by the piassing through the
estimated epipole. Figures 15-ld8hows the selected regions around the detected
blurred corners. A squared box of 180100 pixels around some blurred corner has
been zoomed to prove the effectiveness of the adaptiverregiection procedure.
Figure 19 presents some results in presence of noiseowith 5.

2 We controlled the camera shutter with a mechanical trigger so that the acquisitited
in a fixed position, where the robot speed was stabilized.
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316

Error Angle

Fig. 13. Angular errors (if0, 90]) as a function of,,: atriplet of the first row of Figure 12,
b triplet of the second row. The plots report the average over 20 diffei@se realizations.
The solid red lines correspond to images acquired with translation spedde dotted
green lines with speekiy, and the dashed blue lines with speleg.

Fig. 14. A radial blurred image: although there are no corners and tbdupes several
outliers, the blur is correctly interpreted as illustrated in the detail. The enlaggetion
shows that the estimated epipole is correctly in a low-blur area.

The wedge masks used for corner selection have maximumfddeaxels, the cir-
cular neighborhoods used for estimating PSF directiongusguation (8) have 25-
pixels radius. Directional derivatives have been computgdg 7-tap filters [10],
and the camera has been calibrated by using the Matlab to¢#oln order to
exclude low-significance features when the noise increagedixed a maximum
number of local estimates: we sort the salient point depenain their Harris mea-
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sure, and we take only the 40 most significant blurred coraedsthe 100 most
significant salient points where PSF direction is estimateoh Equation (8).

5.1 Discussion

While it is clear that the noise reduces the PSF directiomeasitbn accuracy, there
is no straightforward relation between the noise amountlaaépipole localization
error. Plots of Figure 13 and images of Figure 19 show thattiee is not the only
factor determining the algorithm accuracy, and that alsdalowing ones have to
be considered:

e Blur: the plots of Figure 13 show that the algorithm can betteeoejth noise
in heavily blurred images. In fact, when the scene and theecasettings (and
thus the exposure) are fixed, we obtain better results aehigdmera tranlsation
speeds. The plots of Figure 13 and a comparison of the rasukgures 15
and 1@ show that low-blur areas (which are determined by both theeca
displacement and the scene depth) make the algorithm mséige to noise.

e Salient points: the number of salient points and the way how these are lolisérd
in the image may significantly influence the epipole estioratiSalient points
spread in all part of the image usually provide better reslhe good perfor-
mance on noisy images shown in Figures 16 andal®l in plots of Figure 18
is justified by the salient point distribution.

e Scene content: when a salient point is located near an edge or a line, Emuég)
typically returns the edge or the line direction. This magdurce outliers (as in
Figures 15 and 17) or correct estimates, in case the linamsipg to the epipole
(like the robot structure on the right side of the images @f skecond row in
Figure 12). Note that it is not unusual that blurred imagegaia lines or edges
that are pointing to the epipole, as these lines are bluledahemselves, and
thus may survives even heavy blur. We also experiencedtihbatdise increases
the number of salient points by typically introducing newiesa points near
edges or lines. These two factors motivate the high noisgstabss in the images
in the second row of Figures 12, as well the corrupted estisiatthe images of
Figure 1®f.

The considered PSF estimation methods are robust to aglditivte Gaussian
noise: the results of Equation (8) are not influenced by AWGMN the corner
method provided satisfying performance in presence of AWGN However, it

may happen that also PSF directions correctly estimateliaeld corners may be

far from pointing toe, because of occlusions and shadows. In fact the blur pro-

duced by occlusions during the translation does not satisfgpipolar constraints,
while shadows may be erroneusly interpreted as blurrecec@uiges. An example
of blur produced by occlusion is shown in Figure 18 (H9xwhile shadows that
have been considered as blurred corner regions are showgureAD. Note that
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Fig. 15. The PSFs in the left part of the image have short extents as the sostains
far away objects: the PSF directions are not reliably estimated in this areacdrher
region selection procedure allows us to estimate separately the PSF diredtimmiearby
corners, as shown in two enlarged sections.

Fig. 16. This image contains two highly textured objects on the foregrounditb&eavily
blurred, and that allow a reliable PSF direction estimation. The epipole estimait@s in
image are accurate even in presence of noise (see Figgyead3he salient points are
spread enough.

in all our experiments the PSF directions have been estthmtesmall regions,
where the blur can be reasonably approximated as spatmablyiant. each corner
region highlighted in Figures 15 18b is included in a 100< 100 pixels square.
Figure 14 shows the effectiveness of the voting algorithvenef there are no cor-
ners and all the 40 estimates coming from [3] are erronebesydting procedure
is able to cope with such outliers with 100 inliers.

The overall computation time depends on the number of regwamere PSF di-

rection is estimated: this is the computationally heavpest. The corner-region
selection procedure is based on local averages and compsyriberefore its com-
putation cost is linear w.r.t. the number of pixel in the cegilike the PSF estima-
tion at corners. Finally the directional derivatives of Btjan (8) are computed by
using separable filters [10], however tHenorm minimization can be sped up with
a multiscale implementation.
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Fig. 17. Several PSF directions estimates have been influenced by fhentalr edges

in the central part of the image, resulting in a less accurate estimates of tiodeefipe
leftmost enlargement df shows how shadows could be erroneusly considered as blurred
edges. Note that when noise is introduced, the number of salient points thlese lines
increases (compare with Figurefl9

Fig. 18. An example of blur produced by occlusion (H9x

6 Conclusions

In a blurred image acquired from a translating camera, ttfe dv®ctions and ex-
tents are varying through the image pixels according to #meera 3D motion and
the scene depth. In this work we devise an image formatioreffodthese images,
and we present a single-image algorithm for estimating #meza 3D translation
direction, assuming that the camera is calibrated. Therigthgo relies on the es-
timation of the PSF direction within small image regionstthee automatically
selected according to the image content.

The algorithm can be included in robot vision systems basedrame analy-
sis since these systems (e.g. [8]) have often to handledoldrames at reduced
lightning conditions in indoor environments. Instead «fadirding blurred frames,
where it is not possible to match map features, the blur cathiee exploited for
estimating the camera ego-motion. Moreover, the blur earimformation about
the intra-frame motion, i.e. the motion that the camera undergoemgltine ac-
quisition, which in long exposure frames is more meaningfah theinter-frame
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Fig. 19. Algorithm performance in presence of noisg £ 5). In general, the noise makes
the PSF direction estimation less accurate, however this impacts differentlg depicted
images:a,c the algorithm results are close to those on the respective noise-free iamges
there are several salient point distributed in different image atettse image structures
help the epipole estimation, several salient points have been detected ohdhstructure
which is parallel to camera translatiod;the low-blur area in the left part of the image
does not allow accurate estimatesafhen the image is noisgf because of noise several
salient points are determined near some image structures that are not patitiiegpipole.

motion, which is typically estimated from a video sequenbee algorithm can
be also used to initialize blind-deblurring methods thatsider spatially variant
blur such as [35], and for estimating the radial blur cen¥B4] given a single
radial-blurred image.

Here we considered pure camera translation, as the esim@ttthe 3D motion di-
rection does not require to know the local motion orientatfeuture works concern
the extension of this approach to analyze the blur produgexther rigid motions.
We are also studying robust methods for estimating the P&finvgmall image
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regions, in order to extract additional information fromirgée blurred image. For
example, the PSF extents in the considered case allow usmpute the scene
depth map, exploiting the relation between the PSF exteptioh pixel and the
depth of the corresponding scene point. Reliable estimétbe ® SF extents allow
also to estimate all the radial blur parameters [5,34], &nd to implement a blind
radial-deblurring algorithm.
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