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Rotational Blur: An Example
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Rotational blur affects images acquired during a fast 
rotation of the camera
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Rotational blur affects images acquired during a fast 
rotation of the camera

The blur is completely described by
• the camera rotation axis
• the angular speed

Dealing with such an images is not straightforward
• Most of blur analysis and image restoration techniques 

are meant for spatially invariant blur while blur due to 
rotation is spatially variant

Rotational Blur
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Contribution

We propose an algorithm for estimating the camera 
rotation axis and the angular speed, from a single 
blurred image. 
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Contribution

We propose an algorithm for estimating the camera 
rotation axis and the angular speed, from a single 
blurred image. 
The algorithm is able to cope with blurs produced by a 
generic camera rotation (assuming the rotation axis 
through the viewpoint).
The proposed algorithm is targeted to accuracy rather 
than computational efficiency 
Accurate estimates:
• are essential for deblurring
• can be used to infer the camera egomotion
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Early works on roationally blurred images concern image
restoration (Ribaric et al [2000])
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Early works on roationally blurred images concern image
restoration (Ribaric et al [2000])

The key idea is that the blur in polar coordinates becomes
shift invariant

Early Works

Space Invariant Blur
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Early Works

This transform is possible only when the rotation axis is
orthogonal to the image plane and the intersection
between the axis and the image plane is known.
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Early Works

This transform is possible only when the rotation axis is
orthogonal to the image plane and the intersection
between the axis and the image plane is known.

When the rotation axis is not orthogonal to the image 
plane, the blur on the image in polar coordinates is not 
space invariant.

In this case, it is essential to consider the angle between 
the rotation axis and the image plane.
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Klein and Drummond [2005]
• Devised an algorithm for estimating the camera ego-motion from a 

rotationally blurred image. 
• The algorithm is meant as a visual gyroscope.
• Targeted to efficiency rather than accuracy.
• Handles correctly only rotation axis orthogonal to image plane.

Recent Works 
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Klein and Drummond [2005]
• Devised an algorithm for estimating the camera ego-motion from a 

rotationally blurred image. 
• The algorithm is meant as a visual gyroscope.
• Targeted to efficiency rather than accuracy.
• Handles correctly only rotation axis orthogonal to image plane.

Shan et al [2007]
• Algorithm for both estimating rotation parameters and restoring a 

single rotational blurred image.
• Assumes rotation axis orthogonal to the image plane and takes

into account image translation also.
• Exploits alpha matting techniques.
• Relies on significant user interaction.

Recent Works 
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A blurring path is defined as the set of image pixels that
a viewing ray intersects during a camera rotation of       
around the rotation axis a

P

C

P C V Va
a

circumferences conic sections

Blurring Path: definition

2π

ππ
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Blurring Path: an Illustrative Example

Example of blurring
paths obtained with
a rotation 
orthogonal to the 
image plane
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Example of blurring
paths obtained with
a rotation 
orthogonal to the 
image plane

General case, 
blurring paths are 
conic sections
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An image z degraded by space-variant blur is modelled as
follows

where represents the blurred and noise-free image,     
the image domain and k(x,s) the PSF at a pixel x

Rotational blur – Image Formation Model

K
¡
y
¢ K¡y¢(x) = RX k(x, s)y(s)ds

X

z(x) = K
¡
y
¢
(x) + η(x) x = (x, y) ∈ X
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An image z degraded by space-variant blur is modelled as
follows

where represents the blurred and noise-free image,     
the image domain and k(x,s) the PSF at a pixel x

For rotational blur:

where represents an arc of conic section having
tangent direction     and extent e

Rotational blur – Image Formation Model

Aθ,e

k(x, •) = Aθ,e(•)

θ

K
¡
y
¢ K¡y¢(x) = RX k(x, s)y(s)ds

X

z(x) = K
¡
y
¢
(x) + η(x) x = (x1, x2) ∈ X
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Rotational Blur is thus:
• Space-variant, as the Point Spread Functions are varying through 

the image plane
• Parametric as these Point Spread Functions can be expressed as

a function of the rotation axis and the angular speed of the camera.

Rotational blur – Image Formation Model
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Rotational Blur is thus:
• Space-variant, as the Point Spread Functions are varying through 

the image plane
• Parametric as these Point Spread Functions can be expressed as

a function of the rotation axis and the angular speed of the camera.

We are not interested in estimating the Point Spread
Function at each image pixel, we estimate the rotation axis
and the angular speed

Rotational blur – Image Formation Model
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The algorithm is based on three steps:
1. Local estimates of the directions tangent to the 

blurring paths
2. Voting procedure for estimating the rotation axis
3. Estimation of the angular speed

Assumptions:
1. The camera is calibrated
2. The camera viewpoint lies on the rotation axis
3. The angular speed is constant during exposure

Algorithm - Overview
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The blur correlates the image along the blurring paths

Given , a small image region, the response to a 
derivative filter has minimum energy when the 
derivative direction      corresponds the blur tangent
direction:

where represents a circular window with Gaussian 
weights and       the 2D convolution.

[Adaptation from Yitzhaky (1996) ] 

Local estimates of blurring paths tangent directions

wj
~

Ui

dθ
θi

θi = argmin
θ∈[0,π]

E(θi) E(θi) =
P

xj∈Ui
wj
¡
(y ~ dθ)(xj)

¢2
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Local estimates of blurring paths tangent directions

E 

E 

θ

θ
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Assume circular blurring paths centered in C, the 
intersection between the image plane and the rotation axis

Axis estimation – circular blurring paths
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vi

p̂ = argmax
p∈P

V(p), V(p) =
NP
i=1

vi(p)
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Assume circular blurring paths centered in C, the 
intersection between the image plane and the rotation axis
For each local estimate (data), the possible locations of C
belong to the line orthogonal to the blurring path tangent
Following an Hough-like approach, a set of votes is
associated to each datum in a parameters space P
After summing all the votes, C corrisponds to the 
parameter receiving the highest number of votes:

The votes are characterized by a Gaussian spread to
consider the uncertainty in the blur tangent estimate

Axis estimation – circular blurring paths

vi

vi

p̂ = argmax
p∈P

V(p), V(p) =
NP
i=1

vi(p)
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Axis estimation – circular blurring paths: an example
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In the general case, 
the blurring paths
are conic sections

The projections of 
the blurring paths
onto a plane
orthogonal to the 
rotation axis are 
circumferences

Axis estimation – conic blurring paths

π

P

C

V

a
πc
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Axis estimation – conic blurring paths

Only when the blurring paths are circular, the normals to
the blur tangents cross in a single point (C), capable of 
collecting in the ideal case all the votes
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Axis estimation – conic blurring paths

Only when the blurring paths are circular, the normals to
the blur tangents cross in a single point (C), capable of 
collecting in the ideal case all the votes

This peculiarity is exploited for estimating the plane
orthogonal to the rotation axis, among a set of candidates
Each candidate plane is defined by two angles and

defines the projection between andMα,β π
βα

100% 50%

πα,β
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Axis estimation – conic blurring paths

For each pair of parameters we project the local
estimates on the plane using the transform Mα,βπα,β

α,β
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Axis estimation – conic blurring paths

For each pair of parameters we project the local
estimates on the plane using the transform

We then compute ,  the votes corresponding to the
i-th transformed estimate and thus

vα,βi

Mα,β

Vα,β(p) =
NP
i=1

vα,βi (p) , p̂α,β = argmax
p∈P

Vα,β(p)

πα,β
α,β
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Axis estimation – conic blurring paths

For each pair of parameters we project the local
estimates on the plane using the transform

We then compute ,  the votes corresponding to the
i-th transformed estimate and thus

We compute the coordinates that reach the maximum of 
votes, similarly to the previous case

vα,βi

Mα,β

Vα,β(p) =
NP
i=1

vα,βi (p) , p̂α,β = argmax
p∈P

Vα,β(p)

πα,β
α,β
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Axis estimation – conic blurring paths

(α∗ = 45◦, β∗ = 0◦)

The value of the maximum votes corresponding to the 
correct parameters, is higher than the othersα,β
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Axis estimation – conic blurring paths

(α = 45◦, β = 0◦)

(α∗ = 45◦, β∗ = 0◦)

(α = 0◦,β = 0◦)

The value of the maximum votes corresponding to the 
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Axis estimation – conic blurring paths

(α = 45◦, β = 0◦)

(α∗ = 45◦, β∗ = 0◦)

(α = 0◦,β = 0◦)

Ĉ45,0 = 1.33 Ĉ0,0Ĉ0,0

The value of the maximum votes corresponding to the 
correct parameters, is higher than the othersα,β
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Axis estimation – conic blurring paths

Therefore the rotation axis is identified by
satisfying the following relations 

(α̂, β̂)

(α̂, β̂) = argmax
α,β

Vα,β(p̂α,β)
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Angular speed estimation

The image mapped by shows circular blurring pathsMα̂,β̂
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Angular speed estimation

The image mapped by shows circular blurring paths
In polar coordinates w.r.t. , the rotational blur 
becomes space-invariant, directed along lines
The angular speed is thus proportional to the blur extent

Several methods for space-invariant motion blur 
estimation can thus be employed. 
An effective algorithm is based on the analysis of the 
autocorrelation of the derivatives along the blur direction 
[Yitzhaky (1996)]

ρ = const

Mα̂,β̂
Mα̂,β̂(Ĉ)
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Angular speed estimation: an example

Given a rotational blurred image we estimate the rotation 
axis and its intersection with the image plane. 
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Angular speed estimation: an example

ρ

θ

We transform the 
image with         , so  
that the blurring paths 
becomes 
circumferences.

The transformed 
image is mapped in 
polar coordinates

Mα̂,β̂
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Angular speed estimation: an example

ρ

θ

We select a padding 
free area
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Angular speed estimation: an example

ρ

θ

We compute the auto 
correlation of the vertical
derivatives
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Angular speed estimation: an example

ρ

θ

The two negative peaks
are twice as distant as the 
blur extent
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Experiments Description

Synthetic Images have been generated as follows
1. We produce a planar tile of grayscale test images in a ray tracer 

environment (PovRay)
2. We render several frames while rotating the camera
3. The blurred image is given by the average of these frames
4. We add Gaussian White Noise

5. We produced images with several angles between the image 
plane and the rotation axis.
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Synthetic images – Mandrill (1)

ω = 8◦/s

T = 1s

α = 0◦, β = 0◦
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Synthetic images – Boat

T = 1s

ω = 6◦/s

α = 20◦, β = 0◦
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Synthetic images – Mandrill (2)

ω = 8◦/s

T = 1s

α = −20◦,β = 20◦
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Synthetic images – Mandrill (2)

ω = 8◦/s

T = 1s

α = −20◦,β = 20◦
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Synthetic images – Lena

T = 1s

α = 0◦, β = −20◦

ω = 6◦/s
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Synthetic images – Lena

T = 1s

α = 0◦, β = −20◦

ω = 6◦/s
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Experimental results - synthetic images

Image ση ∆(α) ∆(β) ∆(Ĉ) ∆(ω̂) adv(%) ∆(Ĉ0,0) ∆(ω̂0,0)
Mandrill1 0 0 0 1 0.05 26.37
Mandrill1 0.5 0 0 2.27 0.04 20.84
Mandrill1 1 0 0 3.53 0.08 13.71
Boat 0 0 0 2.20 0.23 20.44 33.06 4.83
Boat 0.5 0 0 5.46 0.24 20.23 21.27 114.55
Boat 1 0 0 8.84 0.19 8.84 19.25 71.98

Mandrill2 0 0 0 1.00 0.09 5.66 7.07 0.96
Mandrill2 0.5 2 2 1.48 0.11 6.13 4.81 2.85
Mandrill2 1 4 4 1.17 0.26 5.25 4.41 2.29
Lena 0 0 0 3.00 0.08 11.01 12.08 0.60
Lena 0.5 0 0 3.88 0.20 14.06 33.64 64.94
Lena 1 0 4 5.23 0.48 6.00 29.43 62.58
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Experiments Description

Camera images have been
acquired rotating the Canon
EOS 400D, on a tripod

The rotation axis was
orthogonal to the lab floor
(where a checkerboard has
been placed)

The ground truth on the 
orientation of the rotation axis
w.r.t. the image plane has
been obtained by rectifying
the image of the 
checkerboard
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Conclusions and future works

The proposed algorithm achieves accurate estimates of 
both the rotation axis and the angular speed,
• In the trivial case, when the rotation axis is orthogonal to the 

image plane
• In the most general case, when the rotation axis is not

orthogonal to the image plane

From experimental evidence, it turns out that given a 
blurred image it is important to handle the blurring paths
as conic sections, 
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Conclusions and future works

Future developments concern:
• Fast Implementation of the voting procedure.
• Study of local blur estimator more robust to noise.
• Study of an ad hoc algorithm for rotational blur 

removal
• Modeling the effects of blur inversion on AWG noise in 

order to correctly use denoising algorithm after blur 
inversion
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