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Things which we see are not by themselves what we see
It remains completely unknown to us what the objects may be bythemselves

and apart from the receptivity of our senses.
We know nothing but our manner of perceiving them

I. Kant





Abstract

Motion blur is a phenomenon which is corrupting images when,any motion
occurs between the camera viewpoint and the captured scene during the acqui-
sition. Rarely this can be described with a shift invariant operator although this
is a common assumption in the literature.

In a motion blurred image, the Point Spread Function (PSF) ofeach pixel
is determined by the relative motion between the camera viewpoint and the
imaged scene point. Therefore the PSF of each pixel may typically vary ac-
cording to the camera motion and the depths of the imaged scene points. Both
the blur analysis (estimation) and the image restoration, become much more
challenging issues in case of a shift variant blur operator,than in case of a shift
invariant blur operator. As a matter of fact, only few works in literature have
considered the shift variant blur.

This thesis concerns the analysis and the restoration of single blurred images
when the blur is due to a specific camera motions. In particular the focus is
on the blur produced by a camera translation. We show that assuming shift
variant blur allows us to describe the degradation process more accurately. We
derive two descriptions of the degradation process due to camera translation
and camera rotation, where the blur is modeled as shift variant and parametric
operators.

The thesis is divided into two parts. The first part deals withlocal blur
estimation, and presents algorithms devised for estimating blur direction and
extent in small image regions containing a corner. The proposed algorithms
estimate blur parameters in corner regions where other blurparameters estima-
tion methods typically fail. We devised also a procedure fordetecting blurred
corners and adaptively select a region where to perform blurestimation.

In the second part of the thesis we consider the blurred imageas a whole and
we address two different issues: the estimation of the camera motion and the
image restoration. This part is mostly dedicated to images corrupted by blur
due to a pure camera translation. We prove that, although this situation has
been always treated assuming the blur shift invariant, the blur becomes shift
variant as the camera translation has an essential component perpendicular to
the image plane. We devise a single image algorithm for estimating both the
camera 3D motion direction and the PSF parameters in every image pixel. We



also introduce a restoration algorithm for these kind of images (radial blurred
images), which is based on two steps: the blur inversion and the noise removal.
The blur is inverted exploiting polar to Cartesian coordinate transformations.
We study how the coordinate transformations and the blur inversion affect the
noise in order to use a non-linear spatially adaptive filter,the Pointwise Shape-
Adaptive DCT to exploit the image structures and attenuate noise and artifacts.
Since in radially blurred images, the PSF extent at any imagepixel can be re-
lated to the depth of the corresponding point in the scene, wealso investigate
and discuss the capabilities of estimating the scene depth from a single motion
blurred image.
The blur produced by a camera rotation is also considered in the second part
of the thesis. We devise an algorithm for estimating the 3D rotation axis of
a camera by analyzing a single blurred image. Contrary to theexisting meth-
ods, we treat the more general case where the rotation axis isnot necessarily
orthogonal to the image plane, taking into account the perspective effects that
affect the smears.

All the proposed algorithms have been tested on synthetically blurred im-
ages as well as camera images.
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Riassunto

Il Motion Blur nelle immagini è causato da un movimento della camera, della
scena o di parte di questa durante il tempo di esposizione. Ilmotion blur
comporta la perdita di dettagli delle immagini, con un conseguente degrado
della qualità visiva: la ricostruzione di queste immagini èdi grande inter-
esse applicativo ed è un problema ancora lontano dall’essere definitivamente
risolto. Un problema strettamente collegato alla ricostruzione dell’immagine
è la stima del moto della camera e delle caratteristiche del blur, sempre a par-
tire da una sola immagine mossa. Questa tesi presenta algoritmi per estrarre
dell’informazione da una singola immagine motion blurred,qualora il blur
fosse dovuto ad un particolare moto tra la camera e la scena. Con il termine
informazione facciamo riferimento alle caratteristiche del blur, ai parametri
del moto della camera e all’immagine "ideale" che si otterrebbe in assenza di
movimento e con una corretta esposizione.

In questa tesi motion blur è stato descritto da operatori definiti dal moto 3D
della camera. Questa modellazione ad-hoc ha permesso di ricavare algoritmi
innovativi per stimare il blur e per ricostruire l’immagine, a partire da una sola
immagine mossa. In particolare abbiamo trattato il blur prodotto da due tipi
di moto della camera la traslazione e la rotazione della camera. Questa scelta
è stata fatta per frequenza con la quale queste situazioni occorrono e per la
facilità di collegare il blur al moto della camera.

Il motion blur risultante dalla traslazione della camera è stato sempre trattato
nella letteratura assumendo la traslazione parallela al piano immagine. Sotto
questa ipotesi il blur risulta essere spazio invariante, laPoint Spread Function
(PSF) è quindi fissata per tutti i pixel dell’immagine. In alcuni casti, tra cui
quello in cui la traslazione presenta una componente ortogonale al piano im-
magine, il blur diventa spazio variane e la PSF varia da pixela pixel. Questa
situazione, che è più difficile da gestire sia per l’analisi del blur che per la
ricostruzione dell’immagine, è stata quasi trascurata nella letteratura.

La tesi è suddivisa in due parti. La prima parte è dedicata ad algoritmi
per stimare la PSF localmente. In questa parte sono presentati algoritmi per
stimare, da una sola immagine mossa, i parametri del blur in una regione dove
l’immagine presenta un punto saliente (corner). I metodi presenti prima d’ora
nella letteratura non sono in grado di stimare la PSF in regioni contenenti un



corner, sebbene queste offrano una chiara interpretazionedel blur. E’ stato
anche proposto una procedura per selezionare automaticamente ed in maniera
adattativa la regione del corner.

Nella seconda parte della tesi consideriamo l’intera immagine mossa per la
stima del moto della camera e la ricostruzione dell’immagine stessa. La mag-
gior parte del lavoro è stato rivolto ad immagini acquisite durante la traslazione
della telecamera. A partire da una descrizione geometrica tridimensionale è
stato ricavato un modello per descrivere la formazione di un’immagine ac-
quisita durante una traslazione generica della camera. In questo modello il blur
viene rappresentato da un operatore parametrico e spazio variante. E’ stato poi
proposto un algoritmo per stimare la dirzione 3D del moto della camera, data
una sola immagine mossa e quindi la PSF ad ogni pixel.

E’ stato quindi ricavato un algoritmo per ricostruire immagini corrotte dal
blur dovuto ad una traslazione generica ( blur radiale ), cheè quindi spazio
variante. L’algoritmo assume noti i parametri del blur ed è basato sull’inversione
del blur e la rimozione del rumore, alterato dall’inversione del blur. Abbiamo
anche presentato un metodo per stimare la profondità della scena a partire da
un’immagine mossa acquisita durante la traslazione della camera.

E’ stato poi affrontato il caso di motion blur prodotto da unarotazione della
camera. A differenza di tutte le soluzioni esistenti, è stato trattato senza ap-
prossimazioni il caso generale in cui asse di rotazione della camera non è or-
togonale al piano immagine. E’ stato proposto quindi un algoritmo per stimare,
da una sola immagine corrotta da blur rotazionale, la posizione 3D dell’asse di
rotazione e la velocità angolare della camera.
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Part I.

Motion Blur Analysis at
Corners
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The first part of this thesis presents novel algorithms for analyzing the blur
in a single image acquired during a camera motion. Often, theblur due to
camera motion (motion blur) can not be considered as spatially invariant (i.e.
shift invariant). For example, when the camera is translating one can observe
smears in resulting image which have varying direction and extent between
image pixels, as shown in Figure 0.1.a and Figure 0.1.b.

Spatially variant blur estimation is a challenging problemwhich is often
simplified by assuming the blur as locally spatially invariant [4], i.e. for each
image pixel, one assumes that there exist a region where the blurring process
is modeled as a convolution against a Point Spread Function (PSF). This sim-
plification has been made also in the first part of this thesis,which focuses on
the estimation of thelocal blur parametersand the detection of regions where
the blur can be considered as spatially invariant. We further assume that each
PSF is described by two parameters, its direction and its extent. While this
assumption is too restrictive when combined with the spatially invariant blur
assumption, this allows a faithful interpretation of motion blur when assuming
spatially invariant blur.

The algorithms presented in Chapter 1 are meant for regions containing an
image corner: this image content is exploited as a prior for estimating the blur
parameters. To the author’s knowledge, the issue of estimating blur parameters
within a small region containing a corner has never been addressed before. The
use of small regions for estimating the blur parameters is crucial for obtaining
a reliable approximation of spatially variant blur (a region is considered small
if its sizes are about two, three times the blur extent).

There are three main reasons why it is worth estimating the blur parameters
in a region containing a corner. First, within a corner region, the blur pa-
rameters can be determined as theaperture problemdoes not hold. The term
aperture problem, has been introduced in studies on vision systems [38], to
express the ambiguity that moving homogeneous contours present. Within a
region (an aperture) of a blurred image, different physicalmotions may be in-
distinguishable: this happens for example in smooth areas or at blurred edges,
where infinite pairs (direction , extent) of blur parameterscan describe the blur.
Figure 0.1.c shows some of the motions that correctly interpret the blur in the
highlighted region. On the other hand, thanks to the aperture problem, pix-
els belonging to blurred edges can be used for estimating theblur in a corner
region, as at these pixels the blur parameters can be assumedequal to those
at the corner. Second, corners are ubiquitous in images and often carry the
most relevant information for scene understanding: as a matter of fact, corners
are widely used in Computer Vision and Pattern Recognition for extracting
features in images. Analyzing the blur at corner regions is therefore useful
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both for scene and motion understanding. Third, there are noother blur pa-
rameters estimation algorithms able to perform on small regions containing a
corner. Although several algorithms for estimating blur parameters have been
proposed for blind deconvolution, all these algorithms work on the whole im-
age, assuming the blur spatially invariant, and they do not perform adequately
when applied on a small region containing a corner.

Most of motion blur PSF parameters estimation algorithms analyzes the
Fourier power spectrum of the image, see [15, 24, 49, 67, 68],and references
therein. Fourier-domain methods exploit the convolution theorem [61] which
claims that the Fourier transform of the convolution of two periodic signals
is the point-wise product of the Fourier transforms of the two signals. Since
the Fourier transform of these PSFs present characteristiczero patterns, which
can be directly related to the PSF parameters, these zero-patterns should be
distinguishable also in the Fourier transform of the blurred image. Figure 0.2
b shows how the zero patterns are clearly distinguishable in the Fourier trans-
form of blurred white noise. However, this approach fails atsmall regions
containing a corner because of two reasons: first, in a small image a region the
image can be roughly approximated as periodic and second, the Fourier trans-
form of the blurred image is mostly influenced by blurred edges rather than
from the PSF as shown in Figure 0.2d.

A different approach to PSF parameters estimation has been introduced by
Yitzhaky [93, 94, 92] that proposed to estimate the blur direction as the direc-
tion of the derivative filters having minimum energy response. The blur extent
is estimated consequently detecting the minima of the autocorrelation func-
tion of image derivatives along blur direction. This methoddoes not present
the restrictions on regions sizes of Fourier transform based methods but does
not perform correctly at blurred corners. In fact, typically an edge direction
may represent the direction having minimum derivative energy, as illustrated
in Figure 0.3d.

Chapter 2 addresses two complementary issues: the detection of blurred
corners and the corner region selection. Corner regions areadaptively selected
in order to improve the proposed algorithm performance.
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Figure 0.1.: Image corrupted by spatially variant blur. Blur is spatially variant
as the highlighted regions ina andb show. At blurred edges, there
are infinite blur direction/ blur extent pairs that represent the blur,
seec.
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Figure 0.2.: Blur parameters estimation using Fourier power spectrum. The
Fourier power spectrum of motion blur PSFs presents zero-
patterns, which are clearly distinguishable on blurred white Gaus-
sian noise, Figure 0.2a,b. The direction of these zero patterns is
related to the blur direction. However, the Fourier power spectrum
of a blurred corner is mostly influenced by the image steps dueto
edges than from the PSF parameters, Figure 0.2c,d.
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Figure 0.3.: Blur Parameters Estimation using derivative filters. The direc-
tion having minimum energy response on white Gaussian noise
is the blur direction, Figure 0.3a,b. However, at blurred corners,
the minimum energy direction is typically the one of the steepest
blurred edge, Figure 0.3c,d.
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1. Estimation of Blur Parameters
at Corners

This chapter presents an observation model for motion blurred images and in
particular focuses on regions containing image corners. The proposed model
considers both blur and noise. We assume that each corner is blurred by a
convolution against a Point Spread Function (PSF) having vector-like support.

We address the issue of estimating the blur direction and extent in a region
containing a corner, and we derive three solutions.

Experimental results both on synthetic and camera images, show accurate
estimates of the PSF in small corner regions. The algorithmsdescribed in
this chapter have been published in two papers in conferenceproceedings, see
[5, 6].

1.1. Motivation

This chapter presents novel algorithms to estimate spatially varying blur from
a single image, assuming that the relative motion between the camera and the
scene produces “rectilinear smears” in the blurred image. The image is there-
fore blurred along line segments whose direction and extentare varying be-
tween the image pixels.

This observation model is particularly suited for images acquired by agile
cameras in indoor environments [14, 19]. These images, whencaptured at
reduced lightning conditions are often motion blurred: as the exposure time
is (automatically) increased in order to acquire normally exposed frames, the
camera motion results in significant blur in the recorded frame. Moreover,
when the scene presents various depths, the resulting blur is strongly spatially
varying.

The proposed algorithm analyzes image blur specifically at regions that con-
tains a corner as at blurred corners theaperture problem[38] does not hold,
contrarily to blurred edges. Figures 0.1 and 1.1 show a naivedescription of
what is the aperture problem is when : the blur direction and the blur extent
can be clearly perceived within regionsA andD of Figure1.1, while it is not



1. Estimation of Blur Parameters at Corners

possible to give a unique interpretation to the blur direction and the blur extent
in regionsB andC. The same situation is faced in regions where the image is
smooth: the aperture problem still holds as there are potentially infinite pairs
blur direction/blur extent, that could have caused the sameblur.

Corners, instead, offer a clear interpretation of motion direction and ex-
tent and that’s the reason why we design an algorithm to estimate motion blur
specifically at corners. At the same time, regions containing an image corner
can be easily detected and the image content easily modeled.Moreover, cor-
ners often correspond to boundaries between scene objects,and therefore they
are relevant for motion understanding.

1.2. Related Works

Pixel motion estimation is a relevant issue for both image processing and com-
puter vision, as it is often required as a preprocessing stepin several algo-
rithms. When a significant displacement occurs between the camera and the
scene during the exposure, this results in a blur in the acquired image. The blur
heavily corrupts image quality and the estimation of the blurring process is a
challenging problem.

Sometimes, the observer can exploit few images capturing the same scene
[2, 48, 74] or images produced by hybrid imaging systems that, for example,
employ simultaneously two cameras [3] or acquire sequentially two images
varying the exposure [62, 96]. Clearly, when a single image is available, the
blur analysis becomes more complicated and it is typically handled by intro-
ducing simplifying assumptions on image blur and exploiting a priori infor-
mation on the original image, when available.

In most of cases the blur is assumed a linear and spatially invariant system
on the image. Thus it corresponds to a convolution of the ideal, original image
(representing the captured scene without any artifact introduced by the acqui-
sition device such as blur or noise) with an unknown kernel, the Point Spread
Function (PSF) of the blurring process.

Algorithms that pair blur estimation and image restorationfrom a single im-
age (blind deblurring) have been widely studied in the last decades, [11, 12,
52]. Recently, Ferguset al. [25] showed good performance in camera shake
removal from a single blurred photograph by using a Gaussianmixture prior
for the distribution of gradient norms in natural images. They assume spa-
tially invariant blur on the image, as most of deconvolutionbased algorithms
do. They also assume non parametric PSFs which seem to describe faithfully
the blur produced by camera shake in camera images. Levin [54] relaxed the
spatially invariant blur assumption and devised a blind deblurring algorithm
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1.2. Related Works

combined with a segmentation of the image in (few) areas having the same
blur extent, but again, the blur is assumed to have the same direction in every
image pixel.

Most of the literature algorithms for parametric PSF estimation from a sin-
gle blurred image are based on the well known property that a convolution in
space domain becomes a pixel-wise product in Fourier Domain. In particular
motion blur PSFs are typically assumed as kernels having vector-like support
and constant value on it. In this case the Fourier power spectrum presents par-
ticular patters which are related to PSF parameters that canbe thus estimated
with several analysis methods [15, 24, 49, 52, 67, 68, 75, 76].

A different approach is based on high-pass filtering the image in space do-
main [94, 95] with directional filters and taking the direction having minimum
energy response.

Also the wavelet transform [18, 61] has been used in order to estimate the
PSF from a single blurred image. Roomset al. [26] exploits the sparsity of the
wavelet subbands for estimating the PSF parameter. They restrict to Gaussian
PSF described by one parameter, even if the method could be extended to other
parametric PSFs families.

Blur estimation from a single blurred image has been addressed for several
purposes other than deblurring: optical flow estimation [75, 76], its integration
in a tracking system [49], the measurement of vehicles [56] and balls speed
[57] or scene depth [53, 58]. Klein [51] recently developed agyroscope by
measuring the rotational blur in each video frame of a robot-mounted camera.

The most interesting and straightforward application for the algorithms pro-
posed in this chapter is the optical flow estimation from a single motion blurred
image. The optical flow in the blurred image shows the motion that the cam-
era underwent during the exposure. This issue has been initially addressed
by Rekleitis [75, 76]. He proposed a Fourier transform basedalgorithm for
handling spatially variant blurred images, treating the blur as locally shift in-
variant. He defines a tessellation on the image and then analyzes the Fourier
power spectrum of each of the tessellation regions separately. However, all the
frequency-domain based algorithms does not allow correct blur parameters es-
timation in image regions having small sizes, as pointed outin the introduction
of this part and as illustrated in Figure 0.2. Finally, a considerable drawbacks
of using a fixed fixed tessellation is that blur estimate couldbe strongly bi-
ased by the image content. This happens for example when a corner is divided
into two different regions of the tessellation. None of the two regions allows a
correct interpretation
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Figure 1.1.: Synthetic blurred corner

1.3. Problem Formulation

The observationz, corrupted by spatially varying blur and noise is modeled as

z(x) = K (y) (x) + η(x) , x ∈ X (1.1)

x being a vector representing image coordinates varying on the discrete domain
X , y is the original (and unknown) image andK the blur operator. The term
η models quantization errors and the electronic and thermal noise, which are
together modeled as white noiseη.

1.3.1. The Blur Model

We assumeK as a linear blur operator and therefore, in its more general form,
is [4]

K (y) (x) =

∫

X
k(x, s)y(s)ds , ∀x ∈ X , (1.2)

wherek(x, •) represent the Point Spread Function (PSF) atx, i.e. the response
of the blur process to a point source atx in the original image. It thus describes
how the intensity of a pixelx in the original image,y(x), is spread "or mixed"
with the neighboring pixels in the blurred observation.

Typically K is assumed spatially invariant, i.e.k(x, s) = k(x−s), therefore
Equation(1.2) becomes a convolution against a PSFh:

K (y) (x) =

∫

X
h(x − s)y(s) ds = (h ~ y)(x) , ∀x ∈ X , (1.3)

where~ denotes the convolution operator.
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1.3. Problem Formulation

The assumption about spatially invariant blur is too restrictive as scene points
usually follow different trajectories with respect to the camera viewpoint and
this results in spatially variant blur in the image. In otherwords each pixel has
been processed with a different PSFs. In a broad scenario, spatially invariant
blur of Equation(1.3) does not describe, for instance, scenes containing sev-
eral moving objects, scenes with a moving target on a still background or non
planar scenes captured by a moving camera.

On the other hand, solving(1.2) is an extremely challenging inverse prob-
lem. To reduce its complexity the blur operatorK is locally approximated as
shift invariant blur, i.e.

∀x0 ∈ X , ∃U0 ⊂ X , x0 ∈ U0 and a PSFv0 such that

K (y) (x) ≈

∫

X
v0(x − s)y(s)ds ∀x ∈ U0 . (1.4)

Furthermore, we consider only parametric PSFs defined over an 1-D linear
support. These PSFs can be written as

v0 = R(θ) (sl) (x) θ ∈ [0, 2π], l ∈ N, x ∈ U0 . (1.5)

sl(x1, x2) =





1/(2l + 1), −l ≤ x1 ≤ l
x2 = 0

0, else

whereθ and l are motion direction and extent respectively andR(θ) (sl) is sl

rotated byθ degrees onX .

1.3.2. The Corner Model

Let y be a gray scale image or, equivalently, a color plane in a color image and
let A ⊂ X be a region containing a corner. The image contains abinary corner
if y(A) = {b, c}, whereb andc are image intensity values for the background
and the corner, respectively. Moreover,B = y−1({b}) andC = y−1({c}),
the sets of pixels belonging to the background and to the corner, have to be
separated by two straight segments, having a common endpoint. An example
of binary corner is shown in Figure 1.2.

Let us definẽv as the corner displacement vector: this vector has the origin
at the location of the corner pixel on the image grid and the directionθ and
the lengthl corresponding to the direction and the length ofv0: the PSF which
locally approximates the blur operator.

We further assume that̃v direction belongs to an interval determined by the
edges direction. Let introduce a reference axis in the imageand letα be the
amplitude of the corner angle, letθ be the direction of̃v w.r.t. the reference
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1. Estimation of Blur Parameters at Corners

Figure 1.2.: The Binary Corner model

axis and letγ be the orientation of the corner bisector, as illustrated inFigure
1.3. Thus, we initially restrict ourseves to corners havingdisplacement vector
satisfying the following assumption

θ ∈ [γ − α/2, γ + α/2] + kπ k ∈ N. (1.6)

Figure 1.3.a shows a corner displacement vector satisfying this assumption,
while Figure 1.3.b shows a corner that does not.

α
2

θ

γ

ṽ

α
2

θ

γ ṽ

a b

Figure 1.3.: Two possible cases for corner displacements,a satisfy Equation
(1.6), whileb does not.

In real images corners are, in general, not binary. It is reasonable to expect
corners to be distinguishable from their background, but hardly they would
be uniform. Often their intensities are varying due, for example, to texture,
shading or details presented.
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1.4. Least Squares Solution

Therefore, in order to take into account corners with few, unstructured de-
tails, we introduce in Equation (1.1), another source of white noiseξ. This is
done only for corner regions where the image content is beingmodeled. Thus,
within a corner regionA, the observation is described as follows

z(x) = K (y + ξ) (x) + η(x) , x ∈ A (1.7)

ξ being white noise.
By Equation (1.7), the result of blurring of non-binary corner is consid-

ered equivalent to the result of blurring a binary corner contaminated by white
noise.

1.3.3. Problem Formulation

After having specified the corner and the blur model, we formulate the ad-
dressed problem.

Given an image regionA that contains a blurred corner, satisfying the re-
quirements stated in Sections 1.3.1 and Section 1.3.2, our goal is to estimate
the corner displacement vectorṽ, and thus the directionθ and extentl of the
PSF representing the blur inA.

1.4. Least Squares Solution

In this section we derive the core equations for estimating the corner displace-
ment vector̃v (and thus the blur parameters) within a regionA that contains a
blurred corner. First, we present the proposed least squares solution assuming
binary corners, and then we consider how the estimated displacement vectors
change when corners are not binary.

1.4.1. Binary Corners, Least Squares Solution

Let us examine an image region containing a binary corner, like the one de-
picted in Figure1.2. Let d1 andd2 be the first order derivative filters w.r.t.
horizontal and vertical direction respectively. The imagegradient is defined as

∇z(x) =

[
z1(x)
z2(x)

]
= ∇K (y) (x) + ∇ η(x) ,∀x ∈ X ,

wherez1 = (z ~ d1) andz2 = (z ~ d2).
It follows that, denoting by∆ = |c − b| the difference between the image

intensities at corner and at the background as shown in Figure1.4,

∆ = ṽ · ∇K (y) (x) , ∀x ∈ A0 , (1.8)

17



1. Estimation of Blur Parameters at Corners

∆

ṽ

Figure 1.4.: Mesh of pixel intensities within region A of Figure1.1. The dis-
placement vector̃v and ∆ , the difference between corner and
background colors are shown.

whereA0 = {x ∈ A |∇K (y) (x) 6= [0, 0]T }, · denotes the scalar product and
ṽ is the corner displacement vector (one column vector).

Note that the scalar product in right hand side of Equation (1.8) is positive.
This follows from the assumption stated in Equation (1.6), since ṽ forms with
the gradient∇K (y) (x) an angle smaller thanπ/2.

Equation(1.8) has no unique solution as∆ andK (y) are unknown and
only z, which is however corrupted by noiseη, is known. Similar uncertainties
are typically resolved by considering several instances ofEquation(1.8), each
one evaluated in a different pixel inA0. In fact, Equation(1.8) gives the same
solution∀x ∈ A0.

We callw a window described by its weightwi ,−n < i < n, and we solve
the following system

M(x) ṽ = ∆ [w−n, ..., w0, ..., wn]T ∀x ∈ A0 , (1.9)

where the matrixM is defined as

M(x) =




w−n ∇z(x−n)T

...
w0 ∇z(x)T

...
wn∇z(xn)T




.

In our experiment we choosew as a squared window having Gaussian dis-
tributed weights.
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1.4. Least Squares Solution

The least square solution of Equation(1.9), ṽ is

ṽ = arg min
v

∥∥∥M(x) v − ∆ [w−n, ..., w0, ..., wn]T
∥∥∥

2
,∀x ∈ A0 , (1.10)

which yields

ṽ = H−1(x)MT (x) [w−n, ..., w0, ..., wn]T ∀x ∈ A0 , (1.11)

H =




∑
i

w2
i z1(xi)

2
∑
i

w2
i z2(xi)z1(xi)

∑
i

w2
i z2(xi)z1(xi)

∑
i

w2
i z2(xi)

2


 .

Note thatH corresponds to the Harris Matrix [35], whose determinant and
trace are used as corner detectors in many feature extraction algorithms, see
[65] and references therein.

Note also that whenA0 does not contain any image corner, the determinant
of H is close to zero and whenz1(x) = k and z2(x) = k′, ∀x ∈ A0, k
andk′ ∈ R, H is singular and consequently the system(1.11) has no a unique
solution. This happens when the corner region intersects only one blurred edge
(like regions B and C in Figure 1.1). Then the system(1.11) has an infinite
number of solutions and the motion parameters cannot be estimated.

On the contrary,H is nonsingular whenw intersects two blurred edges (like
regionA in Figure 1.1) and in this case the system(1.11) has an unique solu-
tion.

The least squares solution(1.11) performs optimally in case of Gaussian
white noise (here we assume thatη is white noise, without specifying any dis-
tribution). However, in low-noise regions (i.e. regions where noise standard
deviation is significantly lower than∆), Equation(1.11) represent a subopti-
mal solution.

Equation (1.11) gives a solution which depends on the considered pixelx ∈
A0: let us denote this solution as̃v(x). When a different pixelx′ is taken in
A0, the solutionṽ(x′) may be different, as the windoww is centered atx′.
Therefore a procedure is required to determine the most reliable solutionṽ
from the set of solutions{ṽ(xi)}i , ∀xi ∈ A0.

A solution consists of taking the corner displacement vector ṽ(x), x being
the center ofA. A less naive solution can be based on statistical analysis
on the set{ṽ(xi)}i , ∀xi ∈ A0. For example,̃v can be taken as the mode
of vectors in{ṽ(xi)}i , ∀xi ∈ A0 or by analyzing separately directions or
extents of the estimated displacement vectors with a medianor a weighted
median. The weights can be determined as proportional to|det(H)(x)| as
it determines "how much" there is an image corner atx, according to Harris
corner detector, [35].
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1. Estimation of Blur Parameters at Corners

1.4.2. Non Binary Corners

The algorithm proposed in Section 1.4.1 assumes that the regionA corresponds
to a region in the original image wherey(A) = {b, c}, i.e. there are only two
intensity values iny. These "cartoon world" corners are far from being similar
to corners of camera images, as noted in Section 1.3.2.

Let then consider how Equation(1.8) changes if it presents also the noiseξ,

∇z(x) = ∇K (y) (x) + ∇K (ξ)(x) , ∀x ∈ X . (1.12)

Note that Equation(1.8) holds for∇K (y) (x), while it does not for∇K (ξ) (x),
the second term in the right-hand side of Equation (1.12). However, the blur
operatorK (ξ), which is locally a convolution with a PSF, produces a correla-
tion of ξ samples along the motion direction [94], so that we have

∇K (ξ) (x) · ṽ , ≈ 0 , ∀x ∈ A0 , (1.13)

which means that the larger the blur extent is in the considered region, and
consequently the correlation among random values ofξ increases, the more
our algorithm will work for regions where corners are not binary.

1.5. Robust Solution

Although Equation(1.13) assures that the proposed algorithm would work
even in presence of noiseξ, we expect that outliers would heavily influence
the solution of Equation(1.11), since it comes from thè2 error norm mini-
mization of Equation(1.10).

Beside pixels where∇K (ξ) (x) · ṽ 6= 0 there could be several other noise
factors that are not considered in our model but that we should be aware of. For
example compressed images often present artifacts at edgessuch as ringing
or blocking, corners ony are usually smoothed and edges are not perfectly
straight lines.

However, if we assume that outliers are a relatively small percentage of
pixels, we can still obtain a reliable corner displacement vector estimate using
a robust technique to solve (1.9). We do not look for a vectorṽ which satisfies
Equation(1.8) at each pixel, or which minimizes thè2 error norm ( like in
Equation(1.10)): rather we look for a value of̃v which satisfies a significant
percentage of equations in System (1.9), disregarding how̃v is far from the
solution of the remaining equations.
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1.5. Robust Solution

`x(u1, u2)

P (x)

u1

u2

Figure 1.5.:̀ x(u1, u2) set of possible endpoint for̃v(x)

1.5.1. The Voting Approach

For every pixelx ∈ A0, we defineP (x) as the projection of the displacement
vector along the gradient direction

P (x) =

[
ṽ · ∇z(x)

||∇z(x)||

] ∇z(x)

||∇z(x)|| ,∀x ∈ A0 , (1.14)

where· denotes the scalar product. It follows that, when the assumption of
Equation (1.6) holds, from Equation (1.8),

P (x) =
∇z(x)

||∇z(x)||2 ∆ , (1.15)

we have thatP (x) corresponds to thẽv component along∇z(x) direction,
∀x ∈ A0.

The endpoint of any vector̃v, solution of (1.8), lies on the straight line
perpendicular toP (x), going through its endpoint.

As in usual Hough approaches, we consider a (2-D) parameter spaceU , con-
taining all the possible location for the endpoints ofṽ. The parameter space is
subdivided into cells of suitable size (e.g. 1 pixel) and indexed by two coordi-
nates,(u1, u2). Let definè x(u1, u2) as the locus of the possible endpoints of
ṽ, compatible with a given datum∇z(x): it follows that`x(u1, u2), is a line as
shown in Figure 1.5. A vote is then assigned to each cell that contains a value
of ṽ that satisfies an instance of Equation(1.8), i.e. `x. This vote is summed
to the votes coming from the other data. The most voted cells represent values
of ṽ that satisfy a significant number of equations(1.9).
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1. Estimation of Blur Parameters at Corners

1.5.2. Neighborhood Construction

In order to reduce the approximation errors due to the discrete parameter space
and to take into account∇η, we construct an ad-hoc neighborhood`x for as-
signing votes in the parameter space. We build`x in order to assign a full vote
(e.g 1) to each parameter pair which solves Equation(1.8) (the line of Figure
1.5), and a fraction of vote to the neighboring parameter pairs.We define thus
the following weight function

`(u1, u2) = exp
[
−

( u2

1 + k|u1|σ∇η

)2]
, (1.16)

whereσ∇η is ∇η standard deviation andk is a tuning parameter. The weight
function` has the following properties: it is constant and equal to1 onu1 axis,
(i.e. `(u1, 0) = 1), and when evaluated on a vertical line,(u1 = const), it is a
Gaussian function having standard deviation that is proportional to|u1|, i.e.

`(u1, u2) ∼ N(0, 1 + k|u1|σ∇η)(u2) , ∀(u1, u2) ∈ U

We select this weight function as a prototype of the vote map:given∇z(x),
the votes are distributed in the parameter space as the values of ` opportunely
translated and rotated. The straight line of Figure1.5, `x(u1, u2), is therefore
replaced by functioǹ rotated by(π

2 − θ) degrees and translated so that its
origin is inP (x) endpoint, i.e.

`x(u1, u2) = R(π
2
−θ) (`) ([u1, u2]

T − P (x)) , ∀(u1, u2) ∈ U , , ∀x ∈ A0 .
(1.17)

whereθ is ∇z(x) direction andR(π
2
−θ) is the rotation of(π

2 − θ) degrees.
In such a way, we give a full vote to parameter pairs which are exact solu-

tions of (1.8) and we increase the spread of votes as the distance fromP (x)
endpoint increases.

Figure1.6(a) shows how votes are distributed in parameter space for a vec-
tor P (x). Figure 1.6(b) shows parameter space after having considered all
data, the arrow indicates the vectorṽ estimated.

1.6. Performance of the Algorithm Based on the
Hough Transform

1.6.1. Implementation Details

Given a regionA containing a blurred corner, we proceed as follows

• Estimateση on the whole image, using the linear filtering procedure
proposed in [42] or any other method presented in Appendix 7.
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1.6. Performance of the Algorithm Based on the Hough Transform

(a)

ṽ

(b)

Figure 1.6.: Votes in Parameter Space. (a) An illustration of the weight func-
tion `x(u1, u2), used to spread the votes in the parameter space.
The vector represents the projection vectorP (x). (b) The sum of
votes in the parameter space, after having considered all data. The
green vector represents the estimated corner displacementvector
ṽ.

• DefineA0, the set of considered pixels as

A0 = {x ∈ A | ||∇z(x)|| > T}
T > 0 being a fixed threshold. In such a way we exclude image pixels
where the value is constant but gradient is non zero because of ξ and
η. The thresholdT is typically defined asT = ntση, nt being a tuning
parameter.

• Estimate∆ as∆ = |max(A0) − min(A0)| + ntση.

• Voting: ∀x ∈ A0 distribute votes in parameter space computing`x(u1, u2)
and adding them to the previous votes. Thek parameter used in(3.9) is
chosen between[0.02, 0.04].

• The solution of System(1.9), ṽ, is the vector having endpoint in the
most voted coordinates pair. Whenever several parameter pairs receive
the maximum vote, their center of mass is selected asṽ endpoint.

• To speed up the algorithm, we eventually consider gradientvalues only
at even coordinate pairs.
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1. Estimation of Blur Parameters at Corners

1.6.2. Experiments

We validate the proposed algorithm with tests on synthetic images, on test
images synthetically blurred, and on camera images blurredbecause of camera
motion.

Synthetic Images

We generate synthetic images according to Equation(1.7), using a binary cor-
ner (according to the model of Section1.3.2), takingy constantly equal to0 at
background and equal to1 at corner pixels and we addη andξ with Gaussian
distribution.

Corner displacement vectors have been estimated on severalsynthetically
generated images with values of the standard deviationsση ∈ [0, 0.02] and
σξ ∈ [0, 0.08]. Blur has been produced by a convolution with a PSFh having
direction10 degrees and length20 pixels in the first case and70 degrees and
30 pixels in the second case.

Figure1.7 and Figure1.8 show some test images and Table1.1 and Table
1.2 present algorithm performance in terms of distance, in pixel unit, between
the endpoints of the estimated,ṽ, and the true displacement vectorv, expressed
as a percentage w.r.t PSF length.

Comparing the first two rows of Table1.1 with those of Table1.2, we note
how stronger blurs introduce higher correlation betweenξ samples and gives
more accurate results, as expressed in Equation(1.13).

Whenση = 0.02 the algorithm accuracy is significantly decreased.

ση | σξ 0 0.02 0.04 0.06 0.08

0 1.94% 2.37% 1.67% 3.26% 5.40%
0.01 6.54% 2.98% 1.67% 4.21% 1.68%
0.02 4.14% 7.57% 5.40% 3.97% 3.35%

Table 1.1.: Result on synthetic images:v has direction 10 degrees and length
20 pixels,ση ∈ [0, 0.02] andσξ ∈ [0, 0.08].

ση | σξ 0 0.02 0.04 0.06 0.08

0 1.95% 1.08% 1.95% 2.23% 0.98%
0.01 3.04% 0.31% 3.99% 1.43% 2.54%
0.02 9.39% 10.11% 6.55% 7.65% 7.50%

Table 1.2.: Result on synthetic images:v has direction 70 degrees and length
30 pixels,ση ∈ [0, 0.02] andσξ ∈ [0, 0.08].
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1.6. Performance of the Algorithm Based on the Hough Transform

Figure 1.7.: Synthetic test images used PSF directed10 degrees and length20
pixels, in a ση = 0 andσξ = 0.08, while in b ση = 0.02 and
σξ = 0.

Figure 1.8.: Example of synthetic test images used, PSF was directed70 de-
grees and length30 pixels, ina ση = 0 andσξ = 0.08, while in b
ση = 0.02 andσξ = 0.

Synthetically Blurred Real Test Image

We replace the original image at corners, i.e.y + ξ with a common test image
and we blur it using a convolution with a PSF on the whole image. We finally
add white Gaussian noiseη and analyze the blurred noisy image within some
regions containing a corner.

We takehouseas the original image and we manually select five squared
windows of side 30 pixels at some corners. Figure1.9 shows the original
and the blurredhouseimage (using PSF with direction 30 degrees and length
25 pixels) and the analyzed regions. Figure1.10 shows two vectors in pixel
coordinates, the estimated̃v (dashed line) and the vector having true motion
parameters (solid line), for each selected region. Table1.3 shows distance
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1. Estimation of Blur Parameters at Corners

Figure 1.9.: Original and blurred house image. Blur has direction of 30 degrees
and 25 pixels length, analyzed regions are numbered.

between the endpoints of the two vectors.

Figure 1.10.: Displacement vectorsṽ estimated in selected regions of synthet-
ically blurred housetest image. The solid line is the true dis-
placement vector, while the dotted line represents the estimated
displacement vector̃v.

1.6.3. Camera Images

We perform a second experiment using a sequence of camera images, captured
according to the following scheme

• a still image, at the initial camera position.
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1.7. Remarks

ση R 1 R 2 R 3 R 4 R 5

0 2.07 2.75 3.19 1.87 2.04
0.01 0.32 6.91 3.52 2.64 4.58

Table 1.3.: Estimation error: distance betweenṽ endpoint and displacement
vector, expressed in pixels, on each image regionR

• a blurred image, captured while the camera was moving.

• a still image, at the final camera position.

We estimated the blur parameters at some manually selected corner regions
in the blurred image and we compare these results with the ground truth, given
by matching corner found by the Harris detector in the imagestaken at the
initial and at the final camera position. Clearly, the accuracy obtained in mo-
tion estimation from a single blurred image is lower than that obtained with
methods based on two well focused views. However preliminary results show
good accuracy. For example, motion parameters estimated inregion 2 of Fig-
ure 1.17 are particularly close to the computed ground truth, even if the corner
is considerably smooth, as it is taken from a common swivel chair.

Figures 1.12 - 1.16 illustrates the algorithm results at theselected image
regions. As Figure1.13 shows, the votes in parameter space are more spread
around the solution than in Figure1.12, where the corner is close to the model
of Section1.3.2. Table1.4 shows result using the same criteria of Table1.3.

Results are less accurate than in previous experiments because according
to experimental settings, motion PSF could not be perfectlystraight or per-
fectly uniform, because of camera movement. This affects the algorithm per-
formance.

R 1 R 2 R 3 R 4 R 5
0.44 1.90 1.09 3.95 3.75

Table 1.4.: Estimation error expressed in pixel unit on eachimage regionR.

1.7. Remarks

The results obtained from the experiments, performed both on synthetic and
camera images, show that the image at blurred corners has been suitably mod-
eled and that the solution proposed is robust enough to cope with artificial
noise and to deal with camera images.

27



Figure 1.11.: Displacement vectorsṽ estimated in camera images. In each plot,
the solid line indicates the true displacement vector obtained by
matching corners of pictures at initial and final camera position.
Dotted line represents the estimated displacement vectorṽ.

The results show also that there are only a few useful cornersin camera
images. This is mostly due to background and corner non uniformity caused
by shadows, occlusions or because the original image itselfshows significant
intensity variations. Another motivation is that only corners satisfying assump-
tion of Equation (1.6) are considered, while the others are discarded.

In the next section, we will present an extension of this algorithm which
is able to estimate the displacement vector at corners whichare moving like
Figure1.3 b, i.e. corners that do not satisfy assumption (1.6). This will be
possible thanks to a procedure to discriminate whether the corner has a "self-
intersection" because of image blur (like those in Figure1.3 a and Figure 1.1, region D),
or not (like Figure1.3 b and Figure 1.1 region A).

1.8. The Orientation Ambiguity

Let now consider a squared regionA centered in a local maximum of Harris
measure [35], see Figure1.1. The motion of the image corner during the expo-
sure is described by the corner displacement vectorṽ. However, since there is
no way to determine which is the initial and which is the final corner position
from a single blurred image, the corner displacement vectorcan be determined
only up to its orientation. Therefore its directionθ has to be considered up to
π: in what follows we assumeθ ∈ [0, π].



1.8. The Orientation Ambiguity

Figure 1.12.: Figurea Original corner in imageb blurred corner,c setA0 of
considered pixels andd votes in the space parameter

The same orientation ambiguity holds for the projectionsP of vector ṽ on
directions orthogonal to the corner edges (1.14). Letxa ∈ A0 be a pixel be-
longing to a blurred edge, see Figure 1.21. Let denote byP (xa) the projection
of ṽ on the gradient vector atxa, i.e.

P (xa) =

[
ṽ · ∇z(xa)

||∇z(xa)||

] ∇z(xa)

||∇z(xa)||
, (1.18)

where· denotes the scalar product. Figure 1.19 shows the projection vectors
in the blurred corner model.
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1. Estimation of Blur Parameters at Corners

Figure 1.13.: Figurea Original corner in imageb blurred corner,c setA0 of
considered pixels andd votes in the space parameter

By relaxing assumption (1.6), also corners like those of Figure 1.3b has to
be taken into account. For these corners, the angle between the gradient at
blurred edges∇K (y) (x) and the displacement vectorṽ is larger thanπ/2,
as shown in Figure 1.20. Therefore the scalar product∇K (y) (x) · ṽ could
assume negative values. Therefore Equation (1.8) becomes

∇K
(
y(x)

)
· ṽ =

{
0, if ∇K (y) (x) = 0
±∆, otherwise

,∀x ∈ A . (1.19)

Assuming thatxa ∈ A0 (and thus∇K (y) (x) 6= 0) and substituting Equa-
tion (1.19) into the right-hand side of Equation (1.18), we have that the projec-
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1.8. The Orientation Ambiguity

Figure 1.14.: Figurea Original corner in imageb blurred corner,c setA0 of
considered pixels andd votes in the space parameter

tion of ṽ along∇z(xa) direction is

P (x) = ± ∇z(x)

||∇z(x)||2 ∆ , ∀x ∈ A0 . (1.20)

It follows that ṽ cannot be trivially computed whenever two projections
along two different directions are available, like in the previous case. In fact
let xb ∈ A0 , xb 6= xa, then if∇z(xa) and∇z(xb) are linearly independent,
four displacement vectors±ṽ1 and±ṽ2 are identified by back-projection of
the four vectors±P (xa) and±P (xb), as illustrated in Figure1.22. These four
displacements vectors±ṽ1 and±ṽ2, are indeed two pairs having the same di-
rections and opposite orientations. As pointed out before,there is no way to
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1. Estimation of Blur Parameters at Corners

Figure 1.15.: Figurea Original corner in imageb blurred corner,c setA0 of
considered pixels andd votes in the space parameter

exploit motion orientation from a single image so that we canassume the cor-
ner displacement directionθ ∈ [0, π] and reduce to consider onlỹv1 and ṽ2,
whose directionsθ1, θ2 ∈ [0, π].

When∇z(xa) and∇z(xb) are linearly dependent, the motion direction can-
not be estimated. This happens when bothxa andxb belong to the same blurred
edge, where all gradient vectors have the same direction. This situation hap-
pens at blurred edges, as illustrated in Figure 1.1, regionsB andC.

Therefore in a blurred corner region, up to an orientation swap, there are
two admissible displacement vectorṽ1 andṽ2. As Figure 1.23 shows, a single
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1.9. Selection of Best Projection Vectors

Figure 1.16.: Figurea Original corner in imageb blurred corner,c setA0 of
considered pixels andd votes in the space parameter

binary corner, blurred with two different PSFs (whose parameters are given
by ṽ1 and ṽ2), may present the same blurred edges. In order to disambiguate
which is the correct corner displacement vector then, we devised adecision
function, presented in Section 1.10.

1.9. Selection of Best Projection Vectors

Consider an image regionA containing a binary corner and assume no noise,
i.e. η = 0 andξ = 0. Denote by∇K

(
y
)
(xa) and∇K

(
y
)
(xb) the gradient
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1. Estimation of Blur Parameters at Corners

Figure 1.17.: Laboratory Image and selected regions

vectors at pixelsxa andxb belonging to the two blurred edges, as shown in
Figure 1.21, and denote byP (xa) andP (xb) the projections of̃v along their
directions. When the considered image regionA is large enough, the high-
est peaks in the 2-D histogram of{∇z(xi)}xi∈A0

represent the end points of
∇K

(
y
)
(xa) and∇K

(
y
)
(xb), thenP (xa) andP (xb) are promptly obtained

from Equation (1.19).
Let now examine howη andξ affects vectors∇z(x). If η andξ are white

noise, according to (1.7) we have that

∇z(x) =

[
(z ~ d1) (x)
(z ~ d2) (x)

]
=

[
((K (y + ξ) + η) ~ d1) (x)
((K (y + ξ) + η) ~ d2) (x)

]
∀x ∈ X .

(1.21)
Let h be the PSF which is approximating the blur in the selected corner region.
The noisesη and ξ are transformed by the blur operator and by the image
gradient in the following way,

∇η(x) =

[
(η ~ d1)(x)
(η ~ d2)(x)

]
,∇ξ(x) =

[
((ξ ~ h) ~ d1)(x)
((ξ ~ h) ~ d2)(x)

]
,∀x ∈ X .

(1.22)
Therefore it follows thatE[∇η + ∇ξ] = 0 and thus the mean of all gradient
vectors for pixelsbelonging to the same blurred edgeis an unbiased estimator
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1.9. Selection of Best Projection Vectors

Figure 1.18.: Algorithm results on a picture taken from a hand held camera

for ∇K (y) (xa) or ∇K (y) (xb).
Figure1.24 presents the 2D histogram of∇z(x), x ∈ A0. There are two

clusters, clearly distinguishable, as the gradient vectors are orthogonal to the
corner edges. If we separate the gradient vectors in these two clusters, and then
we average the gradient vectors on each cluster, we obtain unbiased estimates
of ∇K (y) (xa) and∇K (y) (xb). A review on clustering can be found in [43].

Moreover, whenη andξ are Gaussian distributed, also∇η and∇ξ are Gaus-
sian distributed. Then, the two most frequent gradient vectors on each cluster
of the 2D histogram can be taken as in the Gaussian case these are also un-
biased estimates of∇K (y) (xa) and∇K (y) (xb). It is therefore possible to
avoid clustering by imposing a minimum angular distance between the two
highest peaks in the 2D histogram of all the gradients (as theangle between
the two projections of̃v along edges directions is proportional to the angle at
corner).

Once∇K (y) (xa) and∇K (y) (xb) have been estimated, Equation (1.19)
gives±P (xa) and±P (xb), and thus̃v1 andṽ2 are obtained, see Figure 1.22.

For corners such as the one of regionD in Figure 1.1 there is a third cluster
of vectors in the histogram, corresponding to the gradient in the triangular
shaped area between the corner blurred edges. When the considered corner
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1. Estimation of Blur Parameters at Corners

∆

P (xa)

P (xb)

ṽ

Figure 1.19.: Blurred Corner Model: Mesh of pixel intensities within region A
of Figure1.1. The projection vectorsP (xa) andP (xb) are also
shown.

region is large enough, the number of pixels belonging to each of the two
blurred edges is larger than the number of pixels in the triangular area. This
should not be taken as a projection vector. However, when thecorner region
has not been accurately located around the corner, this triangular area may
yield uncorrect estimates.

1.10. Decision Function

Due to the fact that̃v orientation is unknown, both orientations ofP (xa) and
P (xb) have to be considered so that there are two possible solutions, ṽ1 and
ṽ2 (see Figure1.22). The decision function determines which one, betweenṽ1

andṽ2, is, up to its orientation, the true displacement vector.
Loosely speaking, blurred corners can be divided in two classes, according

to the presence of an area where gradients are orthogonal to the true displace-
ment vector. The first class contains corners like the one represented in Figure
1.1 regionD and in Figure 1.23b. This class of corners shows an area whose
pixels belong to the setZi = {x ∈ A0 , ∇z(x) ⊥ ṽi}. An example of corners
of the second class is reported in Figure1.1 regionA and in Figure 1.20a. For
a binary corner of the second classZi = ∅ , i = 1 or i = 2 holds and therefore
the number of pixels having gradient orthogonal to each candidate displace-
ment vector (i.e#Zi) is taken as a discriminant between the two classes.

For a binary corner of the first class,#Zi corresponds to the surface of
a triangle between the two blurred edges, whose value in the ideal caseS1

(resp.S2) can be calculated from̃v1 (resp.ṽ2) andP (xa) andP (xb). If #Z1

36



1.10. Decision Function

P (xa)P (xb) P (xa)P (xb)

v1
v2

a b

Figure 1.20.: Two different kind of corners: in the first case(a), the inner prod-
uct in Equation (1.19) gives+∆, while in the second case (b)
gives−∆. In fact in casea the angle betweeñv andP (x) is
smaller thanπ/2 while in caseb this angle is larger thanπ/2.

(resp.#Z2) corresponds toS1 (respS2), thenṽ1 (resp.ṽ2) is taken as the true
displacement vector.

The condition∇z(x) ⊥ ṽi, in the definition of the setZi is relaxed in order
to manage camera images and is replaced by

#

{
x ∈ A0 ,

∇z(x) · ṽ
|∇z(x)||ṽ| < t

}
< Si i = 1, 2 , (1.23)

where t represent the cosine of a threshold angle between the two vectors.
Whenever both̃v1 andṽ2 satisfy(1.23), the one having the largest value in left
side of(1.23) is taken.

Whenever both̃v1 and ṽ2 do not satisfy(1.23), the corner belongs to the
second class. In this case, the derivative along motion direction is constant
in A0, i.e ∇z · ṽ = const ∀x ∈ A0. This yields+∆, or −∆ in Equation
(1.19), and the signum does not change in the region. Then, the histograms of
directional derivatives along directions ofṽ1 andṽ2 are computed and the more
peaked one is selected. The sample kurtosis is taken as peakedness measure.

Finally, in order to obtain a reliable estimate of the motionextent, an accu-
rate estimate of∆ = |b − c| is required, as∆ scales bothP (xa), P (xb), as
illustrated Figure 3.5(a). The value of∆ is computed as the intensity difference
between the two highest local maxima in the histogram of image intensities in
the corner region. Since there should be a clear difference betweenb andc, a
minimum distance of half of the intensity range in the regionis required.
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1. Estimation of Blur Parameters at Corners

xa xb

Figure 1.21.: Blurred corner region: pixelsxa andxb belong to two different
blurred edges.

1.11. Experiments

The algorithm based on the procedure for select the best projection vectors
described in Section 1.9 and the decision function described in Section 1.10
has been tested on synthetic images, on a test image synthetically blurred and
on a camera image.

1.11.1. Synthetic Images

Synthetic images have been generated according to Equation(1.7), with an
original imagey according to the binary corner model of Section1.3.2 having
an angle of90, 60, and45 degrees. The original image is constantly0 at back-
ground and255 at corner pixels. Blur is produced by a convolution against a
PSF having extentl ∈ {20, 30, 40} pixels, and directionθ ∈ {0, 15, 75, 90} or
θ ∈ {0, 20, 60, 80} according to corners edges orientation.

For each value of blur direction and extent a squared region of 100 pix-
els, taken around the Harris measure maximum (see Figure1.25), has been
analyzed. Images have been corrupted by noiseξ with standard deviation
σξ ∈ {4, 8, 12, 16} and byη with standard deviationση ∈ {1, 2, 3, 4}, accord-
ing to Equation (1.7).

Values reported Tables 1.11.1 - 1.7 are‖v − ṽ‖/‖v‖ i.e. the distance, in
pixels, between the estimated displacement vectorṽ, and the ground truthv,
expressed as a percentage with respect to true motion extent. Results have
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P(xa)

-P(xa)

P(xb)

-P(xb)

v1v2

Figure 1.22.:±P (xa) and±P (xb) individuate via back-projection four corner
displacement vectors±ṽ1 and±ṽ2.

been averaged on10 realization ofη for each value ofση and on all directions
and extents.

As ση, andσξ increases, the decision function may fail to select the true
displacement vector: this occurred in about2.3% of cases.

1.11.2. Experiment on a Test Image

The well knowncameramantest image has been synthetically blurred by a
convolution against a PSF direction35 degrees and length15 pixels. Squared
regions of40 pixels centered in every corner selected by Harris corner detector
have been analyzed with our method.

Figure1.26 shows the blurred cameraman image and the corner displace-
ment vectors estimated. The dashed regions surrounding some of them are
the regions where the estimated displacement vectorṽ, satisfies|ṽ − v| < 2
in pixel unit, beingv the ground truth identified by the PSF parameters. The
average error in the correct matches is0.71 pixels. The algorithm results are
accurate in regions containing a corner satisfy the model presented in Section
1.3.2. The regions where the algorithm fails do not contain a binary corner.

1.11.3. Experiment on Camera Images

A triplet of camera images have been captured according to the following
scheme. First a still image at the initial camera position istaken, followed
by a blurred image captured while moving the camera during the exposure.
At the end of the exposure, another still image at the final camera position, is
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1. Estimation of Blur Parameters at Corners

Figure 1.23.: The same binary corner blurred with two different displacement
vectors,̃v1 andṽ2. Their blurred edges coincide.

taken. In this way the algorithm performance on a real motionblurred image is
be compared with the ground truth obtained by matching the two still images.
Again, the corners have been selected by local maxima of Harris measure and
a region of50 pixels around each of them have been analyzed.

Figure1.27 shows the blurred camera picture and the regions where|ṽ −
v| < 7 in pixel unit, beingv the ground truth computed by feature match-
ing [86] in the corresponding region in the two still images.The error|ṽ − v|
averaged on all these regions is4.84 pixels. The regions where the displace-
ment vectors are marked in red, represent regions where the decision function
discards the displacement vector closer to the true displacement vector (this
happens 4 times over 17).

1.12. Conclusions

The experiments show that the blurred corners have been suitably modeled and
that is possible to estimate the blur even in a small image region containing
a corner. The algorithm can be used for estimating the optical flow from a
single blurred image as in [75, 76]. Estimating the optical flow at corners is
advantageous as the blur is analyzed only at some significantregion, and not on
a fixed image tessellation that covers the whole image. On a fixed tessellation,
blur estimates may be biased by the image content. Moreover,we believe that
spatial domain algorithms are more suited to blur parameters estimation as
they do not impose restriction on region size with respect toblur extent, while
Fourier transform based methods do.

In the next chapter we will address corner detection and region selection
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∇z(xa)

∇z(xb)

x1

x2

Figure 1.24.: 2d histogram of gradient.

issues, presenting a preliminary solution. The blur estimates obtained with the
proposed algorithms can be used in initialization of deblurring algorithms that
treat spatially variant blur, such as [89], which requires user supervision during
initialization.
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Figure 1.25.: Examples of Synthetic Test Images from dataset.
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ση | σξ 4 8 12 16

1 1.77% 1.73% 1.53% 1.48%
2 1.97% 2.00% 1.91% 2.05%
3 2.52% 2.76% 2.58% 2.61%
4 3.35% 3.64% 3.60% 3.69%

Table 1.5.: Result on corner of Figure1.25a, l ∈ {20, 30, 40} pixels, θ ∈
{0, 15, 75, 90}

ση | σξ 4 8 12 16

1 2.50% 2.33% 2.31% 2.66%
2 2.71% 2.77% 2.86% 3.13%
3 3.44% 3.61% 3.82% 3.75%
4 4.89% 4.39% 4.84% 5.03%

Table 1.6.: Result on corner of Figure1.25b, l ∈ {20, 30, 40} pixels, θ ∈
{0, 15, 75, 90}

ση | σξ 4 8 12 16

1 1.87% 1.9% 1.83% 1.86%
2 1.97% 1.9% 1.88% 1.94%
3 2.53% 2.3% 2.27% 2.29%
4 3.18% 3.1% 2.99% 3.12%

Table 1.7.: Result on corner of Figure1.25c, l ∈ {20, 30, 40} pixels, θ ∈
{0, 20, 60, 80}
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Figure 1.26.: Cameraman synthetically blurred.
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Figure 1.27.: Test on Camera Image.
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2. Corner Detection and Adaptive
Region Selection

In the previous chapter we presented algorithms which estimate blur param-
eters in regions containing corners. In this chapter we address two related
issues: the detection of blurred corners and the selection of a region around
each of them.

We propose two "naive" solutions, based on two intuitive ideas: blurred cor-
ners are detected combining the well known Harris measure [35] with a mask
obtained by thresholding the gradient magnitude. The corner region selection
procedure, figures out the blurred edges of each detected corner. In fact, the al-
gorithm of Section 1.9 exploits only pixels belonging to theblurred edges for
determining the projection vectors and then the corner displacement vector.
Thus, the selected corner region may possibly contain only pixels belonging to
the corner blurred edges. Other pixels, for example those onthe background
or pixels on blurred areas not belonging to the corner, have not be considered,
as these could bias the estimators of Chapter 1.

Blurred corner detector and adaptive region selection procedure, combined
with the algorithm of the previous chapter allow to process asingle blurred im-
age without any user interaction, and to estimate the optical flow by exploiting
blurred corners.

2.1. Blurred Corner Detection

Salient points in images are often extracted from the local maxima of the Har-
ris measure [35, 59, 65]. At pixels having large Harris measure, the Hessian
matrix of the sum of square differences function [35] has twolarge eigenval-
ues. Therefore the image in a patch of these pixels is significantly different
from any neighboring patch. On the contrary, the Harris measure is zero when
a directional derivative is zero.

In a blurred corner region, the Harris measure is larger on the corner smears
than on the blurred edges. By corner smears we indicate the set of pixels
between the two blurred edges, corner smears have been shaded in Figure 2.1
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ba

Figure 2.1.: The corner Smears, pixels shaded belongs to thecorner smears.

for both an example of corner of the first class and of the second class. At
corner smears the image changes in any neighboring patch, and thus the Harris
matrix has two nonzero eigenvalues. On the blurred edges theHarris measure
is zero as the derivative along the edge direction is everywhere null. Therefore,
provided that in the original image the corner is binary [5] (i.e. the image is
constant in the corner and in the background area), the Harris measure has
a local maximum that belongs to each corner smear. This maximum could be
any pixel of the corner smear but the adaptive corner region selection procedure
does not require higher accuracy. Figure 2.3 shows the Harris measure of the
image depicted in Figure 2.2, containing some blurred corners.

In order to extract blurred corners and exclude possible details in still areas
(the image may be not uniformly blurred), we consider only the local maxima
of Harris measure belonging to the maskΓ defined as follows

Γ = {x s.t. ||∇I(x)|| > T} , (2.1)

whereT is a threshold that has to be tuned considering the minimum ac-
ceptable slope for the blurred edge or the noise standard deviation. Image
noise can be estimated using any method described in Appendix 7. ThenΓ
is post processed by using ordinary morphological operators [32] in order to
remove isolated points, small areas, thin lines and for widening larger areas.
Figure 2.4(b) shows the maskΓ for the blurred corner of Figure 2.4(a). There-
fore we haveΓ = 1 where the image contains blurred edges, whileΓ = 0 at
still areas close toe.

Corners are detected by computing the Harris measure on the blurred image
and by selecting the local maxima. This is a standard procedure which is also
exploited in several feature detection algorithms [64]. Figure 2.5(a) show the
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Figure 2.2.: Zoom on an area containing some blurred cornersof Figure 2.4(a)
.

Harris measure for Figure 2.4(a). We estimate then,{xi}i=1,..,m as the location
of the maxima of Harris measure belonging toΓ; these pixels are supposed to
be blurred corners and we run the corner region selection procedure presented
in Section 2.2, determining thus the regions where to estimate the blur direction
with algorithm [5]. Figure 2.5(b) shows corners selected.

The corner detection procedure is tuned by the parameter that determines the
minimum distance between local maxima of Harris measure andby the mor-
phological operators used for widening and eroding the blurred edge masks.
In such a way it is possible to increase the number of detectedcorners in a
given blurred image. Finally, it is possible to run the procedure for selecting
adaptively the corner regions (described in Section 2.2) and discarding those
corners presenting too small regions. Thus in the remiaining corners, the blur
parameters are estimated using one of the methods presentedin Chapter 1 on
the selected corner regions.

2.2. Corner Region Selection Procedure

Image corners are characterized by the blurred edges, areaswhere the image
gradient vectors are approximatively constant. We describe an iterative pro-
cedure, which is used both for selecting a data-adaptive corner region and to
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Figure 2.3.: In Red the Harris measure of Figure 2.2. The Harris measure on
the corner smears is larger than in neighboring pixels.

test if the selected corner locationxi i = 1, .., N corresponds to a blurred cor-
ner. The basic idea is that within pixels belonging to blurred edges the image
gradient are constant. Since the algorithms proposed in theChapter 1 exploits
only image values within blurred edges, in particular the last one based on pro-
jection vectors selection (Section 1.9), the adaptive corner region will contain
only blurred edge area.

The adaptive corner region is build as the union of wedge shaped binary
masksWj,α, wherej ∈ {j0, .., J} represents the wedge sizes and
α ∈ {2iπ/A}i=0,..,A the wedge orientation. All the masks have a vertex in
the i-th corner, moreover masks having the same orientation are nested, i.e.
Wj,α ⊂ Wj+1,α,∀α,∀j = 1, .., J − 1, see Figure 2.6. These wedge shaped
mask has been built from the supports of Local Polynomial Approximation
kernels widely exploited in [45, 47] and reference therein.

Let denote by∇I = [∇I1,∇I2]
′ = [I ~ d1, I ~ d1]

′ the gradient image, where
d1 andd2 are derivative filters along horizontal and vertical directions respec-
tively. The procedure is repeated on each gradient component ∇I1 and∇I2

separately.
The adaptive region selection is a three step iterative procedure which is

repeated for each direction of wedge masksα ∈ {2iπ/A}i=0,..,A, and starts
from j = 3.

• Computewj,α, the average of∇I1 on the support ofWj,α, i.e.
wj,α =

∑
x∈Wj,α

∇I1(x)/#Wj,α where byx ∈ Wj,α we mean that
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(a) Blurred image acquired when moving a Canon EOS 400D.

(b) Gradient maskΓ to extract blurred edges.

Figure 2.4.: Blurred image and blurred edge mask.

Wj,α(x) = 1 and where#Wj,α denotes the number of nonzero element
in Wj,α.

• Computedj+1,α, the average of∇I1 on Dj+1,α = Wj+1,α − Wj,α , the
area within the two consecutively nested masksWj+1,α andWj,α;
dj+1,α =

∑
x∈Dj+1,α

∇I1(x)/#Dj+1,α.
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2. Corner Detection and Adaptive Region Selection

(a) Harris corner measure (darkest area indicates highest values).

(b) Corners detected combining the Harris measure with the gradient mask.

Figure 2.5.: Harris measure and detected corners.

• If dj+1,α andwj,α “do not differ too much”, i.e|wj − dj+1| < M1ση ,
if dj+1 > M2ση, and finally, if the largest scale has not been considered
jet, the procedure is iterated from the maskWj+1,α. Otherwise the scale
j is taken asjα, the largest wedge size containing blurred edges along
directionα.
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W8,0

D1,1

D1,2

W1,2

W8,1

(a) Lines delimiting the supports of wedge
masksWj,α

(b) Example of Corner Regions Selected

Figure 2.6.: Corner Region Selection

HereM1,M2 are tuning parameters,ση is estimated using [20], see Appendix
7.

After having considered all directions inA, we obtain

Ui,1 =
⋃

α∈A

Wjα,α , (2.2)

and, repeating the whole procedure on∇I2, we obtainUi,2, so that the adaptive
corner region selected fori-th corner is

Ui = Ui,1 ∪ Ui,2 . (2.3)

Figure 2.6(b) shows example of adaptive region selection ona synthetic im-
age, while Figure 2.7(a) shows the adaptive regions selected around the cor-
ners detected in the blurred image of Figure 2.4(a). Figure 2.7(b) shows the
displacement vectors estimated with the algorithm presented in Section 1.9.

Note that pixels inWj,α,∀α, j < 3, which are the closest to the estimated
corner location, are not considered as at these pixels the gradient is typically
discontinuous. Since the corner displacement vectorṽ is estimated only from
the blurred edges, we do not affect the blur direction estimates by excluding
these pixels. This results in a "hole" in the selected cornerregion, see Figure
2.6(b).

Figure 2.7(b) shows the corner displacement vector estimation performances
on the camera image of Figure 2.4(a)
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(a) Adaptive regions selected.

(b) Corner displacement vectors estimated.

Figure 2.7.: Adaptive corner region selection and corner displacement vectors
estimation.
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Part II.

Blur due to Camera
Translation and Camera

Rotation
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The focus in the second part of the thesis is on the blur due to apure cam-
era translation or a pure camera rotation. We introduce an observation model
where the blur is represented by a spatially variant operator. This allows us to
correctly handle motion blurred images.

Although the blur produced by a camera translation is typically assumed
spatially invariant, some blurred images acquired during camera translation
show smears which proves that are PSFs are pixel-wise varying, as one can
see from Figures 3.12 and 3.13. We therefore consider the most general case
of a translating camera in the 3D space and we propose an observation model
based on a spatially variant operator for the blur. This model has been derived
by analyzing how a 3D translation of a pin-hole camera corrupts the image
being acquired. In Chapter 3 and in Appendix 7 we prove that inimages taken
from a translating camera, independently on the captured scene, the blur PSF
in each pixel has a 1D rectilinear support, and a uniform value on it. Moreover,
the PSFs directions are pointing to a particular point on theimage plane, the
epipolee. In Chapter 3 we prove thate corresponds to the vanishing point of
the camera translation direction. Then ase goes to infinity, the blur direction
does not vary and the spatially invariant blur correctly describe motion blurred
images when the capture scene is planar and parallel to the image plane, i.e.
when the depth does not influence the image. However, whene does not go to
infinity, a sort of zooming effect, the radial blur, is observed. In this case, we
also refer toe as the blur center.

We address two main issues for these images. The first issue isthe estima-
tion of the coordinates ofe, given a single blurred image (Chapter 3). The
second issue is the restoration of radial blurred images, i.e. images acquired
during camera translation toward a planar scene, parallel to the image plane
(Chapter 4). Radial blur admits a global parametric description, as the location
of e and a blur extent parameter` determine the PSF in every image pixel.
However, radial blur admits also a local parametric description, as the PSF at
any pixelxi can be expressed as a function of its directionθi and its extent
li. When the scene is not planar and parallel to the image plane the PSF di-
rection at each pixel is still determined by the epipolee. However there is no
an analogous formulation for the PSFs supports as these varyaccording to the
scene depth. The relation between the PSFs support and the scene depth can be
used to reconstruct the scene depth from a single blurred image. In Chapter 5
we present some considerations about the capabilities of recovering the scene
depth from a single radial blurred image and we point out someremarks about
extending similar approaches to more general motions.

Finally, the blur produced by a purely rotating camera is considered in Chap-
ter 6. This blur is also modeled similarly to the blur produced by a translating
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camera, with two parametric description. In fact the PSF at each image pixel
is described by the parameters of an arc of conic section. These parameters are
related to the camera rotation axis and the camera angular speed, which thus
constitute the global blur parameters. In Chapter 6 we also present a novel
algorithm for estimating the camera 3D rotation axis and itsangular speed, by
analyzing a single (blurred) image. Contrary to the existing methods, we treat
the more general case where the rotation axis is not necessarily orthogonal
to the image plane, taking into account the perspective effects that affect the
smears.
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3. Estimation of 3D Camera
Translation Direction

Often the blur corrupting an image cannot be treated as spatially invariant be-
cause its characteristics vary considerably between different image pixels. Mo-
tion, one of the most important blurring factors, typicallycorrupts the images
in a non-uniform way. This chapter focuses on images captured by a perspec-
tive camera that translates at constant speed in a 3-D scene.The blur in the
resulting images is characterized by smears, whose directions and extents are
varying. However, in this particular case, the directions of blur smears are
determined by the camera displacement direction.

We devise an algorithm for estimating the camera displacement direction,
given a single blurred image, exploiting these smears as a hint. The estima-
tion is based on blur analysis of small image regions. These regions are auto-
matically detected and two different methods for analyzingblur within them
are used, according to their content. The choice of the blur analysis method
improves the overall estimation accuracy. A voting procedure combines the
multiple local estimates, increasing the robustness. The algorithm has been
successfully tested, both on synthetic and camera images.

3.1. Motivations

Motion blurred images embody information about the motion that the camera
undergoes during the acquisition. Estimating the camera motion when a sin-
gle blurred image is available is very challenging, especially when the image
content is unknown. We present a novel algorithm for estimating the 3D di-
rection of a translating camera by analyzing a single blurred image, acquired
during the camera motion. We derive a description of this blurring process
by studing the 3D camera motion: it turns out that the resulting blur is spa-
tially variant and characterized by rectilinear smears. Blur smears are segments
whose directions are determined by the coordinates (on the image plane) of the
epipole, i.e. the vanishing point of camera motion direction, from now one.
The proposed algorithm estimates the smear directions at some automatically
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selected image regions, using two sorts of blur direction estimators. These di-
rections are combined in a voting procedure for determiningthe coordinates
of e. Whenever the camera is calibrated it is then immediate to determine the
viewing ray throughe and thus, the camera motion direction.

As a matter of fact, blurred images often occur in vision systems, espe-
cially at reduced lightning condition and in indoor environments. The core
idea of our algorithm is to exploit the blur as a cue for estimating the camera
ego-motion. Thus, our motivations are similar to those in [51], where an al-
gorithmic gyroscope based on the analysis of a rotationallyblurred image is
presented (other recent works on rotational blur estimation are [7, 72]). The
estimation of camera ego-motion exploiting the blur is particularly attractive in
case of camera translation: this motion in fact cannot be sensed by accelerom-
eters, whereas other motions (such as the shake or the rotation) could also be
handled combining these sensors. Recently, two algorithmsfor restoring ra-
dial blurred images have been proposed [10, 88]. Radial bluroccurs when the
camera translates toward a planar scene, which is assumed parallel to the im-
age plane. The proposed algorithm can be also used for estimating the radial
blur center, given a single image.

3.1.1. Related Works

The estimation of the blur Point Spread Function (PSF), assuming the blur spa-
tially invariant, has been widely studied in the last decades [11, 52]. Recently,
Ferguset al. [25] proposed an algorithm for photographs corrupted by cam-
era shake, that first estimates the PSF and then deblur the image. Levin [54]
deblurring algorithm is meant for images blurred by a PSF having rectilinear
support. It is based on a segmentation of the image into regions having the
same the blur extent, assuming the PSF direction constant onthe whole im-
age. Jia [44] introduced the use of transparency maps for estimating the PSF.
All these methods are meant for deblurring, however blur estimation has been
addressed for other purposes such as the integration of the optical flow for
tracking system [49] , the measurement of vehicle [56] and ball speed [57] or
the measurement of planar scene distance [58].

Whereas the estimation of 3D camera translation direction from a single im-
age has never been addressed before, other works considering spatially variant
blur have to be mentioned. Rekleitis [76] used the blur for computing the opti-
cal flow from a single image. This algorithm estimates the blur parameters on
an tessellation, without adaptively selecting the image regions. Blur PSFs are
estimated in Fourier domain, thus the block sizes have to be significantly larger
than the PSF extent. Finally, the camera ego-motion is not estimated. Another
algorithm that exploits spatially variant blur is [53], where the PSF parame-

60



3.2. Problem Formulation

ters determines the depth map of a static scene. Klappet al. [50] modeled the
blur produced by an angular motion of the camera while Nagyet al. proposed
a restoration algorithm [69] for astronomical images corrupted by spatially
varying blur. Recently, it has been shown how to facilitate the PSF estimation
task [62, 85, 96] capturing a short-exposure image, paired to a blurred one.
Other multiple images methods are [22, 37].

The rest of the chapter is organized as follows: in Section 3.2 we present the
blur model showing thate determines the blur direction at any pixel. Section
3.3.1 illustrates the local blur direction estimation methods and the procedure
adopted for selecting the image regions. The voting algorithm for estimatinge
is described in Section 3.4, while the experiments are presented in Section 3.5.

3.2. Problem Formulation

Figure 3.1 illustrates the camera motion we are considering. When the shutter
opens, the camera viewpoint is inO, the origin of a 3D coordinate system.
We assume that the camera is translating with constant speedduring the whole
exposure intervalT . The pointF represents the final position, that the camera
reaches as the shutter closes.

Our goal is to estimate, by only analyzing the resulting blurred imagez, the
3D direction of camera translationOF . When the camera calibration matrix is
known, this is equivalent to estimating the coordinates on the image plane of
the epipolee, i.e. the vanishing point ofOF .

The proposed algorithm analyzes the blur "smears" inz as these, in case of
camera translation, are pointing toe. In what follows we describe the image
formation process, note thate may not fall into the image boundaries.

3.2.1. Blurred Image Formation

Any imagez acquired during a camera motion can be represented as the inte-
gration of an infinite number of still imagesyt, each captured when the camera
viewpoint is in a different position in the space. Thus, we consider the follow-
ing image formation model:

z(x) =

∫ T

0
yt(x)dt + η(x), x = (x1, x2) ∈ X . (3.1)

Here,x is a point on the 2D image gridX ⊆ Z, x1 andx2 indicate the coordi-
nates ofX, yt : X → R represents the light intensity that reaches each pixel
at timet, andη ∼ N(0, ση) is Gaussian white noise. Figure 3.1 illustrates the
camera translation and the positions where some imagesyt are being captured.
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3. Estimation of 3D Camera Translation Direction

Figure 3.1.: Camera Displacement during the exposure. Whenthe shutter
opens, the originO of the 3D axis is in the camera viewpoint
with the z axis orthogonal to the image plane. When the shutter
closes, the camera viewpoint reachesC.

Any two imagesIt1 andIt2 form a stereo pair and therefore the correspon-
dences between these two images are related by the essentialmatrix [36]. Con-
siderI0 andyT , the two images acquired at the initial and final camera position,
respectively: we define the epipolee as the image ofF in y0 and, likewise, the
epipolee′ as the image inyT of the line throughO andF .

When the camera translates,e ande′ have the same coordinates in bothy0

andyT , therefore they overlap in the blurred imagez as illustrated in Figure
3.1. Thus we define the epipolee in z. Moreover, all correspondences between
y0 andyT are pointing toe [36], thus the resulting imagez is blurred with
rectilinear smears. More specifically, the PSF atxi, is a straight line segment
having directionθi and extentli where

tan(θi) = (xi,2 − e2)/(xi,1 − e1) beinge = (e1, e2) . (3.2)

The blur extentsli are influenced by the position of the scene pointxi that
is imaged onxi. Except from some particular cases, e.g those considered in
Section 3.2.3 or in [10, 88], it is not possible to provide similar description for
blur extents.

3.2.2. Image Blur

The blurring process can be also described as the action of a blur operatorK
on the original (i.e. still) image, sayy0, in the following way

z(x) = K
(
y0

)
(x) + η(x) , (3.3)

K describes the blur at each image pixel and it is written as [4]

K
(
y0

)
(x) =

∫

X
k(x, s)y0(s)ds (3.4)
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where the weight functionk(xi, •) corresponds to the PSF at pixelxi. For
purely translating cameras,k(xi, •) represents the smear atxi

k(xi, •) = Rθi

(χ[−li/2,li/2]

li

)
(• − xi) , (3.5)

whereRθi
is the rotation ofθi degrees around the image axisx1 andχ[−li/2,li/2]

is the characteristic function of the segment{−li/2 < x1 < li/2, x2 = 0}. In
what follows we refer to PSFs of this kind as rectilinear PSFs.

Other blurring effects, such as the out of focus blur, lensesaberrations and
camera shake, are not considered in this chapter. Thereforewe assume that the
same scene, captured from the same camera when it is static, is depicted in a
sharp image.

3.2.3. Examples

Whene goes to infinity and the captured scene is planar and parallelto the
image plane, all the PSFs have the same direction and extent:thus the blur
becomes spatially invariant, as shown in Figure 3.2a.

When the camera translates toward a planar scene, preserving the image
plane parallel to the scene, the PSF extent at any image pixelis determined by
its distance, on the image plane from the epipole [10, 88]. Denoting byu =
|OF |/d the ratio between the scene depthd and the length of displacement
|OF |, and byxie the distance between the pixelxi ande, it follows that the
PSF extentli in (6.3) is

li = xie
u

1 + u
. (3.6)

An image synthetically blurred, withe in the image center and extents given
by Equation (3.6), is shown in Figure 3.4a. Figure 3.4b and Figure 3.4c shows
the PSF direction and extent at each pixel. Figure 3.2b shows a camera image
captured with the described settings.

Typically, only the PSFs directions are determined bye, while the extents
depend on the 3D position of the scene points, like in images of Figures 3.3c
and 3.3d. In particular, in Figure 3.3c e goes to infinity and the scene is non
planar: in this case the blur direction is constant and the blur extents are pro-
portional to the scene depth.

3.3. Proposed Solution

The coordinates ofe are determined by estimating the blur directions within
automatically selected image regions: for this purpose we exploit two differ-
ent blur direction estimation methods. The first method is meant for regions
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3. Estimation of 3D Camera Translation Direction

Figure 3.2.: Example of blur produced by a translating camera: a the blur is
spatially invariant as the scene is planar, parallel to image plane
and e → ∞, b the blur is spatially variant even if the scene is
planar ase lies on the image plane.

containing an image corner, while the second method appliesto regions con-
taining other blurred details. We also present a procedure for determining the
method to be used in each region.
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Figure 3.3.: Example of blur produced by a translating camera: a the blur is
spatially invariant even ife → ∞ as the scene is not planar (but
blur directions are constant),b the blur is spatially invariant and
the scene is not planar

3.3.1. Local Blur Parameters Estimation

In order to estimateθi, the blur direction in an image regionUi, we treat the
blur operatorK as locally spatially invariant. We assume that∀xi ∈ X , ∃Ui ⊂
X , a neighbor ofxi, and a PSFvi, such that

K
(
y0

)
(x) ≈

∫

X
vi(x − z)y0(z)dt ∀x ∈ Ui . (3.7)
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3. Estimation of 3D Camera Translation Direction

Figure 3.4.:a Synthetic image blurred according to Equation (3.6);b blur di-
rections at any pixel;c blur extents at any pixel

Furthermore we assumevi is a rectilinear PSF, having directionθi and extent
li. Such approximation allows us to estimate blur parameters within selected
regions with methods meant for spatially invariant blur.

Fourier domain methods, which are widely used for blur parameters estima-
tion, do not perform properly on small image regions, as theyassume periodic
signals. Thus we adopt space domain methods. Within regionscontaining an
image corner, we estimate the PSF direction by analyzing thecorner edges [5].
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∆

P (xa)

P (xb)

ṽ

(a) The image model within a blurred cor-
ner region. The displacement vectorṽ rep-
resents the blur PSF while∆ represents the
difference between the corner and the back-
ground.

(b) A Synthetically blurred image
(Synth1) and direction estimates

Figure 3.5.: Blur direction estimates at corners using the algorithm presented
in [5].

Within regions where there are no blurred edges and the imageis not flat, the
blur direction is estimated analyzing the`1 norm of directional derivatives [93].

Blurred corners allow a clear interpretation of rectilinear PSF parameters.
The method proposed in [5] estimates, in each corner region,the corner dis-
placement vector̃v, which represents the blur direction and extent. This method
analyzes the image gradient into the blurred edges areas andestimates∆, the
intensity gap between the corner and the background. Figure3.5(a) illustrates
the image model at blurred corners.

Within other regions we use the method proposed in [94]: the PSF direction
θi, is estimated as the direction of the directional derivative filter dθ having
minimum`1 norm

θi = arg min
θ∈[0,2π]

(
||(dθ ~ I|Ui

)||`1
)
, (3.8)

whereI|Ui
is an image containing only pixels within regionUi and ||z||`1 =∑

x∈X |(z(x))|. In our experiments we use 7-tap directional derivative filters
devised in [21], convolved with a 3-tap derivative filter on the orthogonal di-
rection. This latter filter acts as a whitening on the image content as in [94]
.

In Section 2.2 we introduce an adaptive region selection procedure for cor-
ner regions that also determines the blur estimation methodto be used in each
region.
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3. Estimation of 3D Camera Translation Direction

Figure 3.6.: Mean Harris measure as a function of blur extent

3.3.2. Salient Point Detection

Blurred corners are extracted from the local maxima of the Harris measure [35,
59, 65], according to the procedure described in Chapter 2. We already pre-
sented the corner detection procedure based on the Harris measure for blurred
images. Let assume then that{xi} i = 1, ..,M are the pixels detected as
blurred corners.

We are going now to discuss the use of local maxima of Harris measure
(salient point) for detecting regions where the blur direction can be correctly
estimated using Equation (6.5). Note that Equation (6.5) gives a reliable es-
timate within regions where the original imagey0 has the same (non zero)`1

norm response to any directional derivative filter. This forexample happens
wheny0 is white noise.
As mentioned before, the local maxima of Harris measure are pixels where
the image is presenting a significant variation along any direction. We assume
than that since these regions are blurred by a rectilinear PSF, the resolution
along the blur direction decreases and the direction given by Equation (6.5)
corresponds to the blur direction. However, sincey0 is unknown, we have to
extract the salient points from the blurred imagez.
We run the following experiments to show that the salient point in the blurred
imagez belong to areas of the original imagey0, where the Harris measure is
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Figure 3.7.: Mean number of salient point as a function of blur extent

large. We consider a dataset of 12 common test images (rescaled in the range
[0, 1]) and two set of parametersΘ = {0, 10, .., 170, 180} for the PSF direc-
tions, andL = {1, 2, .., 29, 30} for the PSF extents. We synthetically blur each
test image with a convolution against each PSF generated from all possible pa-
rameter pairs (Θ×L), obtaining thus{fj} j = 1, .., 12#Θ ×L. We compute
the Harris measure on each blurred image and we extract the local maxima.
The Harris measure is thresholded against a fixed valueT = 0.0005, as this is
a standard procedure for reducing low-relevance features.In what follows we
always consider only pixels where the thresholded Harris measure is nonzero.
Figure 3.6 shows the mean Harris measure as a function of the blur extent: as
expected the blur reduces the details in the image and thus the average value of
the Harris measure. Also the number of local maxima decreases, as illustrated
in Figure 3.7 .

We already discussed in Section 2.1 about the localization error of local
maxima of the Harris measure in blurred corners. Here we are not aiming to
accurately locate the salient point ofy0 by taking those ofz. For our purpose it
we have to show that in a neighbor of each salient point in the blurred image,
the original imagey0 shows significant variations along all directions. This
is enough to show that it make sense estimating the blur direction near pixels
using Equation (6.5). We thus consider a squared neighbor of10 pixels side
around each salient point in each blurred imagefj, and we computemj as the
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3. Estimation of 3D Camera Translation Direction

Figure 3.8.: The mean Harris measure on the original image computed over
the 10 pixel square size neighborhood of the salient point inthe
blurred image, as a function of blur extent

average on these neighborhoods, of the Harris measure on thecorresponding
pixels in the original image. In order to compare values ofmj computed on
different images we dividemj with the average Harris measure on the whole
corresponding original image. Figure 3.8 shows the averaged values ofmj as
a function of the blur extent. The Harris measure on the selected neighbor-
hood in the blurred image decreases as the blur extent increases. However,
even when heavy blur is considered, the salient points are still in areas where
the original image shows some significant variations (it is still 1.6 times the
average Harris measure).

Thus we select{xi}i = M, ..,N as the local maxima of the Harris mea-
sure of the blurred image, avoiding those pixels which have been selected as
blurred corner according to the procedure of Chapter 2. Around these pixels
we consider circular neighbors for estimating blur using Equation (6.5).

Note that in the presented experiment we generate blurred images with a
convolution against a PSF and thus the blur is spatially invariant. However,
since the Harris measure is computed locally, and the blur here is treated as
locally spatially invariant, this does not reduce the validity of our experiment.
Moreover results have been averaged combining results fromblurred images
having the same blur extent but different directions. This follows from the fact
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that the Harris measure in its original formulation is rotational invariant [35].

3.3.3. Drawbacks

Blur directions estimated using Equation (6.5) may be seriously influenced
by the image content. For example, in edge regions the estimated direction
typically corresponds to the edge direction, regardless ofblur and the same for
regions where the original imagey0 presents features highly self-correlated
(e.g. striped textures). Other regions are non informative, for example where
y0 is flat, the blur does not produce any change. Therefore we restrict to regions
containing a local maxima of Harris corner measure [35] which points out that
the image significantly varies along two different directions.

3.4. Camera Displacement Estimation

The estimated blur directions are then used to determine theepipolee. From
every estimates pair(θi, xi) i = 1, .., N it follows that e should lie on`i,θi

,
the line passing throughxi and having blur directionθi. We use the Hough
approach for estimatinge as the pixel which has been crossed by the largest
number of lines̀ i,θi

. The parameter space represents the set of all the possible
locations fore and it is a discrete grid larger thanX (possibly at a different
resolution) with a set of angles in[0, π). These angles describe the casee → ∞
( as in Figure 3.2a.).

For each estimate pair(θi, xi) i = 1, .., N , the votes are assigned to the
parameters that agree with these data, i.e. the line`i,θi

, and then summed to
the votes coming from all the other estimate pairs. The voting algorithm allows
to take into account the uncertainty of each estimated direction and, in case of
corners, also the uncertainty of corner location. Therefore the line is replaced
by a weight function that assign a full vote to the exact solution and a lower
vote to every parameters close to the exact solution. The weight function`i,θ

is obtained rotating ofθi degrees and centering inxi the following function

`(x1, x2) = exp
[
−

( x2

(1 + h|x1|)k
)2]

. (3.9)

Herek expresses the localization error andh the error in the direction esti-
mated.

In our experiments we usedk = ση for estimates coming from minimum
derivative energy andσi = k0 + ση for estimates at corners.k0 is a tuning
parameter that compensate the errors in estimating the corner location. h is
related to direction estimation error and determines the vote spread from the
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(a) (b)

Figure 3.9.: Voting procedure using the estimated directions on Figure 3.5(a),
(a) Parameter space and corresponding votes distributed accord-
ing to (3.9), (b) Votes are represented on the green channel,e is
marked with red a cross.

set of exact solutions (Figure 6.5). Another vote (also witha Gaussian spread)
is then assigned to every line direction.

After having considered all the estimates, the point on the parameter space
that obtained the maximum amount of votes is selected as the epipolee.

The voting algorithm adds robustness to the procedure as directions esti-
mated are inaccurate and there are typically outliers. In case of corners, even
direction correctly estimated may be far from pointing toe because of occlu-
sion or shading: in fact, image regions representing scene parts belonging to
different objects (occlusions) are not blurred according to the epipolar con-
straints while shadows may be also erroneously considered as blurred corner
edges (see Figure 3.12.1a). Also the directions estimated using minimum of
directional derivatives could be outliers if in the considered region there are
edges or the original still image is highly correlated (see Figure 3.12.2a).

3.5. Experiments

Synthetic test images have been generated according to model (3.1), using the
ray tracer software Pov-Ray [41]. We generated seven 3D scenarios containing
parallelepipeds placed at different depths and orientations. For each scenario,
we rendered a sequence of 60 frames translating the camera along the camera
axis, so thate was in the image center. Each frame was rendered at a resolution
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ση Synth1 Synth2 Synth3 Synth4

1 2.17 1.25 9.83 4.33
2 2.50 1.61 11.23 3.33
3 2.36 2.42 13.65 2.48
4 2.78 3.90 15.36 6.03

n 4.0 15.7 14.8 16.5

ση Synth5 Synth6 Synth7 House8 House9

1 9.83 15.40 3.06 8.74 8.21
2 11.23 14.81 4.28 8.30 9.40
3 13.65 17.16 6.75 9.62 10.56
4 15.36 22.38 8.39 11.59 11.29

n 31.1 22.1 10.7 74.5 85.7

Table 3.1.: Table shows the distance in pixels, averaged over 10 realization
of η, of estimated epipolee from the image center. The last row
contains the average number of blur directional estimates per image

of 1024 x 768 pixels in grayscale (0-255) and the blurred image z has been
then obtained averaging all the frames. These test images areSynth1in Figure
3.5(b) andSynth2-Synth7in Figure 3.10.

Table 3.1 shows the distance in pixels betweene and the image center, av-
eraged over 10 different realization of noise for each valueof ση. The last
row of Table 3.1 shows the average number of blur direction estimates used.
In these test images, the blur directions have been estimated only exploiting
corners as there are no details that can be used for estimating the blur using
minimum energy derivative method. The maximum length of wedge mask for
corner region selection is 25 pixels.

We test our algorithm on two test imagesHouse8andHouse9of Figure 3.10
rendered in the same way using two more complex and textured scenarios [40]
so that the resulting blurred images are suited for estimating blur with both
formula (6.5) and with method for corners. The last two columns of Table 3.1
shows the algorithm accuracy, averaged over ten different realization ofη. The
overall number of blur direction estimates is increased w.r.t to the previous case
as in several points blur has been estimated using (6.5). Figure 3.11.8.a and
3.11.9.a show in yellow the directions estimated using corner method while in
red the directions estimated using Equation (6.5). Blur extents have not been
estimated and segment lengths are fixed in the figures. Figure3.11.9b and
3.11.9b show the selected corner regions and 3.11.9c and 3.11.9c the parameter
space with all the votes.
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Figure 3.10.: Synthetic ImagesSynth2-Synth7andHouse8,House

The proposed algorithm has been tested also on camera imagestaken with a
Canon EOS 400D 10Mpixel, see Figures 3.12 and 3.13. Images inFigure 3.12
have been taken with the camera mounted on a wheeled device toproduce uni-
form motion, while images in Figure 3.13 are jpeg taken from the same camera
mounted on a serving cart (Figure 3.13.3.a), moved by hands with a short ex-
posure (Figure 3.13.4.a) or by bringing down the camera tripod. Algorithm
results are presented by cyan lines joining the estimated epipole e with image
borders. Blur direction estimates, votes in parameter space and corner regions
are illustrated like in Figure 3.11. Even if there is no ground truth, the cyan
lines show that image blur has been correctly interpreted.

3.5.1. Discussion

Tests run on synthetic and camera images show thate is estimated accurately,
even in noisy images. Both blur direction estimation methods have been de-
signed to cope with Additive Gaussian White Noise (AWGN). The result of
Equation (6.5) is not influenced by AWGN, while in [5] the method for cor-
ner regions provided satisfying performance in presence ofAWGN. On the
other hand, the image content influences more seriously blurthese methods.
We already mentioned occlusions and shadings for method [5], examples of
occlusions and shadings appears in imagesSynth4-Synth7and reduce the al-
gorithm accuracy. Occlusions are also present in camera images, in particular
in Figure 3.12.1.a where the scene presents several depth levels. The blur es-
timates from Equation (6.5) are easily affected by edges andline, as one can
clearly see from Figure 3.12.2.a the direction estimated atpixel near the cabi-
net lines. In flat regions the directions estimated by Equation (6.5) is aslo not
reliable. In the considered cases however, the voting procedure gives a reliable
estimate ofe even in presence of such outliers as far as there are enough inliers.

The overall computation time depends on the number of regions where blur
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Figure 3.11.: Result on ImagesHouse8andHouse9

is estimated. This is the computationally heaviest part. The corner region se-
lection procedure is based on local averages and comparisons, therefore its
computation cost is linear in the region size. Corner blur estimation is also lin-
ear in the selected region sizes, [5]. Finally directional derivatives of Equation
(6.5) are computed using separable filters [21], and thus each one is a linear
combination of the response to four filters. The minimization of Equation (6.5)
can be sped up in a multiscale approach.

3.6. Conclusions

In a blurred image produced by a translating camera, the blurdirection and
extent are varying through the image pixels according to thescene depth and
the camera motion. In this Chapter we have described the blurproduced by a
translating camera, and we have derived an algorithm for estimating the van-
ishing point of camera displacement. In such a way the cameraego-motion
direction can be estimated by analyzing the single blurred image.

The algorithm relies on the estimation of blur direction at image regions
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Figure 3.12.: Tests on Raw Data

which have been automatically detected and selected for improving the blur
estimators.

This algorithm can be used in order to improve robot vision system based
on frame analysis. In fact these systems, e.g. [19], often have to cope with
blurred images because of reduced lightning conditions in indoor environ-
ments. Then, instead of discarding the blurred frames whereit is not possible
to match map features, the system can exploit the image blur for the estimation
of the global displacement direction and the local blur estimates to replace of
feature matches.

Moreover we believe that this algorithm can be used for estimating the blur
from a single image and therefore can improve deblurring methods that con-
sider also spatially varying blur, such as that one presented in [89].

Finally, we only considered translational camera motion asthis particular
case do not require estimates of the blur extent. Whenever there are enough
blur direction and extent estimates a more general rigid camera motion can be
considered, enforcing other rigidity constraints.
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Figure 3.13.: Tests on Jpeg Camera Images
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4. Deblurring Noisy
Radial-Blurred Images

In the previous chapter we devised an algorithm for estimating the vanishing
point of camera translation direction,e. In this chapter, we address the issue
of restoring images corrupted by radial blur, i.e. blur due to camera translation
not parallel to image plane. More precisely, we assume that the capture scene
is planar and parallel to the image plane, as in this case the blur PSF admit an
easy parametric description. In Appendix 7 we show how the considered blur
model derives from the uniform motion of a pin-hole camera.

The deblurring of images corrupted by radial blur is studied. This type of
blur appears in images acquired during any camera translation having a sub-
stantial component orthogonal to the image plane. The pointspread functions
(PSF) describing this blur are spatially varying. However,this blurring process
does not mix together pixels lying on different radial lines, i.e. lines stemming
from a unique point in the image, the so called “blur center”.Thus, in suit-
able polar coordinates, the blurring process is essentially a 1-D linear operator,
described by the multiplication with the blurring matrix.

We consider images corrupted simultaneously by radial blurand noise. The
proposed deblurring algorithm is based on two separate forms of regularization
of the blur inverse. First, in the polar domain, we invert theblurring matrix us-
ing the Tikhonov regularization. We then derive a particular modeling of the
noise spectrum after both the regularized inversion and theforward and back-
ward coordinate transformations. Thanks to this model, we successfully use
a denoising algorithm in the Cartesian domain. We use a non-linear spatially
adaptive filter, the Pointwise Shape-Adaptive DCT, in orderto exploit the im-
age structures and attenuate noise and artifacts.

Experimental results demonstrate that the proposed algorithm can effec-
tively restore radial blurred images corrupted by additivewhite Gaussian noise.

The materials presented in this chapter have been publishedin a conference
paper [10].
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u0

u

u⊥

Figure 4.1.: Camera translation vectoru and its componentsu⊥ andu0.

4.1. Introduction

In this chapter we consider the restoration of images corrupted by blur pro-
duced by a camera that translates in the 3D space with constant velocity dur-
ing the acquisition. This situation can be formalized as follows. Letu be the
3D vector that identifies the camera translation during the exposure timeT .
This translation can be decomposed in two components:u⊥ and u0, which
are orthogonal and parallel to the image plane respectively, as shown in Fig-
ure 4.1. Typically, image restoration algorithms assumeu⊥ = 0, considering
the camera translating parallel to the image plane. This assumption leads to
the spatially invariant blur degradation model (see [24, 76, 95] and references
therein).

In this chapter we focus on the generic case whenu⊥ 6= 0. The presence
of a significant componentu⊥ makes the blur spatially variant and the image
restoration becomes a much more challenging problem. For simplicity, the
captured scene is assumed planar and parallel to the image plane, thus neglect-
ing complications due to the scene depth.

Let us consider the blurred imagez as integration ofsub-imagesyt,

z(x) =

∫ T

0
yt(x)dt , x = (x1, x2) ∈ X , (4.1)

wherex represents a coordinate in the image domainX , T is the exposure
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e

x

Figure 4.2.: The blur centere and the radial lines. The segment atx includes
samples of the original imagey that contribute to the blurred ob-
servationz(x) atx.

time andyt is a sub-image, i.e. a sharp image produced by the light intensity
that reaches the sensor at the instantt ∈ [0, T ]. Each sub-imageyt is acquired
with a different viewpoint along the camera trajectory.

In the trivial case whenu⊥ = 0, all sub-images are shifted w.r.t. each other,
i.e. yt(x) = y0(x − λt), λ ∈ R2. Because the shiftλt is the same for each
point x, the blurred image can be modeled as the convolution of the original
image with a kernel, the point spread function (PSF), which has a 1D support
and which is typically parametrized by its direction and itsextent.

When the camera translation is not parallel to the image plane, i.e. u⊥ 6=
0, the integration support corresponding to each point varies. The relations
between any of two sub-images are described by the essentialmatrix [36],
which acts differently on each image point. Nevertheless, in this case, the blur
can be described by the blur centere and the blur extent parameterl. Such
images are termedradial blurred imagesbecause the blur smears are directed
along radial lines, i.e. lines stemming from the blur center, as shown in Figure
4.2. As we move away from the blur center, which itself is not blurred, the
length of the smears grows with rate equal to the extentl. In particular, the
smear at a pointx such that|x − e| = 1 has lengthl, where|x − e| is the
distance between pixelx and the blur centere.

There are only few publications about the restoration of images corrupted
by the radial blur. Webster and Reeves [88] addressed this problem and pro-
posed a fast restoration algorithm based on resampling the blurred image on
a lattice where the blur becomes spatially invariant, so that any deconvolu-
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4. Deblurring Noisy Radial-Blurred Images

tion technique (e.g., in Fourier domain) can be used. However, in their work,
the image noise was not considered explicitly. In principle, any method for
restoring images corrupted by spatially variant blur [69] could be used for ra-
dial blur. However, these methods result in heavy computational costs, while
the restoration of radial blurred images becomes simpler after performing ad-
equate image transformations. In fact, when the image is transformed in polar
coordinates w.r.t. to the blur centere, the blurring process having extentl can
be modeled by the multiplication against an upper triangular matrixBl.

The proposed restoration algorithm exploits Cartesian-to-polar and polar-
to-Cartesian coordinate transformations which enable a computationally af-
fordable blur inversion. Because a naive pseudo-inverse can amplify the noise
and artifacts, we exploit two separate forms of regularization in both polar
and Cartesian domains. In the polar domain, we invert the matrix Bl using a
Tikhonov regularized inverse. Then, we perform denoising in the Cartesian do-
main using a non-linear spatially adaptive filter, the Pointwise Shape-Adaptive
DCT [30, 28, 29], in order to exploit the image structures andattenuate both
noise and artifacts. For this filtering we derive approximate models of the noise
spectrum for the forward and backward coordinate transformations, in order to
drive the denoising in Cartesian image domain.

The rest of the chapter is organized as follows. Section 4.2 presents a model
for images corrupted by radial blur, Section 4.3 describes the blur inversion
stage in the ideal, noiseless case. The noise is introduced and handled in Sec-
tion 4.4, where the noise characteristics after the blur inversion are estimated
in order to be applied in the denoising algorithm. Finally, in Section 4.5 we
validate the proposed algorithm by experimental results.

4.2. Image Formation

Typically, a spatially variant blurred imagez is modeled by the following in-
tegral

z(x) =

∫

X
k(x, s)y(s)ds , x = (x1, x2) ∈ X (4.2)

wherey is the original image and the PSFk(x, ·) determines how the intensity
values of the original imagey contribute inz(x).

In the case of the radial blur, the PSF in each image pixelx is determined by
its position w.r.t. the blur centere = (e1, e2) and by the extent parameterl. The
blur centere is the pixel that corresponds to the image of the vanishing point of
camera translation direction, and thus it is the only pixel which is not blurred in
the radial blurred image. The blur extent parameterl > 0 determines how the
blur extent increases along each radial line, i.e. the blur extent at a pixelx is
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4.2. Image Formation

l |x−e|. The parameterl depends on the length of the camera displacement and
on the distance between the camera viewpoint and the planar scene (measured
along the camera translation direction).

Figure 4.4(a) shows an example of a radial blurred image: theblur is visibly
characterized by smears along the radial lines. The radial blurring process does
not mix together pixels lying on different radial lines and thus the radial blur
can be compactly formulated in the polar coordinates.

LetP andC be two continuous domain transforms that perform respectively
Cartesian-to-polar and polar-to-Cartesian image mappingw.r.t. the blur center
e:

Z(ρ, θ) = P(z)(ρ, θ) = z(e1 + ρ cos θ, e2 + ρ sin θ) , (4.3)

and

z(x1, x2) = C(Z)(x1, x2) = Z

(√
(x1 − e1)2 + (x2 − e2)2, arctan

(
x2 − e2

x1 − e1

))
.

(4.4)
Here and in what follows, capital letters indicate images expressed in the polar
coordinates, while small case letters indicate images in Cartesian coordinates.

Then, the radial blur can be written as

Z(ρ, θ) =

∫

R

1

ρ l
χ[ρ,ρ+lρ](r)Y (r, θ)dr , (4.5)

whereχ[a,b] is the characteristic function of the interval[a, b],

χ[a,b](r) =

{
1 a ≤ r ≤ b
0 else,

(4.6)

In practice we have to deal with discrete data, therefore we use also two dis-
crete domain coordinate transformations,P andC, which perform the Cartesian-
to-polar and the polar-to-Cartesian mapping, respectively. These transforma-
tions can be obtained by discretization of the continuous operators of Equa-
tions (4.3) and (4.4). The transformP maps the inputw × h image into an
r × τ output matrix. To obtain such an output with a rectangular domain in
polar coordinates, the transform implicitly pads the inputimage (e.g., by zero-
padding). Without loss of generality and for practical reasons, we assume that
the blur centere is at the image center, as this situation can be reproduced by
padding and shifting the image adequately.

The radial blurred image in the polar coordinatesZ can be expressed as a
matrix multiplication

Z = Bl Y , (4.7)
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0

0

r

r

1
il+1

1
il+1

1
il+1

1
il+1

il−bilc
il+1pi =

bilc + 2

Figure 4.3.: The blurring matrixBl is an upper triangularr × r matrix. The
upper part presents only a narrow band above the diagonal where
it is not null. The rows are defined in formula (4.11) and the non-
zero are shaded.

whereY = P(y) andBl is an upper triangular matrix, that depends on the
blur extent parameterl. The noise-free observations are given by

z = C (BlY ) . (4.8)

We emphasize that the above equations are discrete approximations of the con-
tinuous domain equations (4.3) - (4.5). Note also that bothP andC exploit data
interpolation in order to compute image values corresponding to non-integer
coordinates, hence it may happen that

C (P(z)) 6= z and P (C(Z)) 6= Z. (4.9)

4.2.1. The Blurring Matrix

The matrix multiplication between the image in polar coordinatesY and the
blurring matrixBl corresponds to a discretization of the operator of Equation
(4.5), which models the radial blurring process of extentl. Note that in polar
coordinates each column ofY containsr pixels lying on the same radial line,
thusBl is ar × r matrix

Bl =




p1

p2
...

pr−1

pr




, (4.10)
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4.3. Blur Inversion

where the row vectorspi = {pi,j}j=1,...,r , i = 1, . . . , r, are

pi =





1/(il + 1) i ≤ j ≤ bi + ilc
(il − bilc)/(il + 1) j = bi + il + 1c ,
0 else,

(4.11)

andb·c denotes the rounding to the nearest smaller or equal integer.
As shown in Figure 4.3,Bl is an upper triangular matrix and each rowpi

corresponds to an horizontal blur PSF, which, provided thatthe PSF support is
totally included within the matrix, has extentil + 1. These PSFs are exactly
the sub-pixel discretization of the functionχ of integral (4.5). Note that the
last rows ofBl have`1-norm smaller than1, because the supports of the cor-
responding PSFs lie partially outside of the image domain. In practice, this is
equivalent to zero-padding the image and producing the blurwith unrestricted
PSFs (hence having their norm equal to1). It results in synthetically blurred
images having borders fading to zero, as shown in Figure 4.4(a).

4.3. Blur Inversion

The blur inversion consist of estimating the original imagey from z, assum-
ing that the parameterse and l are known. The observation model presented
in Section 4.2 relies on two image transformations, these transformations are
used also for blur inversion. In polar coordinates the blur is a multiplication
against the blurring matrixBl (4.7). Therefore, a straightforward solution to
blur inversion consists of transforming the observationz in polar coordinates
w.r.t. e, i.e. Z = P(z) and by multiplying it against the inverse of blurring
matrix,B−1

l .
Even if matrixBl is definite positive, and thus invertible, the inversion of the

blur inevitably amplifies errors due imprecision in the modeling. Therefore we
replace the naive inverseB−1

l with the regularized Tikhonov inverse matrix

B̃l,
B̃l = (BT

l Bl + α2I)−1BT
l , (4.12)

whereα > 0 is a regularization parameter. The regularized inverse of the
blurred observation is then

zRI = C
(
B̃lP (z)

)
. (4.13)

Figure 4.4 shows the blur inversion for the blurred image depicted in Figure
4.4(a). In Figure 4.4(b) and Figure 4.4(c) we can see the inverse by multipli-
cation with the matrixB−1

l and with the matrixB̃l, respectively. Both images
show artifacts along some rows and columns, but these artifacts are stronger
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4. Deblurring Noisy Radial-Blurred Images

(a) Radial blurred image: the
blur centere is at the image
center andl = 0.25.

(b) Blur inversion with
naive inverseB−1

l , RMSE
= 11.84.

(c) Regularized inversezRI

via Tikhonov regularization
of B̃l (4.12), RMSE= 11.41.

Figure 4.4.: Blur inversion with naive inverse and Tikhonovregularized in-
verse.

in Figure 4.4(b) than in Figure 4.4(c). These artifacts are due to the rounding
errors in the coordinate transformationsP andC. The root mean square error
(RMSE) of the image restored with the naive inversion is11.84, while in the
case of Tikhonov regularization (α = 0.005) the RMSE is11.41. The regular-
ized inverse is able to reduce these artifacts and it is crucial for dealing with
image noise.

4.4. Noise and noise attenuation

For simplicity, we model the observation errors as an additive white Gaussian
noise (AWGN) term in the Cartesian domain. The observation equation is as
follows

z = C (BlY ) + η , (4.14)
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4.4. Noise and noise attenuation

(a) Radial blurred noisy im-
age: the blur centere cor-
responds to the image center,
l = 0.25, andσ = 0.004 ×

255. Noise is hardly percepti-
ble inz.

(b) The regularized inverse
zRI presents heavy noise,
RMSE=19.94.

(c) Final restored image, ob-
tained after Pointwise SA-
DCT filtering of the regu-
larized inverse zRI shown
in Figure 4.5(b): RMSE=
12.81.

Figure 4.5.: Algorithm performance on a radial blurred image z with noise.

whereη(·) ∼ N (0, σ2).

Figure 4.5 illustrates the blur inversion on a noisy image. The Gaussian
noise has been added to the blurred image according to Equation (4.14), with a
standard deviationσ = 0.004 × 255, which is a very low noise and almost not
perceptible in Figure 4.5(a). However, as one can clearly see in Figure 4.5(b),
in the regularized inversezRI the noise has been significantly amplified and
the restoration performance decreased (RMSE=19.94).

Note that the noise characteristics change significantly after the coordinate
transformations and the multiplication against the inverse of the blurring ma-
trix. Even when the noise inzRI is Gaussian distributed, which happens if
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4. Deblurring Noisy Radial-Blurred Images

P andC exploit linear interpolation, the noise may not be independent nor
identically distributed.

4.4.1. Image Restoration Algorithm

Our image restoration algorithm is based on a two step approach like many
state-of-the-art deconvolution algorithms [29, 33, 70, 46]. The first step is the
blur inversion. In the cited works, this consists of regularized deconvolution
in Fourier domain. The noise in the deconvolved image is Gaussian colored
noise and it is characterized by its power spectral density (PSD), which (up to
a σ2 scaling factor) is determined by the PSF. The second step is the removal
of the colored noise. This is performed by conventional filtering techniques,
such as transform-domain shrinkage [29, 33, 70]. In the cited works the noise
PSD is used for computing threshold for the shrinkage.

In our case, the blur inversion consists of multiplying the image in polar
domain against the matrix̃Bl. Because of the coordinate transformations and
because the blur is not convolutional, the noise inzRI cannot simply described
by a PSD. However, we treat the noise inzRI as colored Gaussian and we use
an approximate model for the noise PSD. The denoising is thenperformed by
the Pointwise Shape-Adaptive DCT (SA-DCT) filtering algorithm [28, 29, 30].
This algorithm had been used earlier for Gaussian colored noise removal in
deblurring [29] and inverse halftoning applications [17].

4.4.2. Noise PSD Modeling

Calculating the noise statistics inzRI is a demanding task asP andC trans-
form differently the image pixels, according to their location on the image
plane. Moreover, any analytical result would depend on the interpolation meth-
ods used inP andC. In what follows, we consider the transforms sequence

C
(
B̃lP (·)

)
(i.e. Cartesian-to-polar, blur inversion, and polar-to Cartesian) as

an input-output system and we study the noise statistics by aMonte Carlo ap-
proach. That is, we generaten independent realizations of standard Gaussian
white noiseηi, ηi(·) ∼ N (0, 1), i = 1, . . . , n, and, assuminge at the image

center, we process each of them with the input-output systemC
(
B̃lP (·)

)
.

More precisely, letηi be the system input,

η′i,l = C
(
B̃lP (ηi)

)
, i = 1, . . . , n, (4.15)

be the system output. In what follows, we restrict ourselvesto operatorsP and
C which are linear.
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4.4. Noise and noise attenuation

Figure 4.6.: The noise PSDN0.25. Its values have been computed using Equa-
tions (4.15) and (4.16).

The noise PSDNl is computed as the sample variance of the Fourier trans-
forms of then realizations ofη′i,l, i = 1, . . . , n, along each frequency:

Nl(ω) = var
{
F(η′i,l)(ω)

}
, ω ∈ Ω, (4.16)

whereF denotes the 2D Fourier transform andω represents the frequencies in
the Fourier domainΩ. We remark thatNl is computed fromn realizations of
noise with unitary variance. Whenever the actual noise has varianceσ2 6= 1,
the noise PSD needs to be scaled accordingly and becomesσ2Nl. Note also
that the computed PSD depends on the blur extentl.

By taking into account the PSD for the denoising, we implicitly treat the
noise inzRI as Gaussian colored noise. This may not necessarily hold, how-
ever this approximate noise description facilitates the application of the image
denoising algorithm. In practice, this pragmatic approachyields satisfactory
results from experimental evidence.

Figure 4.6 presents the noise PSDN0.25, obtained by invertingn = 3000
noise realizations with radial blur of extentl = 0.25. One can see that de-
spite obvious symmetries within the PSD, the middle horizontal/vertical cross-
sections are considerably different from the two diagonal ones. These cross-
sections, which we denotevl (horizonal/vertical) anddl (diagonals) are shown
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4. Deblurring Noisy Radial-Blurred Images

Figure 4.7.: The functionS0.25 (in red), approximatingN0.25 of Figure 4.6 (in
yellow).

in Figure 4.9.
Since the noise PSD varies depending onl, we repeat the Monte Carlo pro-

cedure considering several different values of the blur extent parameter. Fur-
thermore, for practical purposes, we replace the sampledNl with an approxi-
mated functionSl generated by convex interpolation of the horizontal/vertical
and diagonal cross-sectionsvl anddl of Nl. In our simulations the blur extents
arel = 1/120, . . . , 110/120. Figure 4.10 illustrates the cross-sectionsvl and
dl when varying the blur extentl.

Finally Sl, the function approximatingNl, is defined as

Sl(ω) = cos2(2β)Sv
l (ω) + sin2(2β)Sd

l (ω), ω ∈ Ω , (4.17)

whereβ = arctan(ω2

ω1
) is the angular component of the frequencyω andSv

l

andSd
l are surfaces of revolution generated rotating around the origin vl and

dl, respectively. Figures 4.8(a) and 4.8(b) show the surfacesSv
0.25 andSd

0.25,
respectively, while Figure 4.8(c) showsS0.25 computed according to Equation
(4.17). The quality of the approximation ofS0.25 to N0.25 is illustrated in
Figure 4.7.

Figure 4.5(c) illustrates the image restoration performance of proposed ap-
proach whenS0.25 is used as the noise PSD for the Pointwise SA-DCT denois-
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4.5. Experiments

(a) SurfaceSv
0.25. (b) SurfaceSd

0.25.

(c) SurfaceS0.25.

Figure 4.8.: Top: examples of surfaces of revolutionSv
l andSd

l generated from
the cross-sectionsvl and dl. Bottom: Sl, approximation of the
noise PSDNl, obtained as the convex combination ofSv

l andSd
l

defined by Equation (4.17).

ing. The RMSE of the restored image is12.81.

4.5. Experiments

We present simulation results obtained for a set of four common grayscale test
images of size 256×256. As in Equation (4.14), the blurred noisy observation
are generated from the original imagey as

z = C (BlP(y)) + η . (4.18)

We use discrete transformsP andC based on bilinear interpolation. Let us
remark that both these transforms introduce errors in the observationz, seri-
ously impairing the restoration quality even in the noise free case. The size of
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(a) The valuesv0.25 corresponding to the
PSD values on the vertical axis ofΩ.
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(b) The valuesd0.25 corresponding to the
PSD values on the diagonal ofΩ.

Figure 4.9.: Examples ofvl anddl generating the surfacesSv
l andSd

l .

the polar domain is determined as in the work by Ribaricet al. [77] on images
blurred because of camera rotation. In particular, we user = maxx∈X (|x−e|)
andτ =

⌈
2π/ arcsin

(√
2/r

)⌉
, whered·e is the rounding to the nearest larger

or equal integer. We limited our tests to blur having the blurcentere at the
image center: whenevere is in a different location on the image plane, in order
to apply the restoration algorithm, the image has to be accordingly padded and
shifted.

According to a common practice when testing deblurring algorithms, we
add noise with a small variance to images where the blur extent is large and
noise with a higher variance to images where the blur extent is small. Thus, we
mimic the situation where images are acquired with different exposure times
during the same camera motion. When the camera undergoes a fixed transla-
tion, images acquired with a long exposure are typically heavily blurred, while
the noise affecting these images is small. On the contrary, images acquired
with a short exposure, show weaker blur and stronger noise. Table 4.1 shows
the pairs blur extent/noise standard deviation used for generating the blurred
noisy observations. For all these cases, the Tikhonov regularization parameter,
α (4.12), is fixed toα = 0.005.

Table 4.2 shows the RMSE of the restored images w.r.t. the original image.
The performance of the noise attenuation are illustrated inFigure 9, while Fig-
ures 4.12 and 4.13 shows some of the images, before and after restoration. As
one may expect, the algorithm performance decreases with the increase either
of the blur extentl or of the noise standard deviation. The latter appears to have
a more substantial impact on the quality of the restored image. In particular,
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(a) The noise PSD values at frequencies on
the vertical axis ofΩ when varying the pa-
rameterl = 1/120, . . . , 110/120.

(b) The noise PSD values at frequencies on
the diagonals ofΩ when varying the param-
eterl = 1/120, . . . , 110/120.

Figure 4.10.: PSD values used for computingSl, with l =
1/120, . . . , 110/120.

the RMSE corresponding to Exp.6, which is the noise-free experiment, is al-
ways significantly lower than the RMSE in Exp.5, where the observations are
generated with the same blur but withσ = 0.002×255. Finally, let us observe
that the restored images of Figures 4.12 and 4.13 show some artifacts along the
radial lines; these are not due to noise but rather to interpolation errors intro-
duced by the coordinate transformationsP andC: indeed such artifacts appear
also in the noise-free experiments.

Table 4.3 gives the execution times of each separate stage ofthe algorithm,
applied on a 256× 256 image (Cameraman). The times correspond to our Mat-
lab implementation running on a computer with AMD 64 1.81-GHz processor.
As one can see from the Table 4.3, the impact of coordinate transformations
on the overall execution time is of negligible, as nearly allthe time is actually
taken by the Pointwise SA-DCT denoising step.

4.6. Conclusions

In this chapter we presented a novel restoration algorithm for noisy radial
blurred images. The restoration algorithm includes two main steps: the blur
inversion in the polar domain, and the noise removal in the Cartesian domain.
The denoising part consists of an adaptation of a spatially adaptive transform-
based denoising method, namely the Pointwise SA-DCT filter [30, 29].

Experimental results with synthetically generated observations show that
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Experiment 60 l σ/255

Exp.1 5 0.006
Exp.2 10 0.004
Exp.3 15 0.004
Exp.4 20 0.002
Exp.5 25 0.002
Exp.6 25 0

Table 4.1.: Experimental settings: blur extent and noise standard deviation val-
ues used for testing the proposed algorithm. The third row (in bold)
shows the parameters used in the examples of Figures 4.4 and 4.5.

Exp.1 Exp.2 Exp.3 Exp.4 Exp.5 Exp.6

Cameraman 11.27 11.98 12.82 12.24 12.52 12.33
House 6.93 6.93 7.33 6.50 6.63 6.94
Aerial 11.13 11.43 12.34 10.69 11.09 9.43

Peppers 8.79 8.81 9.35 8.46 8.63 8.42

Table 4.2.: Root mean squared error (RMSE) of each restored image in the ex-
perimental settings of Table 4.1. Examples of the restoration qual-
ity are shown in Figures 4.12 and 4.13.

the denoising step improves significantly the restoration performance. At the
same time, it emerges the need of an accurate model of noise statistics after
both blur inversion and coordinate transformations. In thefuture we will in-
vestigate algorithms for estimatinge andl from a given blurred image, in order
to combine the estimation and the restoration procedures together into a blind
deblurring algorithm.
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Algorithm part time (sec)

Cartesian-to-polar 0.28
Blur inversion 0.07

Polar-to-Cartesian 0.12
SA-DCT filtering 4.91

Table 4.3.: Execution times for a 256× 256 test image on a AMD 64 1.81-
GHz.
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Figure 4.11.: Experiment 1: noise attenuation. The first column shows the
observations, the second column the corresponding regularized
inverseszRI , and the third column shows the restored images.
Restoration performance are listed in Table 4.2.
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Figure 4.12.: Blurred and noisy images (first and third column) and restored
images (second and forth column) obtained with the proposed
method. See Table 4.1 for parameters used in the experiments
and Table 4.2 for restoration performance in terms of RSME.
Row 1: “Cameraman” experiments 2 and 6. Row 2: “ House ”
experiments 2 and 3. Row 3: “House” experiments 4 and 5.
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Figure 4.13.: Blurred and noisy images (first and third column) and restored
images (second and forth column) obtained with the proposed
method. See Table 4.1 for parameters used in the experiments
and Table 4.2 for restoration performance in terms of RSME.
Row 4: “Peppers” experiments 3 and 4. Row 5: “Peppers” ex-
periments 5 and 6. Row 6: “Aerial” experiments 2 and 3. Row 7:
“Aerial” experiments 4 and 5.
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This chapter discusses the capabilities of estimating the 3D scene structure
from a single motion blurred image. We present an algorithm for estimating
the scene depth from a single radial blurred image, that do not require any user
interaction. While we are not able to cope with more general camera motions,
we focus on radial blur and we discuss the shortcomings and the advantages of
estimating scene depth from motion blur.

We also briefly describe some methods that combines priors onthe image
content with motion blur analysis, in order to cope with morecomplicated 3D
motion.

5.1. Structure From Motion Blur

Several techniques in literature have been proposed for estimating the 3D scene
structure by exploiting blur. In some cases, the image blur can be directly re-
lated to the scene depth and therefore, when properly analyzed, the blur allows
to infer the 3D scene.

There are several methods in literature concerning the depth estimation from
out of focus blur: the image focus depends on the scene depth and thus local
estimates of focus blur can be used to infer the scene depth. These methods
are known asshape from defocusandshape from focus. Shape from defocus
methods infer the scene depth given a set of defocused imagesof the same
scene. In shape from focus methods the camera focus is actively changed
in order to estimate the scene depth. In turn, shape from defocus methods
are further classified in active and passive methods according to the use of
structured light or not. See [23] for an exhaustive review ondepth estimation
methods from image blur. Recently, a shape from defocus method from a
single image acquired with a coded aperture camera has been proposed [53].
This method performs also the restoration of out of focus images, where blur
varies according to the scene depth. Typically depth from defocus methods
exploit multiple images.

Motion blur is determined both by the 3D camera motion and thescene
structure, therefore can be also used for 3D reconstruction. A motion blurred



5. Structure From Motion Blur

image is obtained by the integration of severalsub-imagesyt, each one cap-
tured by the camera having the viewpoint in a different position, see Equation
(3.1),

z(x) =

∫ T

0
yt(x)dt + η(x), x = (x1, x2) , (5.1)

where the sub-imagesy0 andyT form a pair of views, corresponding to the
time instants where the camera shutter opens and closes, respectively.

Let us assume that the camera intrinsic parameters are known, while the
extrinsic parameters are not, and discuss the issue of reconstructing the scene
from a single motion blurred image. If we are able to estimatethe trajectories
followed by some pixel on the image plane during the exposure, and if we can
associate to these trajectories matching betweeny0 andyT , we can reproduce
a stereo vision system from a single motion blurred image.

Let γi be the trajectory associated with the PSF atxi. Examples of these
trajectories are the corner displacement vectors presented in Chapter 1. The
basic idea is to estimate the pairs(γ(0), γ(T )), formed by the extremities of
γi, and to associate them the correspondences one would obtainby feature
matching between the sub-imagesy0 andyT . These allow us to reconstruct
the 3D camera motion and the scene depth via standard epipolar geometry
techniques [36].

The following problems are encountered when trying to extract stereo vision
from a single blurred image:

Trajectories are not straight lines. While the correspondences determined
from two focused views are oriented segments (i.e. vectors,optical flow
descriptors), the blur trajectories may not be straight segments. The es-
timation of trajectories which are far from being straight lines could not
be trivial. Even assuming a short exposure time and fast camera motion
may not guarantee rectilinear trajectories. In fact, blur produced by cam-
era rotation shows smears which are arcs of conic sections, as described
in Chapter 6, which makes the estimation of correspondence pairs more
difficult.

Correspondence Pairs Orientation. Once a blur trajectoryγ has been
correctly estimated, it is not possible to determine which one of the
end pointsγ(0) andγ(T ), belongs toy0 and which one belongs toyT .
In fact, there is no way to estimate from the resulting blurred image
which is the orientation of the underlying motion, as already discussed
in Section 1.8. Unluckily, 3D reconstruction techniques based on fea-
ture matching in image pairs require the orientations of thedetermined
correspondences, which are always known (up to a swap of all the ori-
entations) as features of each pair are taken from a different image.
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a b c

Figure 5.1.: Texture in figuresa andb show high self-similarity thus matching
feature betweena andb may be complicated. The correspondence
problem does not hold in when analyzing blurred smearsc.

A solution could be taking into account the two orientationsfor each
correspondence and, enforcing additional constraints, such as those de-
riving from rigidity of camera motion, use the Ransac algorithm [27] to
determine the correct orientations.

Although these shortcomings, estimating the correspondence pairs from blur
presents some advantages w.r.t. to feature matching based algorithm. Let us
consider for example two frames of a moving object containing repetitive tex-
tures, as presented in Figure 5.1. In this case, because of high self-similarity
of the image content, it is difficult to correctly estimate matches between the
two frames, when no further assumptions can be made on the matches. From a
picture, captured with a longer camera exposure of the same moving scene, it
could be easier to estimate the correspondence pairs by analyzing blur in image
patches, although the orientation ambiguity still holds. Roughly speaking, in
some cases the estimation of correspondence pairs from a blurred image does
not present the matching problem at the cost of losing information about pairs
orientation.

Typically, there are few reliable correspondence pairs estimates that can be
obtained from a blurred image. Their number typically decreases when the blur
smears are not straight line segments. The 3D reconstruction from a single
image can be then addressed assuming that there are several blurred images
(possibly in a sequence), and enforcing some prior on the scene or on the
original image, or possibly assuming that a noisy image of the same scene is
also available. These approaches however have not been investigated in this
thesis work.

We focus on depth reconstruction from a single blurred imageand we en-
force some constraints on the camera motion. We restrict to radially blurred
images, i.e. images acquired from a purely translating camera, as discussed in
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5. Structure From Motion Blur

Chapter 3. Depth estimation from radially blurred images issimpler than mo-
tion blurred images, as the correspondence pairs orientation can be neglected;
moreover the blur smears are straight lines.

A motion blurred image acquired during a pure rotation with the camera
viewpoint lying on the rotation axis, does not allow to inferthe scene depth
as the camera viewpoint does not move, and thus multiple viewreconstruction
can no be done (see Chapter 6).

5.2. Depth Estimation From A Radial Blurred
Image

Let assume the camera is purely translating, as illustratedin Figure 3.1. In this
case the local blur estimates can be associated to the correspondences between
imagesy0 andyT . In fact, from the constraints on the camera motion ( [36]
and Chapter 3), it follows that the matchings betweeny0 andyT are directed
and oriented toward the epipole. Thus, also the local blur estimates orientation
can be inferred and the blur estimates are equivalent to the feature matches.
Moreover, the blur estimates obtained using one of the methods presented in
Chapter 3 are reliable as the smears are straight line segments.

Figure 5.2(a) shows a synthetic image produced with a ray-tracer software
Pov-Ray [41] by averaging frames rendered from a translating camera. These
images have been rendered according to the procedure described in Section
3.5.

(a) A Synthetic Radially blurred im-
age, used for estimating depth..

(b) Epipole estimation using blur anal-
ysis at corners

The algorithm outline can be represented in three steps

Epipole Estimation. This is performed exploiting the algorithm presented
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in Chapter 3 or the epipole location on the image plane can possibly be
assumed known in specific applications.

Correspondence Pairs Estimation. Once the epipole has been estimated
(for example by exploiting corner regions), the blur direction is deter-
mined at any image pixel. Then, also blurred edge areas can beused
for determining correspondence pairs(γ(0), γ(T )). We randomly select
pixels belonging to theΓ masks described in Section 2.1, and estimate
the blur extents within a region elongated along the blur direction of
these pixels estimated using Equation (1.8), as only one parameter is
unknown. Other techniques can be used such as autocorrelation-based
like in [93] or techniques based on analysis of profiles alongblur di-
rections [8]. Note that the estimated correspondence pairsare indeed
vectors, as their orientation, up to a global swap, is determined by the
epipole. Figure 5.2 shows these vectors. Each green point represents the
position of a pixel in the sub-imagey0, whereas the corresponding blue
point identifies its position inyT .

Figure 5.2.: Estimated correspondence pairs from Figure 5.2(a). Green and
Blue points indicate the correspondence.

Depth Reconstruction By assuming a still camera and a translating object,
the 3D scene can be reconstructed with a triangulation [36].Figure 5.3
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V

π

Figure 5.3.: Estimated Depth from Figure 5.2(a).V is the camera viewpoint
andπ the image plane. Error was5% the ground truth.

represents the depth estimates. Two planes are fitted between two clouds
of points, each one represents the initial and final positionof the square
plane in the scene. Assuming a static camera, the initial andfinal po-
sitions of the scene plane can be reconstructed. Figure 5.4 shows the
depth map estimated from Figure 5.2.

Depth estimates are far from being accurate as the mean absolute error of
the point clouds is3% of the true depth for the initial position and5% of the
true depth for the final position. This is mostly due to the fact that there is no a
significant change in subimagesy0 andyT as the perspective is the same. Note
that the same procedure works also whene → ∞, as the depth influences at
the same way the blur extents, while leaving blur direction constant.

5.3. Sphere Full 3D Motion Reconstruction From
a Single Blurred Image

Whenever the scene content is known (even partially), it is possible to design
custom algorithms in order to estimate the scene depth or motion. In this
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V

π

Figure 5.4.: Estimated Depth from Figure 5.2(a). Assuming astatic camera the
initial and final position of the scene plane can be reconstructed.
V is the camera viewpoint andπ the image plane. Error was3%
and5% of the ground truth value for the closest and futher position
of the scene plane, respectively.

section we outline algorithms targeted for images depicting moving sphere [8]
and [9]. These algorithms have been devised for high resolution images of
sports events depicting a moving ball. These algorithms arealso based on the
image formation model of Equation 5.1.

A sphere contour is projected into an ellipse which allows, up to a scale
factor, to reconstruct the 3D sphere position. Typically the scale factor is fixed
by means of the known ball radius. If blur is correctly handled the 3D sphere
position and translation can be estimated directly from a single blurred image.

We assume that the ball is monochromatic and that it is movingon a monochro-
matic background. This situation corresponds to the transparency (or the alpha
matte) of the moving ball and gives, in each image pixel, the percentage of
exposure time it has been covered by the ball. Typically the transparency map
is assumed known [44, 72], as this can be estimated thanks to user interac-
tion [55, 79, 83, 90] or thanks to the knowledge of the background [31, 66, 82].

The ball 3D displacement is estimated from the transparencymap by fitting
two ellipsesc1 and c2, representing ball position at the opening and at the
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closure of the shutter, see Figure 5.5.

c1
c1

c1

c1

c2c2

c2

c2

Figure 5.5.: The ellipsesc1 andc2 represent the ball at the opening and closure
of the shutter. From these ellipses, it is possible thus to reconstruct
the initial and final position of the sphere in the 3D scene.

The analytical expressions ofc1 andc2 are determined by fitting two ellipses
to points of Figure 5.5, which are determined by analyzing 1Dimage profiles
of the blurred ball with the techniques presented in [8], seeFigure 5.6. The
profile analysis procedure corresponds to the estimation ofcorrespondence
pairs(γ(0), γ(T )) of Section 5.1. Figure 5.7 shows algorithm performances
on camera images.

Once the 3D ball displacement is known it is possible to estimate the ball
rotation axis and the spin velocity [9]. The blur on image regions depicting the
ball surface is analyzed and, exploiting geometrical constraints deriving from
sphere motion, it is possible to estimate the 3D position of the rotation axis.
For a complete description of the algorithm, please refer to[9]. Figure 5.8
shows rotation axis estimated from camera images.
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Figure 5.6.: Procedure used for estimating points of ellipses c1 andc2, for a
detailed description see [8].

Figure 5.7.: Example of Algorithm [8] performances on camera images.

Figure 5.8.: Example all rotation axis estimation: [9] performances on camera
images.
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6. Estimating Camera Rotation
Parameters from a Blurred
Image

A fast rotation of the camera during the image acquisition results in a blurred
image, which typically shows curved smears. We propose a novel algorithm
for estimating both the camera rotation axis and the camera angular speed from
a single blurred image. The algorithm is based on local analysis of the blur
smears. Contrary to the existing methods, we treat the more general case where
the rotation axis is not necessarily orthogonal to the imageplane, taking into
account the perspective effects that affect the smears.

The algorithm is validated in experiments with synthetic and camera blurred
images, providing accurate estimates.

6.1. Rotational Blur Estimation

This paper concerns images corrupted by blur due to camera rotation or to a
rotating object in the scene. When the camera or the capturedobject are purely
rotating, the image blur is determined by only two factors: the camera rotation
axis a and its angular speedω. We present a novel algorithm for estimating
botha andω, by analyzing the blur in a single image.

When the camera rotation axis and the angular speed are known, the rota-
tionally blurred image can be restored by image coordinatestransformation
and blur inversion. In broad terms, the image is transformedfrom Cartesian to
polar coordinates so that the blur becomes space invariant and can be inverted
using a deconvolution based algorithm. Estimating correctly the camera rota-
tion axis and its angular speed is therefore crucial for restoring these images
as small errors in the polar transformation are amplified by the blur inversion.
Moreover, estimatinga andω from a single image can be also of interest for
robotic application as these describe the camera ego-motion.

Figure 6.1 shows an image acquired during camera rotation. The shapes
of the blur smears show that the blur is space variant. Typically, these are
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Figure 6.1.: A rotationally blurred image.

assumed arcs of circumferences, all having the same center.However, this ap-
proach neglects the perspective effects that occur when therotation axis is not
orthogonal to the image plane. The proposed algorithm estimates the camera
rotation axis in the most general case when it is not necessarily orthogonal
to the image plane. To the best of our knowledge this issue hasnever been
correctly addressed before.

The early works concerning rotational blur were focused on blur modeling
and image restoration. Sawchuk [80], addressing the issue of image restora-
tion in case of spatially variant blur, described a model forthe rotational blur.
A restoration algorithm specific for rotationally blurred images has been pro-
posed in [84]. Recently, Uçaret al. [87] have proposed a fast and parallel
implementation for restoration of space variant blurred images, which is tested
also on rotational blurred images. All these methods assumethat the cam-
era rotation axis is perpendicular to the image plane and that both the angular
speed and the intersection between the rotation axis and theimage plane are
known. A different issue has been addressed in [77], which presents a study
on the transformation from the image plane to a polar lattice. Rekleitis [75]
provides an algorithm to compute the optical flow from a blurred image, using
image tessellation and analysing the Fourier spectrum in small regions where
the blur is treated as space invariant. This algorithm has been tested also on
rotationally blurred images.
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Besides the early works concerning rotational blur modeling and restoration,
Hong and Zhang [39] addressed the issue of both rotational blur estimation
and removal. Their method is based on an image segmentation along circum-
ferences to estimate the blur and restore the image separately in these subsets.
Recently, an algorithm for estimating the camera rotation from a single blurred
image has been proposed [51]. The algorithm is meant as a visual gyroscope
and it is targeted to an efficient implementation. In particular, this algorithm
requires edges in the scene.

Jia [44] proposed an algorithm for estimating and removing the blur due
to an object rotation in a single image, taking into account also a translation
component. However, this method require the user to mark theend point of
blur smears at some pixels and to separate background from foreground in
order to estimate thetransparency mapof the blurred object [55].

All the existing methods, concerning both image restoration and blur es-
timation, assume that the blur smears are arcs of circumferences having the
same center. Therefore these methods are accurate only on images where the
rotation axis is orthogonal to the image plane.

We present an algorithm for estimating the camera rotation axis and angular
speed in the most general case, where the rotation axis is notorthogonal to
the image plane. The proposed algorithm is mostly targetingto high accuracy
rather than efficiency and does not require the presence of edges in the scene.

6.2. Problem Formulation

We propose an algorithm for estimating the camera rotation axis a and its an-
gular speedω by analyzing a single blurred image acquired during camera
rotation. We assume that the camera is calibrated, the rotation axisa passes
through its viewpointV , i.e. V ∈ a, andw is constant. Figure 6.2.a illus-
trates the situation typically considered in literature, where the rotation axis
is perpendicular to image planeπ. The principal pointP and the intersection
between the image plane and the rotation axisC = π ∩ a then coincide. Anal-
ogous blur is obtained whena ⊥ π andV /∈ a, but the capture scene is planar
and parallel toπ [77].

In this work we consider the most general situation, illustrated in Figure
6.2.b, wherea is not orthogonal toπ and the camera viewpointV ∈ a.

6.2.1. Image Blur

A blurring path is defined as the set of image pixels that a viewing ray inter-
sects during a camera rotation of2π around axisa. Figure 6.2 illustrates ex-
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V V

a b
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π π

πc

C ≡ P

C
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a

Figure 6.2.: (a) Blurred image formation,a ⊥ π. Blurring paths are circumfer-
ences. (b) Blurred image formation,a is not orthogonal to image
planeπ andV ∈ a. Blurring paths are conic sections on the image
plane, while they are circular when projected on an ideal spherical
sensor and on a plane perpendicular to the rotation axis.

amples of blurring paths. In rotationally blurred images every pixel is merged
with neighboring pixels from the same blurring path, see Figure 6.1. The blur
is therefore space variant and cannot be represented as a linear shift invari-
ant system. We therefore model the rotational blur by an operator K on the
original imagey so that the observed (blurred and noisy) imagez is [4]

z(x) = K
(
y
)
(x) + η(x) x = (x1, x2) ∈ X , (6.1)

wherex are the coordinates in the discrete image domainX andη ∼ N(0, σ2
η)

is white Gaussian noise. The blur operatorK can be written as

K
(
y
)
(x) =

∫

X
k(x, s)y(s)ds . (6.2)

wherek(x, •) is a kernel

k(x, •) = Aθ,e(•) , (6.3)

andAθ,e corresponds to the point spread function (PSF) atx. Aθ,e is an arc of
the blurring path atx, i.e. it is an arc of conic section having tangent line with
directionθ and arc lengthe. The parametersθ, e varies between image pixels
according to the rotation axisa. Other blurring effects, such as the out of focus
blur, lenses aberrations and camera shake, are not considered.
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6.3. The Algorithm

The proposed algorithm consist of three steps: in the first step the lines tangent
to blurring paths at some image pixels are estimated (Section 6.3.1). In the
second step, these lines are used in a voting procedure for estimating the rota-
tion axisa (Sections 6.3.2 and 6.3.3). The third step consists of the estimation
of the angular speedω (Section 6.3.4).

6.3.1. Blur Tangent Direction Estimation

Image blur is analyzed withinN image regions taken around selected pixels
{xi}i=1,..,N . There are no particular requirements in selecting{xi}i=1,..,N ,
however smooth areas should be avoided, while covering uniformly the image.
Therefore we take the local maxima of the Harris corner measure [35], or
whenever these do not cover uniformly the image, we take{xi}i=1,..,N on
a regular grid.

Blur is analyzed using the approach proposed by Yitzhakyet al [94] for esti-
mating the direction of blur “smears” by means of directional derivative filters.
This method, proposed for space invariant blurs with PSF having "rectilinear"
support, assumes the image isotropic. The blur directionθ̂ is estimated as the
direction of the derivative filterdθ having minimum`1 norm response

θ̂ = arg min
θ∈[0,π]

(
||(dθ ~ z)||1

)
, (6.4)

where||(dθ ~ z)||1 =
∑

x∈X |(dθ ~ z)(x)|, the`1 norm.
Equation (6.4) is motivated by the fact that the blur removesall the details

and attenuates edges ofy along blur direction. Therefore the blur direction can
be determined by the directional derivative filter having minimum energy. This
method cannot be directly applied to rotationally blurred images, as the blur
is not space invariant because in every pixel the circumference approximating
the blurring path (i.e the PSF) changes.

At xi, the center of each regionUi, we estimate the directionθi of the line
li tangent to the blurring path inxi, as

θi = arg min
θ∈[0,π]

∑

xj∈Ui

wj

(
(dθ ~ z)(xj)

)2
. (6.5)

wherew is a window function rotationally symmetric with respect tothe cen-
ter. By using Gaussian distributed weights, it is possible to reduce the influ-
ence of pixels in Equation (6.5) with the distance fromxi. We adopted the
3 tap derivative filters presented in [21] for blur analysis in Equation (6.5).
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Figure 6.3.: Rotationally blurred image and plots of directional derivatives en-
ergy in four regions.

These filters have been selected as they provide good accuracy and as they are
separable. Experimentally the`2 norm gave better results than the`1 norm.

Figures 6.3 shows
∑

xj∈Ui
wj

(
(dθ ~ z)(xj)

)2
as a function ofθ ∈ [0, π]

within regions of the blurred image containing isotropic textures or edges. Re-
gions containing edges, as pointed out in [51], can be exploited for estimating
the camera rotation: inz only edges tangent to the blurring paths are preserved.
Formula (6.5) gives accurate results also whenUi contains a blurred edge, as
the direction minimizing the derivatives energy is the edgedirection, i.e the
blur tangent direction, see Figure 6.4

The directions tangent to the blurring paths, estimated with formula (6.5),
are therefore reliable also in regions containing blurred edges.

6.3.2. Voting Procedure for Circular Blurring Paths

When the camera optical axis and the rotation axisa coincide, the blurring
paths are circumferences centered inC = π ∩ a, see Figure 6.2.a. Circular
blurring paths are obtained also whena is parallel to the optical axis and the
scene is planar and parallel to the image plane [77, 39]. In this caseC can be
determined by a Generalized Hough Transform [1].

The Generalized Hough Transform is a procedure for computing robust so-
lution to a problem, given some input data. The procedure is developed by
means of a parameters spaceP , which is the set of all the possible solutions.
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a b

CC

Figure 6.4.: (a) Two straight segments are rotated aroundC (b) In the blurred
image, the part of the segments which are tangent to the blurring
paths are preserved, while the others are lost (in those directed
along radial lines).

A vote is assigned to every parameter that satisfy a datum andthen summed to
the votes coming from the other data. After having considered all the data, the
parameter which received the highest vote is taken as a solution.

In our caseP is a discrete grid of all the possible location forC ∈ π and
data are the pairs(xi, θi) i = 1, .., N . Note thatC could be outside of the
image gridX. Each data(xi, θi) identifies a lineli, the line tangent to the
blurring path atxi. The set of all the possible rotation centersC, given the line
li, is the line perpendicular toli and passing throughxi.

Consider the root mean square error of eachθi,

σi =
√

E[(θi − θ∗i )
2] (6.6)

whereθ∗i represents the true tangent blur direction atxi andE[•] the mathe-
matical expectation. Since we cannot directly computeσi, we approximate it
with an indirect measurement: for example considering the amplitude of the
area nearθi in the energy function minimized in (6.5) or consideringσi pro-
portional toση (6.1). Noise standard deviation is estimated using [20]. Given
a datum(xi, θi), we assign a full vote to all the exact solutions and we spread
smaller votes to the neighboring parameters, according to the errors inθi.

Let nowp = (p1, p2) represent a coordinate system in the parameters space
and assumeθi = 0 andxi = pi = (0, 0). Let now model the vote spread
assuming that along the linep1 = 1 the errors are distributed asσi

√
2π ·

N(0, σi). We model the vote spread so that along linep1 = k, the votes are
still Gaussian distributed with a full vote at the exact solution (k, 0) and for
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p1

p2

1 k

Figure 6.5.: Weight function used for the votes spread.

neighboring parameters the votes depend only on the angulardistance fromθi,
see Figure 6.5. Therefore the following weight function is used for distributing
the votes in the parameter space (whenxi = pi = (0, 0) andθi = 0),

vi(p1, p2) = exp

[
− p2

2

1 + p2
1σ

2
i

]
, (6.7)

The votes weight functionvi, associated to other data(xi, θi), correspond to
Equation (6.7) opportunely rotated and translated. When all pairs(xi, θi) i =
1, .., N have been considered, the parameter that received the highest vote is
taken as the solution, i.e.

p̂ = arg max
p∈P

V(p) , being V(p) =

N∑

i=1

vi(p) . (6.8)

The coordinates ofC = π ∩ a are determined from̂p.
Figure 6.6 illustrates the voting procedure on a synthetically blurred test

image.

6.3.3. Conic Section Blurring Paths

Assuming circular blurring paths reduces the complexity load but gives inac-
curate solutions whenevera is not perpendicular toπ. We present an algorithm
for estimatinga andω whenV ∈ a anda is in a general position w.r.t.π. In
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a

b c

Figure 6.6.: (a) Rotationally blurred image with some blur tangent direction
estimates. (b) Votes in the parameter space, (c) votes contours

particular, if we callπC a plane perpendicular toa, πC is obtained by two ro-
tations ofα andβ from π. We do not considerV /∈ a as in this case the blur
would depend on the scene depth.

Votes in the parameters space illustrates what happens if circular blurring
paths are assumed whena is not orthogonal toπ. Figure 6.7.a shows a blurred
image produced when the plane orthogonal toa forms anglesα∗ = 45◦ and
β∗ = 0◦ with π. If we treat the blurring paths as circumferences, the votesin
the parameters space do not point out a clear solution, as shown in Figure 6.7.b
and 6.7.c.

Directionsθi obtained from (6.5) represent the blurring paths tangent direc-
tion, even when the blurring paths are conic sections. But the blurring paths
themselves are not circumferences, thus lines perpendicular to these tangent
lines do not cross at the same point.

From basic 3D geometry considerations, and as pointed out in[51], it fol-
lows that the blurring paths are circumferences on an ideal spherical sensor
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Figure 6.7.: (a) Rotationally blurred image with rotation axis α∗ = 45◦, β∗ =
0◦. (b) Votes assuming circular blurring paths, (c) votes contours.
(d) Votes obtained transforming the data withα̂ = 45◦, β̂ = 0◦, (e)
votes contours. The maximum vote in (d) is 33% higher than the
maximum vote in (b). This is due to the fact that transformingthe
data withM45,0 the blurring paths become circumferences having
the same center.

S, Figure 6.2.b. Then, if we project the image fromπ on S surface, the blur-
ring paths become circumferences. Each of these circumferences belongs to a
plane and all these planes have the same normal: the rotationaxisa. Let now
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consider one of these planes,πC , tangent to the sphere. The projections of the
blurring paths onπC are circumferences, Figure 6.2.b.

The planeπ and the planeπC are related by a projective transformation
determined by two parameters, namely(α, β), the angles between the two
planes. Define the mapMα,β : π 7→ πα,β as the projection fromV betweenπ
andπα,β, which is the plane tangent toS, forming angles(α, β) with π [78].
We search for(α, β) that project the blurring paths into circumferences, by
modifying the voting procedure of Section 6.3.2.

There is no need to transform the whole image withMα,β as eachli, the line
tangent to the blurring path atxi, can be directly mapped viaMα,β. Let vα,β

i

be the weight function (6.7) associated to data(xi, θi) i = 1, .., N mapped
via Mα,β. The parameters pair identifying the planeπC is estimated as

(α̂, β̂) = arg max
α,β

Vα,β(p̂α,β), (6.9)

where

p̂α,β = arg max
p∈P

Vα,β(p) , Vα,β(p) =
N∑

i=1

vα,β
i (p) . (6.10)

Figure 6.7.d and 6.7.e represent the votes in case the data have been trans-
formed according to the correctly estimated parametersα̂ = 45◦, β̂ = 0◦.
These votes are much more concentrated than votes in Figure 6.7.b and 6.7.c.

Onceα̂ andβ̂ have been estimated, the camera rotation axisa is determined
and it is possible to map the imagez to Mα̂,β̂(z). As said before, inMα̂,β̂(z)

the blurring paths are circumferences centered atMα̂,β̂(C) ≡ πC ∩ a and it
is therefore possible to transformMα̂,β̂(z) in polar coordinates for estimating
the angular speed.

6.3.4. Angular Speed Estimation

OnceC has been determined, it is possible to transformMα̂,β̂(z) (the image
projected onπC) on a polar lattice(ρ, θ) w.r.t to Mα̂,β̂(C) [77]. On the polar
lattice, the blur is space invariant with the PSF directed along linesρ = const.

We estimate the PSF extent using the method proposed by Yitzhaky [94]
as this can be applied to a restricted image area, avoiding lines which contain
several pixels of padding introduced by the polar transformation. The PSF
extent, opportunely scaled by the factor due to the polar lattice resolution,
divided by the exposure time gives the camera angular speed.
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6.4. Implementation Details

We adopted the 3 tap derivative filters presented in [21] for blur analysis in
equation (6.5). These filters have been selected as they provide good accu-
racy and as they are separable. The separability allows fastimplementation as
only the responses to two basic filters need to be computed. Weexperienced
also that the use of cross derivatives increases the accuracy of the estimated
blurring path tangent directions. This is due to the fact that when one deriva-
tive component is directed as the blur, the orthogonal component performs
whitening on the image, reducing its intrinsic spatial correlation [94]. More-
over using cross derivative filters reduces the range of the considered angles
in (6.5) to [0, π/2]. Then for determining the correct blur tangent direction
amongθi andθi + π/2 (with θi ∈ [0, π/2] solution of (6.5)), we compute the
responses w.r.t. derivative filters alongθi andθi + π/2 and we take the one
having minimum energy. Moreover, as the plots in Figure 6.3 show that the
term

∑
xj∈Ui

wj

(
(dθ ~ z)(xj)

)2
varies smoothly w.r.t.θ, the minimization

could be done in a multi-scale manner, considering first a coarse set of angles
and then increasing the resolution in a neighborhood of the minimum. Finally,
the windoww in (6.5) has Gaussian weights with the maximum in the window
center.

In the voting procedure for estimating (α̂, β̂) we considered two set of angles
A andB for α andβ respectively. For each pair(α, β) ∈ A × B, we run the
voting procedure (6.10) sampling the functionvα,β

i . This makes the algorithm
computationally demanding. The voting procedure can be sped up in a multi
scale implementation which can be applied toA, B and also to the parameter
spaceP .

However, since the analytic expression of vote spread is known (see Equa-
tion (6.7)), it is possible to use any numerical minimization techniques.

6.5. Experiments

The algorithm has been validated both on synthetic and camera images. Syn-
thetic images of Figure 6.8 have been generated with a raytracer software [41]
rotating the camera in front of planar tiles of test images. Blurred images are
obtained averaging all the rendered frames, according to Equation (6.1). Ten
frames (512x512 pixels, grayscale 0-255) are rendered per each rotation de-
gree. The blurring paths tangent directions are estimated in 121 equally spaced
regions having a 10 pixel radius, using formula (6.5).

Table 6.1 showsVα,β(p̂α,β) (the value of the maximum vote obtained with

(α, β)) as a percentage w.r.tV α̂,β̂(p̂α̂,β̂) (the maximum vote obtained with
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Figure 6.8.: Still and rotationally blurred synthetic images. First row, left to
right: Boat (α∗ = 20◦, β∗ = 0◦), Mandrill (α∗ = −20◦, β∗ =
20◦) and Lena (α∗ = 0◦, β∗ = −20◦). Second row: Boat, Man-
drill and Lena, rotationally blurred with an angular speed of 6, 8
and 6 deg/s, respectively, assuming 1 second of exposure time. In-
tersection between image plane and rotation axis is marked with a
red circle.

(α̂, β̂)). Here(α̂, β̂) coincides with(α∗, β∗), the ground truth. Table 6.2 shows
the results at a second iteration considering a refinement around(α̂, β̂)).

Table 6.3 shows results obtained on synthetic images of Figure 6.8. Each of
them has been tested adding white Gaussian noise with standard deviation 0,
0.5 and 1 and consideringα andβ in A = B = {−40◦,−20◦, 0◦, 20◦, 40◦}.
Algorithm performance are evaluated with∆(α)=|α̂−α∗| and∆(β)=|β̂−β∗|.
∆(Ĉ) and∆(ω̂) represent the absolute error between the ground truth and the
estimated values ofC = π ∩ a andω, respectively.

The effectiveness of our algorithm is evaluated as

adv =
V α̂,β̂(p̂α̂,β̂) − Vα2,β2(p̂α2,β2

)

Vα2,β2(p̂α2,β2
)

, (6.11)

whereVα2,β2(p̂α2,β2
) represents the maximum vote obtained among other pa-

rameters(α, β). The higher this ratio, the better. Finally,∆(C0,0) and∆(ω0,0)
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α β -40 -20 0 20 40

-40 33 52 72 53 48
-20 39 52 83 63 44
0 34 57 83 63 43
20 40 55 100 55 44
40 35 42 62 39 34

Table 6.1.: Boat. Highest votes corresponding to (α, β) in the parameters
space, expressed as a percentage with respect to the maximumvote.

α β -10 0 10

10 71 79 80
20 63 100 74
30 57 82 61

Table 6.2.: Refinement around (α̂, β̂) from Table 6.1.

Figure 6.9.: Boat, Mandrill and Lena rectified with the corresponding esti-
mated (̂α, β̂). Intersection between the image plane and the ro-
tation axis is marked with a red circle.

are the corresponding errors obtained assuming circular blurring paths. Results
for noisy images represent the average over ten different noise realizations.

Results reported in Table 6.3 show that our algorithm can cope with a rea-
sonable amount of noise, obtaining regularly better results than the circular
blur assumption. This is more evident in the estimation of the angular speed,
which lacks physical meaning when the rotation axis is not correctly iden-
tified. Figure 6.9 shows blurred images of Figure 6.8 transformed with the
correspondingMα̂,β̂.

Camera images have been captured rotating a Canon EOS 400D camera on
a tripod, assuring thata is orthogonal to the floor. The ground truthα∗ andβ∗,
can be then computed rectifying still images of a checkerboard on the floor.
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Image ση ∆(α) ∆(β) ∆(Ĉ) ∆(ω̂) adv(%) ∆(C0,0) ∆(ω0,0)

Boat 0 0 0 2.20 0.23 20.44 33.06 4.83
Boat 0.5 0 0 5.46 0.24 20.23 21.27 114.55
Boat 1 0 0 8.84 0.19 8.84 19.25 71.98

Mandrill 0 0 0 1.00 0.09 5.66 7.07 0.96
Mandrill 0.5 2 2 1.48 0.11 6.13 4.81 2.85
Mandrill 1 4 4 1.17 0.26 5.25 4.41 2.29

Lena 0 0 0 3.00 0.08 11.01 12.08 0.60
Lena 0.5 0 0 3.88 0.20 14.06 33.64 64.94
Lena 1 0 4 5.23 0.48 6.00 29.43 62.58

Table 6.3.: Algorithm performance on synthetic images. When ση > 0, aver-
ages over 10 noise realizations.

Figure 6.10.: Blurred camera image. (a) Blurred image
(α∗ = −27◦, β∗ = 0◦), (b) rectified image with estimated
α̂ = −30◦, β̂ = 0◦, (c) checkerboard with the same camera
inclination, (d) checkerboard rectified witĥα = −30◦, β̂ = 0◦.

Figures 6.10.a and 6.12.a show the downsampled RAW converted in grayscale
used to test our algorithm. The blurring path tangent directions are estimated
on187 uniformly spaced regions, having 10 pixel radius.
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Figure 6.11.: Comparison between circular (red) and conic section (green)
blurring paths on 6.10.a. Green blurring paths describe more ac-
curately the image blur.

Figure 6.12.: Blurred camera image. (a) Blurred image (α∗ = −20◦, β∗ =
0◦), (b) rectified image with estimated̂α = −20◦, β̂ = 0◦, (c)
checkerboard with the same camera inclination, (d) checkerboard
rectified withα̂ = −20◦, β̂ = 0◦.

Tables 6.4 and 6.5 show the results of the execution of two iterations of the
algorithm on Figure 6.10.a. The solution obtained isα̂ = −30◦ andβ̂ = 0◦,
which is acceptable as the ground truth, obtained from the checkerboard, is
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α β -40 -20 0 20 40

-40 63 88 100 88 52
-20 62 77 78 70 54
0 67 74 80 70 62
20 62 81 85 65 63
40 71 73 82 78 77

Table 6.4.: Camera Image. Highest votes corresponding to (α, β) in the param-
eters space, expressed as a percentage with respect to the maximum
vote.

α β -10 0 10

-50 82 76 80
-40 81 96 72
-30 85 100 83

Table 6.5.: Camera Image. Refinement around (α̂, β̂) from Table 6.4.

(−27◦, 0◦). Figure 6.11 points out the differences between the blurring paths
estimated with the circular approximation (in red) and the conic section paths
estimated by our method (in green). As clearly seen from the detail, the blur
is correctly interpeted by the green blurring paths. Figure6.12 shows results
on another camera image, havingα∗ = −20◦ andβ∗ = 0◦. After two itera-
tions, the algorithm converges exactly to the correct solution. Figures 6.10 and
6.12 show the blurred images and the checkerboard images rectified with the
estimated(α̂, β̂).

6.6. Conclusions

We described a novel algorithm for estimating the camera rotation axis and the
angular speed from a single blurred image. The algorithm provides accurate
estimates also in the most challenging cases, when the rotation axis is not or-
thogonal to the image plane. To the best of the authors’ knowledge, none of the
existing methods handles these cases correctly since knownmethods assume
circular blurring paths. We have shown how this assumption produces inac-
curate estimates when the rotation axis is not orthogonal tothe image plane,
while our algorithm is more accurate.

The algorithm is aiming to high accuracy rather than efficiency. Accuracy
in the estimation of these parameters is a primary issue in restoring such im-
ages as the deblurring is typically based on a coordinate transformation and a
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deconvolution, which are highly sensitive to errors.
Ongoing works concern the design of a more noise-robust method for blur

analysis on image regions and the implementation of a fastervoting proce-
dure.
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In this thesis we addressed the issues of analyzing and restoring motion blurred
images, i.e. images where the blur is due to any camera motion. In particular
the focus was on the blur due to camera translation and the camera rotation. We
devised two innovative algorithms form estimating both theblur parameters
and the camera motion when a single image, blurred because oftranslation
or rotation is available. Moreover a restoration algorithmfor radial blurred
images that takes into account also the image noise has been proposed. We
also devised algorithms that exploit the image content in order to estimate the
PSF parameters within corner regions.

The blurred corner detection and the adaptive region selection procedures
presented in Chapter 2 have to be further investigated. Bothan improved for-
mulation and more exhaustive experimental validation willbe done in the next
furure.

Ongoing works concern blind deblurring algorithms for rotational and trans-
lational blur. We are investigating procedures for estimating the blur extent
parameter in radial blurred images, so that the restorationalgorithm presented
in Chapter 4 can be used in cascade with the epipolw estimation algorithm
of Chapter 3. We also are planning to model the statistics after the rotational
blur inversion, following the procedure illustrated in Section 4.4.2, in order to
restore images corrupted by both rotational blur and noise.Also in this case
the crucial issue is the accuracy in the coordinate transformation that maps the
blurred image on a plane orthogonal to the rotation axis, as this is required
when inverting the blur.

On the contrary, we are not planning to work on the depth estimation from
a single motion blurred image, presented in Chapter 5. In case of a more
generic camera motions depth estimation from a single blurred image may be
not feasible because of the orientation problem. Finally, the accuracy provided
by the blur estimates, seems not satisfying for depth reconstruction. It will be
rather investigated how to exploit blurred frames in video sequences and how
to perform blurred target detection and localization in images and videos.





Techniques For Estimating
Standard Deviation of Additive
White Gaussian Noise from a
Single Image

Additive White Gaussian Noise (AWGN) is commonly used in image forma-
tion models to consider electronic and thermal noise, quantization errors and
most of signal independent random effects. In this thesis weoften considered
AWGN (Chapters 3, 4 and in experiments of Chapters 1 and 2) as this noise
term is commonly used to approximate the sum of the noise fromdifferent
sources and the quantization errors (at least in correctly exposed blurred im-
ages).

Noise standard deviation estimation is a preliminary step in several image
restoration (e.g. denoising and deblurring) and image analysis algorithms (e.g.
background subtraction, tracking). This has been used extensively also in this
thesis, for example in Chapters 1 and 2 for removing pixels having small gra-
dient norm, in Chapter 4 it is used in the Shape Adaptive DCT denoising al-
gorithm. In Chapters 1, 3 and 6 the noise standard deviation has been used to
tune the amplitude of vote spread.

In this appendix we present an overview of existing techniques for estimat-
ing AWGN standard deviation from a single image and we focus on Median
of Absolute Deviation (MAD) based estimators.

State of the art in AWGN standard deviation
estimation in images

We consider the following observation model

z(x) = y(x) + η(x), η(x) ∼ N(0, σ2) x ∈ X (7.1)

wherey is the (unknown) true image value,η represents the Additive White
Gaussian Noise (AWGN) that corrupts the observed imagey andx is a vector
representing pixel coordinates on image domainX .
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We give an overview of methods for estimating the standard deviation of a
stochastic processη, whose valuesη(x) are independent and identically dis-
tributed realizations a Gaussian random variable for anyx ∈ X .

Algorithms that perform this task mainly follow two approaches: the filter-
ing approach and the block-based approach. A good survey andperformance
comparison between some of these methods has been presentedby Olsen [71].

The filtering approach exploit the separation of noise from true image, which
is generally obtained subtracting from the (noisy) observation z a smoothed
observationzs obtained by filteringz. This can be done using both linear and
non linear filtering such as averaging filters or block-wise median [71]. More
sophisticated algorithms following this approach have been later introduced:
Ranket al. [73] for example propose an algorithm based on Differentiating
Filters. Immerkaer [42] introduced a Laplacian mask filtering on the noisy
image that allows fast noise variance estimation. The same Laplacian filtering
followed by an Edge detector has been suggested in [16].

The filtering approach includes transform based algorithms[97, 20]. The
well known Donoho and Johnstone algorithm [20] is based on Wavelet de-
composition and exploit the MAD estimator. This is also filtering based, as
Wavelets decomposition [60], [61] exploits linear filtering and down-sampling.
The wavelet detail coefficients are considered noise, and this idea motivates
the Wavelet Shrinkage method. Therefore the noise standarddeviation can be
computed using a robust estimator, the Median of Absolute Deviations (MAD),
directly on the first order Wavelet detail coefficients. The performances of this
algorithm varies according to the number of vanishing moments of wavelet
filters. Typically Daubechies wavelets [18] with three vanishing moments are
used.

In the block-based approach the noise standard deviation initially estimated
locally on each component of an image tessellation. Then, a statistical proce-
dure selects the most reliable value between possible standard deviation esti-
mates [71], [63].

This basic idea has motivated several algorithms that combine filtering tech-
niques in order to separate the image noise, with some statistical analysis of
the standard deviation estimates on image blocks. In particular [73] performs
AWGN standard deviation estimation on the whole image by computing the
histogram of blocks (or local) noise standard deviation estimates and correct-
ing it according to some prior. A mixed approach has been recently suggested
by Shinet al. [81], the idea here is to perform a Gaussian smoothing filter in
low-variance areas, which have been selected before with a block-wise analy-
sis.

An algorithm based on a completely different approach is described in [91].
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It exploits the autocorrelation function of the noisy imageobtained considering
1D shift. This histogram presents a maximum at zero which corresponds to the
case when image is point-wise multiplied with its non shifted version. Since
noise is an i.i.d. process we have

E[η(xa) · η(xb)] = 0 xa 6= xb, (7.2)

while
E[η(xa) · η(xb)] = σ2 xa = xb. (7.3)

Therefore the autocorrelation values are not influenced by the noise but in the
origin of the autocorrelation function. A spline or a Gaussian function is fitted
in a neighbor of the origin (excluding the origin itself) to the autocorrelation
values, estimating thus the autocorrelation of the noise-free image (7.2). The
difference between the fitted autocorrelation function andthe values of the
autocorrelation function in the origin represent the anomalous peck which cor-
responds to the noise variance (7.3).

Median of Absolute Deviation for AGWN standard
deviation estimation

The Median of Absolute Deviation (MAD) [34] is a robust statistic for es-
timating the standard deviation of Gaussian samples. It canthen be used for
estimating the standard deviation of AWGN whereas the noisehas been filtered
from the image. It is used in the wavelet based algorithm [20], which is one of
the most performing algorithms for AWGN standard deviationestimation.

Let us explain why robust estimators are used in conjunctionwith filtering
based approaches. In these methods the separation of the image from the noise
is never performed exactly, and the filtered observationzs does not correspond
to the original imagey. Thus,z − zs does not represent the pure noise. There-
fore the estimation of the standard deviation fromz − zs has to handle values
z−zs which are not Gaussian distributed likeη. Differentiating filters typically
produce outputs of small magnitude on slow varying signals,with large values
in correspondence with rapid changes. Such large values represents outliers
in noise estimatẽη0, and thus a robust estimator for the standard deviation is
preferred to the square root of the sample variance.

Let us introduce the MAD, in the context of a trivial filteringbased algorithm
for the AWGN standard deviation estimation. The noise separation step consist
of processing the image with differentiating filter, like

η̃ = z ~ [1,−1] = z(x1, x2) − z(x1, x2 + 1), (7.4)
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which consists in subtracting a shifted version of the noisyobservation to the
observation itself. This is a basic high pass filter, therefore η̃ contains the
image high frequency, influenced mostly by the noise.

The noise standard deviation is then estimated using the MADestimator on
η̃. It is defined for Gaussian samplesη as

σ̂ = mad (η) =
median(|η − median(η)|)

0.6745
. (7.5)

Noise standard deviation can be estimated by using the MAD onη̃ and possibly
averaging the results obtained with̃η obtained from horizontal and vertical
filters.

Wavelet based method [20] corresponds to usingMAD on η̃, whereas the
filter [1,−1] in equation (7.4) is replaced by Daubechies Wavelet filters.Sim-
ilar noise estimators has been suggested also in [73] but used in cascade, this
situation corresponds to Donoho’ algorithm where filters used are those of
Haar Wavelet decomposition.
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Characterization of Radial Blur

In this Appendix we derive a characterization of the radial blur which have
been extensively used in Chapters 3 and 4.

In particular we assume that the blur is a linear process w.r.t to the original
imagey, i.e. that the blurred observationz can be written as in Formula (4.2) :

z(x) =

∫

X
k(x, s)y(s)ds , x ∈ X . (7.6)

We further assume that the blurring process preserves the`1 norm of the signal
i.e. ||z||1 = ||y||1.

The goal of this Appendix is to determine the PSF atx, i.e k(x, •), in case
of camera translation toward planar scene.

From the epipolar constraints and the remarks of Section 3.2.2, it follows
that the support of the PSF atxi, i.e. supp(k(xi, •)) is a straight line segment,
having direction

θi = arctan
xi,2 − e2

xi,1 − e1
(7.7)

wherexi,1 andxi,2 are the horizontal and vertical coordinates on the image
grid, respectively.

Now we will prove the following Proposition,

Proposition 1 (Uniform blur) When the captured scene is planar and paral-
lel to the image plane, and when the camera is purely translating, in continuous
image domain, each PSF has constant value on its support, at any image pixel.

Proof. From Equation (7.7), it follows that in order to derive the PSF at
x, it is enough to consider the pixels on the straight line on the image plane
passing throughe andx. Moreover, for simplicity we prove the equivalent
case where the camera is static and the planar scene is translating toward the
camera: see Figure 7.1. The initial and at the final position of the scene are
indicated bySi andSf , while the image plane is indicated byπ. The scene
moves along the straight line throughV ande the camera viewpoint and the
epipole, respectively.
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It follows, that the scene points that intersect the viewingray atx during
the the scene translation lies on the segmentX ′X ′′. This segment is obtained
by back-projecting onSi along the camera translation direction, the pointX
which represents the intersection between the viewing ray and the scene plane
Sf .

However, the blur in Equation (7.6) has to be expressed as a function of the
original imagey, not as a function of the scene. Therefore we intersect the
viewing ray associated toX ′′ with π and we obtain thatz(x) is given by the
integral overxx′′.

Since the displacement has been covered at uniform speed, every point of
xx′′ is taken into account with the same weight. It follows that inEquation
k(x, •) = const.

Moreover, since the blur must preserve the`1 norm of the signal, we have
that ∫

X
k(x, s) ds = 1 andk(x, •) = const .

Note that Proposition 1 holds also in casee → ∞, and in this case we have
standard uniform motion blur case, like those assumed in [13, 67, 68, 94, 95].

Note that on the discrete image domain, Proposition 1 may nothold because
nearX ′ wider areas of the scene are imaged into a pixel than nearX ′′. This
fact has been neglected in our discrete formulation of Chapter 4. Another
difference between discrete domain PSF and the continuous domain PSF here
formulated concern the PSF values. While in continuous domain Proposition
1, assuresPSF (x) = const∀x, in discrete domain this typically does not hold
because of subpixel interpolation. Therefore the PSF is still identified by its
direction and extent but it is not constant.

We will now prove that the blur extent, i.e. the size of the PSFsupport, at
each pixela is proportional to the distanceae.

Proposition 2 (Blur Extent) Leta be an image pixel, then under the assump-
tions of Proposition 1, it follows thatl, the blur extent atx is proportional to
the distanceae.

Proof. Let a andb be two pixels, and let us start proving that, referring to
Figure 7.2,

bb′ = λeb ⇒ aa′ = λea (7.8)

Note that thanks to Talete Theorem from

BB′ = λEB ⇒ aa′ = λea (7.9)
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Figure 7.1.: Blurred image formation in the purely translating camera. In green
the viewing rays, the red line represents the camera displacement
direction. The blue segment identifies the scene displacement and
while the scene pointsX ′X ′′ are imaged intox.

follows relation (7.8).
In order to prove relation (7.9) we define

µ =
B′B1

E1B1

.

Since the triangleÂA′A1 is similar to the triangleV̂ E1A1, the following
equalities hold

ν =
E1A1

A1A′
=

E1V ′

AA′
=

E1V ′

BB′
=

E1B1

B1B′
= µ .

Thus relation (7.9) has been proved and relation (7.8) follows.
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Figure 7.2.: Blurred image formation in the purely translating camera. In green
the viewing rays, red represent the camera displacement direction.
The blue segment identifies the scene pixels that are blurredin xi.

We therefore proved thatl, the blur extent at a pixelx is proportional to its
distance from the epipolexe, i.e. l = λxe.

However this does not conclude our proof as there is still to show how that
the sameλ coefficient holds for any radial line. This trivially follows from the
fact that image plane and scene are parallel.

The following corollary concludes the proofs for deriving the radial blur
model used in Chapter 4
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board rectified witĥα = −30◦, β̂ = 0◦. . . . . . . . . . . . . 123

6.11. Comparison between circular (red) and conic section (green)
blurring paths on 6.10.a. Green blurring paths describe more
accurately the image blur. . . . . . . . . . . . . . . . . . . . . 124

6.12. Blurred camera image. (a) Blurred image (α∗ = −20◦, β∗ =
0◦), (b) rectified image with estimated̂α = −20◦, β̂ = 0◦, (c)
checkerboard with the same camera inclination, (d) checker-
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