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Abstract

We propose a novel procedure for estimating blur in a
single image corrupted by blur due to a rigid camera mo-
tion during the exposure. Often this blur is approximated as
space invariant, even if this assumption holds, for example,
only on small image region in perspective images captured
during camera movement.

Our algorithm analyzes separately selected image re-
gions containing a corner and in each region the blur is
described by its direction and extent. The algorithm works
directly in space domain, exploiting gradient vectors at pix-
els belonging to the blurred corner edges.

The algorithm has been successfully tested both on syn-
thetic and real images showing good performance even on
small image regions and in presence of noise.

1 Introduction

Pixel motion estimation is a relevant issue for both image
processing and computer vision, as it is often required as a
preprocessing step in several algorithms. When there is a
significant displacement between the camera and the scene
during the exposure, this results in a blur in the acquired
image. The blur heavily corrupts image quality and the in-
terpretation of such phenomena is a challenging problem.

Sometimes, the observer can exploit a few images cap-
turing the same scene, or images produced by hybrid imag-
ing systems that, for example, employ simultaneously two
cameras [1] or acquire sequentially two images varying the
exposure [17]. Clearly, when a single image is available, the
problem becomes more complicated and it is usually sim-
plified by assumptions on image blur or exploiting some a
priori information on the original image.

Algorithms that pair blur estimation and restoration from
a single image (blind deblurring) have been widely studied
in the last decades, [4],[5],[12]. Recently, Fergus et al. [7]
proved good performances in camera shake removal from a

single blurred photograph by using a gaussian mixture prior
for the distribution of gradient norms. Additionally, they as-
sume the blur uniform on the image, as most of deconvolu-
tion based algorithms do. Levin [13] proposed a deblurring
method based on image segmentation in (few) areas having
the same motion blur extent, but again, the estimated blur
direction is considered uniform on the whole image.

Motion estimation from a single blurred image has been
addressed for several purposes other than deblurring: the
estimation of the optical flow [20], its the integration in a
tracking system [10], the measurement of vehicles [14] and
balls speed [15] or scene depth [16]. Klein [11] recently
proposed a gyroscope based a camera and the measurement
of blur produced by rotations.

This paper introduce novel algorithm to estimate space
varying blur in a single image, assuming that the rela-
tive motion between the camera and the scene produces
“smears” i.e. image pixels are blurred along line segments
and smears direction and extent are varying between the im-
age pixels. It is the case of indoor environments, where de-
picted objects have various depth levels, captured by a cam-
era which is “rigidly” moving, as well as scenes acquired by
a camera which is rotating around axis parallel to the image
plane and passing trough the viewpoint.

The proposed algorithm analyzes image blur only at re-
gions that contains a corner. At blurred corners in fact, the
aperture problem does not hold, contrarily to blurred edges
(see Figure 1(a) regions B and C). At the same time, image
corners can be easily detected and modeled. Moreover, cor-
ners often correspond to boundaries between scene objects,
and therefore they are relevant for motion understanding.
Therefore our algorithm is able to analyze images where
the blur is space varying, as every region is separately taken
into account.

Boracchi and Caglioti [3] recently introduced an algo-
rithm for estimating motion parameters from a blurred cor-
ner which works under restrictive hypothesis on motion di-
rection. Such an algorithm was a priori unable to estimate
blur parameters at every blurred corners (e.g region D Fig-



(a) Synthetic blurred corner. (b) The corner model.

Figure 1.

ure 1(a)). In this paper we present a novel algorithm that
extends its capabilities to any image region containing a cor-
ner.

2 Problem Formulation

The blurred image I is modeled as

I(x) = K
(
y(x) + ξ(x)

)
+ η(x) , x = (x1, x2) (1)

being x a multi index representing image coordinates vary-
ing on the discrete domain X , y the original (and un-
known) image and K the blur operator. Two sources of
gaussian white noise are considered ξ ∼ N(0, σξ) and
η ∼ N(0, ση); η represents the electronic and the quanti-
zation noise, ξ introduces differences between real image
corners and the binary corner model used in our algorithm
and presented in Section 2.2.

2.1 The Blur Model

The blur operator is, in its more general form, is [2]

K
(
y(x)

)
=

∫
X

k(x, s)y(s)ds . (2)

Usually K is assumed space invariant and equation (2) be-
comes a convolution with a point spread function (psf) v:

K
(
y(x)

)
=

∫
X

v(x − s)y(s) ds = (v � y)(x) . (3)

This assumption is too restrictive as scene points usu-
ally follow different trajectories with respect to the cam-
era viewpoint and this result in different blur in the image.
Equation (3) does not describe, for instance, scenes con-
taining several moving objects, scenes with a moving target
on a still background or non planar scenes captured by a
moving camera.

On the other hand, solving (2) is a difficult inverse prob-
lem: to reduce its complexity the blur operator K is locally
approximated as a shift invariant blur, i.e.
∀x0 ∈ X , ∃U0 ⊂ X , x0 ∈ U0 and a psf v0 such that

K
(
y(x)

)
≈

∫
X

v0(x − s)y(s)ds ∀x ∈ U0 . (4)

∆

P (xa)

P (xb)

ṽ

Figure 2. Image in region A, Figure 1(a).

Furthermore, only motion blur psf defined over an 1-D lin-
ear support are taken into account. These can be written
as

v0 = R(θ)

(
sl

)
(x) θ ∈ [0, 2π], l ∈ N

sl(x1, x2) =




1/(2l + 1), −l ≤ x1 ≤ l
x2 = 0

0, else

where θ and l are motion direction and extent respectively
and R(θ)

(
sl

)
is sl rotated by θ degrees on X .

2.2 The Corner Model

Let y be a gray scale image, and A ⊂ X be a region
containing a corner, then the image presents a binary cor-
ner if y(A) = {b, c}, where b and c are image intensity val-
ues for the background and the corner, respectively. More-
over, B = y−1({b}) and C = y−1({c}), the sets of pixels
belonging to the background and to the corner, have to be
separated by two straight segments (having a common end-
point); see Figure 1(b).

Corners in real images are far from being similar to these
binary corners. It is reasonable to expect corners to be dis-
tinguishable from their background, but hardly they would
be uniform. Often their intensities are varying, for example,
because of texture, shading or details. Therefore another
source of noise ξ has been introduced to add a random com-
ponent to the binary corner model. As the observed image
I is blurred, there should not be a big difference between
a blurred image, with the underlying corner not exactly bi-
nary and a blurred binary corner with ξ added.

3 Problem Solution

The local maxima of Harris measure [8] are of-
ten used to detect image corners, this measure is
commonly used in many feature detection algorithms
([18] and references therein). Given a squared re-
gion A, see Figure 1(a), the set of considered pixels is
D0 ⊂ A , D0 = {x s.t. ||∇I(x)|| > T }, being T > 0 a



threshold and ∇I the image gradient defined by two deriva-
tives filters d1, d2,

∇I(x) =
[

(I � d1)(x)
(I � d2)(x)

]
=

[ (
(K (y + ξ) + η) � d1

)
(x)(

(K (y + ξ) + η) � d2

)
(x)

]
.

(5)
In such a way pixels belonging to flat areas, as well as pix-
els whose intensity variations are not significant (and even-
tually due only to η), are not considered. Threshold T is
tuned according to η standard deviation, ση , which can be
estimated from the blurred image [6], [9],[19].
Estimating blur parameters is then equivalent to estimating
the displacement vector ṽ, i.e. the vector having the same
direction of the psf and the norm equal to the blur extent in
the considered image region. The displacement vector then,
up to its orientation, describes the motion of the image cor-
ner during the exposure. Since there is no way to distinguish
among the initial and the final corner position from a single
blurred image, the motion direction θ ranges between 0 and
π. Figure 2 shows ṽ in a blurred corner.

In Figure 2, ∆ = |b − c| is the intensity difference be-
tween the corner and the background. Here ∆ is assumed
to be known, then in Section 4, a procedure for estimating
∆ from the blurred region is presented. The noise sources η
and ξ are here neglected, while in Section 5 some consid-
eration to cope with them are presented.

The geometrical relations between vectors of Figure 2
yield:

∇K
(
y(x)

) · ṽ =
{

0, if ∇K
(
y(x)

)⊥ṽ
±∆, else

, ∀x ∈ D0 ,

(6)
and the projection of ṽ along gradient direction, is

P (x) =
∇I(x)

||∇I(x)||2 ∆ , ∀x ∈ D0 . (7)

Then, if xa, xb ∈ D0 are linearly independent, the displace-
ment vector are obtained by back-projection from P (xa)
and P (xb). When P (xa) and P (xb) are linearly dependent,
the motion direction can not be estimated. This happens
when xa and xb belong to the same blurred edge, where all
gradients have the same direction (see Figure 1(a), regions
B and C).

As pointed out before, there is no way to exploit motion
orientation from a single image, then the orientation of the
vectors P (x) can not be used to estimate displacement vec-
tor ṽ. Given P (xa) and P (xb), there are four possible dis-
placements vectors: two pairs having the same directions
and opposite orientations, as illustrated in Figure 4.

4 Selection of best projection vectors

Consider an image region A containing a binary corner
and assume that η and ξ are null. Denote by ∇K

(
y
)
(xa)

∇I(xa)

∇I(xb)
x1

x2

Figure 3. 2d histogram of gradient.

and ∇K
(
y
)
(xb) the gradient vectors at pixels belonging to

the two blurred edges, and by P (xa) and P (xb) the projec-
tions of ṽ along their directions. If the considered image re-
gion is large enough, the highest peaks in the 2-D histogram
of {∇I(xi)}xi∈D0 represent the end points of ∇K

(
y
)
(xa)

and ∇K
(
y
)
(xb), then P (xa) and P (xb) are promptly ob-

tained from (7).

Let now examine how η and ξ affects vectors ∇I(x). If
η and ξ are white noise, according to (1) and (5),

∇η(x) =
[

(η � d1)(x)
(η � d2)(x)

]
,∇ξ(x) =

[
((ξ � v) � d1)(x)
((ξ � v) � d2)(x)

]
,

(8)
it follows that E[∇η + ∇ξ] = 0 and, as η and ξ are gaussian
distributed, also ∇η and ∇ξ are also gaussian distributed.
Therefore the average of all gradient vectors for pixels be-
longing to the same blurred edge is an unbiased estimator
for ∇K

(
xa

)
or ∇K

(
xb

)
.

Figure 3 presents the 2D histogram of ∇I(x), x ∈ D0.
There are two clusters, clearly distinguishable, as the gra-
dient vectors are orthogonal to the corner edges. Since ∇η
and ∇ξ are gaussian distributed, the two most frequent gra-
dient vectors in the 2-D histogram are taken as ∇I(xa) and
∇I(xb) ( possibly imposing a minimum angular distance
between them). Then formula (7) gives P (xa) and P (xb)
even if their orientations have to be neglected, see Figure 4.

For corners like the one of region D Figure 1(a) there
is a third cluster of vectors in the histogram, corresponding
to the gradient in the triangular shaped area between the
corner blurred edges. If the region containing such corners
is big enough, the number of pixels belonging to each of the
two blurred edges is larger than the number of pixels in the
triangular area. This should be not taken as the projection
vector, but, if the corner have not been accurately located
in the image, this triangular area may yield uncorrect blur
estimates.
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Figure 4. P (xa) and P (xb) give both ṽ1 and ṽ2.

5 Decision Function

Due to the fact that ṽ orientation is unknown, both ori-
entations of P (xa) and P (xb) have to be considered so that
there are two possible solutions, ṽ1 and ṽ2 ( see Figure 4).
The decision function disambiguates which one, between ṽ1

and ṽ2, is, up to its orientation, the true displacement vector.
Loosely specking, blurred corners can be divided in two

classes, according to the presence of gradients whose di-
rection is orthogonal to the true displacement vector. The
first class contains corners like the one represented in Fig-
ure 1(a) region D, having a set of pixels Zi = {x ∈
D0 , ∇I(x) ⊥ ṽi}. An example of corners of the second
class is reported in Figure 1(a) region A. For a binary cor-
ner of the second class holds Zi = ∅ , i = 1 or i = 2
and therefore the number of pixels having gradient orthog-
onal to each candidate displacement vector (i.e #Zi) can be
taken as discriminant between the two classes. For a binary
corner of the first class, #Zi corresponds to the surface of
a triangle between the two blurred edges, whose value S1

(S2) can be calculated from ṽ1 (ṽ2) and N1 (N2). If #Z1

(#Z2) corresponds to S1 (S2), then ṽ1 (ṽ2) is taken as the
true displacement vector.

The condition ∇I(x) ⊥ ṽ, is relaxed in order to manage
camera images and is replaced by

#{x ∈ D0 ,
∇I(x) · ṽ
|∇I(x)||ṽ| < t} < Si i = 1, 2 (9)

where t represent the cosine of a threshold angle between
the two vectors. Whenever both ṽ1 and ṽ2 satisfy (9), the
one having the largest value in left side of (9) is taken.

Whenever neither ṽ1 and ṽ2 satisfy (9), the corner be-
longs to the second class. In this case, the derivative along
motion direction is constant in D0, i.e ∇I · ṽ = const ∀x ∈
D0. This yields in formula (6) or +∆, or −∆, and the
signum does not change in the region. Then, the histogram
of directional derivatives along directions of ṽ1 and ṽ2 are
computed and the more peaked one is selected. The sample
kurtosis is taken as peakedness measure.
Finally, in order to obtain a reliable estimate of the motion
extent, an accurate estimate of ∆ = |b − c| is required,

as ∆ scales both P (xa), P (xb) (see Figure 2). ∆ is ob-
tained as the intensity difference between the two highest
local maxima in the histogram of image intensities in the
region. Since there should be a clear difference between b
and c, a minimum distance of half of the intensity range in
the region is required.

6 Experiments

Experiments on Synthetic Images: synthetic images
have been generated according to equation (1) using the
original image y satisfying the binary corner model of Sec-
tion 2.2 having an angle of 90, 60, and 45 degrees. The orig-
inal image is constantly 0 at background and 255 at corner
pixels. Blur is produced by a convolution with point spread
function having extent l ∈ {20, 30, 40} pixels, and direction
θ ∈ {0, 15, 75, 90} or θ ∈ {0, 20, 60, 80} according to cor-
ners edges orientation.

For each value of blur direction and extent a squared
region of 100 pixels, taken around the harris mea-
sure maxima (see Figure 5), has been analzed. Images
have been corrupted by noise ξ with standard devia-
tion σξ ∈ {4, 8, 12, 16} and by η with standard deviation
ση ∈ {1, 2, 3, 4}, according to equation (1).

Values reported Tables 6 - 3 are ‖v − ṽ‖/‖v‖ i.e. the
distance, in pixels, between the estimated displacement vec-
tor ṽ, and the true one v, expressed as a percentage with re-
spect to true motion extent. Results have been averaged on
10 realization of η for each value of ση and on all directions
and extents.

As ση , and σξ increases, the decision function may fail
to select the true displacement vector: this occurred in about
2.3% of cases.

Experiment on a Test Image: cameraman test image
has been blurred by a convolution with a point spread func-
tion having direction 35 degrees and length 15 pixels. Then
a squared region of 40 pixels centered in every corner se-
lected by an Harris corner detector have been analyzed with
our method. Figure 6 shows the blurred cameraman image
and the corner displacement vectors estimated. The dashed
regions surrounding some of them are the regions where the
estimated displacement vector ṽ, is less than 2 pixels distant
from the vector having point spread function parameters.
The average error in the correct matches is 0.71 pixels. The
algorithm results are accurate in regions containing a cor-
ner satisfy the model presented in Section 2.2. The regions
where the algorithm fails do not contain a binary corner.

Experiment on Camera Images: a triplet of camera im-
ages have been captured according to the following scheme.
First a still image at the initial camera position is taken, fol-
lowed by a blurred image captured moving the camera dur-
ing the exposure. At the end of the exposure, another still
image at the final camera position, is taken. In this way the



Figure 5. Examples of Synthetic Test Images from dataset.

Figure 6. Cameraman synthetically blurred.

algorithm performance on a real motion blurred image is be
compared with the ground truth obtained by matching the
two still images. Again, the corners have been selected by
local maxima of Harris measure and a region of 50 pixels
around each of them have been analyzed (camera images
were actually bigger than camera images).

Figure 7 shows the blurred camera picture and the re-
gions where ṽ was less than 7 pixels distant from the dis-
placement vector estimated by matching [21] the features in
the corresponding region in the initial and final images. The
average error in the correct matches is 4.84 pixels. Finally
in the regions where the displacement vectors is marked in
red, the decision function discards the displacement vector
closer to the true displacement vector parameters ( this hap-
pens 4 times over 17).

Figure 7. Test on real image.

7 Discussion and Ongoing Works

The experiments show that the blurred corners have
been suitably modeled and that is possible to estimate the
blur even in a small image region containing a corner.
The algorithm represent an improvement with respect to
the optical flow estimation procedure proposed in [20],
as motion analysis is performed at interesting region, not
on a fixed image tessellation. We believe that spatial
domain procedure are more suited to blur analysis as do not
impose restriction on region size with respect to psf length,
while Fourier transform based methods do. Moreover,
specifically at corners, Fourier coefficients are heavily
influenced by the presence of corner edges, so that blur
parameters estimation is harder.



ση | σξ 4 8 12 16

1 1.77 % 1.73 % 1.53 % 1.48 %
2 1.97 % 2.00 % 1.91 % 2.05 %
3 2.52 % 2.76 % 2.58 % 2.61 %
4 3.35 % 3.64 % 3.60 % 3.69 %

Table 1. Result on corner of Figure 5a,
l ∈ {20, 30, 40} pixels, θ ∈ {0, 15, 75, 90}

ση | σξ 4 8 12 16

1 2.50 % 2.33 % 2.31 % 2.66 %
2 2.71 % 2.77 % 2.86 % 3.13 %
3 3.44 % 3.61 % 3.82 % 3.75 %
4 4.89 % 4.39 % 4.84 % 5.03 %

Table 2. Result on corner of Figure 5b,
l ∈ {20, 30, 40} pixels, θ ∈ {0, 15, 75, 90}

ση | σξ 4 8 12 16

1 1.87 % 1.9 % 1.83 % 1.86 %
2 1.97 % 1.9 % 1.88 % 1.94 %
3 2.53 % 2.3 % 2.27 % 2.29 %
4 3.18 % 3.1 % 2.99 % 3.12 %

Table 3. Result on corner of Figure 5a,
l ∈ {20, 30, 40} pixels, θ ∈ {0, 20, 60, 80}

Ongoing works concern a procedure to filter the corners
found by the Harris detector in order to process exclusively
regions containing a blurred corner. We are also working
on a refinement of the decision function, to increase its
reliability with camera images. Finally, we believe that,
as there are no restriction on region shape, a considerable
improvement in robustness would be given by adaptively
selecting every corner region. This method can be used
in initialization of deblurring algorithm assuming space
varying blur, such as [22], which requires user supervision
during initialization.
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