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ABSTRACT
We consider the problem of the joint denoising of a number of raw-
data images from a digital imaging sensor. In particular, we exploit
a recently proposed image modeling [8] that incorporates both the
signal-dependent nature of noise and the clipping of the data due to
under- or over-exposure of the sensor.

Our denoising approach is based on the V-BM3D algorithm [5],
coupled with a set of homomorphic pre- and post-processing trans-
formations derived for variance-stabilization, debiasing, and declip-
ping [6]. The spatio-temporal nonlocality of V-BM3D frees us from
the need of an explicit registration of the frames. It results in a prac-
tical algorithm directly applicable to raw-data processing, in partic-
ular for heavy-noise conditions such those encountered in low-light
imaging or imaging at fast shutter speeds.

Experiments with synthetic images and with real raw-data from
CCD sensor show the feasibility of the approach and provide an
indicative measure of the advantage of multiframe versus single-
frame processing.

1. INTRODUCTION

Pictures acquired by digital imaging sensors are always subject to
noise. While the signal-to-noise ratio (SNR) can be improved by us-
ing a longer exposure time, this is often not feasible because scene
motion (e.g., due to moving objects) or camera motion � also re-
ferred to as camera shake � during the acquisition would result in
blur. The problem is particularly evident when acquiring images at
low-light conditions.

A number of diverse solutions have been devised to cope with
this kind of problems. These range from hardware solutions, such
as optical stabilization based on real-time motion-adaptive sensor or
lens actuation, to different acquisition paradigms. Particularly ef-
fective for compensating the impact of motion or hand-held camera
shake blur is the approach based on pairs of differently exposed im-
ages [14, 13, 17, 18, 16, 15]. The key idea is to capture two images:
one image taken with a short exposure-time, which ensures that the
blur is negligible at the expense of heavy noise, and another image
taken with a longer exposure, which reduces the noisiness but re-
sults in visible blur. Provided some registration, the noisy image is
used in order to estimate the blur point-spread function (PSF), thus
enabling a non-blind or semi-blind deconvolution of the blurred im-
age. However, scene motion or camera shake very seldom can be
faithfully described as a linear, shift-invariant blur; thus, heavy reg-
ularization is necessary to reduce artifacts [17].
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An alternative strategy is based on the joint denoising of mul-
tiple images captured sequentially, thus making the problem con-
ceptually equivalent to a video-denoising problem. In this paper,
we follow this direction and consider the problem in the very spe-
ciÞc setting of raw-data processing, through an observation model
[8] that explicitly incorporates both the signal-dependent nature of
noise and the clipping of the data due to under- or over-exposure of
the sensor.

In our approach, we rely on the Video Block-Matching 3-D de-
noising algorithm (V-BM3D) [5], coupled with a set of homomor-
phic pre- and post-processing transformations derived for variance-
stabilization, debiasing, and declipping [6]. The spatiotemporal
nonlocality of V-BM3D frees us from the need of an explicit reg-
istration of the frames, while the homomorphic transformations en-
able an accurate estimation of the true image. Overall, it results
in a practical algorithm directly applicable to multiframe raw-data
processing, which simultaneously extends [5] and [6].

The rest of the paper is organized as follows: Section 2 intro-
duces the observation model and the principal ideas of the V-BM3D
Þlter. The proposed denoising algorithm is detailed in Section 3.
Experiments with synthetic images and with real raw-data from
CCD sensor are presented in Section 4, where we also compare
against the approach based on blurred-noisy image pairs. We con-
clude the paper with few remarks about the impact of redundancy
on the denoising performance.

2. PRELIMINARIES

2.1 Observation model
Let {z̃i }Ni=1, be a sequence set of N raw-data images. According to
[8, 6], each image z̃i : X→ [0,1] can be modeled as

z̃i(x)=max{0,min{zi(x),1}} , x ∈ X ⊂ Z2, (1)
where zi(x)= yi(x)+σ(yi(x))ξ i(x) , (2)

yi : X → Y ⊆ R is a deterministic unknown original image and
σ(yi(x))ξ i(x) is a zero-mean random error with signal-dependent
standard-deviation σ(yi(x)). Here, σ : R→ R+ is a deterministic
function while ξ i(x) is a random variable with unitary variance.
For simplicity, the latter shall be approximated as a standard normal
and all errors are assumed to be independent, thus treating ξ i as
i.i.d. with ξ i (·) ∼ N(0,1). As discussed in [8], this is a suitable
approximation when dealing with the noise in the raw data from
CMOS and CCD digital imaging sensors. For these raw data, the
typical form of the function σ is

σ2(yi(x))= ayi(x)+b, (3)
with the constants a ∈R+ and b ∈R depending on the sensor�s spe-
ciÞc characteristics and on the particular acquisition settings (e.g.,
analog gain or ISO value, temperature, pedestal, etc.) [8]. These
two constants are assumed Þxed and invariant during the acquisi-
tion of the images and thus the same for all i = 1, . . . ,N .



Figure 1: Some examples of the standard-deviation functions σ
(solid lines) and σ̃ (dashed lines) from the models (2) and (5)
for different combinations of the constants a and b of Equation
(3): (left) a = 0.022,0.062,0.102, b = 0.042 and (right) a = 0.42,
b = 0.022,0.062,0.102. The small black triangles indicate the
points (ỹ, σ̃ (ỹ)) which correspond to y = 0 and y = 1.

Without loss of generality, in (1) we are considering data
given on the range [0,1], where the extreme values 0 and 1 cor-
respond to the minimum and maximum pixel values for the con-
sidered raw-data format. Values below or above these bounds are
replaced by the bounds themselves: this clipping corresponds to
the behavior of digital imaging sensors in the case of under- or
over-exposure. While the probability density function (p.d.f.) of
the unobserved (virtual) non-clipped noisy data zi (x) is simply

1
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is distributed according to a special doubly censored Gaussian dis-
tribution [2] having a generalized p.d.f. ℘z̃i (x) of the form

℘z̃i (x)(ζ )= 1
σ(yi (x))φ

!
ζ−yi (x)
σ(yi (x))

"
χ [0,1]+

++
! −yi (x)
σ(yi (x))

"
δ0(ζ )+

!
1−+

!
1−yi (x)
σ(yi (x))

""
δ0(1−ζ ) . (4)

Here, χ [0,1] denotes the characteristic function of the interval [0,1],
δ0 is the Dirac delta impulse at 0, and φ and + are the p.d.f. and
cumulative distribution function (c.d.f.) of the standard normal
N (0,1), respectively. The last two addends in (4) correspond to
the probabilities of clipping from below and from above (under- or
over-exposure).
The expectation and the standard deviation of z̃i (x) are denoted as

ỹi (x) = E {z̃i (x)} ∈ [0,1] ,
σ̃ (ỹi (x)) = std{z̃i (x)} ≥ 0.

These equations deÞne a function σ̃ : [0,1]→R+ that maps the ex-
pectation of z̃ (x) to its standard-deviation, leading us to the coun-
terpart of the signal-dependent noise model (5) for z̃ :

z̃i(x)= ỹi(x)+ σ̃(ỹi(x)) ξ̃ i(x) , x ∈ X ⊂ Z2. (5)

Here, ξ̃ i (x) is another (non Gaussian) random variable with zero
mean and unitary variance, E

#
ξ̃ i(x)

$ = 0, var#ξ̃ i(x)$ = 1. As op-
posed to ξ i (x), ξ̃ i (x) is not identically distributed: different dis-
tributions are found for different i and different x , as can be easily
derived from (4) and (5). The functions σ and σ̃ are illustrated in
Figure 1. We refer the reader to [8] for further details on the above
model, including the derivation of the direct and inverse functional
relations between yi , ỹi , σ , and σ̃ .

Our goal is to recover the unknown yi , i = 1, . . . ,N , of (2),
given the raw-data image sequence {z̃i }Ni=1 (1), possibly exploiting
the redundancy due to portions of image content shared by different
frames.

2.2 V-BM3D
In order to exploit the similarities between the image content across
multiple frames without the requirement of an explicit motion esti-

mation or registration, we use the V-BM3D denoising Þlter [5]. A
difference between this Þlter and conventional block-based denois-
ers lies in the fact that V-BM3D takes advantage not only from the
similarity between different frames but also of the self-similarity
found within individual frames. It is a spatiotemporal nonlocal
method. A detailed description of the V-BM3D denoising Þlter can
be found in [5]. In brief, given a noisy sequence, the Þlter works as
follows.
• Blockwise estimates. Each image in the sequence is processed
in sliding-block manner. For each block the Þlter performs:
� Grouping. Searching within all images in the sequence, Þnd
blocks that are similar to the currently processed one, and
then stack them together in a 3D array (group).

� Collaborative Þltering. Apply a 3-D transform to the formed
group, attenuate the noise by shrinkage (hard-thresholding
or empirical Wiener Þltering) of the transform coefÞcients,
invert the 3D transform to produce estimates of all grouped
blocks, and return these estimates of the blocks to their orig-
inal place.

• Aggregation. Compute the estimates of the output images by
weighted averaging all of the obtained blockwise estimates that
are overlapping.

Due to the similarity between the grouped blocks, the transform can
achieve a highly sparse representation of the true signal so that the
noise or small distortions can be well separated by shrinkage. In this
way, the collaborative Þltering reveals even the Þnest details shared
by grouped fragments and at the same time it preserves the essential
unique features of each individual fragment.

The V-BM3D is an extension to image sequences of the Block-
Matching 3D Þltering (BM3D) image denoising algorithm [4]. The
two algorithms coincide when the sequence is composed of a unique
image.

Both BM3D and V-BM3D are developed and implemented for
observations degraded by additive white Gaussian noise (AWGN).
There is a big deal of difference between such ideal observations
(where there is no clipping and where the noise has constant signal-
independent variance) and the clipped observations with signal-
dependant noise described in the previous section. Direct appli-
cation of a denoising algorithm for AWGN to the raw-data is highly
ineffective, leading to visible oversmoothing and undersmoothing
of various parts of the image [due to the non-constant variance
σ̃ (ỹi ) in (5)] and to an essentially biased estimate (because of clip-
ping, the random differences between the observed z̃i and the de-
sired yi have a non-zero mean).

3. ALGORITHM

In [6], we recently proposed a complete pre- and post-processing
framework to enable efÞcient and effective raw-data image Þlter-
ing using standard denoising algorithms for AWGN. The developed
procedure is based on a set of homomorphic transformations specif-
ically designed for the particular noise model at hand. These trans-
formations are pixelwise operations and are thus applicable to im-
ages as well as to videos without any modiÞcation.

The overall denoising algorithm, using notation for the multi-
frame case, can be then summarized as follows:
1. Estimate the noise parameters a and b of the noise (3).
2.a. Calculate a variance stabilizing transformation f : [0,1]→ R,

such that std{ f (z̃i (x))} 0 c, where c > 0 is a Þxed constant
which does not depend on yi (x).

2.b. Apply f to z̃i (x), ∀x ∈ X and i = 1, . . . ,N , and thus obtain a se-
quence { f (z̃i )}Ni=1 with approximately constant variance equal
to c2.

3. Filter the sequence { f (z̃i )}Ni=1 using V-BM3D video denoising
algorithm for AWGN (homoskedastic Þltering). The denoised
output of the algorithm is a sequence denoted as#

Dho( f (z̃i ))
$N
i=1 , VBM3D

!
{ f (z̃i )}Ni=1

"
.



4.a. Calculate the estimation bias due to the nonlinearity of f as the
function h :

%
0, f (1)

&→ %
0, f (1)

&
implicitly deÞned by

f (E{z̃i }) h2−→ E{ f (z̃i )} = h( f (E{z̃i })) . (6)

4.b. Apply f inverse to the debiased h−1
'
Dho( f (z̃i ))

(
, obtaining an

estimate of {ỹi }Ni=1 .
5. Compensate the bias due to clipping by applying the

transformation C : ỹi 2−→ yi [8, 6] to the debiased
f −1
'
h−1

'
Dho( f (z̃i ))

((
.

Thus, the estimate
#
ŷi
$N
i=1 of {yi }Ni=1can be expressed as

ŷi = C
!
f −1
'
h−1

'
Dho( f (z̃i ))

(("
. (7)

Let us comment and give additional details on these various steps.

3.1 Noise estimation
In [8], is presented an algorithm for automatic estimation of the
parameters a and b of the clipped signal-dependent noise model
(3) from a single noisy image. We use this algorithm as the very
Þrst step when processing sequences of raw-data images. Remem-
ber that, as stated in Section 2.1, these two parameters (and thus
the standard-deviation function σ ) are independent of the particular
frame index i , as they are inßuenced only by acquisition parame-
ters, which are assumed to be Þxed while the different images are
captured. Thus, the parameters a and b need to be estimated only
once, and the estimation can be carried out on any of the frames
z̃i (e.g., z̃1) or on a mosaic composed by tiling many frames, one
next to the other. The latter solution can improve the noise estima-
tion especially for small images, where there could be not enough
pixels within a single image for accurately estimating the noise pa-
rameters. For the experiments presented in this paper we always
estimate the noise parameters from the Þrst image z̃1 alone.

3.2 Variance stabilization
The variance-stabilizing transformation f : [0,1]→ R used in this
work is the standard indeÞnite integral

f (t)=
) t
t0

c
σ̃ (s)

ds, t, t0 ∈ [0,1] . (8)

Because of its simplicity, this classical transformation appears fre-
quently in many works on mathematical statistics (e.g., [3] and ref-
erences therein) and signal processing (e.g., [12], [1], [9], [11]).
One of the main theoretical results proved in [6] is the fact that the
indeÞnite integral (8) is actually bounded for the function σ̃ corre-
sponding to the raw-data model (5). Of course, the resulting f is
always nonlinear, because σ̃ cannot be constant.

3.3 Denoising
As discussed in [8] and [6], transform-domain algorithms where the
basis functions have supports with sufÞcient number of non-zero
samples (e.g., 4×4 pixel blocks), are naturally suited for Þltering
variance-stabilized clipped observations. This is because the dis-
tribution of the transform coefÞcients turns out to be essentially a
Gaussian with Þxed standard-deviation equal to c. The fact that
the distribution approaches a Gaussian is a direct consequence of
the central-limit theorem and was illustrated in [8], for Daubechies
wavelets, and in [6], for the block-DCT transforms. The Þxed
standard-deviation is due to the variance-stabilization.

For the particular case of BM3D and V-BM3D algorithms (and
of many other block-based nonlocal algorithms) it is worth to brießy
discuss about the .2-norm of blockwise differences of the noisy
data, which is used to estimate the block similarity for the matching.
The variance and the mean of this similarity estimate are actually
dependent not only on the variance, but also on the actual distribu-
tions of the noisy data (the Gaussian case is studied in [4]). Never-
theless, in these algorithms, the thresholds used for the matching are
typically selected from deterministic speculations about the suitable

value of the blockwise difference, mainly ignoring the statistical
characteristics of the noisy components [4]. Moreover, during the
second stage of the algorithms (with collaborative empirical Wiener
Þltering), the matching is not performed any longer on the noisy
data, but on the image/sequence estimate obtained from the Þrst
stage (with collaborative hard-thresholding), which can be practi-
cally considered as a noise-free image. Finally, contrary to non-
local algorithms based on averaging, the collaborative Þltering is
quite robust against possible errors in the matching, because shrink-
age can preserve large inter-block dissimilarities [4],[10]. Thus, the
non-Gaussianity of the data does not constitute an impairment to a
satisfactory block-matching.

Let us emphasize the concrete meaning of collaborative Þlter-
ing. First, each Þltered frame Dho( f (z̃i )), i ∈ {1, . . . ,N}, is ob-
tained exploiting mutually similar blocks; these blocks can be taken
from all frames of the noisy sequence { f (z̃i )}Ni=1 and more than
one block can be taken from each frame. Second and more impor-
tant, while producing an estimate for a block in a particular frame,
we are also producing individual estimates for all mutually simi-
lar blocks (including blocks from other frames) which are used in
estimation.

The output of the denoising Þlter is an estimate of the (condi-
tional) expectation of the input:

Dho( f (z̃i (x)))≈ E{ f (z̃i (x))} , ∀x ∈ X , i = 1, . . . ,N .

3.4 Inversion of the variance-stabilizing transformation

Because of the nonlinearity of f we have that
E{ f (z̃i (x))} 6= f (E{z̃i (x)}) (9)

Therefore, f cannot be inverted right after denoising. The nonlinear
function h (6) takes care of compensating the discrepancy (9) be-
tween the expectation of the transformed data and the transformed
expectation of the data. Thus, we have that

h−1
'
Dho( f (z̃i (x)))

(≈ f (E{z̃i (x)}) , (10)
and hence that

f −1
'
h−1

'
Dho( f (z̃i (x)))

((≈ E{z̃i (x)} . (11)

Let us observe that, in most image processing algorithms ex-
ploiting variance-stabilization in the integral form (8), the role of
h is neglected and the two terms in (9) are mistakenly assumed as
equal (see e.g., [12], [1], [9], [11]). However, the compensation (10)
turns out to be crucial, particularly when dealing with asymmetric
distributions such as (4).

3.5 Declipping

After (11), we have a sequence of estimates of E{z̃i } = ỹi , i =
1, . . . ,N . However, as declared in Section 2.1, our goal is to esti-
mate the non-clipped sequence {yi }Ni=1 (2). Thus, we wish to invert
the bias due to clipping by applying on the left-hand side of (11) a
transformation C : ỹi 2−→ yi , as in (7). The analytical expression of
the transformation C was derived in [8] and the effectiveness of its
use for debiasing denoised estimates of clipped images was shown
in [7] and [6]. While the range of ỹi is at most the interval [0,1], the
range Y of yi can be much wider. This typically results in ßattened
out portions of the image due to saturation of the imaging device
(overexposure). The essential impact of the transformation (7) is
indeed the potential increase of the range of the denoised estimates,
up to reaching the whole Y . We refer to [6] for the analysis of the
increase of the image range. Roughly speaking, in the case of im-
age sequences, a result of this analysis could be stated as follows:
provided that the original sequence {yi }Ni=1, is sufÞciently smooth
(in either space or time), the larger is the noise variance σ , the wider
can be the range of the reconstructed sequence

#
ŷi
$N
i=1.



Checkerboard Eduskuntatalo Luca & Tania Mess

Figure 2: The Þrst frames y1 of the four sequences used for the experiments with synthetic noise.

Figure 3: The Þve noisy frames z̃1, z̃2, z̃3, z̃4, and z̃5 of the �shaked� sequenceMess. Noise parameters: a = 1/200, b = (10/255)2.

Figure 4: PSNR versus the number M of frames used in V-BM3D. Noise parameters: a = 1/200, b = (10/255)2.

Figure 5: PSNR versus the number M of frames used in V-BM3D. Noise parameters: a = 1/800, b = (5/255)2.

4. EXPERIMENTS

The proposed denoising procedure has been tested on sequences of
images corrupted by synthetic noise, as well as on real raw-data
image sequences acquired by a digital camera.

In all the experiments, the maximum number of blocks in a
group was set to 16 for the hard-thresholding step, and to 32 for the
Wiener Þltering step. In both steps, the 3-D transform used for the
collaborative Þltering is the separable composition of the 2-D 8×8
DCT and 1-D Haar wavelet transforms.

We use sequences of Þve frames, where, progressively, only the
subsequence composed of the Þrst M = 1, . . . ,5 frames is processed
by the algorithm. The following four scenarios are considered:
• �Þxed�: all noise-free images y1 = yi , i = 2, . . . ,M, are identi-
cal. This corresponds to the ideal scenario where the camera is
Þxed and the scene is static.

• �shaked�: all frames portray the same scene, but the images
yi , i = 1, . . . ,M , are slightly shifted, rotated, or enlarged, with
respect to each other. This corresponds to images taken with a
hand-held camera, where the shake causes small changes in the
camera position.

• �mixed�: each frame in the sequence {yi }Mi=1 portrays a com-
pletely different scene. This is an extreme case where the noise
free images have nothing in common and thus the denoising
procedure cannot exploit redundancy between frames.

• �oracle�: the sequence {yi }Mi=1 is as in �Þxed�. Instead of ap-
plying V-BM3D on the sequence { f (z̃i )}Mi=1, we apply BM3D
on the average 1

M
*M
i=1 f (z̃i ) assuming standard-deviation

c/
√
M . In this way, the fact that the underlying images are

identical is assumed as known and it is exploited in the best



Figure 8: PSNR versus the number M of frames used in V-BM3D
for the experiment with raw data from digital camera.

possible way. In a sense, this constitutes an upper bound to the
performance achievable in all other cases.

We compare the denoising performance under these four scenarios,
with the Þrst frame z̃1 (and y1) being the same for the various se-
quences corresponding to a particular scene and noise. The results
(Þgures and PSNR) are given for the estimate ŷ1 of the Þrst frame
only.

4.1 Synthetic noise
The noise-free images yi are generated by downsampling high-
quality high-resolution images to the size 512×512. The frames
of the �shaked� sequence are obtained by Þrst applying some im-
age transformations (including minor translations, rotations, scale
modiÞcations, cropping) to the high-resolution image, with the
aim to replicate the effect of a handheld camera movement, and
then downsampling. From these yi , we simulate raw-data as
the clipped noisy observations z̃i (5) with the noise term com-
posed of two mutually independent parts, a Poissonian signal-
dependent component ηp and a Gaussian signal-independent com-
ponent ηg: σ (yi (x))ξ i (x) = ηp (yi (x))+ ηg (x) [8]. In partic-
ular,

'
yi (x)+ ηp (yi (x))

(
χ ∼ P (χ yi (x)), where χ > 0 and P

denotes the Poisson distribution, and ηg (x) ∼ N (0,b). Thus,
σ2(yi(x)) = ayi(x)+ b, with a = χ−1. As discussed in Section
2.1, the algorithm treats ξ i (x) as a standard normal variate. In
these experiments we use a = 1/200, b = (10/255)2 and (halving
the standard-deviation σ ) a = 1/800, b = (5/255)2. Four scenes
are used: Checkerboard, Eduskuntatalo, Luca & Tania, and Mess.
The corresponding frames y1 are shown in Figure 2. As an illus-
tration of the kind of frame displacements existing in the �shaked�
sequences, in Figure 3 we show all the Þve frames z̃i , i = 1, . . . ,5,
of the �shaked� sequenceMess with a = 1/200, b = (10/255)2.

The plots of Figures 4 and 5 give the PSNR of the restoration
of the Þrst frame in each sequence as function of the number M of
frames involved in the denoising. The plots show that the restora-
tion always improves signiÞcantly, provided that there is some de-
gree of similarity between the frames in the sequence. In particular,
one can observe that the gain of �Þxed� over �shaked� is more pro-
nounced for more complex scenes (such as Mess). A visual com-
parison for an enlarged fragment of Mess is shown in Figure 6. It
can be observed that the central fragments of the second and third
rows are visibly smoother than the respective right fragments of the
same rows, for which the V-BM3D can recover additional details
of the original image by exploiting the redundancy characterizing
the �Þxed� and �shaked� sequences. We also note the marginal de-
crease in PSNR for the �mixed� case: this follows from grouping
together blocks from images of different scenes, which thus do not
bring useful information about yi . The results obtained by the �or-
acle� are much better than those corresponding to the other three
scenarios.

4.2 Raw data from digital camera
The proposed multiframe denoising procedure has been tested also
on raw data from a FujiÞlm FinePix S9600 digital camera. The four
scenarios have been realized by taking various shots of a printed
poster as follows. With the remotely-controlled camera Þxed on a

tripod, we Þrst acquired a few long-exposure images at ISO 100
and the Þve of short-exposure images at ISO 1600 for the �Þxed�
sequence. The long-exposure images have been averaged together
to generate a ground-truth1 y1 to be used as reference for comput-
ing the PSNR of the estimates ŷ1. After detaching the tripod, four
more images were captured at ISO 1600, with the camera held in
the hands. These four images, together with the Þrst frame z̃1 of
the �Þxed� sequence constitute the �shaked� sequence. Figure 7
shows the Þrst noisy frame and two V-BM3D estimates, for M=1
and M=5. The PSNR curves for the four scenarios are given in Fig-
ure 8, showing a behavior consistent with the results obtained with
synthetic noise.

4.3 Multiframe denoising vs. restoration from blurred-noisy
image pairs
As an additional element of our experimental analysis, we wish to
compare our multiframe denoising against the image restoration ap-
proach based on differently exposed blurred-noisy image pairs. In
particular, in Figure 9, we provide a visual comparison against the
algorithm by Tico et al. [14],[13] for pairs of raw-data images ac-
quired with a Canon EOS 350D camera. A pair of short-exposure
images is used as the input of our multiframe algorithm. Enlarged
fragments of the estimates are shown in Figure 10. Even though
the V-BM3D estimate appears much sharper and without artifacts,
there are some details, such as the text �kirjasto� in one of the frag-
ments, that cannot be recovered out of the short-exposure images,
because far too low SNR in the input data. Despite severe artifacts,
these details are indeed visible in the estimate obtained from the
blurred-noisy pair. We wish to note that the used implementation
of the algorithm [14],[13] was preliminary and did not fully exploit
the considered noise model.

5. DISCUSSION AND CONCLUSIONS
The experiments on synthetic noise, as well as those on raw-data
from digital camera, show that the denoising performance increases
considerably when, in V-BM3D, the search for similar blocks spans
different frames of the same scene. Such improvement is particu-
larly interesting in the case of the �shaked� sequences, where the
V-BM3D manages to exploit the scene redundancy also when the
frames are acquired with small variations in the camera position.
This makes the acquisition of multiple noisy frames and their joint
denoising, an effective and practical solution for obtaining a single
enhanced image in low-light conditions. The experiment presented
in Section 4.3 shows that a direct comparison, between the restora-
tion performance of multiframe denoising and that of blurred-noisy
image pairs methods, is not straightforward. In fact, while effective
deblurring-based methods still produce heavy artifacts and works
restrictively to shift-invariant blur, they are potentially able to re-
store Þner details of the scene that are not recoverable from the
noisy images alone. It should be noticed that the proposed mul-
tiframe denoising algorithm is able to process indifferently both
images acquired during camera shake and images of scenes with
objects in relative motion. If these were to be captured with a pro-
longed exposure, they would lead to blur PSFs that may be assumed
as shift-invariant for the former but deÞnitely not for the latter, re-
sulting in blurred images that are much more difÞcult to handle and
to restore.

The marginal decrease in the PSNR for the �mixed� case
follows from grouping together blocks from images of different
scenes. This raises an interesting point of discussion. Loosely
speaking, in the algorithm we consider blocks to be similar pro-
vided that the .2-norm of the blockwise differences (measured on
the noisy sequence or on an intermediate denoised sequence) falls

1Note that this �ground truth� is not really as such, partly because of the
Þxed-pattern noise component, which cannot be suppressed by averaging,
and partly because of the non-exactly linear response of the sensor. Thus, the
computed PSNR values provide only a very rough indication of the actual
goodness of the estimate.



Noisy frame z̃1 Noisy �shaked� frame z̃3 Noisy �shaked� frame z̃5

Original y1 ŷ1 from z̃1 only (M=1) ŷ1 from �shaked� {z̃i }5i=1 (M=5)

Oracle ŷ1 from �Þxed�
*5
i=1 z̃i/5 ŷ1 from �mixed� {z̃i }5i=1 ŷ1 from �Þxed� {z̃i }5i=1 (M=5)

Figure 6: Enlarged fragments corresponding to theMess scene. Noise parameters: a = 1/200, b = (10/255)2.

below a certain threshold; it turns out that the actual blockwise sim-
ilarity is likely to be much higher when the matched blocks are from
the same scene, at least for what concerns Þner details that are dif-
Þcult to recover. This is a delicate aspect that in this work we touch
only superÞcially but that deÞnitely deserves some future attention.
Firstly, it exposes the importance and strength of the self-similarity
prior within a natural image. Second, it suggests the idea that even
very complex natural images contain blocks only from few, narrow
submanifolds of the space of patches.

Finally, it should not surprise that the results obtained by the
�oracle� are far better than those corresponding to the other three
scenarios, including the �Þxed� one. Since the input sequence for

�oracle� and the �Þxed� is exactly the same, the current gap be-
tween their respective results leaves plenty of room for potential im-
provement of the algorithm, and particularly of its block-matching
(grouping) step.
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Raw data frame z̃1 ŷ1 from z̃1 only ŷ1 from �shaked� {z̃i }5i=1
Figure 7: Denoising of the �shaked� raw-data sequence: the Þrst raw-data frame z̃1 of the sequence and the corresponding V-BM3D
estimates ŷ1 for M = 1 and for M = 5.

a) �Blurred� (ISO 100, 1s) b) �Noisy 1� (ISO 1600, 1/200s) c) �Noisy 2� (ISO 1600, 1/200s)

d) �Blurred&noisy�-pair estimate [14],[13] e) V-BM3D �noisy&noisy�-pair estimate

Figure 9: Restoration from image pairs. a) image acquired with low ISO and long exposure, practically noise free but with severe blur due
to camera shake; b) image taken with short exposure time and high ISO, signiÞcantly noisy, but without blur; c) same as b) but after a small
displacement of the camera; d) restored image obtained by the algorithm [14],[13] using the �blurred&noisy� image pair a)+b); e) V-BM3D
estimate obtained using the �noisy&noisy� image pair b)+c).



Figure 10: Enlarged fragments from the estimates d) (top) and e) (bottom) of Figure 9.
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