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Things which we see are not by themselves what we see
It remains completely unknown to us what the objects may ledmyselves
and apart from the receptivity of our senses.
We know nothing but our manner of perceiving them

I. Kant






Abstract

Motion blur is a phenomenon which is corrupting images wtlaaty, motion
occurs between the camera viewpoint and the captured soeng the acqui-
sition. Rarely this can be described with a shift invarigmemtor although this
is a common assumption in the literature.

In a motion blurred image, the Point Spread Function (PSach pixel
is determined by the relative motion between the camerapoew and the
imaged scene point. Therefore the PSF of each pixel mayaiyicary ac-
cording to the camera motion and the depths of the imagece sumnts. Both
the blur analysis (estimation) and the image restoratieecpime much more
challenging issues in case of a shift variant blur oper&tan in case of a shift
invariant blur operator. As a matter of fact, only few workditerature have
considered the shift variant blur.

This thesis concerns the analysis and the restoration giediurred images
when the blur is due to a specific camera motions. In partidhla focus is
on the blur produced by a camera translation. We show thatrasg shift
variant blur allows us to describe the degradation procese eccurately. We
derive two descriptions of the degradation process due neca translation
and camera rotation, where the blur is modeled as shiftiviaaiad parametric
operators.

The thesis is divided into two parts. The first part deals waital blur
estimation, and presents algorithms devised for estimadtiar direction and
extent in small image regions containing a corner. The megalgorithms
estimate blur parameters in corner regions where othephl@ameters estima-
tion methods typically fail. We devised also a proceduredietecting blurred
corners and adaptively select a region where to performdstimation.

In the second part of the thesis we consider the blurred imagevhole and
we address two different issues: the estimation of the camation and the
image restoration. This part is mostly dedicated to imagesipted by blur
due to a pure camera translation. We prove that, althoughsthiation has
been always treated assuming the blur shift invariant, theldecomes shift
variant as the camera translation has an essential comppesendicular to
the image plane. We devise a single image algorithm for esiiig both the
camera 3D motion direction and the PSF parameters in evexgerpixel. We



also introduce a restoration algorithm for these kind ofges(radial blurred
images), which is based on two steps: the blur inversion laadaise removal.
The blur is inverted exploiting polar to Cartesian coorténttansformations.
We study how the coordinate transformations and the blrgien affect the
noise in order to use a non-linear spatially adaptive fitter,Pointwise Shape-
Adaptive DCT to exploit the image structures and attenuaigerand artifacts.
Since in radially blurred images, the PSF extent at any inpégd can be re-
lated to the depth of the corresponding point in the sceneglseeinvestigate
and discuss the capabilities of estimating the scene depthd single motion
blurred image.
The blur produced by a camera rotation is also considereldeisécond part
of the thesis. We devise an algorithm for estimating the 3@timn axis of
a camera by analyzing a single blurred image. Contrary t@xisting meth-
ods, we treat the more general case where the rotation an isecessarily
orthogonal to the image plane, taking into account the petsfe effects that
affect the smears.

All the proposed algorithms have been tested on synthistibhirred im-
ages as well as camera images.
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Riassunto

Il Motion Blur nelle immagini & causato da un movimento della camera, della
scena o di parte di questa durante il tempo di esposizionenotion blur
comporta la perdita di dettagli delle immagini, con un cgussnte degrado
della qualita visiva: la ricostruzione di queste immagindiégrande inter-
esse applicativo ed & un problema ancora lontano dallestfinitivamente
risolto. Un problema strettamente collegato alla ricastme dell’immagine
e la stima del moto della camera e delle caratteristiche Idel dempre a par-
tire da una sola immagine mossa. Questa tesi presentatalgpgr estrarre
dell'informazione da una singola immagine motion blurrgdalora il blur
fosse dovuto ad un particolare moto tra la camera e la sceoa.il ®rmine
informazione facciamo riferimento alle caratteristichel dlur, ai parametri
del moto della camera e all'immagine "ideale" che si ottareein assenza di
movimento e con una corretta esposizione.

In questa tesi motion blur é stato descritto da operatornidiefial moto 3D
della camera. Questa modellazione ad-hoc ha permessadargalgoritmi
innovativi per stimare il blur e per ricostruire 'immagirepartire da una sola
immagine mossa. In particolare abbiamo trattato il bludptto da due tipi
di moto della camera la traslazione e la rotazione della canm@uesta scelta
e stata fatta per frequenza con la quale queste situazigoirono e per la
facilita di collegare il blur al moto della camera.

Il motion blur risultante dalla traslazione della camergadéossempre trattato
nella letteratura assumendo la traslazione parallelaaalopimmagine. Sotto
questa ipotesi il blur risulta essere spazio invariant®det Spread Function
(PSF) e quindi fissata per tutti i pixel del'immagine. Inwah casti, tra cui
quello in cui la traslazione presenta una componente onlgaal piano im-
magine, il blur diventa spazio variane e la PSF varia da @ixaikel. Questa
situazione, che e piu difficile da gestire sia per I'analisi blur che per la
ricostruzione dellimmagine, é stata quasi trascuratkametteratura.

La tesi & suddivisa in due parti. La prima parte &€ dedicatalgakitmi
per stimare la PSF localmente. In questa parte sono préselg@ritmi per
stimare, da una sola immagine mossa, i parametri del blunarregione dove
limmagine presenta un punto saliente (corner). | metodsenti prima d'ora
nella letteratura non sono in grado di stimare la PSF in regiontenenti un



corner, sebbene queste offrano una chiara interpretazienblur. E’ stato
anche proposto una procedura per selezionare automatitaee: in maniera
adattativa la regione del corner.

Nella seconda parte della tesi consideriamo l'intera inime&giossa per la
stima del moto della camera e la ricostruzione dellimmeagitessa. La mag-
gior parte del lavoro é stato rivolto ad immagini acquisitezshte la traslazione
della telecamera. A partire da una descrizione geometridisnensionale é
stato ricavato un modello per descrivere la formazione dimumagine ac-
quisita durante una traslazione generica della cameraidsitq modello il blur
viene rappresentato da un operatore parametrico e spamatea E’ stato poi
proposto un algoritmo per stimare la dirzione 3D del motdededmera, data
una sola immagine mossa e quindi la PSF ad ogni pixel.

E’ stato quindi ricavato un algoritmo per ricostruire imriragorrotte dal
blur dovuto ad una traslazione generica ( blur radiale ), &lygindi spazio
variante. L'algoritmo assume noti i parametri del blur ecgdio sull'inversione
del blur e la rimozione del rumore, alterato dall'inversodhel blur. Abbiamo
anche presentato un metodo per stimare la profondita dmdisasa partire da
un’immagine mossa acquisita durante la traslazione deftzeca.

E’ stato poi affrontato il caso di motion blur prodotto da wotazione della
camera. A differenza di tutte le soluzioni esistenti, ecsteattato senza ap-
prossimazioni il caso generale in cui asse di rotazionedelinera non & or-
togonale al piano immagine. E’ stato proposto quindi unritig@ per stimare,
da una sola immagine corrotta da blur rotazionale, la pas&zBD dell'asse di
rotazione e la velocita angolare della camera.
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Part I.

Motion Blur Analysis at
Corners






The first part of this thesis presents novel algorithms fayaing the blur
in a single image acquired during a camera motion. Oftenpthedue to
camera motion (motion blur) can not be considered as slyati@ariant (i.e.
shift invariant). For example, when the camera is trarmgjatine can observe
smears in resulting image which have varying direction axtérg between
image pixels, as shown in Figure Galand Figure 0.1h.

Spatially variant blur estimation is a challenging problerhich is often
simplified by assuming the blur as locally spatially invati§4], i.e. for each
image pixel, one assumes that there exist a region wherduhinly process
is modeled as a convolution against a Point Spread Fund®8#), This sim-
plification has been made also in the first part of this thedisch focuses on
the estimation of théocal blur parametersind the detection of regions where
the blur can be considered as spatially invariant. We furdissume that each
PSF is described by two parameters, its direction and itsnéxtWhile this
assumption is too restrictive when combined with the sphatiavariant blur
assumption, this allows a faithful interpretation of matidur when assuming
spatially invariant blur.

The algorithms presented in Chapter 1 are meant for regiomsining an
image corner: this image content is exploited as a prior $timating the blur
parameters. To the author’'s knowledge, the issue of estignalur parameters
within a small region containing a corner has never beeneaddd before. The
use of small regions for estimating the blur parametersusial for obtaining
a reliable approximation of spatially variant blur (a ragie considered small
if its sizes are about two, three times the blur extent).

There are three main reasons why it is worth estimating theegdarameters
in a region containing a corner. First, within a corner regithe blur pa-
rameters can be determined as #perture problendoes not hold. The term
aperture problem, has been introduced in studies on visiste®s [38], to
express the ambiguity that moving homogeneous contousepte Within a
region (an aperture) of a blurred image, different physmeations may be in-
distinguishable: this happens for example in smooth areasldurred edges,
where infinite pairs (direction , extent) of blur parametzas describe the blur.
Figure 0.1.c shows some of the motions that correctly imgtrhe blur in the
highlighted region. On the other hand, thanks to the apeuoblem, pix-
els belonging to blurred edges can be used for estimatinglten a corner
region, as at these pixels the blur parameters can be assegnedito those
at the corner. Second, corners are ubiquitous in images e carry the
most relevant information for scene understanding: as temaitfact, corners
are widely used in Computer Vision and Pattern Recognitmmektracting
features in images. Analyzing the blur at corner regiondésefore useful



both for scene and motion understanding. Third, there aretimex blur pa-
rameters estimation algorithms able to perform on smalbreggcontaining a
corner. Although several algorithms for estimating blurgpaeters have been
proposed for blind deconvolution, all these algorithms kvam the whole im-
age, assuming the blur spatially invariant, and they do adbpm adequately
when applied on a small region containing a corner.

Most of motion blur PSF parameters estimation algorithmalyaes the
Fourier power spectrum of the image, see [15, 24, 49, 67 @] references
therein. Fourier-domain methods exploit the convolutio@orem [61] which
claims that the Fourier transform of the convolution of tweripdic signals
is the point-wise product of the Fourier transforms of the signals. Since
the Fourier transform of these PSFs present charactezesticpatterns, which
can be directly related to the PSF parameters, these zémnsashould be
distinguishable also in the Fourier transform of the bldrireage. Figure 0.2
b shows how the zero patterns are clearly distinguishableer-burier trans-
form of blurred white noise. However, this approach failssitall regions
containing a corner because of two reasons: first, in a smaljé a region the
image can be roughly approximated as periodic and secoadrdtrier trans-
form of the blurred image is mostly influenced by blurred edgether than
from the PSF as shown in Figure @2

A different approach to PSF parameters estimation has Inéeiced by
Yitzhaky [93, 94, 92] that proposed to estimate the blurdiom as the direc-
tion of the derivative filters having minimum energy respanBhe blur extent
is estimated consequently detecting the minima of the amtelation func-
tion of image derivatives along blur direction. This mettdmks not present
the restrictions on regions sizes of Fourier transform thasethods but does
not perform correctly at blurred corners. In fact, typigan edge direction
may represent the direction having minimum derivative gyeas illustrated
in Figure 0.3d.

Chapter 2 addresses two complementary issues: the detaxftiolurred
corners and the corner region selection. Corner regionadaptively selected
in order to improve the proposed algorithm performance.



Figure 0.1.: Image corrupted by spatially variant blur. B&uspatially variant
as the highlighted regions aandb show. At blurred edges, there
are infinite blur direction/ blur extent pairs that reprasée blur,
seec.



Figure 0.2.: Blur parameters estimation using Fourier pospectrum. The
Fourier power spectrum of motion blur PSFs presents zero-
patterns, which are clearly distinguishable on blurredtev@aus-
sian noise, Figure 0ab. The direction of these zero patterns is
related to the blur direction. However, the Fourier powetcsum
of a blurred corner is mostly influenced by the image stepsaue
edges than from the PSF parameters, Figured.2



Figure 0.3.: Blur Parameters Estimation using derivatilter. The direc-
tion having minimum energy response on white Gaussian noise
is the blur direction, Figure Oz3. However, at blurred corners,
the minimum energy direction is typically the one of the ptst
blurred edge, Figure 0c3.






1. Estimation of Blur Parameters
at Corners

This chapter presents an observation model for motion dafimages and in
particular focuses on regions containing image cornerg prbposed model
considers both blur and noise. We assume that each corn&rrisbby a
convolution against a Point Spread Function (PSF) haviatprdike support.

We address the issue of estimating the blur direction aneheit a region
containing a corner, and we derive three solutions.

Experimental results both on synthetic and camera imadpsy accurate
estimates of the PSF in small corner regions. The algoritdesribed in
this chapter have been published in two papers in confengrmmeedings, see
[5, 6].

1.1. Motivation

This chapter presents novel algorithms to estimate spatiatying blur from
a single image, assuming that the relative motion betweedmera and the
scene produces “rectilinear smears” in the blurred imade ifhage is there-
fore blurred along line segments whose direction and exentvarying be-
tween the image pixels.

This observation model is particularly suited for imageguaed by agile
cameras in indoor environments [14, 19]. These images, whptured at
reduced lightning conditions are often motion blurred: fees éxposure time
is (automatically) increased in order to acquire normadgased frames, the
camera motion results in significant blur in the recordednfra Moreover,
when the scene presents various depths, the resultingstdtnongly spatially
varying.

The proposed algorithm analyzes image blur specificallggibns that con-
tains a corner as at blurred corners #perture problen{38] does not hold,
contrarily to blurred edges. Figures 0.1 and 1.1 show a rdégeription of
what is the aperture problem is when : the blur direction dneditiur extent
can be clearly perceived within regiortsand D of Figure1.1, while it is not



possible to give a unique interpretation to the blur diettnd the blur extent
in regionsB andC. The same situation is faced in regions where the image is
smooth: the aperture problem still holds as there are patlninfinite pairs
blur direction/blur extent, that could have caused the dalore

Corners, instead, offer a clear interpretation of motioreation and ex-
tent and that’s the reason why we design an algorithm to asgimmotion blur
specifically at corners. At the same time, regions contgi@in image corner
can be easily detected and the image content easily moddetover, cor-
ners often correspond to boundaries between scene olgadttherefore they
are relevant for motion understanding.

1.2. Related Works

Pixel motion estimation is a relevant issue for both imageessing and com-
puter vision, as it is often required as a preprocessing isteggveral algo-
rithms. When a significant displacement occurs betweendheeta and the
scene during the exposure, this results in a blur in the aegjiinage. The blur
heavily corrupts image quality and the estimation of therilg process is a
challenging problem.

Sometimes, the observer can exploit few images capturiegdme scene
[2, 48, 74] or images produced by hybrid imaging systems foatexample,
employ simultaneously two cameras [3] or acquire sequignti@o images
varying the exposure [62, 96]. Clearly, when a single imagavailable, the
blur analysis becomes more complicated and it is typicadlgdied by intro-
ducing simplifying assumptions on image blur and explgitnpriori infor-
mation on the original image, when available.

In most of cases the blur is assumed a linear and spatialfyiat system
on the image. Thus it corresponds to a convolution of thel jde@inal image
(representing the captured scene without any artifactdtoiced by the acqui-
sition device such as blur or noise) with an unknown kerte,Roint Spread
Function (PSF) of the blurring process.

Algorithms that pair blur estimation and image restorafrom a single im-
age (blind deblurring) have been widely studied in the la&stadles, [11, 12,
52]. Recently, Fergust al. [25] showed good performance in camera shake
removal from a single blurred photograph by using a Gaussixiure prior
for the distribution of gradient norms in natural images.eyfassume spa-
tially invariant blur on the image, as most of deconvolutimsed algorithms
do. They also assume non parametric PSFs which seem tolue&aithfully
the blur produced by camera shake in camera images. Levjngixked the
spatially invariant blur assumption and devised a blindluteing algorithm
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combined with a segmentation of the image in (few) areasnigaihie same
blur extent, but again, the blur is assumed to have the sar@etion in every
image pixel.

Most of the literature algorithms for parametric PSF estiomafrom a sin-
gle blurred image are based on the well known property thanaatution in
space domain becomes a pixel-wise product in Fourier Damaiparticular
motion blur PSFs are typically assumed as kernels havingrke support
and constant value on it. In this case the Fourier power spagbresents par-
ticular patters which are related to PSF parameters thabeahus estimated
with several analysis methods [15, 24, 49, 52, 67, 68, 75, 76]

A different approach is based on high-pass filtering the enagspace do-
main [94, 95] with directional filters and taking the dir@etihaving minimum
energy response.

Also the wavelet transform [18, 61] has been used in ordestimate the
PSF from a single blurred image. Rooegtsal. [26] exploits the sparsity of the
wavelet subbands for estimating the PSF parameter. Thiictée Gaussian
PSF described by one parameter, even if the method couldéxeded to other
parametric PSFs families.

Blur estimation from a single blurred image has been adddeky several
purposes other than deblurring: optical flow estimation &, its integration
in a tracking system [49], the measurement of vehicles [58] Izalls speed
[57] or scene depth [53, 58]. Klein [51] recently developegyaoscope by
measuring the rotational blur in each video frame of a rahotinted camera.

The most interesting and straightforward application lieralgorithms pro-
posed in this chapter is the optical flow estimation from glgimotion blurred
image. The optical flow in the blurred image shows the motit the cam-
era underwent during the exposure. This issue has beealliniéiddressed
by Rekleitis [75, 76]. He proposed a Fourier transform baagdrithm for
handling spatially variant blurred images, treating ther lals locally shift in-
variant. He defines a tessellation on the image and thenzasathe Fourier
power spectrum of each of the tessellation regions separbtewever, all the
frequency-domain based algorithms does not allow cordeciarameters es-
timation in image regions having small sizes, as pointedrotlte introduction
of this part and as illustrated in Figure 0.2. Finally, a ¢desable drawbacks
of using a fixed fixed tessellation is that blur estimate cdaddstrongly bi-
ased by the image content. This happens for example whemardsrdivided
into two different regions of the tessellation. None of thwe tegions allows a
correct interpretation

13



Figure 1.1.: Synthetic blurred corner

1.3. Problem Formulation
The observatior, corrupted by spatially varying blur and noise is modeled as
z(x) = K (y) (z) +n(z), zeX (1.1

x being a vector representing image coordinates varyingedidtrete domain
X, y is the original (and unknown) image atd the blur operator. The term
n models quantization errors and the electronic and theriwiasenwhich are
together modeled as white noige

1.3.1. The Blur Model

We assumé¥ as a linear blur operator and therefore, in its more generai,f
is [4]

K () (@) = [ basls)s, voe &, 1.2)

X

wherek(x, o) represent the Point Spread Function (PSE), ae. the response
of the blur process to a point sourcerdh the original image. It thus describes
how the intensity of a pixet in the original imagey(z), is spread "or mixed"
with the neighboring pixels in the blurred observation.

Typically K is assumed spatially invariant, i.e(x, s) = k(x—s), therefore
Equation(1.2) becomes a convolution against a P8F

K (y) (2) = /X W —s)y(s)ds = (h@y)(), Ve e X,  (1.3)

where® denotes the convolution operator.
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The assumption about spatially invariant blur is too resie as scene points
usually follow different trajectories with respect to thentera viewpoint and
this results in spatially variant blur in the image. In otlhvards each pixel has
been processed with a different PSFs. In a broad scenadtalép invariant
blur of Equation(1.3) does not describe, for instance, scenes containing sev-
eral moving objects, scenes with a moving target on a stilkgeound or non
planar scenes captured by a moving camera.

On the other hand, solvin@.2) is an extremely challenging inverse prob-
lem. To reduce its complexity the blur operatgris locally approximated as
shift invariant blur, i.e.

Veg e X,3Uy C X, xg € Uy and a PSky such that

K (y)(z) = /X vo(x — s)y(s)ds Vo € Uy . (1.4)

Furthermore, we consider only parametric PSFs defined avér@ linear
support. These PSFs can be written as

vy = R(g) (Sl) (ZL') 0 e [0,27T],l eN,zxzely. (15)
1/(2t+1), —-I1<z <l

si(z1,w2) = r9 =0
0, else

whered and/ are motion direction and extent respectively dig) (s;) is s;
rotated byd degrees orit.

1.3.2. The Corner Model

Lety be a gray scale image or, equivalently, a color plane in a dolage and
let A C X be aregion containing a corner. The image containisary corner

if y(A) = {b,c}, whereb andc are image intensity values for the background
and the corner, respectively. Moreovét, = y~1({b}) andC = y~1({c}),
the sets of pixels belonging to the background and to theecphave to be
separated by two straight segments, having a common endpgairexample

of binary corner is shown in Figure 1.2.

Let us definey as the corner displacement vector: this vector has thenorigi
at the location of the corner pixel on the image grid and tmeation ¢ and
the lengthl corresponding to the direction and the lengthi@fthe PSF which
locally approximates the blur operator.

We further assume thatdirection belongs to an interval determined by the
edges direction. Let introduce a reference axis in the inzagkleta be the
amplitude of the corner angle, 18tbe the direction ob w.r.t. the reference
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Figure 1.2.: The Binary Corner model

axis and lety be the orientation of the corner bisector, as illustrateBigure
1.3. Thus, we initially restrict ourseves to corners hawigplacement vector
satisfying the following assumption

Oely—a/2,v+a/2] +kr kel (1.6)

Figure 1.3a shows a corner displacement vector satisfying this assampt
while Figure 1.3 shows a corner that does not.

Figure 1.3.: Two possible cases for corner displacemenssitisfy Equation
(1.6), whileb does not.

In real images corners are, in general, not binary. It ismealsle to expect
corners to be distinguishable from their background, butligathey would
be uniform. Often their intensities are varying due, forrapée, to texture,
shading or details presented.

16



Therefore, in order to take into account corners with fevgtwrctured de-
tails, we introduce in Equation (1.1), another source oftavhbise$. This is
done only for corner regions where the image content is biodeled. Thus,
within a corner regiom, the observation is described as follows

2()=K(y+&) (x)+nx), z€A 1.7)

¢ being white noise.

By Equation (1.7), the result of blurring of non-binary cerris consid-
ered equivalent to the result of blurring a binary cornertaomnated by white
noise.

1.3.3. Problem Formulation

After having specified the corner and the blur model, we fdateuthe ad-
dressed problem.

Given an image regionl that contains a blurred corner, satisfying the re-
quirements stated in Sections 1.3.1 and Section 1.3.2, aalrigito estimate
the corner displacement vectoy and thus the directiofi and extent of the
PSF representing the blur ih.

1.4. Least Squares Solution

In this section we derive the core equations for estimatiegcbrner displace-
ment vector (and thus the blur parameters) within a regiéthat contains a
blurred corner. First, we present the proposed least sgjsatation assuming
binary corners, and then we consider how the estimatedadispient vectors
change when corners are not binary.

1.4.1. Binary Corners, Least Squares Solution

Let us examine an image region containing a binary corria,tlie one de-
picted in Figurel.2. Letd; andds be the first order derivative filters w.r.t.
horizontal and vertical direction respectively. The imggadient is defined as

Vi(z) = [ (@) } _ VK (y) (2) + V(z) Vo € X,
wherez; = (z ® dy) andzo = (z ® da).

It follows that, denoting byA = |c — b the difference between the image
intensities at corner and at the background as shown in &igay

A=7v-VK(y) (), VxeA, (1.8)
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Figure 1.4.: Mesh of pixel intensities within region A of kig 1.1. The dis-
placement vectob and A , the difference between corner and
background colors are shown.

wheredy = {z € A| VK (y) (x) # [0,0]7}, - denotes the scalar product and
¥ is the corner displacement vector (one column vector).

Note that the scalar product in right hand side of Equatio®) (& positive.
This follows from the assumption stated in Equation (1.Bceso forms with
the gradienV K (y) (z) an angle smaller tham/2.

Equation(1.8) has no unique solution a& and K (y) are unknown and
only z, which is however corrupted by noigeis known. Similar uncertainties
are typically resolved by considering several instancdsgofation(1.8), each
one evaluated in a different pixel iy. In fact, Equation1.8) gives the same
solutionVx € Ay.

We callw a window described by its weight; , —n < i < n, and we solve
the following system

M(z)o = A[w_n,...,wo,...,wn]T Vo € Ag, (2.9)
where the matrix\/ is defined as

w_p, Vz(z_p)T

M(x) = wo Vz(x)T
w, V()T

In our experiment we choose as a squared window having Gaussian dis-

tributed weights.
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The least square solution of Equati@n9), o is
0= argmvin HM(J:‘)’U — Afw_p, ..., wo, ...,wn]TH2 Ve e Ag, (1.10)
which yields
o=H Y x) MY () [wp, ..., w, ..., w,]" V& € Ay, (1.12)

wazl(azi)Q Zw?zz(a:i)zl(:z:i)

— (2 (2

H= Zw?zz(xi)zl (x;) Zw322($i)2

7 (2

Note thatH corresponds to the Harris Matrix [35], whose determinartt an
trace are used as corner detectors in many feature extragtjorithms, see
[65] and references therein.

Note also that whenl, does not contain any image corner, the determinant
of H is close to zero and when () = k and z(x) = k', Vo € Ay, k
andk’ € R, H is singular and consequently the systgim 1) has no a unique
solution. This happens when the corner region intersedysome blurred edge
(like regions B and C in Figure 1.1). Then the systéim 1) has an infinite
number of solutions and the motion parameters cannot baasiil.

On the contraryH is nonsingular whem intersects two blurred edges (like
region A in Figure 1.1) and in this case the systéinl1) has an unique solu-
tion.

The least squares solutign.11) performs optimally in case of Gaussian
white noise (here we assume thas white noise, without specifying any dis-
tribution). However, in low-noise regions (i.e. regionsesh noise standard
deviation is significantly lower tha\), Equation(1.11) represent a subopti-
mal solution.

Equation (1.11) gives a solution which depends on the cersitpixelr €
Ap: let us denote this solution agx). When a different pixek’ is taken in
Ay, the solutiono(z') may be different, as the window is centered at’.
Therefore a procedure is required to determine the mosthielisolutiond
from the set of solution$o(z;)};, Vz; € Ay.

A solution consists of taking the corner displacement vetta), « being
the center ofA. A less naive solution can be based on statistical analysis
on the sef{v(z;)}i, Va; € Ap. For exampley can be taken as the mode
of vectors in{v(z;)};, Yz; € Ay or by analyzing separately directions or
extents of the estimated displacement vectors with a mealiam weighted
median. The weights can be determined as proportionéddid H)(x)| as
it determines "how much" there is an image corneg aaccording to Harris
corner detector, [35].
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1.4.2. Non Binary Corners

The algorithm proposed in Section 1.4.1 assumes that ti@régcorresponds
to a region in the original image wheg€A) = {b, c}, i.e. there are only two
intensity values iry. These "cartoon world" corners are far from being similar
to corners of camera images, as noted in Section 1.3.2.

Let then consider how Equatidn.8) changes if it presents also the nogse

Vz(z) = VK (y) (z) + VK (§{)(x), Vo € X. (1.12)

Note that Equatior1.8) holds forV K (y) (x), while it does not foNV K (¢) (),
the second term in the right-hand side of Equation (1.12wéler, the blur
operatorK (&), which is locally a convolution with a PSF, produces a cerrel
tion of ¢ samples along the motion direction [94], so that we have

VK (¢)(z) - #,~0, Vo € Ag, (1.13)

which means that the larger the blur extent is in the consitieegion, and
consequently the correlation among random value$ iocreases, the more
our algorithm will work for regions where corners are notdin

1.5. Robust Solution

Although Equation(1.13) assures that the proposed algorithm would work
even in presence of noige we expect that outliers would heavily influence
the solution of Equatiori1.11), since it comes from thé error norm mini-
mization of Equatior(1.10).

Beside pixels wher& K (&) (x) - © # 0 there could be several other noise
factors that are not considered in our model but that we shaeibware of. For
example compressed images often present artifacts at edghsas ringing
or blocking, corners oy are usually smoothed and edges are not perfectly
straight lines.

However, if we assume that outliers are a relatively smattgmtage of
pixels, we can still obtain a reliable corner displacemettaer estimate using
a robust technique to solve (1.9). We do not look for a vettehich satisfies
Equation(1.8) at each pixel, or which minimizes th# error norm ( like in
Equation(1.10)): rather we look for a value af which satisfies a significant
percentage of equations in Systein9j, disregarding howy is far from the
solution of the remaining equations.
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Uz

Uy

Figure 1.5.4,(u1, u2) set of possible endpoint for(z)

1.5.1. The Voting Approach

For every pixelr € Ay, we defineP(z) as the projection of the displacement
vector along the gradient direction

8

)
V()]

Plz) = [,;, Vz(z) ] Vx(

- Vo € Ay, (1.14)
IVz(2)]]

where- denotes the scalar product. It follows that, when the astompf

Equation (1.6) holds, from Equation (1.8),

Vz(x)

= R 2 (1.15)

P(x)

we have thatP(x) corresponds to thé component along/z(x) direction,
Yz € Ap.

The endpoint of any vecta#, solution of (1.8), lies on the straight line
perpendicular ta’(z), going through its endpoint.

As in usual Hough approaches, we consider a (2-D) paranedeed, con-
taining all the possible location for the endpointsiofThe parameter space is
subdivided into cells of suitable size (e.g. 1 pixel) ancexed by two coordi-
nates,(ui,uz). Let definel, (u1,uz2) as the locus of the possible endpoints of
v, compatible with a given datuii z(z): it follows that?, (uy, us), is aline as
shown in Figure 1.5. A vote is then assigned to each cell thialains a value
of ¢ that satisfies an instance of Equatidng), i.e. ¢,. This vote is summed
to the votes coming from the other data. The most voted agliesent values
of v that satisfy a significant number of equatidas).
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1.5.2. Neighborhood Construction

In order to reduce the approximation errors due to the disgr@arameter space
and to take into accountn, we construct an ad-hoc neighborhogdfor as-
signing votes in the parameter space. We bjlth order to assign a full vote
(e.g 1) to each parameter pair which solves Equatio®) (the line of Figure
1.5), and a fraction of vote to the neighboring parameter p&ifs.define thus
the following weight function

¢ - L2 ’ 1.16
Wh“?)—e“fp[—(m) § (1.16)
whereovy, is Vn standard deviation anklis a tuning parameter. The weight
function/ has the following properties: it is constant and equdl émw; axis,
(i.e. £(u1,0) = 1), and when evaluated on a vertical life; = const), itis a
Gaussian function having standard deviation that is ptapul to|u, |, i.e.

f(ul,uQ) ~ N(O, 1+ k:|u1|av7,)(uQ) R V(ul,uQ) clU

We select this weight function as a prototype of the vote nganVz(x),
the votes are distributed in the parameter space as thesvald@pportunely
translated and rotated. The straight line of Figu#g ¢, (u1, u2), is therefore
replaced by functiorf rotated by(5 — 0) degrees and translated so that its
origin is in P(x) endpoint, i.e.

lz(ur, uz) = Rz _g) (€) ([ur, ug)” — P(x)), Y(u1,uz) €U, , Vo € Ag.
(1.17)
whered is Vz(x) direction andR z ) is the rotation of 5 — ) degrees.

In such a way, we give a full vote to parameter pairs which aeetsolu-
tions of (1.8) and we increase the spread of votes as the distance fam
endpoint increases.

Figure1.6(a) shows how votes are distributed in parameter space for a vec-
tor P(z). Figure 1.6(b) shows parameter space after having coesidst
data, the arrow indicates the vectoestimated.

1.6. Performance of the Algorithm Based on the
Hough Transform

1.6.1. Implementation Details

Given a regionA containing a blurred corner, we proceed as follows

+ Estimates,, on the whole image, using the linear filtering procedure
proposed in [42] or any other method presented in Appendix 7.
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(b)

Figure 1.6.: Votes in Parameter Space. (a) An illustratibthe weight func-
tion ¢, (u1,u2), used to spread the votes in the parameter space.
The vector represents the projection vedijr:). (b) The sum of
votes in the parameter space, after having consideredtall Ghe
green vector represents the estimated corner displaceraetur
V.

» Define Ay, the set of considered pixels as
Ay={z € A|||Vz(z)|| > T}

T > 0 being a fixed threshold. In such a way we exclude image pixels
where the value is constant but gradient is non zero becdu$end

n. The threshold!" is typically defined a§" = n;o,,, n; being a tuning
parameter.

* EstimateA asA = |max(Ag) — min(Ao)| + nioy.

* \oting: Va € A distribute votes in parameter space computif@: , us)
and adding them to the previous votes. Fhearameter used i(8.9) is
chosen betweej.02, 0.04].

» The solution of Systen(1.9), o, is the vector having endpoint in the
most voted coordinates pair. Whenever several parameitsrreaeive
the maximum vote, their center of mass is selected esdpoint.

» To speed up the algorithm, we eventually consider gradialues only
at even coordinate pairs.
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1.6.2. Experiments

We validate the proposed algorithm with tests on synthetiages, on test
images synthetically blurred, and on camera images bllreeduse of camera
motion.

Synthetic Images

We generate synthetic images according to Equdticn), using a binary cor-
ner (according to the model of Sectidrs.2), takingy constantly equal t6 at
background and equal tioat corner pixels and we adgand¢ with Gaussian
distribution.

Corner displacement vectors have been estimated on sayethietically
generated images with values of the standard deviatigng [0,0.02] and
o¢ € [0,0.08]. Blur has been produced by a convolution with a PStaving
direction10 degrees and lengt?0 pixels in the first case ant) degrees and
30 pixels in the second case.

Figure 1.7 and Figurel.8 show some test images and Tablé and Table
1.2 present algorithm performance in terms of distance, inlpiré, between
the endpoints of the estimated,and the true displacement vectgrexpressed
as a percentage w.r.t PSF length.

Comparing the first two rows of Tablel with those of Tabld .2, we note
how stronger blurs introduce higher correlation betwéesamples and gives
more accurate results, as expressed in Equatids).

Wheno,, = 0.02 the algorithm accuracy is significantly decreased.

[0,]0¢] 0 [ 0.02 [ 004 | 0.06 | 0.08 |
0 | 1.94% | 2.3% | 1.67% | 3.26% | 5.40%

0.01 | 6.54% | 2.98% | 1.67% | 4.21% | 1.68%
0.02 | 4.14% | 7.57% | 5.40%4 | 3.97% | 3.35%

Table 1.1.: Result on synthetic imageshas direction 10 degrees and length
20 pixels,o,, € [0,0.02] ando¢ € [0,0.08].

[0,]0¢] 0 [ 002 | 0.04 [ 0.06 | 0.08 |
0 | 1.95 | 1.08% | 1.95% | 2.23% | 0.98%
0.01 |3.04% | 0.31% |3.99% | 1.43% | 2.54%
0.02 |9.39% | 10.1%% | 6.55% | 7.65% | 7.50%

Table 1.2.: Result on synthetic imageashas direction 70 degrees and length
30 pixels,o,, € [0,0.02] ando¢ € [0,0.08].
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‘t‘
Figure 1.7.: Synthetic test images used PSF diretedkegrees and lengttd

pixels, ina o, = 0 ando¢ = 0.08, while inb ¢, = 0.02 and
o¢ = 0.

Figure 1.8.: Example of synthetic test images used, PSF wasted 70 de-
grees and lengtB0 pixels, inao,, = 0 ando¢ = 0.08, while inb
o, = 0.02ando¢ = 0.

Synthetically Blurred Real Test Image

We replace the original image at corners, e £ with a common test image
and we blur it using a convolution with a PSF on the whole imafye finally
add white Gaussian noisgand analyze the blurred noisy image within some
regions containing a corner.

We takehouseas the original image and we manually select five squared
windows of side 30 pixels at some corners. Figuré shows the original
and the blurredhouseimage (using PSF with direction 30 degrees and length
25 pixels) and the analyzed regions. Figur#0 shows two vectors in pixel
coordinates, the estimated(dashed line) and the vector having true motion
parameters (solid line), for each selected region. Tableshows distance
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Figure 1.9.: Original and blurred house image. Blur hasctiive of 30 degrees
and 25 pixels length, analyzed regions are numbered.

between the endpoints of the two vectors.

region1 * region2 ~ region3

region4

Figure 1.10.: Displacement vectarsestimated in selected regions of synthet-
ically blurred housetest image. The solid line is the true dis-
placement vector, while the dotted line represents thenastid
displacement vectar.

1.6.3. Camera Ilmages

We perform a second experiment using a sequence of camegasieaptured
according to the following scheme

+ astill image, at the initial camera position.
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(o, [RI[R2[ R3| R4 R5]
0 2.07| 2.75| 3.19| 1.87| 2.04
0.01} 0.32| 6.91| 3.52| 2.64| 4.58

Table 1.3.: Estimation error: distance betweerndpoint and displacement
vector, expressed in pixels, on each image regton

* a blurred image, captured while the camera was moving.
+ astill image, at the final camera position.

We estimated the blur parameters at some manually selestedraegions
in the blurred image and we compare these results with thengrtruth, given
by matching corner found by the Harris detector in the imag&sn at the
initial and at the final camera position. Clearly, the accyrabtained in mo-
tion estimation from a single blurred image is lower than thiatained with
methods based on two well focused views. However prelinginasults show
good accuracy. For example, motion parameters estimategjion 2 of Fig-
ure 1.17 are particularly close to the computed ground textén if the corner
is considerably smooth, as it is taken from a common swivairch

Figures 1.12 - 1.16 illustrates the algorithm results atgblected image
regions. As Figurd.13 shows, the votes in parameter space are more spread
around the solution than in Figutel2, where the corner is close to the model
of Section1.3.2. Table1.4 shows result using the same criteria of Tahf

Results are less accurate than in previous experimentsiseeacording
to experimental settings, motion PSF could not be perfesitigight or per-
fectly uniform, because of camera movement. This affe@satborithm per-
formance.

R1| R2 | R3| R4 | R5
0.4411.90| 1.09| 3.95| 3.75

Table 1.4.: Estimation error expressed in pixel unit on eawyge regionk.

1.7. Remarks

The results obtained from the experiments, performed bothyothetic and
camera images, show that the image at blurred corners hasbiably mod-
eled and that the solution proposed is robust enough to caeantificial
noise and to deal with camera images.
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region 1 . region2 - region 3

........

region4 . region 5

Figure 1.11.: Displacement vectargstimated in camera images. In each plot,
the solid line indicates the true displacement vector oktiby
matching corners of pictures at initial and final camera tpmsi
Dotted line represents the estimated displacement véctor

The results show also that there are only a few useful cornecamera
images. This is mostly due to background and corner non umifg caused
by shadows, occlusions or because the original image gbelivs significant
intensity variations. Another motivation is that only cers satisfying assump-
tion of Equation (1.6) are considered, while the others &earded.

In the next section, we will present an extension of this @illgm which
is able to estimate the displacement vector at corners warelmoving like
Figurel.3 b, i.e. corners that do not satisfy assumption (1.6). This el
possible thanks to a procedure to discriminate whetherdhsec has a "self-
intersection" because of image blur (like those in FiguBeaand Figure 1.1, region D),
or not (like Figurel.3 b and Figure 1.1 region A).

1.8. The Orientation Ambiguity

Let now consider a squared regighcentered in a local maximum of Harris
measure [35], see Figuiel. The motion of the image corner during the expo-
sure is described by the corner displacement vettbtowever, since there is
no way to determine which is the initial and which is the finalreer position
from a single blurred image, the corner displacement vextoibe determined
only up to its orientation. Therefore its directiérhas to be considered up to
7. in what follows we assumeé € [0, 7].



Figure 1.12.: Figure Original corner in imagé blurred cornergc set A, of
considered pixels andl votes in the space parameter

The same orientation ambiguity holds for the projectiéhsf vectoro on
directions orthogonal to the corner edges (1.14). et Ay be a pixel be-
longing to a blurred edge, see Figure 1.21. Let denot® (y, ) the projection
of ¥ on the gradient vector at,, i.e.

(1.18)

Ty) = |0 - Vz(7a) V(2a)
O I e

where- denotes the scalar product. Figure 1.19 shows the prafegéotors
in the blurred corner model.
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Figure 1.13.: Figure Original corner in imagé blurred cornerc set A, of
considered pixels andlvotes in the space parameter

By relaxing assumption (1.6), also corners like those ofifgédl.® has to
be taken into account. For these corners, the angle betvineegradient at
blurred edgesV K (y) () and the displacement vectoris larger thanr/2,
as shown in Figure 1.20. Therefore the scalar produat (y) (z) - © could
assume negative values. Therefore Equation (1.8) becomes

VE (y(x)) -5 = { EtA,if oxfw(f.ﬁe@ =0 veed. (@19

Assuming thatr, € Ay (and thusVK (y) () # 0) and substituting Equa-
tion (1.19) into the right-hand side of Equation (1.18), vagdnthat the projec-
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Figure 1.14.: Figure Original corner in imagé blurred cornergc set A, of
considered pixels andl votes in the space parameter

tion of v alongVz(z,) direction is

Vz(x)
V()] |?

It follows that & cannot be trivially computed whenever two projections
along two different directions are available, like in theyous case. In fact
letxy, € Ay, zp # 4, then if Vz(z,) andVz(xy) are linearly independent,
four displacement vector&v; and +9, are identified by back-projection of
the four vectorst P(z,) and+P(x;), as illustrated in Figure.22. These four
displacements vectorsv; and+7s, are indeed two pairs having the same di-
rections and opposite orientations. As pointed out befibrere is no way to

Plz) = + A, Ve A. (1.20)
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Figure 1.15.: Figure Original corner in imagéd blurred cornerc set A, of
considered pixels andl votes in the space parameter

exploit motion orientation from a single image so that we aasume the cor-
ner displacement directiof € [0, 7] and reduce to consider only and s,
whose directiong;, 62 € [0, 7].

WhenVz(z,) andVz(z;) are linearly dependent, the motion direction can-
not be estimated. This happens when bgtlandz;, belong to the same blurred
edge, where all gradient vectors have the same directiois Shuation hap-
pens at blurred edges, as illustrated in Figure 1.1, regibasdC.

Therefore in a blurred corner region, up to an orientatioapswhere are
two admissible displacement vectgrandvs. As Figure 1.23 shows, a single
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Figure 1.16.: Figure Original corner in imagé blurred cornergc set A, of
considered pixels andl votes in the space parameter

binary corner, blurred with two different PSFs (whose pagtars are given
by 9, and,), may present the same blurred edges. In order to disantbigua
which is the correct corner displacement vector then, wesddvadecision
function presented in Section 1.10.

1.9. Selection of Best Projection Vectors

Consider an image regiaA containing a binary corner and assume no noise,
i.e. n = 0and¢ = 0. Denote byVK (y)(z,) and VK (y)(z,) the gradient
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Figure 1.17.: Laboratory Image and selected regions

vectors at pixelse, andx; belonging to the two blurred edges, as shown in
Figure 1.21, and denote by(z,) and P(x;) the projections ob along their
directions. When the considered image regibns large enough, the high-
est peaks in the 2-D histogram oV z(x;)}.,c4, represent the end points of
VK (y)(z,) and VK (y)(z), then P(z,) and P(z;) are promptly obtained
from Equation (1.19).

Let now examine how and¢ affects vectorsvz(x). If n and¢ are white
noise, according to (1.7) we have that

[ eed) @] [ (K @+ +ned) @
vie) = | Com = | (kg e m | E(f‘ﬂ)

Let h be the PSF which is approximating the blur in the selectedezaegion.
The noisesy and ¢ are transformed by the blur operator and by the image
gradient in the following way,

_ [ m@di)(@) _ | (€ene®d))
Vi) = [ (0 ® ) (z) ] Ve = [ (¢ ® ) ® da)(a) ] a 62'22)

Therefore it follows thatF’[Vn + V¢] = 0 and thus the mean of all gradient
vectors for pixeldelonging to the same blurred edigean unbiased estimator
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Figure 1.18.: Algorithm results on a picture taken from achhald camera

for VK (y) (z4) or VK (y) (z5).

Figure 1.24 presents the 2D histogram &z(z),x € Ap. There are two
clusters, clearly distinguishable, as the gradient vecaoe orthogonal to the
corner edges. If we separate the gradient vectors in theseltisters, and then
we average the gradient vectors on each cluster, we obthinsed estimates
of VK (y) (z,) andV K (y) (xp). A review on clustering can be found in [43].

Moreover, whem and¢ are Gaussian distributed, also) andV¢ are Gaus-
sian distributed. Then, the two most frequent gradientorsabn each cluster
of the 2D histogram can be taken as in the Gaussian case tleesésa un-
biased estimates &F K (y) (x,) andV K (y) (). It is therefore possible to
avoid clustering by imposing a minimum angular distancevben the two
highest peaks in the 2D histogram of all the gradients (asitigge between
the two projections ofi along edges directions is proportional to the angle at
corner).

OnceVK (y) (z,) and VK (y) (zp) have been estimated, Equation (1.19)
gives+P(z,) and+P(z;), and thusy; andd, are obtained, see Figure 1.22.

For corners such as the one of regibrin Figure 1.1 there is a third cluster
of vectors in the histogram, corresponding to the gradierthe triangular
shaped area between the corner blurred edges. When thel@@usicorner
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v P(z,)

Figure 1.19.: Blurred Corner Model: Mesh of pixel interestiwithin region A
of Figurel.1. The projection vector$(x,) and P(z;) are also
shown.

region is large enough, the number of pixels belonging tdesHcthe two

blurred edges is larger than the number of pixels in the guéar area. This
should not be taken as a projection vector. However, whemdhger region
has not been accurately located around the corner, thigytriar area may
yield uncorrect estimates.

1.10. Decision Function

Due to the fact that orientation is unknown, both orientations Bfz,) and
P(zp) have to be considered so that there are two possible sautiprand
U9 (see Figurd.22). The decision function determines which one, betw&en
andus, is, up to its orientation, the true displacement vector.

Loosely speaking, blurred corners can be divided in twoselgsaccording
to the presence of an area where gradients are orthogorred taue displace-
ment vector. The first class contains corners like the onesepted in Figure
1.1 regionD and in Figure 1.2%®. This class of corners shows an area whose
pixels belong to the set; = {x € Ay, Vz(z) L 9;}. An example of corners
of the second class is reported in Figliré region A and in Figure 1.2@. For
a binary corner of the second cla8s= (), = 1 ori = 2 holds and therefore
the number of pixels having gradient orthogonal to each idael displace-
ment vector (i.e#~7;) is taken as a discriminant between the two classes.

For a binary corner of the first clasgZ; corresponds to the surface of
a triangle between the two blurred edges, whose value indbal icaseS;
(resp.S2) can be calculated frory, (resp.v2) and P(x,) and P(xy). If #7;
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Figure 1.20.: Two different kind of corners: in the first céak the inner prod-
uct in Equation (1.19) gives-A, while in the second casé)
gives —A. In fact in casea the angle between and P(x) is
smaller thanr /2 while in caseb this angle is larger than/2.

(resp.#Z5) corresponds t&; (respSs), thenv; (resp.d,) is taken as the true
displacement vector.

The conditionVz(z) L v;, in the definition of the se¥; is relaxed in order
to manage camera images and is replaced by

Vz(x) -0 L
#{$€AO,W<t}<SZ 1=1,2, (123)

wheret represent the cosine of a threshold angle between the twiorsec
Whenever bothy; andd, satisfy(1.23), the one having the largest value in left
side of(1.23) is taken.

Whenever bothy; and v, do not satisfy(1.23), the corner belongs to the
second class. In this case, the derivative along motiorctitire is constant
in Ag, i.e Vz -0 = const Vr € Ap. This yields+A, or —A in Equation
(1.19), and the signum does not change in the region. Theristograms of
directional derivatives along directions@fandd, are computed and the more
peaked one is selected. The sample kurtosis is taken asduesisemeasure.

Finally, in order to obtain a reliable estimate of the motéxtent, an accu-
rate estimate of\ = |b — | is required, ag\ scales bothP(z,), P(x}), as
illustrated Figure 3.5(a). The value &fis computed as the intensity difference
between the two highest local maxima in the histogram of eriatensities in
the corner region. Since there should be a clear different@denb andc, a
minimum distance of half of the intensity range in the regerequired.
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Figure 1.21.: Blurred corner region: pixelg andz; belong to two different
blurred edges.

1.11. Experiments

The algorithm based on the procedure for select the bestqiimp vectors
described in Section 1.9 and the decision function destribeSection 1.10
has been tested on synthetic images, on a test image sgathehilurred and
on a camera image.

1.11.1. Synthetic Images

Synthetic images have been generated according to Equatioy with an
original imagey according to the binary corner model of Sectio®.2 having
an angle 0b0, 60, and45 degrees. The original image is constaritlgt back-

ground and255 at corner pixels. Blur is produced by a convolution against a

PSF having exterite {20, 30,40} pixels, and directiod € {0, 15, 75,90} or
6 € {0,20,60,80} according to corners edges orientation.

For each value of blur direction and extent a squared regfolD® pix-
els, taken around the Harris measure maximum (see Fig5¢ has been
analyzed. Images have been corrupted by ngisdith standard deviation
oe € {4,8,12,16} and byn with standard deviatios,, € {1,2,3,4}, accord-
ing to Equation (1.7).

Values reported Tables 1.11.1 - 1.7 afe — ¢||/||v|| i.e. the distance, in
pixels, between the estimated displacement vett@nd the ground truth,
expressed as a percentage with respect to true motion exRedults have
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Figure 1.22.£P(z,) and+P(z;) individuate via back-projection four corner
displacement vector& v, and+v,.

been averaged ol realization of; for each value of,, and on all directions
and extents.

As o, ando¢ increases, the decision function may fail to select the true
displacement vector: this occurred in ab@w% of cases.

1.11.2. Experiment on a Test Image

The well knowncameramartest image has been synthetically blurred by a
convolution against a PSF directi@f degrees and lengttb pixels. Squared
regions of40 pixels centered in every corner selected by Harris corntectiz
have been analyzed with our method.

Figure1.26 shows the blurred cameraman image and the corner displace-
ment vectors estimated. The dashed regions surrounding sérihem are
the regions where the estimated displacement vegteatisfiesv — v| < 2
in pixel unit, beingv the ground truth identified by the PSF parameters. The
average error in the correct matche® gl pixels. The algorithm results are
accurate in regions containing a corner satisfy the modsguted in Section
1.3.2. The regions where the algorithm fails do not contain a lyicarner.

1.11.3. Experiment on Camera Images

A triplet of camera images have been captured according éddtowing

scheme. First a still image at the initial camera positiotaken, followed
by a blurred image captured while moving the camera duriegettposure.
At the end of the exposure, another still image at the finalezarposition, is
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Figure 1.23.: The same binary corner blurred with two déférdisplacement
vectors,v; andd,. Their blurred edges coincide.

taken. In this way the algorithm performance on a real mdblarred image is
be compared with the ground truth obtained by matching tloestill images.

Again, the corners have been selected by local maxima ofsHaeasure and
a region of50 pixels around each of them have been analyzed.

Figure 1.27 shows the blurred camera picture and the regions where
v| < 7 in pixel unit, beingv the ground truth computed by feature match-
ing [86] in the corresponding region in the two still imag@&se error|o — v
averaged on all these regions4is4 pixels. The regions where the displace-
ment vectors are marked in red, represent regions whereettisich function
discards the displacement vector closer to the true digplaat vector (this
happens 4 times over 17).

1.12. Conclusions

The experiments show that the blurred corners have beabluihodeled and
that is possible to estimate the blur even in a small imag®megpntaining
a corner. The algorithm can be used for estimating the dpima from a
single blurred image as in [75, 76]. Estimating the opticadvfiat corners is
advantageous as the blur is analyzed only at some signifiegiotn, and not on
a fixed image tessellation that covers the whole image. Ored fessellation,
blur estimates may be biased by the image content. Moreaechelieve that
spatial domain algorithms are more suited to blur parareetetimation as
they do not impose restriction on region size with respebiuo extent, while
Fourier transform based methods do.

In the next chapter we will address corner detection ancdregelection
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Figure 1.24.: 2d histogram of gradient.

issues, presenting a preliminary solution. The blur edesabtained with the
proposed algorithms can be used in initialization of debigralgorithms that
treat spatially variant blur, such as [89], which requiresnsupervision during
initialization.
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Figure 1.25.: Examples of Synthetic Test Images from datase
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logloc] 4 | 8 | 12 | 16 |
1 1.77% | 1.73% | 1.53% | 1.48%
2 1.97% | 2.00% | 1.91% | 2.05%
3 2.52% | 2.76% | 2.58% | 2.61%
4 3.35% | 3.64% | 3.60% | 3.69%

Table 1.5.: Result on corner of Figuie25a, [ € {20,30,40} pixels, 6 €
{0,15,75,90}
oploc] 4 | 8 | 12 | 16 |
1 2.50% | 2.33% | 2.31% | 2.66%
2.71% | 2.77% | 2.86% | 3.13%

2
3 3.44% | 3.61% | 3.82% | 3.75%
4 4.89% | 4.39% | 4.84% | 5.03%

Table 1.6.: Result on corner of Figude25b, [ € {20,30,40} pixels, § €
{0,15,75,90}
loyloc] 4 | 8 | 12 | 16 |
1 1.87% | 1.9% | 1.83% | 1.86%
1.97% | 1.9% | 1.88% | 1.94%

2
3 2.53% | 2.3% | 2.27% | 2.29%
4 3.18% | 3.1% | 2.99% | 3.12%

Table 1.7.: Result on corner of Figude25c, [ € {20,30,40} pixels, 6 €
{0,20, 60,80}
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Figure 1.26.: Cameraman synthetically blurred.



Figure 1.27.: Test on Camera Image.
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2. Corner Detection and Adaptive
Region Selection

In the previous chapter we presented algorithms which astirblur param-
eters in regions containing corners. In this chapter we esddtwo related
issues: the detection of blurred corners and the selectienregion around
each of them.

We propose two "naive" solutions, based on two intuitive&eblurred cor-
ners are detected combining the well known Harris measiileWh a mask
obtained by thresholding the gradient magnitude. The corBwon selection
procedure, figures out the blurred edges of each detectadrcdn fact, the al-
gorithm of Section 1.9 exploits only pixels belonging to tiierred edges for
determining the projection vectors and then the cornerlatisment vector.
Thus, the selected corner region may possibly contain dréigpbelonging to
the corner blurred edges. Other pixels, for example thosta®tackground
or pixels on blurred areas not belonging to the corner, havé® considered,
as these could bias the estimators of Chapter 1.

Blurred corner detector and adaptive region selectionquioe, combined
with the algorithm of the previous chapter allow to procesmgle blurred im-
age without any user interaction, and to estimate the dgtaa by exploiting
blurred corners.

2.1. Blurred Corner Detection

Salient points in images are often extracted from the logatima of the Har-
ris measure [35, 59, 65]. At pixels having large Harris measthe Hessian
matrix of the sum of square differences function [35] has karge eigenval-
ues. Therefore the image in a patch of these pixels is signific different
from any neighboring patch. On the contrary, the Harris mesais zero when
a directional derivative is zero.

In a blurred corner region, the Harris measure is larger erctiiner smears
than on the blurred edges. By corner smears we indicate thef gexels
between the two blurred edges, corner smears have beerdshdeigure 2.1
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Figure 2.1.: The corner Smears, pixels shaded belongs tmther smears.

for both an example of corner of the first class and of the stabass. At
corner smears the image changes in any neighboring paidthhasthe Harris
matrix has two nonzero eigenvalues. On the blurred edgedahes measure
is zero as the derivative along the edge direction is eveeyavhull. Therefore,
provided that in the original image the corner is binary [&.( the image is
constant in the corner and in the background area), the $Hargasure has
a local maximum that belongs to each corner smear. This maxicould be
any pixel of the corner smear but the adaptive corner regitlatson procedure
does not require higher accuracy. Figure 2.3 shows the $Hareasure of the
image depicted in Figure 2.2, containing some blurred gsrne

In order to extract blurred corners and exclude possiblailden still areas
(the image may be not uniformly blurred), we consider ony lthtal maxima
of Harris measure belonging to the mdskefined as follows

I'={zs.t.||VI(2)||>T}, (2.2)

whereT is a threshold that has to be tuned considering the minimum ac
ceptable slope for the blurred edge or the noise standarictaev Image
noise can be estimated using any method described in App&@ndihenT’
is post processed by using ordinary morphological opesd®&2] in order to
remove isolated points, small areas, thin lines and for mitg larger areas.
Figure 2.4(b) shows the maskfor the blurred corner of Figure 2.4(a). There-
fore we havel’ = 1 where the image contains blurred edges, while- 0 at
still areas close te.

Corners are detected by computing the Harris measure orutredbimage
and by selecting the local maxima. This is a standard proeegtich is also
exploited in several feature detection algorithms [64pufé 2.5(a) show the
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Figure 2.2.: Zoom on an area containing some blurred coofdfgyure 2.4(a)

Harris measure for Figure 2.4(a). We estimate then};—;, _, as the location
of the maxima of Harris measure belonginglitothese pixels are supposed to
be blurred corners and we run the corner region selectiotegioe presented
in Section 2.2, determining thus the regions where to estitie blur direction
with algorithm [5]. Figure 2.5(b) shows corners selected.

The corner detection procedure is tuned by the parametaildbermines the
minimum distance between local maxima of Harris measurebgrttie mor-
phological operators used for widening and eroding therbtledge masks.
In such a way it is possible to increase the number of detemetkers in a
given blurred image. Finally, it is possible to run the prhoe for selecting
adaptively the corner regions (described in Section 2.d)discarding those
corners presenting too small regions. Thus in the remigingrners, the blur
parameters are estimated using one of the methods preser@éeapter 1 on
the selected corner regions.

2.2. Corner Region Selection Procedure
Image corners are characterized by the blurred edges, areas the image

gradient vectors are approximatively constant. We desaiib iterative pro-
cedure, which is used both for selecting a data-adaptiveecaegion and to
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Figure 2.3.: In Red the Harris measure of Figure 2.2. Theislateasure on
the corner smeatrs is larger than in neighboring pixels.

test if the selected corner locatieni = 1, .., N corresponds to a blurred cor-
ner. The basic idea is that within pixels belonging to bldreelges the image
gradient are constant. Since the algorithms proposed iGtiagpter 1 exploits
only image values within blurred edges, in particular trst ¢me based on pro-
jection vectors selection (Section 1.9), the adaptive eoregion will contain
only blurred edge area.

The adaptive corner region is build as the union of wedge eshdginary
masksWW; o, wherej € {jo, .., J} represents the wedge sizes and
a € {2in/A}i—,.. 4 the wedge orientation. All the masks have a vertex in
the i-th corner, moreover masks having the same orientation aredeist.
Wia C Wit1,a,V,Vj = 1,..,J — 1, see Figure 2.6. These wedge shaped
mask has been built from the supports of Local Polynomial rApipnation
kernels widely exploited in [45, 47] and reference therein.

Letdenote bywI = [VI;, VI = [I ® di, I ® d;] the gradientimage, where
dy andds are derivative filters along horizontal and vertical dii@as respec-
tively. The procedure is repeated on each gradient compdviénand VI,
separately.

The adaptive region selection is a three step iterativeguhae which is
repeated for each direction of wedge masks {2ir/A},—o . 4, and starts
from j = 3.

+ Computew; ., the average oV /; on the support ofV; ,, i.e.
Wi =D zew,, VI1(2)/#Wja where byz € W, we mean that

)
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(a) Blurred image acquired when moving a Canon EOS 400D.

(b) Gradient mask’ to extract blurred edges.

Figure 2.4.: Blurred image and blurred edge mask.

W; «(x) = 1 and where#W; , denotes the number of nonzero element
in Wj,a-

» Computed; 1 ., the average oVI; on D1 o = Wit1,0 — Wja , the
area within the two consecutively nested malks.; , andW; ,;

div1.0 =2 wep, 1o VI(2)/#Djt1,0-
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(a) Harris corner measure (darkest area indicates hightsts).

(b) Corners detected combining the Harris measure with thdignt mask.

Figure 2.5.: Harris measure and detected corners.

* If dj11,, andw; , “do not differ too much”, i.gw; — dj1| < Myoy,,
if d;11 > Mso,, and finally, if the largest scale has not been considered
jet, the procedure is iterated from the magk, ; . Otherwise the scale
j is taken ag,,, the largest wedge size containing blurred edges along
directiona.
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(a) Lines delimiting the supports of wedgéb) Example of Corner Regions Selected
masksiW; o

Figure 2.6.: Corner Region Selection

Here M, M, are tuning parameters,, is estimated using [20], see Appendix
7.
After having considered all directions i, we obtain

Uip = U W5 o> (2.2)
acA

and, repeating the whole procedure\af,, we obtainlU; », so that the adaptive
corner region selected fe#th corner is

U, = Ui71 U U@Q . (23)

Figure 2.6(b) shows example of adaptive region selectioa synthetic im-
age, while Figure 2.7(a) shows the adaptive regions selest@und the cor-
ners detected in the blurred image of Figure 2.4(a). Figuré?} shows the
displacement vectors estimated with the algorithm preskeint Section 1.9.

Note that pixels iV} ,, Vo, j < 3, which are the closest to the estimated
corner location, are not considered as at these pixels et is typically
discontinuous. Since the corner displacement vecisrestimated only from
the blurred edges, we do not affect the blur direction egamay excluding
these pixels. This results in a "hole" in the selected coregion, see Figure
2.6(b).

Figure 2.7(b) shows the corner displacement vector esomperformances
on the camera image of Figure 2.4(a)
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(b) Corner displacement vectors estimated.

Figure 2.7.: Adaptive corner region selection and corngpldcement vectors
estimation.
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Part Il.

Blur due to Camera
Translation and Camera
Rotation
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The focus in the second part of the thesis is on the blur dueptore cam-
era translation or a pure camera rotation. We introduce aeregation model
where the blur is represented by a spatially variant operdtas allows us to
correctly handle motion blurred images.

Although the blur produced by a camera translation is tylyic@ssumed
spatially invariant, some blurred images acquired duriagera translation
show smears which proves that are PSFs are pixel-wise garggone can
see from Figures 3.12 and 3.13. We therefore consider thé geosral case
of a translating camera in the 3D space and we propose anvaliearmodel
based on a spatially variant operator for the blur. This rhbds been derived
by analyzing how a 3D translation of a pin-hole camera casriipe image
being acquired. In Chapter 3 and in Appendix 7 we prove thahages taken
from a translating camera, independently on the capturedesdhe blur PSF
in each pixel has a 1D rectilinear support, and a uniformevaluit. Moreover,
the PSFs directions are pointing to a particular point onirtiege plane, the
epipolee. In Chapter 3 we prove thatcorresponds to the vanishing point of
the camera translation direction. Theneagoes to infinity, the blur direction
does not vary and the spatially invariant blur correctlycdiée motion blurred
images when the capture scene is planar and parallel to thgeimplane, i.e.
when the depth does not influence the image. However, witkeres not go to
infinity, a sort of zooming effect, the radial blur, is obsedv In this case, we
also refer tee as the blur center.

We address two main issues for these images. The first issie éstima-
tion of the coordinates of, given a single blurred image (Chapter 3). The
second issue is the restoration of radial blurred images,iinages acquired
during camera translation toward a planar scene, parall#id image plane
(Chapter 4). Radial blur admits a global parametric deonpas the location
of e and a blur extent parametérdetermine the PSF in every image pixel.
However, radial blur admits also a local parametric desionp as the PSF at
any pixelz; can be expressed as a function of its direcigrand its extent
;. When the scene is not planar and parallel to the image plen®$F di-
rection at each pixel is still determined by the epipaldHowever there is no
an analogous formulation for the PSFs supports as theseagaoyding to the
scene depth. The relation between the PSFs support ancetie depth can be
used to reconstruct the scene depth from a single blurregama Chapter 5
we present some considerations about the capabilitiescofeging the scene
depth from a single radial blurred image and we point out semerks about
extending similar approaches to more general motions.

Finally, the blur produced by a purely rotating camera isstaered in Chap-
ter 6. This blur is also modeled similarly to the blur prodiityy a translating
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camera, with two parametric description. In fact the PSFaaheémage pixel
is described by the parameters of an arc of conic sectionselp@rameters are
related to the camera rotation axis and the camera anguwadsmhich thus
constitute the global blur parameters. In Chapter 6 we alesemt a novel
algorithm for estimating the camera 3D rotation axis anauiigular speed, by
analyzing a single (blurred) image. Contrary to the exgstimethods, we treat
the more general case where the rotation axis is not nedgssahogonal
to the image plane, taking into account the perspectiveisfiiat affect the
smears.
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3. Estimation of 3D Camera
Translation Direction

Often the blur corrupting an image cannot be treated asadlyativariant be-
cause its characteristics vary considerably betweerrdiftemage pixels. Mo-
tion, one of the most important blurring factors, typicadlyrrupts the images
in a non-uniform way. This chapter focuses on images cagptoyea perspec-
tive camera that translates at constant speed in a 3-D sddreeblur in the
resulting images is characterized by smears, whose directind extents are
varying. However, in this particular case, the directiofislor smears are
determined by the camera displacement direction.

We devise an algorithm for estimating the camera displacémieection,
given a single blurred image, exploiting these smears asta fihe estima-
tion is based on blur analysis of small image regions. Theg®ns are auto-
matically detected and two different methods for analyZig within them
are used, according to their content. The choice of the biatyais method
improves the overall estimation accuracy. A voting procedtombines the
multiple local estimates, increasing the robustness. Tdwrithm has been
successfully tested, both on synthetic and camera images.

3.1. Motivations

Motion blurred images embody information about the motiwat the camera
undergoes during the acquisition. Estimating the camergomavhen a sin-
gle blurred image is available is very challenging, esplgcighen the image
content is unknown. We present a novel algorithm for estimgathe 3D di-
rection of a translating camera by analyzing a single btuimeage, acquired
during the camera motion. We derive a description of thisrlilg process
by studing the 3D camera motion: it turns out that the rasgilblur is spa-
tially variant and characterized by rectilinear smearsir Binears are segments
whose directions are determined by the coordinates (omtage plane) of the
epipole, i.e. the vanishing point of camera motion dirattimom now one.
The proposed algorithm estimates the smear directionsnad saitomatically



selected image regions, using two sorts of blur directigimedgors. These di-
rections are combined in a voting procedure for determinirggcoordinates
of e. Whenever the camera is calibrated it is then immediate terichéne the
viewing ray throughe and thus, the camera motion direction.

As a matter of fact, blurred images often occur in vision eys, espe-
cially at reduced lightning condition and in indoor envinoents. The core
idea of our algorithm is to exploit the blur as a cue for estintathe camera
ego-motion. Thus, our motivations are similar to those it [Svhere an al-
gorithmic gyroscope based on the analysis of a rotatioraliyred image is
presented (other recent works on rotational blur estimadie@ [7, 72]). The
estimation of camera ego-motion exploiting the blur isipatarly attractive in
case of camera translation: this motion in fact cannot bsesthy accelerom-
eters, whereas other motions (such as the shake or theorjtatiuld also be
handled combining these sensors. Recently, two algorifiemeestoring ra-
dial blurred images have been proposed [10, 88]. Radialddaurs when the
camera translates toward a planar scene, which is assurradtébt the im-
age plane. The proposed algorithm can be also used for ¢istinhe radial
blur center, given a single image.

3.1.1. Related Works

The estimation of the blur Point Spread Function (PSF),rassythe blur spa-
tially invariant, has been widely studied in the last desdd4, 52]. Recently,
Ferguset al. [25] proposed an algorithm for photographs corrupted by-cam
era shake, that first estimates the PSF and then deblur tlgeinhavin [54]
deblurring algorithm is meant for images blurred by a PSHritpvectilinear
support. It is based on a segmentation of the image into mediaving the
same the blur extent, assuming the PSF direction constatiteowhole im-
age. Jia [44] introduced the use of transparency maps fonatitg the PSF.
All these methods are meant for deblurring, however blunegion has been
addressed for other purposes such as the integration ofptiealoflow for
tracking system [49] , the measurement of vehicle [56] ardspaed [57] or
the measurement of planar scene distance [58].

Whereas the estimation of 3D camera translation directimm fa single im-
age has never been addressed before, other works congidpatially variant
blur have to be mentioned. Rekleitis [76] used the blur fonpating the opti-
cal flow from a single image. This algorithm estimates the parameters on
an tessellation, without adaptively selecting the imaggores. Blur PSFs are
estimated in Fourier domain, thus the block sizes have tgbéisantly larger
than the PSF extent. Finally, the camera ego-motion is rimhated. Another
algorithm that exploits spatially variant blur is [53], wikethe PSF parame-
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ters determines the depth map of a static scene. Keaph [50] modeled the
blur produced by an angular motion of the camera while N&tgyl. proposed
a restoration algorithm [69] for astronomical images cpred by spatially
varying blur. Recently, it has been shown how to facilitdie PSF estimation
task [62, 85, 96] capturing a short-exposure image, pawed blurred one.
Other multiple images methods are [22, 37].

The rest of the chapter is organized as follows: in Secti@m& present the
blur model showing that determines the blur direction at any pixel. Section
3.3.1illustrates the local blur direction estimation noetk and the procedure
adopted for selecting the image regions. The voting algorifor estimating:
is described in Section 3.4, while the experiments are pteden Section 3.5.

3.2. Problem Formulation

Figure 3.1 illustrates the camera motion we are considekMigen the shutter
opens, the camera viewpoint is @, the origin of a 3D coordinate system.
We assume that the camera is translating with constant she#d) the whole
exposure interval’. The pointF’ represents the final position, that the camera
reaches as the shutter closes.

Our goal is to estimate, by only analyzing the resulting fddrimagez, the
3D direction of camera translati@nF. When the camera calibration matrix is
known, this is equivalent to estimating the coordinateshenitnage plane of
the epipolee, i.e. the vanishing point aD .

The proposed algorithm analyzes the blur "smears'as these, in case of
camera translation, are pointing ¢o In what follows we describe the image
formation process, note thatmay not fall into the image boundaries.

3.2.1. Blurred Image Formation

Any imagez acquired during a camera motion can be represented as #ie int
gration of an infinite number of still images, each captured when the camera
viewpoint is in a different position in the space. Thus, wasider the follow-

ing image formation model:

T
z(x) = /0 ye(x)dt + n(x), == (r1,22) € X. (3.1)

Here,z is a point on the 2D image grid C Z, x; andzs indicate the coordi-
nates ofX, y; : X — R represents the light intensity that reaches each pixel
at timet, andn ~ N (0, 0,)) is Gaussian white noise. Figure 3.1 illustrates the
camera translation and the positions where some imagee being captured.
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Figure 3.1.: Camera Displacement during the exposure. Whershutter
opens, the origirO of the 3D axis is in the camera viewpoint
with the z axis orthogonal to the image plane. When the shutter
closes, the camera viewpoint reaclies

Any two imagesl;, andI;, form a stereo pair and therefore the correspon-
dences between these two images are related by the esgwaitied [36]. Con-
siderly andyr, the two images acquired at the initial and final camera jposit
respectively: we define the epipalas the image of in y, and, likewise, the
epipolee’ as the image i of the line throughD and F.

When the camera translatesande’ have the same coordinates in bgth
andyr, therefore they overlap in the blurred imagas illustrated in Figure
3.1. Thus we define the epipadén z. Moreover, all correspondences between
yo andyp are pointing toe [36], thus the resulting image is blurred with
rectilinear smears. More specifically, the PSk atis a straight line segment
having directiorf; and exten{; where

tan(@i) = (.TLQ — 62)/(1‘1‘71 — 61) beinge = (61, 62) . (32)

The blur extentd; are influenced by the position of the scene pointhat

is imaged onr;. Except from some particular cases, e.g those considered in
Section 3.2.3 or in [10, 88], it is not possible to provide ikimdescription for

blur extents.

3.2.2. Image Blur

The blurring process can be also described as the action laf afperatork’
on the original (i.e. still) image, say, in the following way

2(x) = K(yo) () + (), 3.3)
KC describes the blur at each image pixel and it is written as [4]
K(w0)(@) = [ ke shun(s)ds (3.4)
X
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where the weight functiork(z;,e) corresponds to the PSF at pixel. For
purely translating camerak(x;, ) represents the smearat

k(zi,) = Ry, (W)(. — ), (3.5)

whereRy, is the rotation of); degrees around the image axisandx|_;, /2, 2]
is the characteristic function of the segméntl; /2 < =1 < 1;/2,22 = 0}. In
what follows we refer to PSFs of this kind as rectilinear PSFs

Other blurring effects, such as the out of focus blur, lersdesrations and
camera shake, are not considered in this chapter. Themgtoassume that the
same scene, captured from the same camera when it is stadiepicted in a
sharp image.

3.2.3. Examples

Whene goes to infinity and the captured scene is planar and patalléie
image plane, all the PSFs have the same direction and extard:the blur
becomes spatially invariant, as shown in Figurea3.2

When the camera translates toward a planar scene, pregsd¢hgnmage
plane parallel to the scene, the PSF extent at any imageipidetermined by
its distance, on the image plane from the epipole [10, 88ndiieg byu =
|OF|/d the ratio between the scene depttand the length of displacement
|OF|, and byz;e the distance between the pixel ande, it follows that the
PSF extent; in (6.3) is "

li = Ti€q T (3.6)
An image synthetically blurred, with in the image center and extents given
by Equation (3.6), is shown in Figure &.4Figure 3.4 and Figure 3.d shows
the PSF direction and extent at each pixel. Figur® 3lfows a camera image
captured with the described settings.

Typically, only the PSFs directions are determinedebyvhile the extents
depend on the 3D position of the scene points, like in imagésgures 3.8
and 3.3l. In particular, in Figure 38e goes to infinity and the scene is non
planar: in this case the blur direction is constant and the dsttents are pro-
portional to the scene depth.

3.3. Proposed Solution
The coordinates of are determined by estimating the blur directions within

automatically selected image regions: for this purpose xpdoé two differ-
ent blur direction estimation methods. The first method isumhédor regions

63



Figure 3.2.: Example of blur produced by a translating camarthe blur is
spatially invariant as the scene is planar, parallel to ienplgne

ande — oo, b the blur is spatially variant even if the scene is
planar as lies on the image plane.

containing an image corner, while the second method apfgiesgions con-
taining other blurred details. We also present a procedarrddtermining the
method to be used in each region.
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Figure 3.3.: Example of blur produced by a translating camarthe blur is
spatially invariant even it — oo as the scene is not planar (but
blur directions are constant, the blur is spatially invariant and
the scene is not planar

3.3.1. Local Blur Parameters Estimation

In order to estimatd®;, the blur direction in an image regidiy;, we treat the
blur operatorK as locally spatially invariant. We assume thiat € X', 3U; C
X, a neighbor ofc;, and a PSk;, such that

K(yo)(z) = /X vi(x — 2)yo(z)dt Yz e U;. (3.7)
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Figure 3.4.:a Synthetic image blurred according to Equation (3Blur di-
rections at any pixel; blur extents at any pixel

Furthermore we assumg is a rectilinear PSF, having directiéh and extent
l;. Such approximation allows us to estimate blur parametétiniselected
regions with methods meant for spatially invariant blur.

Fourier domain methods, which are widely used for blur patans estima-
tion, do not perform properly on small image regions, as #esume periodic
signals. Thus we adopt space domain methods. Within regiontgining an
image corner, we estimate the PSF direction by analyzingdaheer edges [5].
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(a) The image model within a blurred cor- (b) A Synthetically blurred image
ner region. The displacement vectorep-  (Synth) and direction estimates
resents the blur PSF whil& represents the

difference between the corner and the back-

ground.

Figure 3.5.: Blur direction estimates at corners using tgerdhm presented
in [5].

Within regions where there are no blurred edges and the insagsat flat, the
blur direction is estimated analyzing thenorm of directional derivatives [93].

Blurred corners allow a clear interpretation of rectilin€&SF parameters.
The method proposed in [5] estimates, in each corner regi@encorner dis-
placement vecto#, which represents the blur direction and extent. This ntktho
analyzes the image gradient into the blurred edges areasstinthtes), the
intensity gap between the corner and the background. FR)6(a) illustrates
the image model at blurred corners.

Within other regions we use the method proposed in [94]: BE &irection
0;, is estimated as the direction of the directional derieafiiter dy having
minimum ¢! norm

6, — : do @I , 3.8
arg mmin (1I(d ® ) ) &9

where |y, is an image containing only pixels within regién and||z||n =

> zex |(2(x))]. Inour experiments we use 7-tap directional derivativersit
devised in [21], convolved with a 3-tap derivative filter dvetorthogonal di-
rection. This latter filter acts as a whitening on the imageteat as in [94]

In Section 2.2 we introduce an adaptive region selectionguore for cor-
ner regions that also determines the blur estimation methbeé used in each
region.
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Figure 3.6.: Mean Harris measure as a function of blur extent

3.3.2. Salient Point Detection

Blurred corners are extracted from the local maxima of theisleneasure [35,
59, 65], according to the procedure described in Chapter @.aWéady pre-
sented the corner detection procedure based on the Harasuneefor blurred
images. Let assume then that;} « = 1,.., M are the pixels detected as
blurred corners.

We are going now to discuss the use of local maxima of Harriasue
(salient point) for detecting regions where the blur diatican be correctly
estimated using Equation (6.5). Note that Equation (6.8@ga reliable es-
timate within regions where the original imagg has the same (non zeré)
norm response to any directional derivative filter. Thisdgample happens
whenyyg is white noise.

As mentioned before, the local maxima of Harris measure iedspwhere
the image is presenting a significant variation along arguation. We assume
than that since these regions are blurred by a rectiline&; 8 resolution
along the blur direction decreases and the direction giyeEduation (6.5)
corresponds to the blur direction. However, siggas unknown, we have to
extract the salient points from the blurred image

We run the following experiments to show that the salientpini the blurred
imagez belong to areas of the original image, where the Harris measure is
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Figure 3.7.: Mean number of salient point as a function of bkient

large. We consider a dataset of 12 common test images (gésicedhe range
[0, 1]) and two set of parametef3 = {0, 10, .., 170, 180} for the PSF direc-
tions, andL = {1, 2, ..,29, 30} for the PSF extents. We synthetically blur each
test image with a convolution against each PSF generataddligossible pa-
rameter pairs@ x L), obtaining thug f;} j = 1, ..,12#0© x L. We compute
the Harris measure on each blurred image and we extract ¢haé itaxima.
The Harris measure is thresholded against a fixed VAI&e0.0005, as this is
a standard procedure for reducing low-relevance featuineshat follows we
always consider only pixels where the thresholded Harrigsuee is nonzero.
Figure 3.6 shows the mean Harris measure as a function ofuhexient: as
expected the blur reduces the details in the image and tews/drage value of
the Harris measure. Also the number of local maxima decseassllustrated
in Figure 3.7 .

We already discussed in Section 2.1 about the localizatroor ef local
maxima of the Harris measure in blurred corners. Here we atr@iming to
accurately locate the salient pointyfby taking those of. For our purpose it
we have to show that in a neighbor of each salient point in thedd image,
the original imagey, shows significant variations along all directions. This
is enough to show that it make sense estimating the blurtirenear pixels
using Equation (6.5). We thus consider a squared neighbt® gixels side
around each salient point in each blurred imggeand we computer; as the
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Figure 3.8.: The mean Harris measure on the original imagepated over
the 10 pixel square size neighborhood of the salient poirién
blurred image, as a function of blur extent

average on these neighborhoods, of the Harris measure aoitesponding
pixels in the original image. In order to compare valuesmgfcomputed on
different images we dividen; with the average Harris measure on the whole
corresponding original image. Figure 3.8 shows the averagkies ofmn; as

a function of the blur extent. The Harris measure on the tedeneighbor-
hood in the blurred image decreases as the blur extent seseaHowever,
even when heavy blur is considered, the salient points drensireas where
the original image shows some significant variations (ittii 5.6 times the
average Harris measure).

Thus we selec{z;}i = M,..,N as the local maxima of the Harris mea-
sure of the blurred image, avoiding those pixels which haenlselected as
blurred corner according to the procedure of Chapter 2. Addhese pixels
we consider circular neighbors for estimating blur usingi&tpn (6.5).

Note that in the presented experiment we generate blurragamwith a
convolution against a PSF and thus the blur is spatiallyriasd However,
since the Harris measure is computed locally, and the bl isetreated as
locally spatially invariant, this does not reduce the \vigfiedf our experiment.
Moreover results have been averaged combining results titamed images
having the same blur extent but different directions. Tai®ivs from the fact
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that the Harris measure in its original formulation is rimtasl invariant [35].

3.3.3. Drawbacks

Blur directions estimated using Equation (6.5) may be sshoinfluenced
by the image content. For example, in edge regions the dstilrdirection
typically corresponds to the edge direction, regardledswfand the same for
regions where the original imagg presents features highly self-correlated
(e.g. striped textures). Other regions are non informafiweexample where
1o is flat, the blur does not produce any change. Therefore wrictds regions
containing a local maxima of Harris corner measure [35] Wigioints out that
the image significantly varies along two different direngo

3.4. Camera Displacement Estimation

The estimated blur directions are then used to determineflpolee. From
every estimates paii;,x;) i = 1,.., N it follows thate should lie on?; o,,

the line passing through; and having blur directiod;. We use the Hough
approach for estimating as the pixel which has been crossed by the largest
number of lined; y,. The parameter space represents the set of all the possible
locations fore and it is a discrete grid larger thati (possibly at a different
resolution) with a set of angles |, 7). These angles describe the case co
(asin Figure 3.2.).

For each estimate paip;,x;) i = 1,.., N, the votes are assigned to the
parameters that agree with these data, i.e. theflipe and then summed to
the votes coming from all the other estimate pairs. The gatigorithm allows
to take into account the uncertainty of each estimated tilre@and, in case of
corners, also the uncertainty of corner location. Theeetbe line is replaced
by a weight function that assign a full vote to the exact sofuand a lower
vote to every parameters close to the exact solution. Thghwéinction/; ¢
is obtained rotating of; degrees and centering 41 the following function

0 - 2 ’ 3.9
(w1, 2) _ef”p[ ((1+h|x1\)k) } (3:9)
Here k expresses the localization error ahdhe error in the direction esti-
mated.

In our experiments we used = o, for estimates coming from minimum
derivative energy and; = ko + o, for estimates at corners, is a tuning
parameter that compensate the errors in estimating therctwoation. A is
related to direction estimation error and determines ttie spread from the
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(@) (b)

Figure 3.9.: Voting procedure using the estimated direstion Figure 3.5(a),
(a) Parameter space and corresponding votes distributadac
ing to (3.9), (b) Votes are represented on the green chaarigl,
marked with red a cross.

set of exact solutions (Figure 6.5). Another vote (also &ithaussian spread)
is then assigned to every line direction.

After having considered all the estimates, the point on trameter space
that obtained the maximum amount of votes is selected agipelee.

The voting algorithm adds robustness to the procedure astitins esti-
mated are inaccurate and there are typically outliers. $e o corners, even
direction correctly estimated may be far from pointingetbecause of occlu-
sion or shading: in fact, image regions representing scars pelonging to
different objects (occlusions) are not blurred accordimghie epipolar con-
straints while shadows may be also erroneously considerddiuared corner
edges (see Figure 3.12). Also the directions estimated using minimum of
directional derivatives could be outliers if in the consate region there are
edges or the original still image is highly correlated (segpufe 3.122a).

3.5. Experiments

Synthetic test images have been generated according td (3ol using the
ray tracer software Pov-Ray [41]. We generated seven 3lasoscontaining
parallelepipeds placed at different depths and oriemiatié-or each scenario,
we rendered a sequence of 60 frames translating the canoeigthle camera
axis, so that was in the image center. Each frame was rendered at a resoluti
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| 0, | Synth1] Synth2| Synth3| Synth4|
1 2.17 1.25 9.83 4.33
2 2.50 1.61 11.23 3.33
3 2.36 2.42 13.65 2.48
4 2.78 3.90 15.36 6.03

[n] 40 | 157 | 148 | 165 |

| 0, | Synth5] Synth6| Synth7| House8| House9)
1 9.83 15.40 3.06 8.74 8.21
2 11.23 | 14.81 4.28 8.30 9.40
3 13.65 | 17.16 6.75 9.62 10.56
4 15.36 | 22.38 8.39 11.59 11.29

[n] 311 ] 221 [ 10.7 | 745 | 857 |

Table 3.1.: Table shows the distance in pixels, averaged Weealization
of n, of estimated epipole from the image center. The last row
contains the average number of blur directional estimatesage

of 1024 x 768 pixels in grayscale (0-255) and the blurred inafpas been
then obtained averaging all the frames. These test imag&yathlin Figure
3.5(b) andSynth2-Synthh Figure 3.10.

Table 3.1 shows the distance in pixels betweemd the image center, av-
eraged over 10 different realization of noise for each vaitie,. The last
row of Table 3.1 shows the average number of blur directidimases used.
In these test images, the blur directions have been estintaily exploiting
corners as there are no details that can be used for estgrtagnblur using
minimum energy derivative method. The maximum length of geethask for
corner region selection is 25 pixels.

We test our algorithm on two test imagdeuse8andHouse%f Figure 3.10
rendered in the same way using two more complex and textgesthsos [40]
so that the resulting blurred images are suited for estirgatiur with both
formula (6.5) and with method for corners. The last two catsrof Table 3.1
shows the algorithm accuracy, averaged over ten diffeeaiitzation of. The
overall number of blur direction estimates is increased to.the previous case
as in several points blur has been estimated using (6.5uré-1§.11.8.a and
3.11.9.a show in yellow the directions estimated using @omethod while in
red the directions estimated using Equation (6.5). Bluemrtist have not been
estimated and segment lengths are fixed in the figures. FRade9b and
3.11.9b show the selected corner regions and 3.11.9c ah®8the parameter
space with all the votes.
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Figure 3.10.: Synthetic Imag&ynth2-SynthandHouse8,House

The proposed algorithm has been tested also on camera itas&geswith a
Canon EOS 400D 10Mpixel, see Figures 3.12 and 3.13. Imadegume 3.12
have been taken with the camera mounted on a wheeled depoedoace uni-
form motion, while images in Figure 3.13 are jpeg taken framdame camera
mounted on a serving cart (Figure 3.13.3.a), moved by hatittisavshort ex-
posure (Figure 3.13.4.a) or by bringing down the cameradripAlgorithm
results are presented by cyan lines joining the estimatgublep: with image
borders. Blur direction estimates, votes in parameterespad corner regions
are illustrated like in Figure 3.11. Even if there is no grduruth, the cyan
lines show that image blur has been correctly interpreted.

3.5.1. Discussion

Tests run on synthetic and camera images showetisagstimated accurately,
even in noisy images. Both blur direction estimation methbave been de-
signed to cope with Additive Gaussian White Noise (AWGN)eTresult of
Equation (6.5) is not influenced by AWGN, while in [5] the methfor cor-
ner regions provided satisfying performance in presenc8VdGN. On the
other hand, the image content influences more seriouslythge methods.
We already mentioned occlusions and shadings for methgeigjmples of
occlusions and shadings appears in imaggsth4Synth7and reduce the al-
gorithm accuracy. Occlusions are also present in camergeag)an particular
in Figure 3.12.1.a where the scene presents several depth.|dhe blur es-
timates from Equation (6.5) are easily affected by edgesliardas one can
clearly see from Figure 3.12.2.a the direction estimatquxai near the cabi-
net lines. In flat regions the directions estimated by Egua(6.5) is aslo not
reliable. In the considered cases however, the voting proeegives a reliable
estimate ot even in presence of such outliers as far as there are endiggi.in
The overall computation time depends on the number of regidrere blur
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Figure 3.11.: Result on Imagé®use8andHouse9

is estimated. This is the computationally heaviest pare ddrner region se-
lection procedure is based on local averages and compsyitioerefore its
computation cost is linear in the region size. Corner bltinegtion is also lin-

ear in the selected region sizes, [5]. Finally directioretivthtives of Equation
(6.5) are computed using separable filters [21], and thuls eme is a linear
combination of the response to four filters. The minimizatd Equation (6.5)

can be sped up in a multiscale approach.

3.6. Conclusions

In a blurred image produced by a translating camera, theditection and
extent are varying through the image pixels according tcstieme depth and
the camera motion. In this Chapter we have described thepbbatuced by a
translating camera, and we have derived an algorithm famashg the van-
ishing point of camera displacement. In such a way the camgoamotion
direction can be estimated by analyzing the single blumeage.

The algorithm relies on the estimation of blur direction mgge regions
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Figure 3.12.: Tests on Raw Data

which have been automatically detected and selected forowing the blur
estimators.

This algorithm can be used in order to improve robot visiostey based
on frame analysis. In fact these systems, e.g. [19], oftee ba cope with
blurred images because of reduced lightning conditionsn@doar environ-
ments. Then, instead of discarding the blurred frames wihé&aot possible
to match map features, the system can exploit the imagednitiné estimation
of the global displacement direction and the local blumeates to replace of
feature matches.

Moreover we believe that this algorithm can be used for estirg the blur
from a single image and therefore can improve deblurringhous that con-
sider also spatially varying blur, such as that one presgent{89].

Finally, we only considered translational camera motionhés particular
case do not require estimates of the blur extent. Wheneeee #re enough
blur direction and extent estimates a more general rigidecammotion can be
considered, enforcing other rigidity constraints.
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Figure 3.13.: Tests on Jpeg Camera Images
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4. Deblurring Noisy
Radial-Blurred Images

In the previous chapter we devised an algorithm for estimgatine vanishing
point of camera translation directioa, In this chapter, we address the issue
of restoring images corrupted by radial blur, i.e. blur duedamera translation
not parallel to image plane. More precisely, we assume kigatapture scene
is planar and parallel to the image plane, as in this caseltind’SF admit an
easy parametric description. In Appendix 7 we show how tmeiclered blur
model derives from the uniform motion of a pin-hole camera.

The deblurring of images corrupted by radial blur is studigtlis type of
blur appears in images acquired during any camera tramslafving a sub-
stantial component orthogonal to the image plane. The ppirdad functions
(PSF) describing this blur are spatially varying. Howetlgig blurring process
does not mix together pixels lying on different radial lines. lines stemming
from a unique point in the image, the so called “blur centérhus, in suit-
able polar coordinates, the blurring process is essgntdltD linear operator,
described by the multiplication with the blurring matrix.

We consider images corrupted simultaneously by radialdohgrnoise. The
proposed deblurring algorithm is based on two separatesfofmegularization
of the blur inverse. First, in the polar domain, we invert bh&ring matrix us-
ing the Tikhonov regularization. We then derive a particameodeling of the
noise spectrum after both the regularized inversion andoifveard and back-
ward coordinate transformations. Thanks to this model, weeeassfully use
a denoising algorithm in the Cartesian domain. We use aineas spatially
adaptive filter, the Pointwise Shape-Adaptive DCT, in ottdegxploit the im-
age structures and attenuate noise and artifacts.

Experimental results demonstrate that the proposed #igorcan effec-
tively restore radial blurred images corrupted by additiwete Gaussian noise.

The materials presented in this chapter have been publistedonference
paper [10].
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Figure 4.1.: Camera translation vectoand its components; anduy.

4.1. Introduction

In this chapter we consider the restoration of images ctedupy blur pro-
duced by a camera that translates in the 3D space with constlaeity dur-
ing the acquisition. This situation can be formalized ake$. Letu be the
3D vector that identifies the camera translation during ttosure timer'.
This translation can be decomposed in two componemtsand uy, which
are orthogonal and parallel to the image plane respectiaslghown in Fig-
ure 4.1. Typically, image restoration algorithms asswme= 0, considering
the camera translating parallel to the image plane. Thignaggon leads to
the spatially invariant blur degradation model (see [24,98 and references
therein).

In this chapter we focus on the generic case when# 0. The presence
of a significant component; makes the blur spatially variant and the image
restoration becomes a much more challenging problem. FRuplisity, the
captured scene is assumed planar and parallel to the imaige, phus neglect-
ing complications due to the scene depth.

Let us consider the blurred imageas integration ofub-imageg:,

T
z(x) = /0 y(x)dt, x=(x1,22) € X, (4.2)

wherezx represents a coordinate in the image dom#inT is the exposure
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Figure 4.2.: The blur centerand the radial lines. The segmentaincludes
samples of the original imaggthat contribute to the blurred ob-
servationz(x) atz.

time andy; is a sub-image, i.e. a sharp image produced by the lightsitten
that reaches the sensor at the instagat[0, 7']. Each sub-image; is acquired
with a different viewpoint along the camera trajectory.

In the trivial case when ;| = 0, all sub-images are shifted w.r.t. each other,
i.e. y(z) = yo(w — M), A € R2. Because the shifkt is the same for each
point z, the blurred image can be modeled as the convolution of tiginat
image with a kernel, the point spread function (PSF), whiat & 1D support
and which is typically parametrized by its direction andeixsent.

When the camera translation is not parallel to the imageeplae. u, #
0, the integration support corresponding to each point sariehe relations
between any of two sub-images are described by the essemizix [36],
which acts differently on each image point. Nevertheles#his case, the blur
can be described by the blur centeand the blur extent parametér Such
images are termechdial blurred imagesecause the blur smears are directed
along radial lines, i.e. lines stemming from the blur cerdsrshown in Figure
4.2. As we move away from the blur center, which itself is nloiried, the
length of the smears grows with rate equal to the extenn particular, the
smear at a point: such thatz — e¢| = 1 has lengthl, where|z — ¢| is the
distance between pixeland the blur center.

There are only few publications about the restoration ofgesacorrupted
by the radial blur. Webster and Reeves [88] addressed thidgm and pro-
posed a fast restoration algorithm based on resamplingltineetd image on
a lattice where the blur becomes spatially invariant, so #my deconvolu-
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tion technique (e.g., in Fourier domain) can be used. Howaveheir work,
the image noise was not considered explicitly. In pringigley method for
restoring images corrupted by spatially variant blur [68Jid be used for ra-
dial blur. However, these methods result in heavy compnaticosts, while
the restoration of radial blurred images becomes simpter performing ad-
equate image transformations. In fact, when the imagensfwamed in polar
coordinates w.r.t. to the blur centerthe blurring process having extdntan
be modeled by the multiplication against an upper triangulatrix B;.

The proposed restoration algorithm exploits Cartesiapeiar and polar-
to-Cartesian coordinate transformations which enablerapatationally af-
fordable blur inversion. Because a naive pseudo-inverseacglify the noise
and artifacts, we exploit two separate forms of regulaiorain both polar
and Cartesian domains. In the polar domain, we invert theixn&} using a
Tikhonov regularized inverse. Then, we perform denoismifpé Cartesian do-
main using a non-linear spatially adaptive filter, the Rois¢ Shape-Adaptive
DCT [30, 28, 29], in order to exploit the image structures atidnuate both
noise and artifacts. For this filtering we derive approxiemabdels of the noise
spectrum for the forward and backward coordinate transdtions, in order to
drive the denoising in Cartesian image domain.

The rest of the chapter is organized as follows. Section #e@egmts a model
for images corrupted by radial blur, Section 4.3 descrilbeskiur inversion
stage in the ideal, noiseless case. The noise is introduaktandled in Sec-
tion 4.4, where the noise characteristics after the bluersion are estimated
in order to be applied in the denoising algorithm. FinaliySection 4.5 we
validate the proposed algorithm by experimental results.

4.2. Image Formation

Typically, a spatially variant blurred imageis modeled by the following in-
tegral

z(z) = /X k(xz,s)y(s)ds, x=(r1,22) €X (4.2)

wherey is the original image and the P&fz, -) determines how the intensity
values of the original imageg contribute inz(z).

In the case of the radial blur, the PSF in each image pixeldetermined by
its position w.r.t. the blur center= (e, e5) and by the extent parameteiThe
blur centere is the pixel that corresponds to the image of the vanishirgt jod
camera translation direction, and thus itis the only pixeiol is not blurred in
the radial blurred image. The blur extent paraméter( determines how the
blur extent increases along each radial line, i.e. the biterg at a pixel: is
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l|z—e|. The parametdrdepends on the length of the camera displacement and
on the distance between the camera viewpoint and the plaeae §measured
along the camera translation direction).

Figure 4.4(a) shows an example of a radial blurred imagebliras visibly
characterized by smears along the radial lines. The raltiaitg process does
not mix together pixels lying on different radial lines ainai$ the radial blur
can be compactly formulated in the polar coordinates.

LetJ3 and¢ be two continuous domain transforms that perform respagtiv
Cartesian-to-polar and polar-to-Cartesian image mapping the blur center
e

Z(p,0) =PB(2)(p,0) = z(e1 + pcos b, ez + psinb), 4.3)

and

T —el
(4.4)
Here and in what follows, capital letters indicate imaggzregsed in the polar
coordinates, while small case letters indicate images iteSian coordinates.
Then, the radial blur can be written as

A1, 12) = C(Z) (21, 20) = Z <\/(:c1 —€1)2 + (22 — €3)2, arctan (‘”‘72 - 62>> :

1
Z(p> 9) = /]R HX[p,p—l—lp] (’I”)Y(’I”, H)d?” ) (45)
wherey, 4 is the characteristic function of the interval o],

1 a<r<b
X[a,5(T) :{ 0 else (4.6)

In practice we have to deal with discrete data, therefore seealso two dis-
crete domain coordinate transformatiosandC, which perform the Cartesian-
to-polar and the polar-to-Cartesian mapping, respegtivEhese transforma-
tions can be obtained by discretization of the continuousratprs of Equa-
tions (4.3) and (4.4). The transforf maps the inputv x h image into an
r X 7 output matrix. To obtain such an output with a rectangulanaio in
polar coordinates, the transform implicitly pads the inipuige (e.g., by zero-
padding). Without loss of generality and for practical mes we assume that
the blur centee is at the image center, as this situation can be reproduced by
padding and shifting the image adequately.

The radial blurred image in the polar coordinaté€an be expressed as a
matrix multiplication

Z =BY, 4.7)
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Figure 4.3.: The blurring matrixs; is an upper triangular x r matrix. The
upper part presents only a narrow band above the diagonakwhe
it is not null. The rows are defined in formula (4.11) and tha-no
zero are shaded.

whereY = P(y) and B; is an upper triangular matrix, that depends on the
blur extent parametér The noise-free observations are given by

z=C (BlY) . (48)

We emphasize that the above equations are discrete ap@tioirs of the con-
tinuous domain equations (4.3) - (4.5). Note also that Bo#mdC exploit data
interpolation in order to compute image values correspandd non-integer
coordinates, hence it may happen that

C(P(z)) #2 and P(C(2)) # Z. (4.9)

4.2.1. The Blurring Matrix

The matrix multiplication between the image in polar copadesY and the
blurring matrix B; corresponds to a discretization of the operator of Equation
(4.5), which models the radial blurring process of extertlote that in polar
coordinates each column ®f containsr pixels lying on the same radial line,
thusB; is ar x r matrix

P1
P
B, = : ) (4.10)
prfl
P
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where the row vectorg; = {p; j}j=1,.r,i=1,...,r, are

1/(Gl +1) i <j<|i+il
p, =« (@—1il])/G@l+1) j=|i+id+1], (4.11)
0 else

and| - | denotes the rounding to the nearest smaller or equal integer

As shown in Figure 4.3B; is an upper triangular matrix and each rpyw
corresponds to an horizontal blur PSF, which, providedtt@PSF support is
totally included within the matrix, has exteiit+ 1. These PSFs are exactly
the sub-pixel discretization of the functignof integral (4.5). Note that the
last rows of B; have/!-norm smaller tharl, because the supports of the cor-
responding PSFs lie partially outside of the image domairpréactice, this is
equivalent to zero-padding the image and producing thevkillr unrestricted
PSFs (hence having their norm equalljo It results in synthetically blurred
images having borders fading to zero, as shown in Figure}.4(

4.3. Blur Inversion

The blur inversion consist of estimating the original imagiEom z, assum-
ing that the parameteksand/ are known. The observation model presented
in Section 4.2 relies on two image transformations, themgstormations are
used also for blur inversion. In polar coordinates the btua imultiplication
against the blurring matri; (4.7). Therefore, a straightforward solution to
blur inversion consists of transforming the observatian polar coordinates
w.rt. e, i.e. Z = P(z) and by multiplying it against the inverse of blurring
matrix, B; .

Even if matrixB; is definite positive, and thus invertible, the inversionha t
blur inevitably amplifies errors due imprecision in the miodg Therefore we
replace the naive invers.Bl‘1 with the regularized Tikhonov inverse matrix
By, _

B, = (BI' B+ o*I)7'BT, (4.12)

wherea > 0 is a regularization parameter. The regularized inversehef t
blurred observation is then

¢ (’3777 (z)) . (4.13)

Figure 4.4 shows the blur inversion for the blurred imagdated in Figure
4.4(a). In Figure 4.4(b) and Figure 4.4(c) we can see thesevly multipli-
cation with the matrixB[1 and with the matrix3;, respectively. Both images
show artifacts along some rows and columns, but these @stitae stronger
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(a) Radial blurred image: the (b) Blur inversion with
blur centere is at the image naive inverse B; ', RMSE
center and = 0.25. = 11.84.

(c) Regularized inverse®!
via_Tikhonov regularization
of B; (4.12), RMSE= 11.41.

Figure 4.4.: Blur inversion with naive inverse and Tikhon@gularized in-
verse.

in Figure 4.4(b) than in Figure 4.4(c). These artifacts are @ the rounding
errors in the coordinate transformatioRsandC. The root mean square error
(RMSE) of the image restored with the naive inversionlist4, while in the
case of Tikhonov regularizatiom(= 0.005) the RMSE isl1.41. The regular-
ized inverse is able to reduce these artifacts and it is @rfor dealing with
image noise.

4.4. Noise and noise attenuation

For simplicity, we model the observation errors as an agslitthite Gaussian
noise (AWGN) term in the Cartesian domain. The observatouragon is as
follows

z=C(B)Y)+n, (4.14)

86



(a) Radial blurred noisy im- (b) The regularized inverse
age: the blur centee cor- z'! presents heavy noise,
responds to the image center,RMSE=19.94.

Il = 0.25, ando = 0.004 x

255. Noise is hardly percepti-

bleinz.

(c) Final restored image, ob-
tained after Pointwise SA-
DCT filtering of the regu-
larized inverse z shown

in Figure 4.5(b): RMSE

12.81.

Figure 4.5.: Algorithm performance on a radial blurred imagvith noise.

wheren(-) ~ N(0,02?).

Figure 4.5 illustrates the blur inversion on a noisy imagée Tsaussian
noise has been added to the blurred image according to Bguétil4), with a
standard deviation = 0.004 x 255, which is a very low noise and almost not
perceptible in Figure 4.5(a). However, as one can cleasyirs&igure 4.5(b),
in the regularized inverse* the noise has been significantly amplified and
the restoration performance decreased (RM$ES4).

Note that the noise characteristics change significantgr #ie coordinate
transformations and the multiplication against the ineeykthe blurring ma-
trix. Even when the noise in®! is Gaussian distributed, which happens if
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P andC exploit linear interpolation, the noise may not be indemarmador
identically distributed.

4.4.1. Image Restoration Algorithm

Our image restoration algorithm is based on a two step apprtike many
state-of-the-art deconvolution algorithms [29, 33, 70, 4®e first step is the
blur inversion. In the cited works, this consists of regakead deconvolution
in Fourier domain. The noise in the deconvolved image is €anscolored
noise and it is characterized by its power spectral denBiB[Y), which (up to
ac? scaling factor) is determined by the PSF. The second stéye iszmoval
of the colored noise. This is performed by conventional ritig techniques,
such as transform-domain shrinkage [29, 33, 70]. In tha eiterks the noise
PSD is used for computing threshold for the shrinkage.

In our case, the blur inversion consists of multiplying theage in polar
domain against the matri®;. Because of the coordinate transformations and
because the blur is not convolutional, the noise/ih cannot simply described
by a PSD. However, we treat the noise:ff as colored Gaussian and we use
an approximate model for the noise PSD. The denoising isilbeiormed by
the Pointwise Shape-Adaptive DCT (SA-DCT) filtering algom [28, 29, 30].
This algorithm had been used earlier for Gaussian colorégememoval in
deblurring [29] and inverse halftoning applications [17].

4.4.2. Noise PSD Modeling

Calculating the noise statistics #f*/ is a demanding task #8 and(C trans-
form differently the image pixels, according to their ldoat on the image
plane. Moreover, any analytical result would depend onrtexpolation meth-
ods used irP andC. In what follows, we consider the transforms sequence
C (EP (-)) (i.e. Cartesian-to-polar, blur inversion, and polar-tat€sian) as

an input-output system and we study the noise statisticsNdgrae Carlo ap-
proach. That is, we generateindependent realizations of standard Gaussian
white noisen;, n;(-) ~ N (0,1), i = 1,...,n, and, assuming at the image
center, we process each of them with the input-output sys‘IG{lEP (-)).
More precisely, lef); be the system input,

be the system output. In what follows, we restrict ourseteesperators® and
C which are linear.
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Figure 4.6.: The noise PSD o5. Its values have been computed using Equa-
tions (4.15) and (4.16).

The noise PSDV, is computed as the sample variance of the Fourier trans-
forms of then realizations ofy; ,, i = 1,...,n, along each frequency:

Ni(w) = var{F(n;)(w)}, weQ, (4.16)

whereF denotes the 2D Fourier transform andepresents the frequencies in
the Fourier domaif2. We remark thatV; is computed fromn realizations of
noise with unitary variance. Whenever the actual noise haances? # 1,
the noise PSD needs to be scaled accordingly and becefiés Note also
that the computed PSD depends on the blur extent

By taking into account the PSD for the denoising, we imgijciteat the
noise inz"*! as Gaussian colored noise. This may not necessarily hold, ho
ever this approximate noise description facilitates thdieation of the image
denoising algorithm. In practice, this pragmatic approgieffids satisfactory
results from experimental evidence.

Figure 4.6 presents the noise P30 o5, obtained by inverting: = 3000
noise realizations with radial blur of exteht= 0.25. One can see that de-
spite obvious symmetries within the PSD, the middle hottaldvertical cross-
sections are considerably different from the two diagomaso These cross-
sections, which we denote (horizonal/vertical) and; (diagonals) are shown
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Figure 4.7.: The functioy o5 (in red), approximatingVy o5 of Figure 4.6 (in
yellow).

in Figure 4.9.

Since the noise PSD varies depending ,ome repeat the Monte Carlo pro-
cedure considering several different values of the bluergxparameter. Fur-
thermore, for practical purposes, we replace the sampledith an approxi-
mated functionS; generated by convex interpolation of the horizontal/caiti
and diagonal cross-sectionsandd; of N;. In our simulations the blur extents
arel = 1/120,...,110/120. Figure 4.10 illustrates the cross-sectiapsnd
d; when varying the blur exterit

Finally S;, the function approximatingv;, is defined as

Si(w) = cos?(28)S} (w) + sin?(26)SH(w), weQ, (4.17)

whereg = arctan(z—j) is the angular component of the frequengynd Sy
andS;! are surfaces of revolution generated rotating around tiggnos; and
d;, respectively. Figures 4.8(a) and 4.8(b) show the surf&ggs andsg.%,
respectively, while Figure 4.8(c) shoug o5 computed according to Equation
(4.17). The quality of the approximation &5 to Ng.o5 is illustrated in
Figure 4.7.

Figure 4.5(c) illustrates the image restoration perforoeaof proposed ap-
proach whers o5 is used as the noise PSD for the Pointwise SA-DCT denois-
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(b) SurfaceSg ;.
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(c) SurfaceSy.25.

Figure 4.8.: Top: examples of surfaces of revolut®fnandS¢ generated from
the cross-sections; andd;. Bottom: S;, approximation of the
noise PSDV;, obtained as the convex combination&jf and S{!
defined by Equation (4.17).

ing. The RMSE of the restored imageli®.81.

4.5. Experiments

We present simulation results obtained for a set of four comgrayscale test
images of size 256256. As in Equation (4.14), the blurred noisy observation
are generated from the original imagas

z=C(B/P(y)) +n. (4.18)

We use discrete transforn?® andC based on bilinear interpolation. Let us
remark that both these transforms introduce errors in tlsemhtionz, seri-
ously impairing the restoration quality even in the noisefcase. The size of
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Figure 4.9.: Examples af; andd; generating the surface®’ andS?.

the polar domain is determined as in the work by Ribatial.[77] on images
blurred because of camera rotation. In particular, werusenax,cy (|x —el)
andr = [2m/arcsin (v/2/r) |, where[-] is the rounding to the nearest larger
or equal integer. We limited our tests to blur having the ldentere at the
image center: wheneveliis in a different location on the image plane, in order
to apply the restoration algorithm, the image has to be duugly padded and
shifted.

According to a common practice when testing deblurring rtlgms, we
add noise with a small variance to images where the blur exddarge and
noise with a higher variance to images where the blur exsestniall. Thus, we
mimic the situation where images are acquired with diffeexposure times
during the same camera motion. When the camera undergoesdariasla-
tion, images acquired with a long exposure are typicallywiealurred, while
the noise affecting these images is small. On the contrargges acquired
with a short exposure, show weaker blur and stronger noiskle™.1 shows
the pairs blur extent/noise standard deviation used foeigimg the blurred
noisy observations. For all these cases, the Tikhonovaegation parameter,
a (4.12), is fixed tox = 0.005.

Table 4.2 shows the RMSE of the restored images w.r.t. thignatiimage.
The performance of the noise attenuation are illustratédgare 9, while Fig-
ures 4.12 and 4.13 shows some of the images, before andedteration. As
one may expect, the algorithm performance decreases vatimthease either
of the blur extent or of the noise standard deviation. The latter appears t® hav
a more substantial impact on the quality of the restored @ndgy particular,

92



(a) The noise PSD values at frequencies on (b) The noise PSD values at frequencies on
the vertical axis of2 when varying the pa- the diagonals of2 when varying the param-
rameterl = 1/120, ...,110/120. eterl = 1/120,...,110/120.

Figure 4.10.: PSD values wused for computing;, with [ =
1/120,...,110/120.

the RMSE corresponding to Exp.6, which is the noise-freeegrpent, is al-
ways significantly lower than the RMSE in Exp.5, where theeobstions are
generated with the same blur but with= 0.002 x 255. Finally, let us observe
that the restored images of Figures 4.12 and 4.13 show sdifaetzralong the
radial lines; these are not due to noise but rather to intatipa errors intro-
duced by the coordinate transformatiddasndC: indeed such artifacts appear
also in the noise-free experiments.

Table 4.3 gives the execution times of each separate stape afgorithm,
applied on a 256« 256 image (Cameraman). The times correspond to our Mat-
lab implementation running on a computer with AMD 64 1.81 X3#ocessor.
As one can see from the Table 4.3, the impact of coordinatesfsamations
on the overall execution time is of negligible, as nearhtlad time is actually
taken by the Pointwise SA-DCT denoising step.

4.6. Conclusions

In this chapter we presented a novel restoration algoritbmnbisy radial
blurred images. The restoration algorithm includes twormsaeps: the blur
inversion in the polar domain, and the noise removal in theégSgn domain.
The denoising part consists of an adaptation of a spatidiyptive transform-
based denoising method, namely the Pointwise SA-DCT fig@r 29].
Experimental results with synthetically generated olet#gsas show that
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| Experiment| 601 | 0/255 |
Exp.1 5 0.006
Exp.2 10 | 0.004
Exp.3 15 | 0.004
Exp.4 20 | 0.002
Exp.5 25 | 0.002
Exp6 | 25| O

Table 4.1.: Experimental settings: blur extent and noiaedsdrd deviation val-
ues used for testing the proposed algorithm. The third rovedid)
shows the parameters used in the examples of Figures 4.4%&nd 4

\ | Exp.1| Exp.2| Exp.3| Exp.4| Exp.5| Exp.6 ]
Cameraman 11.27| 11.98| 12.82 | 12.24| 12.52| 12.33
House 6.93 | 693 | 7.33 | 6,50 | 6.63 | 6.94
Aerial 11.13| 11.43| 12.34| 10.69| 11.09| 9.43
Peppers | 879 | 881 | 9.35 | 846 | 8.63 | 842

Table 4.2.: Root mean squared error (RMSE) of each restorade in the ex-
perimental settings of Table 4.1. Examples of the resmmagual-
ity are shown in Figures 4.12 and 4.13.

the denoising step improves significantly the restoratieriggmance. At the
same time, it emerges the need of an accurate model of neigtiss after
both blur inversion and coordinate transformations. Inftiiare we will in-
vestigate algorithms for estimatirgand! from a given blurred image, in order
to combine the estimation and the restoration procedugggtier into a blind
deblurring algorithm.
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| Algorithm part | time (sec)]
Cartesian-to-polar  0.28

Blur inversion 0.07
Polar-to-Cartesian  0.12
SA-DCT filtering 491

Table 4.3.: Execution times for a 256 256 test image on a AMD 64 1.81-
GHz.
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Figure 4.11.: Experiment 1. noise attenuation. The firstrwol shows the
observations, the second column the corresponding regrediar
inversesz™, and the third column shows the restored images.
Restoration performance are listed in Table 4.2.
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Figure 4.12.: Blurred and noisy images (first and third calymand restored
images (second and forth column) obtained with the proposed
method. See Table 4.1 for parameters used in the experiments
and Table 4.2 for restoration performance in terms of RSME.
Row 1: “Cameraman” experiments 2 and 6. Row 2: “ House ”
experiments 2 and 3. Row 3: “House” experiments 4 and 5.
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Figure 4.13.: Blurred and noisy images (first and third caiyirand restored

98

images (second and forth column) obtained with the proposed
method. See Table 4.1 for parameters used in the experiments
and Table 4.2 for restoration performance in terms of RSME.
Row 4: “Peppers” experiments 3 and 4. Row 5: “Peppers” ex-
periments 5 and 6. Row 6: “Aerial” experiments 2 and 3. Row 7:
“Aerial” experiments 4 and 5.



5. Structure From Motion Blur

This chapter discusses the capabilities of estimating thes&ne structure
from a single motion blurred image. We present an algoritbmektimating
the scene depth from a single radial blurred image, that tdoegoire any user
interaction. While we are not able to cope with more geneaai@ra motions,
we focus on radial blur and we discuss the shortcomings anddtiantages of
estimating scene depth from motion blur.

We also briefly describe some methods that combines prioth@image
content with motion blur analysis, in order to cope with mooenplicated 3D
motion.

5.1. Structure From Motion Blur

Several techniques in literature have been proposed faratsig the 3D scene
structure by exploiting blur. In some cases, the image torlwe directly re-
lated to the scene depth and therefore, when properly asdilytze blur allows
to infer the 3D scene.

There are several methods in literature concerning thdasgpimation from
out of focus blur: the image focus depends on the scene degdtthas local
estimates of focus blur can be used to infer the scene depteseTmethods
are known ashape from defocuandshape from focusShape from defocus
methods infer the scene depth given a set of defocused intdghe same
scene. In shape from focus methods the camera focus is Igctivanged
in order to estimate the scene depth. In turn, shape fromcdsfmethods
are further classified in active and passive methods acupriti the use of
structured light or not. See [23] for an exhaustive reviewdepth estimation
methods from image blur. Recently, a shape from defocus odeftom a
single image acquired with a coded aperture camera has beposed [53].
This method performs also the restoration of out of focusgesawhere blur
varies according to the scene depth. Typically depth frofoals methods
exploit multiple images.

Motion blur is determined both by the 3D camera motion andsttene
structure, therefore can be also used for 3D reconstruciomotion blurred



image is obtained by the integration of sevesab-images;, each one cap-
tured by the camera having the viewpoint in a different pasjtsee Equation
(3.1),

T
o(z) = / w(@)dt + (), = (e1,22), (5.1)

where the sub-imageg andyp form a pair of views, corresponding to the
time instants where the camera shutter opens and clospsctiesly.

Let us assume that the camera intrinsic parameters are knehile the
extrinsic parameters are not, and discuss the issue ofs&aoting the scene
from a single motion blurred image. If we are able to estintléetrajectories
followed by some pixel on the image plane during the expgsand if we can
associate to these trajectories matching betwgeandy, we can reproduce
a stereo vision system from a single motion blurred image.

Let v, be the trajectory associated with the PSkat Examples of these
trajectories are the corner displacement vectors present€hapter 1. The
basic idea is to estimate the pairg0),v(7T)), formed by the extremities of
v, and to associate them the correspondences one would diytdeature
matching between the sub-imaggsandyr. These allow us to reconstruct
the 3D camera motion and the scene depth via standard epipedenetry
techniques [36].

The following problems are encountered when trying to exisgereo vision
from a single blurred image:

Trajectories are not straight lines. While the correspondences determined
from two focused views are oriented segments (i.e. vectmtical flow
descriptors), the blur trajectories may not be straightreegs. The es-
timation of trajectories which are far from being straightk could not
be trivial. Even assuming a short exposure time and fast mmetion
may not guarantee rectilinear trajectories. In fact, blodpced by cam-
era rotation shows smears which are arcs of conic sectisrigstribed
in Chapter 6, which makes the estimation of correspondeaite more
difficult.

Correspondence Pairs Orientation. Once a blur trajectoryy has been
correctly estimated, it is not possible to determine whicle of the
end pointsy(0) and~(T'), belongs tayy and which one belongs ;.
In fact, there is no way to estimate from the resulting bldrimage
which is the orientation of the underlying motion, as alyediscussed
in Section 1.8. Unluckily, 3D reconstruction techniguesdzhon fea-
ture matching in image pairs require the orientations ofdibiermined
correspondences, which are always known (up to a swap diealbiti-
entations) as features of each pair are taken from a différayge.
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Figure 5.1.: Texture in figuresandb show high self-similarity thus matching
feature between andb may be complicated. The correspondence
problem does not hold in when analyzing blurred smears

A solution could be taking into account the two orientatidos each
correspondence and, enforcing additional constraints) as those de-
riving from rigidity of camera motion, use the Ransac altjon [27] to
determine the correct orientations.

Although these shortcomings, estimating the correspaelpairs from blur
presents some advantages w.r.t. to feature matching bagmitran. Let us
consider for example two frames of a moving object contaimepetitive tex-
tures, as presented in Figure 5.1. In this case, becausgloshlf-similarity
of the image content, it is difficult to correctly estimatetotees between the
two frames, when no further assumptions can be made on tlehesatFrom a
picture, captured with a longer camera exposure of the saovemscene, it
could be easier to estimate the correspondence pairs byzargblur in image
patches, although the orientation ambiguity still holdgughly speaking, in
some cases the estimation of correspondence pairs fromradimage does
not present the matching problem at the cost of losing in&tion about pairs
orientation.

Typically, there are few reliable correspondence pairsnedges that can be
obtained from a blurred image. Their number typically dases when the blur
smears are not straight line segments. The 3D reconstnufrbon a single
image can be then addressed assuming that there are sdueradl images
(possibly in a sequence), and enforcing some prior on theesoe on the
original image, or possibly assuming that a noisy image efdhime scene is
also available. These approaches however have not beestigated in this
thesis work.

We focus on depth reconstruction from a single blurred imege® we en-
force some constraints on the camera motion. We restriaddi@lty blurred
images, i.e. images acquired from a purely translating canas discussed in
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Chapter 3. Depth estimation from radially blurred imagesinspler than mo-
tion blurred images, as the correspondence pairs orientatin be neglected,;
moreover the blur smears are straight lines.

A motion blurred image acquired during a pure rotation with tamera
viewpoint lying on the rotation axis, does not allow to infee scene depth
as the camera viewpoint does not move, and thus multiple réeanstruction
can no be done (see Chapter 6).

5.2. Depth Estimation From A Radial Blurred
Image

Let assume the camera is purely translating, as illustiatetgure 3.1. In this
case the local blur estimates can be associated to the pongences between
imagesyy andyr. In fact, from the constraints on the camera motion ( [36]
and Chapter 3), it follows that the matchings betwggtandy are directed
and oriented toward the epipole. Thus, also the local blimasges orientation
can be inferred and the blur estimates are equivalent toetieiie matches.
Moreover, the blur estimates obtained using one of the ndstipoesented in
Chapter 3 are reliable as the smears are straight line segmen

Figure 5.2(a) shows a synthetic image produced with a eetrsoftware
Pov-Ray [41] by averaging frames rendered from a trangjatamera. These
images have been rendered according to the procedure lmsdn Section
3.5.

(a) A Synthetic Radially blurred imidb) Epipole estimation using blur anal-
age, used for estimating depth.. ysis at corners

The algorithm outline can be represented in three steps

Epipole Estimation. This is performed exploiting the algorithm presented
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in Chapter 3 or the epipole location on the image plane casilplgshe
assumed known in specific applications.

Correspondence Pairs Estimation. Once the epipole has been estimated
(for example by exploiting corner regions), the blur directis deter-
mined at any image pixel. Then, also blurred edge areas carsdu
for determining correspondence paitg0),v(7')). We randomly select
pixels belonging to thé& masks described in Section 2.1, and estimate
the blur extents within a region elongated along the blueddion of
these pixels estimated using Equation (1.8), as only onanpeter is
unknown. Other techniques can be used such as autocamelatised
like in [93] or techniques based on analysis of profiles albhg di-
rections [8]. Note that the estimated correspondence pagrsndeed
vectors, as their orientation, up to a global swap, is ddtexthby the
epipole. Figure 5.2 shows these vectors. Each green poirdsents the
position of a pixel in the sub-imagg), whereas the corresponding blue
point identifies its position ig.

Figure 5.2.: Estimated correspondence pairs from Fig2éap. Green and
Blue points indicate the correspondence.

Depth Reconstruction By assuming a still camera and a translating object,
the 3D scene can be reconstructed with a triangulation [Bigjure 5.3
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Figure 5.3.: Estimated Depth from Figure 5.2(&).is the camera viewpoint
andr the image plane. Error wast the ground truth.

represents the depth estimates. Two planes are fitted betweelouds
of points, each one represents the initial and final posibfaihe square
plane in the scene. Assuming a static camera, the initialfiaiadl po-

sitions of the scene plane can be reconstructed. Figurehbwssthe
depth map estimated from Figure 5.2.

Depth estimates are far from being accurate as the mearnusdosstor of
the point clouds i8% of the true depth for the initial position arid; of the
true depth for the final position. This is mostly due to thd faat there is no a
significant change in subimagggsandyr as the perspective is the same. Note
that the same procedure works also wher> oo, as the depth influences at
the same way the blur extents, while leaving blur directionstant.

5.3. Sphere Full 3D Motion Reconstruction From
a Single Blurred Image

Whenever the scene content is known (even partially), ibssile to design
custom algorithms in order to estimate the scene depth olomotin this
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Figure 5.4.: Estimated Depth from Figure 5.2(a). Assumistaic camera the
initial and final position of the scene plane can be recons#dl
V is the camera viewpoint andthe image plane. Error was
and5% of the ground truth value for the closest and futher position
of the scene plane, respectively.

section we outline algorithms targeted for images degiatimoving sphere [8]
and [9]. These algorithms have been devised for high rasalutmages of
sports events depicting a moving ball. These algorithmssebased on the
image formation model of Equation 5.1.

A sphere contour is projected into an ellipse which allows,ta a scale
factor, to reconstruct the 3D sphere position. Typically $hale factor is fixed
by means of the known ball radius. If blur is correctly haddliee 3D sphere
position and translation can be estimated directly frormglsiblurred image.

We assume that the ball is monochromatic and that it is mosmgmonochro-
matic background. This situation corresponds to the tramesy (or the alpha
matte) of the moving ball and gives, in each image pixel, tegntage of
exposure time it has been covered by the ball. Typically ridvesparency map
is assumed known [44, 72], as this can be estimated thanksetointerac-
tion [55, 79, 83, 90] or thanks to the knowledge of the backgtb[31, 66, 82].

The ball 3D displacement is estimated from the transpareragy by fitting
two ellipsesc; and co, representing ball position at the opening and at the
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closure of the shutter, see Figure 5.5.

Figure 5.5.: The ellipses andc, represent the ball at the opening and closure
of the shutter. From these ellipses, it is possible thusdornstruct
the initial and final position of the sphere in the 3D scene.

The analytical expressions of andcs are determined by fitting two ellipses
to points of Figure 5.5, which are determined by analyzingirhBge profiles
of the blurred ball with the techniques presented in [8], Bggire 5.6. The
profile analysis procedure corresponds to the estimatiocootspondence
pairs (y(0),v(7")) of Section 5.1. Figure 5.7 shows algorithm performances
on camera images.

Once the 3D ball displacement is known it is possible to estiénthe ball
rotation axis and the spin velocity [9]. The blur on imageoeg depicting the
ball surface is analyzed and, exploiting geometrical qainsis deriving from
sphere motion, it is possible to estimate the 3D positiorhefrotation axis.
For a complete description of the algorithm, please refd®}o Figure 5.8
shows rotation axis estimated from camera images.
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Figure 5.6.: Procedure used for estimating points of edbps andc,, for a
detailed description see [8].

Figure 5.7.: Example of Algorithm [8] performances on caaienages.

Figure 5.8.: Example all rotation axis estimation: [9] jperiances on camera
images.
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6. Estimating Camera Rotation
Parameters from a Blurred
Image

A fast rotation of the camera during the image acquisiticgults in a blurred
image, which typically shows curved smears. We propose alragorithm
for estimating both the camera rotation axis and the camggalar speed from
a single blurred image. The algorithm is based on local alyf the blur
smears. Contrary to the existing methods, we treat the nesrergl case where
the rotation axis is not necessarily orthogonal to the infagee, taking into
account the perspective effects that affect the smears.

The algorithm is validated in experiments with synthetid aamera blurred
images, providing accurate estimates.

6.1. Rotational Blur Estimation

This paper concerns images corrupted by blur due to cam&oro or to a
rotating object in the scene. When the camera or the captinjedt are purely
rotating, the image blur is determined by only two factorge ¢amera rotation
axisa and its angular spead. We present a novel algorithm for estimating
botha andw, by analyzing the blur in a single image.

When the camera rotation axis and the angular speed are kriogvnota-
tionally blurred image can be restored by image coordinatassformation
and blur inversion. In broad terms, the image is transforfrad Cartesian to
polar coordinates so that the blur becomes space invamantan be inverted
using a deconvolution based algorithm. Estimating cogrébte camera rota-
tion axis and its angular speed is therefore crucial fororegj these images
as small errors in the polar transformation are amplifiedhisyitiur inversion.
Moreover, estimating andw from a single image can be also of interest for
robotic application as these describe the camera ego-motio

Figure 6.1 shows an image acquired during camera rotatidre shapes
of the blur smears show that the blur is space variant. Tipidhese are



Figure 6.1.: A rotationally blurred image.

assumed arcs of circumferences, all having the same cétueever, this ap-
proach neglects the perspective effects that occur whertagon axis is not
orthogonal to the image plane. The proposed algorithm astisnthe camera
rotation axis in the most general case when it is not nedgssamthogonal
to the image plane. To the best of our knowledge this issuenbear been
correctly addressed before.

The early works concerning rotational blur were focused lon imodeling
and image restoration. Sawchuk [80], addressing the isEumage restora-
tion in case of spatially variant blur, described a modeltfigr rotational blur.
A restoration algorithm specific for rotationally blurredages has been pro-
posed in [84]. Recently, Ucast al. [87] have proposed a fast and parallel
implementation for restoration of space variant blurreddes, which is tested
also on rotational blurred images. All these methods asdimaiethe cam-
era rotation axis is perpendicular to the image plane artdothth the angular
speed and the intersection between the rotation axis anidhtge plane are
known. A different issue has been addressed in [77], whielsgnmts a study
on the transformation from the image plane to a polar lattRekleitis [75]
provides an algorithm to compute the optical flow from a ddrimage, using
image tessellation and analysing the Fourier spectrum alsegions where
the blur is treated as space invariant. This algorithm has bested also on
rotationally blurred images.
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Besides the early works concerning rotational blur modedind restoration,
Hong and Zhang [39] addressed the issue of both rotatiomaldstimation
and removal. Their method is based on an image segment#biog eircum-
ferences to estimate the blur and restore the image selyarateese subsets.
Recently, an algorithm for estimating the camera rotatiomfa single blurred
image has been proposed [51]. The algorithm is meant as al\ggtoscope
and it is targeted to an efficient implementation. In pat#cuthis algorithm
requires edges in the scene.

Jia [44] proposed an algorithm for estimating and removimg blur due
to an object rotation in a single image, taking into accoust a translation
component. However, this method require the user to marletioepoint of
blur smears at some pixels and to separate background froegrémnd in
order to estimate theansparency mapf the blurred object [55].

All the existing methods, concerning both image restoraiod blur es-
timation, assume that the blur smears are arcs of circundeschaving the
same center. Therefore these methods are accurate onlyagesmvhere the
rotation axis is orthogonal to the image plane.

We present an algorithm for estimating the camera rotatisand angular
speed in the most general case, where the rotation axis isrtimigonal to
the image plane. The proposed algorithm is mostly targetirggh accuracy
rather than efficiency and does not require the presencegesdad the scene.

6.2. Problem Formulation

We propose an algorithm for estimating the camera rotatksaand its an-
gular speedv by analyzing a single blurred image acquired during camera
rotation. We assume that the camera is calibrated, thdawtakisa passes
through its viewpointV, i.e. V € a, andw is constant. Figure 6.2.a illus-
trates the situation typically considered in literaturdjene the rotation axis
is perpendicular to image plane The principal pointP and the intersection
between the image plane and the rotation &Xis = N « then coincide. Anal-
ogous blur is obtained when | = andV" ¢ a, but the capture scene is planar
and parallel tar [77].

In this work we consider the most general situation, illatgd in Figure
6.2.b, where: is not orthogonal ter and the camera viewpoiff € a.

6.2.1. Image Blur

A blurring pathis defined as the set of image pixels that a viewing ray inter-
sects during a camera rotation 2f around axisz. Figure 6.2 illustrates ex-
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Figure 6.2.: (a) Blurred image formatiom, L . Blurring paths are circumfer-
ences. (b) Blurred image formatiom,s not orthogonal to image
planer andV € a. Blurring paths are conic sections on the image
plane, while they are circular when projected on an ideaéspal
sensor and on a plane perpendicular to the rotation axis.

amples of blurring paths. In rotationally blurred imagesrgwixel is merged
with neighboring pixels from the same blurring path, seaifécs.1. The blur
is therefore space variant and cannot be represented asaa §hift invari-
ant system. We therefore model the rotational blur by anaipef on the
original imagey so that the observed (blurred and noisy) image [4]

2(2) = K(y)(@) +n(z) == (v1,2)€X, (6.1)

wherez are the coordinates in the discrete image domaendn ~ N (0, 0727)
is white Gaussian noise. The blur operakoican be written as

K(y)(z) = /X k(x,s)y(s)ds. (6.2)
wherek(z, o) is a kernel
k(z,0) = Apc(e), (6.3)
andAy . corresponds to the point spread function (PSE).al . is an arc of
the blurring path at, i.e. it is an arc of conic section having tangent line with
directiond and arc lengtle. The parameterg, e varies between image pixels

according to the rotation axis Other blurring effects, such as the out of focus
blur, lenses aberrations and camera shake, are not caetsider
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6.3. The Algorithm

The proposed algorithm consist of three steps: in the fiegt tbte lines tangent
to blurring paths at some image pixels are estimated (Seétid.1). In the
second step, these lines are used in a voting proceduretiimraging the rota-
tion axisa (Sections 6.3.2 and 6.3.3). The third step consists of tti@aton
of the angular speed (Section 6.3.4).

6.3.1. Blur Tangent Direction Estimation

Image blur is analyzed withitv image regions taken around selected pixels
{z;}i=1,. n. There are no particular requirements in selecng};—1 . n,
however smooth areas should be avoided, while coveringumiy the image.
Therefore we take the local maxima of the Harris corner nreapb], or
whenever these do not cover uniformly the image, we takg,—; . n on
aregular grid.

Blur is analyzed using the approach proposed by Yitzletlat[94] for esti-
mating the direction of blur “smears” by means of directiaterivative filters.
This method, proposed for space invariant blurs with PSknigairectilinear”
support, assumes the image isotropic. The blur directimestimated as the
direction of the derivative filtetly having minimum¢! norm response

H:arggrerf(l)g](ﬂ(dg@z)ﬂl), (6.4)

wherel|(dg ® 2)||1 = > ,cx |(do ® 2)(x)], thel* norm.

Equation (6.4) is motivated by the fact that the blur remaaléthe details
and attenuates edgesioélong blur direction. Therefore the blur direction can
be determined by the directional derivative filter havingiimium energy. This
method cannot be directly applied to rotationally blurredhges, as the blur
is not space invariant because in every pixel the circumtsrapproximating
the blurring path (i.e the PSF) changes.

At z;, the center of each regidiy;, we estimate the directiofy of the line
[; tangent to the blurring path in;, as

: 2
0; = arg ererf(l)gr] 2 w;((dg ® 2)(z5))" . (6.5)

wherew is a window function rotationally symmetric with respecthe cen-
ter. By using Gaussian distributed weights, it is possibleetiuce the influ-
ence of pixels in Equation (6.5) with the distance fram We adopted the
3 tap derivative filters presented in [21] for blur analysisHquation (6.5).
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Figure 6.3.: Rotationally blurred image and plots of dil@zal derivatives en-
ergy in four regions.

These filters have been selected as they provide good agamdas they are
separable. Experimentally tifé norm gave better results than thenorm.

Figures 6.3 show$_, ;. w;((dy ® z)(xj))2 as a function of) € [0, 7]
within regions of the blurred image containing isotropixttees or edges. Re-
gions containing edges, as pointed out in [51], can be ebguldor estimating
the camera rotation: inonly edges tangent to the blurring paths are preserved.
Formula (6.5) gives accurate results also whgrontains a blurred edge, as
the direction minimizing the derivatives energy is the edgection, i.e the
blur tangent direction, see Figure 6.4

The directions tangent to the blurring paths, estimateti faitmula (6.5),
are therefore reliable also in regions containing blurréges.

6.3.2. Voting Procedure for Circular Blurring Paths

When the camera optical axis and the rotation axisoincide, the blurring
paths are circumferences centered’in= 7 N a, see Figure 6.2.a. Circular
blurring paths are obtained also wheris parallel to the optical axis and the
scene is planar and parallel to the image plane [77, 39].i$nciseC’ can be
determined by a Generalized Hough Transform [1].

The Generalized Hough Transform is a procedure for comguitbust so-
lution to a problem, given some input data. The proceduresi®ldped by
means of a parameters spaéewhich is the set of all the possible solutions.
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Figure 6.4.: (a) Two straight segments are rotated aratiil) In the blurred
image, the part of the segments which are tangent to thergurr
paths are preserved, while the others are lost (in thosetdde
along radial lines).

A vote is assigned to every parameter that satisfy a datunthemdsummed to
the votes coming from the other data. After having consuietethe data, the
parameter which received the highest vote is taken as d@ulut

In our caseP is a discrete grid of all the possible location 0r€ =« and
data are the pairgz;,0;) i=1,..,N. Note thatC' could be outside of the
image gridX. Each datgz;, 6;) identifies a linel;, the line tangent to the
blurring path atr;. The set of all the possible rotation centérsgiven the line
l;, is the line perpendicular t and passing through,.

Consider the root mean square error of eégch

o; = E[(0i — 07)?] (6.6)

whered; represents the true tangent blur directiorzatind E[e] the mathe-
matical expectation. Since we cannot directly computewve approximate it
with an indirect measurement: for example considering thplidgude of the
area nea#; in the energy function minimized in (6.5) or considerimgpro-
portional too,, (6.1). Noise standard deviation is estimated using [20yeGi

a datum(z;, 0;), we assign a full vote to all the exact solutions and we spread
smaller votes to the neighboring parameters, accordiniget@trors irp;.

Let nowp = (p1,p2) represent a coordinate system in the parameters space
and assumé; = 0 andz; = p; = (0,0). Let now model the vote spread
assuming that along the lingg = 1 the errors are distributed as/27 -
N(0,0;). We model the vote spread so that along line= k, the votes are
still Gaussian distributed with a full vote at the exact $iolu (k,0) and for
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Figure 6.5.: Weight function used for the votes spread.

neighboring parameters the votes depend only on the andjatance frond,,
see Figure 6.5. Therefore the following weight functiongsdifor distributing
the votes in the parameter space (wher= p; = (0,0) andd; = 0),

2
Dy

[ ) = - 9 67
v (pl p2) exp[ 1 +p%0?:| ( )

The votes weight functiom;, associated to other data;, ¢;), correspond to
Equation (6.7) opportunely rotated and translated. Whigpaats (x;, 6;) i =
1,.., N have been considered, the parameter that received theshigtte is
taken as the solution, i.e.

p=argmaxV(p), being V(p) = vi(p). (6.8)

peE

=1

The coordinates of' = 7 N a are determined from.
Figure 6.6 illustrates the voting procedure on a synthiyidalurred test
image.

6.3.3. Conic Section Blurring Paths

Assuming circular blurring paths reduces the complexigdlbut gives inac-
curate solutions whenevelis not perpendicular to. We present an algorithm
for estimatinge andw whenV € a anda is in a general position w.r.tr. In
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Figure 6.6.: (a) Rotationally blurred image with some blmgent direction
estimates. (b) Votes in the parameter space, (c) votesu@nto

particular, if we callrc a plane perpendicular g ¢ is obtained by two ro-
tations ofa and 5 from 7. We do not consideV” ¢ a as in this case the blur
would depend on the scene depth.

Votes in the parameters space illustrates what happensciflar blurring
paths are assumed wheiis not orthogonal tar. Figure 6.7.a shows a blurred
image produced when the plane orthogonat torms anglesy* = 45° and
B* = 0° with 7. If we treat the blurring paths as circumferences, the vistes
the parameters space do not point out a clear solution, asshd-igure 6.7.b
and 6.7.c.

Directionsd; obtained from (6.5) represent the blurring paths tangestdi
tion, even when the blurring paths are conic sections. Baibthrring paths
themselves are not circumferences, thus lines perpenditulthese tangent
lines do not cross at the same point.

From basic 3D geometry considerations, and as pointed dbtLinit fol-
lows that the blurring paths are circumferences on an idearical sensor
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Figure 6.7.: (a) Rotationally blurred image with rotatiotisan™ = 45°, 3% =
0°. (b) Votes assuming circular blurring paths, (c) votes corg.
(d) Votes obtained transforming the data with= 45°, B =0°, (e)
votes contours. The maximum vote in (d) is 33% higher than the
maximum vote in (b). This is due to the fact that transformtimg
data withMys ( the blurring paths become circumferences having
the same center.

S, Figure 6.2.b. Then, if we project the image franon S surface, the blur-
ring paths become circumferences. Each of these circuntdesebelongs to a
plane and all these planes have the same normal: the rotatisn. Let now
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consider one of these planes;, tangent to the sphere. The projections of the
blurring paths onr¢ are circumferences, Figure 6.2.b.

The planer and the planerc are related by a projective transformation
determined by two parameters, naméty, 3), the angles between the two
planes. Define the mapl,, 5 : m — 7, g as the projection fron¥” betweenr
andm, g, which is the plane tangent 8, forming angleg«, 5) with 7 [78].

We search for(a, 3) that project the blurring paths into circumferences, by
modifying the voting procedure of Section 6.3.2.

There is no need to transform the whole image wifh ;5 as eacli;, the line
tangent to the blurring path at, can be directly mapped vi&/,, 3. Let vf"ﬁ
be the weight function (6.7) associated to data ;) i = 1,..,N mapped
via M, g. The parameters pair identifying the plang is estimated as

(&73) = arg mabx Vaﬁ(ﬁa,ﬁ)» (69)
where
N
Do, = 0 By =" v (p). 6.10
Pap = argmax V*(p), V(p) =3 0l (p) (6.10)

=1

Figure 6.7.d and 6.7.e represent the votes in case the dagebkan trans-
formed according to the correctly estimated parameters 45°, B = 0°.
These votes are much more concentrated than votes in Figuleahd 6.7.c.

Oncex andﬁ have been estimated, the camera rotation @idsdetermined
and it is possible to map the imageo M, ;(z). As said before, irM@ﬁ(z)
the blurring paths are circumferences centereMg:%(C) = mc Naand it
is therefore possible to transforM& 3(2) in polar coordinates for estimating
the angular speed.

6.3.4. Angular Speed Estimation

OnceC has been determined, it is possible to transfcb\rfgﬁ(z) (the image
projected onr¢) on a polar latticgp, 6) w.r.t to M&B(C) [77]. On the polar
lattice, the blur is space invariant with the PSF directemgllinesp = const.

We estimate the PSF extent using the method proposed byakiiz[®4]
as this can be applied to a restricted image area, avoidieg livhich contain
several pixels of padding introduced by the polar transédiom. The PSF
extent, opportunely scaled by the factor due to the polaicéatresolution,
divided by the exposure time gives the camera angular speed.
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6.4. Implementation Details

We adopted the 3 tap derivative filters presented in [21] far Analysis in
equation (6.5). These filters have been selected as theydprgeod accu-
racy and as they are separable. The separability allowgigémentation as
only the responses to two basic filters need to be computedeXyerienced
also that the use of cross derivatives increases the agcafdhe estimated
blurring path tangent directions. This is due to the fact Whlaen one deriva-
tive component is directed as the blur, the orthogonal corapbperforms
whitening on the image, reducing its intrinsic spatial etation [94]. More-
over using cross derivative filters reduces the range of démsidered angles
in (6.5) to [0,7/2]. Then for determining the correct blur tangent direction
amongl; andf; + 7 /2 (with 6; € [0, 7/2] solution of (6.5)), we compute the
responses w.r.t. derivative filters alofigand®; + =/2 and we take the one
having minimum energy. Moreover, as the plots in Figure G@xsthat the
term ijeUi w;((dp ® ,z)(a:j))2 varies smoothly w.r.t.f, the minimization
could be done in a multi-scale manner, considering first aseoset of angles
and then increasing the resolution in a neighborhood of timegmm. Finally,
the windoww in (6.5) has Gaussian weights with the maximum in the window
center.

In the voting procedure for estimating,(3) we considered two set of angles
A and B for o and 3 respectively. For each pair, 5) € A x B, we run the
voting procedure (6.10) sampling the functiqﬁﬂ. This makes the algorithm
computationally demanding. The voting procedure can bd spen a multi
scale implementation which can be applied4tpB and also to the parameter
spaceP.

However, since the analytic expression of vote spread isvkngee Equa-
tion (6.7)), it is possible to use any numerical minimizattechniques.

6.5. Experiments

The algorithm has been validated both on synthetic and @ime&ges. Syn-
thetic images of Figure 6.8 have been generated with a mytsoftware [41]

rotating the camera in front of planar tiles of test imagekird images are
obtained averaging all the rendered frames, according tatiti (6.1). Ten

frames (512x512 pixels, grayscale 0-255) are rendered gumdr mtation de-

gree. The blurring paths tangent directions are estimat&@1 equally spaced
regions having a 10 pixel radius, using formula (6.5).

Table 6.1 show3*?(p, g) (the value of the maximum vote obtained with

(o, B)) as a percentage W.ﬂié"ﬁ(ﬁd 3) (the maximum vote obtained with
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Figure 6.8.: Still and rotationally blurred synthetic inesg First row, left to
right: Boat @* = 20°,8* = 0°), Mandrill («* = —20°, 3" =
20°) and Lena &* = 0°,8* = —20°). Second row: Boat, Man-
drill and Lena, rotationally blurred with an angular speéd 08
and 6 deg/s, respectively, assuming 1 second of exposuee lim
tersection between image plane and rotation axis is markbdaw
red circle.

(&, 3)). Here(a, (3) coincides with a*, 3*), the ground truth. Table 6.2 shows
the results at a second iteration considering a refinemenhé( 4, (3)).
Table 6.3 shows results obtained on synthetic images of&ig8. Each of
them has been tested adding white Gaussian noise with sthddeaation O,
0.5 and 1 and considering and3 in A = B = {—40°,—20°,0°,20°,40°}.
Algorithm performance are evaluated wit{a)=|a — o*| andA(3)=|3 — 3*|.
A(C) andA(&) represent the absolute error between the ground truth and th
estimated values @' = 7 N a andw, respectively.
The effectiveness of our algorithm is evaluated as
VAP (hy 5) = V22 (a,,)

— , 6.11
A, (6.11)

adv =

where) @252 (Pas,3,) represents the maximum vote obtained among other pa-
rameterga, 3). The higher this ratio, the better. Finallx(C®?) andA (w%?)
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S e

o B[ -40[-20] 0 [20] 40|
-40 || 33 | 52 | 72 | 53| 48
-20 || 39 | 52| 83 | 63| 44
0 34| 57| 83 | 63|43
20 40 | 55 | 100 | 55| 44
40 35| 42| 62 | 39| 34

Table 6.1.: Boat. Highest votes corresponding &9 in the parameters
space, expressed as a percentage with respect to the maxivteim

la B]-10] 0 [10]
10 71| 79 | 80

20 63 | 100 | 74
30 57 | 82 | 61

Table 6.2.: Refinement around,(3) from Table 6.1.

Figure 6.9.: Boat, Mapdrill and Lena rectified with the cepending esti-
mated ¢, ). Intersection between the image plane and the ro-
tation axis is marked with a red circle.

are the corresponding errors obtained assuming circulanitg paths. Results
for noisy images represent the average over ten differaaemealizations.

Results reported in Table 6.3 show that our algorithm care aeith a rea-
sonable amount of noise, obtaining regularly better redian the circular
blur assumption. This is more evident in the estimation efdhgular speed,
which lacks physical meaning when the rotation axis is notemly iden-
tified. Figure 6.9 shows blurred images of Figure 6.8 tramséa with the
correspondingw&ﬁ.

Camera images have been captured rotating a Canon EOS 46@#decan
a tripod, assuring that is orthogonal to the floor. The ground truifi and3*,
can be then computed rectifying still images of a checkerboa the floor.
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Image | o, | Ala) | A(B) [ A(C) | A(@) | adu%) || A(C™0) | AW™) |

Boat 0 0 0 2.20 | 0.23 | 20.44 33.06 4.83
Boat | 0.5 0 0 546 | 0.24 | 20.23 21.27 | 114.55
Boat 1 0 0 8.84 | 0.19 | 8.84 19.25 71.98
Mandrill | O 0 0 1.00 | 0.09 | 5.66 7.07 0.96
Mandrill | 0.5 2 2 148 | 0.11 | 6.13 4.81 2.85
Mandrill | 1 4 4 1.17 | 0.26 | 5.25 4.41 2.29
Lena 0 0 0 3.00 | 0.08 | 11.01 12.08 0.60
Lena | 0.5 0 0 3.88 | 0.20 | 14.06 33.64 64.94
Lena 1 0 4 523 | 0.48 | 6.00 29.43 62.58

Table 6.3.: Algorithm performance on synthetic images. e > 0, aver-
ages over 10 noise realizations.

—
—

Figure 6.10.: Blurred camera image. (@) Blurred image
(a* = —27°,§* =0°), (b) rectified image with estimated
a = —30° B = 0° (c) checkerboard with the same camera

inclination, (d) checkerboard rectified with= —30°, 3 = 0°.

Figures 6.10.a and 6.12.a show the downsampled RAW conviertgayscale
used to test our algorithm. The blurring path tangent divastare estimated
on 187 uniformly spaced regions, having 10 pixel radius.
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Figure 6.11.: Comparison between circular (red) and coeitiean (green)
blurring paths on 6.10.a. Green blurring paths describeeraor
curately the image blur.

Figure 6.12.: Blurred camera image. (a) Blurred imagée £ —20°, §* =
0°), (b) rectified image with estimatedl = —20°, B = 0° (c)
checkerboard with the same camera inclination, (d) chéckeed
rectified witha = —20°, 3 = 0°.

Tables 6.4 and 6.5 show the results of the execution of twatites of the
algorithm on Figure 6.10.a. The solution obtainedis= —30° and 3 = 0°,
which is acceptable as the ground truth, obtained from tleelarboard, is

124



o B[ -40][-20] 0 [20] 40|
-40 || 63 | 88 | 100 | 88 | 52
-20 || 62 | 77 | 78 | 70| 54
0 67 | 74| 80 | 70| 62
20 62 | 81| 85 | 65| 63
40 71| 73| 82 | 78| 77

Table 6.4.: Camera Image. Highest votes corresponding, i6) (n the param-
eters space, expressed as a percentage with respect toxineuma
vote.

o B -10] 0 [10]
-50 || 82 | 76 | 80
-40 || 81| 96 | 72
-30 || 85 | 100 | 83

Table 6.5.: Camera Image. Refinement around3j from Table 6.4.

(—27°,0°). Figure 6.11 points out the differences between the bigmiaths
estimated with the circular approximation (in red) and tbeic section paths
estimated by our method (in green). As clearly seen from #taild the blur
is correctly interpeted by the green blurring paths. Figufe® shows results
on another camera image, haviaj = —20° and3* = 0°. After two itera-
tions, the algorithm converges exactly to the correct smutFigures 6.10 and
6.12 show the blurred images and the checkerboard imagefseckevith the
estimated @, 3).

6.6. Conclusions

We described a novel algorithm for estimating the cameiioot axis and the
angular speed from a single blurred image. The algorithrviges accurate
estimates also in the most challenging cases, when théorottis is not or-
thogonal to the image plane. To the best of the authors’ kexbgd, none of the
existing methods handles these cases correctly since knmtimods assume
circular blurring paths. We have shown how this assumptiaulyces inac-
curate estimates when the rotation axis is not orthogondidamage plane,
while our algorithm is more accurate.

The algorithm is aiming to high accuracy rather than efficjenAccuracy
in the estimation of these parameters is a primary issuestoniag such im-
ages as the deblurring is typically based on a coordinatsftsamation and a
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deconvolution, which are highly sensitive to errors.
Ongoing works concern the design of a more noise-robustoddtr blur

analysis on image regions and the implementation of a fastimg proce-
dure.
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7. Future Work

In this thesis we addressed the issues of analyzing andirgstootion blurred
images, i.e. images where the blur is due to any camera mdtiguarticular
the focus was on the blur due to camera translation and thereaiotation. We
devised two innovative algorithms form estimating both bher parameters
and the camera motion when a single image, blurred becausansiation
or rotation is available. Moreover a restoration algoritfon radial blurred
images that takes into account also the image noise has lbepospd. We
also devised algorithms that exploit the image content dieioto estimate the
PSF parameters within corner regions.

The blurred corner detection and the adaptive region seteprocedures
presented in Chapter 2 have to be further investigated. &oimproved for-
mulation and more exhaustive experimental validation példone in the next
furure.

Ongoing works concern blind deblurring algorithms for tmtaal and trans-
lational blur. We are investigating procedures for estintathe blur extent
parameter in radial blurred images, so that the restoraiigorithm presented
in Chapter 4 can be used in cascade with the epipolw estimatgorithm
of Chapter 3. We also are planning to model the statistiey #fie rotational
blur inversion, following the procedure illustrated in 8en 4.4.2, in order to
restore images corrupted by both rotational blur and nofdeo in this case
the crucial issue is the accuracy in the coordinate transition that maps the
blurred image on a plane orthogonal to the rotation axishasis required
when inverting the blur.

On the contrary, we are not planning to work on the depth ediim from
a single motion blurred image, presented in Chapter 5. le odsa more
generic camera motions depth estimation from a single dduimage may be
not feasible because of the orientation problem. Findily,accuracy provided
by the blur estimates, seems not satisfying for depth reéagt®on. It will be
rather investigated how to exploit blurred frames in videquences and how
to perform blurred target detection and localization ingesand videos.






Techniques For Estimating
Standard Deviation of Additive
White Gaussian Noise from a
Single Image

Additive White Gaussian Noise (AWGN) is commonly used in gadorma-

tion models to consider electronic and thermal noise, deeiiin errors and
most of signal independent random effects. In this thesisftem considered
AWGN (Chapters 3, 4 and in experiments of Chapters 1 and diasbise
term is commonly used to approximate the sum of the noise fildfarent

sources and the quantization errors (at least in corregphpsed blurred im-
ages).

Noise standard deviation estimation is a preliminary stepeveral image
restoration (e.g. denoising and deblurring) and imageyaisahlgorithms (e.qg.
background subtraction, tracking). This has been usechsixtdy also in this
thesis, for example in Chapters 1 and 2 for removing pixelgnigasmall gra-
dient norm, in Chapter 4 it is used in the Shape Adaptive DQioding al-
gorithm. In Chapters 1, 3 and 6 the noise standard deviaasrbken used to
tune the amplitude of vote spread.

In this appendix we present an overview of existing techesgior estimat-
ing AWGN standard deviation from a single image and we focqud/edian
of Absolute Deviation (MAD) based estimators.

State of the art in AWGN standard deviation
estimation in images

We consider the following observation model
2(z) = y(x) +n(x), n(z)~N0,0%) zeX (7.1)

wherey is the (unknown) true image valug,represents the Additive White
Gaussian Noise (AWGN) that corrupts the observed imaged is a vector
representing pixel coordinates on image donin



We give an overview of methods for estimating the standawiten of a
stochastic process, whose values)(x) are independent and identically dis-
tributed realizations a Gaussian random variable foraamyX'.

Algorithms that perform this task mainly follow two apprb@s: the filter-
ing approach and the block-based approach. A good survepenfiormance
comparison between some of these methods has been prelsg@ésen [71].

The filtering approach exploit the separation of noise fram tmage, which
is generally obtained subtracting from the (noisy) obs#waz a smoothed
observationz, obtained by filteringz. This can be done using both linear and
non linear filtering such as averaging filters or block-wisedmn [71]. More
sophisticated algorithms following this approach havenbeger introduced:
Ranket al. [73] for example propose an algorithm based on Differeimgat
Filters. Immerkaer [42] introduced a Laplacian mask fitigrion the noisy
image that allows fast noise variance estimation. The saapéatian filtering
followed by an Edge detector has been suggested in [16].

The filtering approach includes transform based algoritf@ds 20]. The
well known Donoho and Johnstone algorithm [20] is based onelga de-
composition and exploit the MAD estimator. This is also filtg based, as
Wavelets decompaosition [60], [61] exploits linear filtagiand down-sampling.
The wavelet detail coefficients are considered noise, aisddbla motivates
the Wavelet Shrinkage method. Therefore the noise startisidtion can be
computed using a robust estimator, the Median of Absolutediiens (MAD),
directly on the first order Wavelet detail coefficients. Tiegfprmances of this
algorithm varies according to the number of vanishing masef wavelet
filters. Typically Daubechies wavelets [18] with three \&ing moments are
used.

In the block-based approach the noise standard deviatitiallinestimated
locally on each component of an image tessellation. Thetatstical proce-
dure selects the most reliable value between possible atamttviation esti-
mates [71], [63].

This basic idea has motivated several algorithms that coenfidtering tech-
niques in order to separate the image noise, with sometstatianalysis of
the standard deviation estimates on image blocks. In péati¢73] performs
AWGN standard deviation estimation on the whole image bymaing the
histogram of blocks (or local) noise standard deviatioineses and correct-
ing it according to some prior. A mixed approach has beemticsuggested
by Shinet al. [81], the idea here is to perform a Gaussian smoothing fitter i
low-variance areas, which have been selected before wikbcifwise analy-
Sis.

An algorithm based on a completely different approach iswdesd in [91].
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It exploits the autocorrelation function of the noisy imadpained considering
1D shift. This histogram presents a maximum at zero whichespionds to the
case when image is point-wise multiplied with its non shiftersion. Since
noise is an i.i.d. process we have

En(za) -n(zp)] =0 x4 # x5, (7.2)

while
En(zq) - n(xp)] = o x,=m. (7.3)

Therefore the autocorrelation values are not influencedhéybise but in the
origin of the autocorrelation function. A spline or a Gaassiunction is fitted
in a neighbor of the origin (excluding the origin itself) foet autocorrelation
values, estimating thus the autocorrelation of the naise-fimage (7.2). The
difference between the fitted autocorrelation function #wel values of the
autocorrelation function in the origin represent the anomspeck which cor-
responds to the noise variance (7.3).

Median of Absolute Deviation for AGWN standard
deviation estimation

The Median of Absolute Deviation (MAD) [34] is a robust sttt for es-
timating the standard deviation of Gaussian samples. ltloam be used for
estimating the standard deviation of AWGN whereas the nasdeen filtered
from the image. Itis used in the wavelet based algorithm,[@@jch is one of
the most performing algorithms for AWGN standard deviagstimation.

Let us explain why robust estimators are used in conjunctiith filtering
based approaches. In these methods the separation of the froe the noise
is never performed exactly, and the filtered observatiotoes not correspond
to the original imagey. Thus,z — z,; does not represent the pure noise. There-
fore the estimation of the standard deviation frem z, has to handle values
z—zs Which are not Gaussian distributed likeDifferentiating filters typically
produce outputs of small magnitude on slow varying signaith large values
in correspondence with rapid changes. Such large valuessaqs outliers
in noise estimate),, and thus a robust estimator for the standard deviation is
preferred to the square root of the sample variance.

Let us introduce the MAD, in the context of a trivial filteribgsed algorithm
for the AWGN standard deviation estimation. The noise sajiar step consist
of processing the image with differentiating filter, like

ﬁ:Z®[17_1] :Z(l'l,l'g)—z(afl,fvg—i-l), (74)
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which consists in subtracting a shifted version of the noisgervation to the
observation itself. This is a basic high pass filter, theeeip contains the
image high frequency, influenced mostly by the noise.

The noise standard deviation is then estimated using the Mgtnator on
n. Itis defined for Gaussian samplgss

_ median(|n — median(n)|)
- 0.6745

Noise standard deviation can be estimated by using the MA#asd possibly
averaging the results obtained wighobtained from horizontal and vertical
filters.

Wavelet based method [20] corresponds to usifig D on 7, whereas the
filter [1, —1] in equation (7.4) is replaced by Daubechies Wavelet filt8mn-
ilar noise estimators has been suggested also in [73] bdtinssascade, this
situation corresponds to Donoho’ algorithm where filterecuare those of
Haar Wavelet decomposition.

o =mad (n)

(7.5)
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Characterization of Radial Blur

In this Appendix we derive a characterization of the radiak lsvhich have
been extensively used in Chapters 3 and 4.

In particular we assume that the blur is a linear processta.the original
imagey, i.e. that the blurred observatiancan be written as in Formula (4.2) :

z(x) = /Xk(x,s)y(s)ds, reX. (7.6)

We further assume that the blurring process preserves tharm of the signal
e[|zl = llylh-

The goal of this Appendix is to determine the PSE ate k(x, e), in case
of camera translation toward planar scene.

From the epipolar constraints and the remarks of Sectior? 3i2follows
that the support of the PSF &y, i.e. suppk(z;,e)) is a straight line segment,
having direction

f; = arctan Ti2 — 2 (7.7)
Ti1 — €1
wherez; ; andz; o are the horizontal and vertical coordinates on the image
grid, respectively.
Now we will prove the following Proposition,

Proposition 1 (Uniform blur) When the captured scene is planar and paral-
lel to the image plane, and when the camera is purely traimgatn continuous
image domain, each PSF has constant value on its suppomyet@age pixel.

Proof. From Equation (7.7), it follows that in order to derive theFP&
x, it is enough to consider the pixels on the straight line anithage plane
passing througle andx. Moreover, for simplicity we prove the equivalent
case where the camera is static and the planar scene isatragsbward the
camera: see Figure 7.1. The initial and at the final positioth® scene are
indicated byS’ and S, while the image plane is indicated iy The scene
moves along the straight line throughande the camera viewpoint and the
epipole, respectively.



It follows, that the scene points that intersect the viewiag atx during
the the scene translation lies on the segméiX”. This segment is obtained
by back-projecting orf® along the camera translation direction, the point
which represents the intersection between the viewing maytlae scene plane
S,

However, the blur in Equation (7.6) has to be expressed asciidn of the
original imagey, not as a function of the scene. Therefore we intersect the
viewing ray associated t&” with = and we obtain that(x) is given by the
integral overzz”.

Since the displacement has been covered at uniform speeq, goint of
zz' is taken into account with the same weight. It follows thaEiquation
k(x,®) = const.

Moreover, since the blur must preserve thenorm of the signal, we have
that

/ k(x,s)ds = 1andk(x,e) = const.
X

|

Note that Proposition 1 holds also in case- oo, and in this case we have
standard uniform motion blur case, like those assumed ind2.368, 94, 95].

Note that on the discrete image domain, Proposition 1 malaidtbecause
near X’ wider areas of the scene are imaged into a pixel than Ké&arThis
fact has been neglected in our discrete formulation of Glragt Another
difference between discrete domain PSF and the continuomsid PSF here
formulated concern the PSF values. While in continuous @orfeoposition
1, assure®SF(z) = constVx, in discrete domain this typically does not hold
because of subpixel interpolation. Therefore the PSF lisidgintified by its
direction and extent but it is not constant.

We will now prove that the blur extent, i.e. the size of the B8pport, at
each pixek: is proportional to the distances.

Proposition 2 (Blur Extent) Leta be animage pixel, then under the assump-
tions of Proposition 1, it follows thdt the blur extent at: is proportional to
the distanceze.

Proof. Leta andb be two pixels, and let us start proving that, referring to
Figure 7.2,

b0 = \eb = aa’ = \ea (7.8)

Note that thanks to Talete Theorem from

BB’ = A\EB = ad = \ea (7.9)
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Figure 7.1.: Blurred image formation in the purely tranisigcamera. In green
the viewing rays, the red line represents the camera displant
direction. The blue segment identifies the scene displactara
while the scene pointX’ X" are imaged inta.

follows relation (7.8).
In order to prove relation (7.9) we define

p= =

Since the triangleélﬂl is similar to the trianglevﬂl, the following
equalities hold

EA BV BV BBy
UV = = = =
AA AA BB" BB

Thus relation (7.9) has been proved and relation (7.8)valo
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Figure 7.2.: Blurred image formation in the purely transigcamera. In green
the viewing rays, red represent the camera displacemesutidin.
The blue segment identifies the scene pixels that are blurred

We therefore proved that the blur extent at a pixet is proportional to its
distance from the epipolee, i.e.| = \Te.

However this does not conclude our proof as there is stilhtmshow that
the same\ coefficient holds for any radial line. This trivially follosvirom the
fact that image plane and scene are paralikl.

The following corollary concludes the proofs for derivinigetradial blur
model used in Chapter 4
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