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ANOMALY DETECTION IN HEALTH

Mammography
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James Heilman, MD / CC BY-SA 
(https://creativecommons.org/licenses/by-sa/4.0)

Sato et al, A primitive study on unsupervised anomaly 
detection with an autoencoder in emergency head CT 
volumes, SPIE Medical Imaging, 2018
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ANOMALY DETECTION FOR AUTOMATIC QUALITY CONTROL

https://www.mvtec.com/company/research/datasets/mvtec-ad/

https://www.mvtec.com/company/research/datasets/mvtec-ad/
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Carrera D., Manganini F., Boracchi G., Lanzarone E. "Defect Detection in SEM Images of Nanofibrous Materials", 
IEEE Transactions on Industrial Informatics 2017, 11 pages, doi:10.1109/TII.2016.2641472

Our Running Example: Monitoring Nanofiber Production
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Our Running Example: Monitoring Nanofiber Production

Carrera D., Manganini F., Boracchi G., Lanzarone E. "Defect Detection in SEM Images of Nanofibrous Materials", 
IEEE Transactions on Industrial Informatics 2017, 11 pages, doi:10.1109/TII.2016.2641472
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SYLICON WAFER MANUFACTURING

Defects detected as anomalies in microscope images
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DETECTION OF ANOMALOUS PATTERNS

Detect/Identify patterns in wafer defect maps

These might indicate faults,
problems or malfunctioning 

in the chip production.

Di Bella, Carrera, Rossi, Fragneto, Boracchi Wafer Defect Map Classification Using Sparse Convolutional Neural Networks ICIAP09
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AUTOMATIC AND LONG TERM EGC MONITORING

Health monitoring / wearable devices:

Automatically analyze EGC tracings to detect 
arrhythmias or incorrect device positioning

D. Carrera, B. Rossi, D. Zambon, P. Fragneto, and G. Boracchi "ECG Monitoring in Wearable Devices by Sparse Models" in ECML-PKDD 2016
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ANOMALOUS ACTIVITIES DETECTION IN VIDEOS

USCD Anomaly Dataset http://www.svcl.ucsd.edu/projects/anomaly/dataset.html

http://www.svcl.ucsd.edu/projects/anomaly/dataset.html


Boracchi, Carrera, ICPR 2020

FRAUD DETECTION IN CREDIT CARD TRANSACTIONS

Dal Pozzolo A., Boracchi G., Caelen O., Alippi C. and Bontempi G., “Credit Card Fraud Detection: a Realistic Modeling and a Novel Learning Strategy” , IEEE TNNL 2017
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… A CHANGE-DETECTION PROBLEM

Environmental Monitoring

A sensor network monitoring rock faces: 
detecting changes in the waveforms that are 
recorded by MEMS sensors in network units.

C. Alippi, G. Boracchi, B. Wohlberg "Change Detection in Streams of Signals with Sparse Representations" in Proceedings of IEEE ICASSP 2014

𝑡𝑡
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… A CHANGE-DETECTION PROBLEM

Leak detection in Water Distribution Networks

G. Boracchi and M. Roveri "Exploiting Self-Similarity for Change Detection" , IJCNN 2014, pp 3339 - 3346

5 January 2021
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… A CHANGE-DETECTION PROBLEM

Leak detection in Water Distribution Networks

Similar problems arise in other critical infrastructure monitoring scenarios

G. Boracchi and M. Roveri "Exploiting Self-Similarity for Change Detection" , IJCNN 2014, pp 3339 - 3346

5 January 2021

Normal (no leak)

Leak in the network
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… A CHANGE-DETECTION PROBLEM

Time-series (including financial ones) are typically subject to changes, as the data-
generating process evolves over time.

G.J. Ross, D.K. Tasoulis, N.M. Adams "Nonparametric monitoring of data streams for changes in location and scale“ Technometrics 2011

October 2002 May 2007

GB
P 

-
CH

F 
Ex

ch
an

ge
 r

at
e 

(e
ve

ry
5’

)



Boracchi, Carrera, ICPR 2020

… A CHANGE-DETECTION PROBLEM

Learning problems related to predicting user preferences / interests, such as:

• Recommendation systems 

• Spam / email filtering

Changes arise when users change their own preferences.

Changes have to be detected to update the system accordingly

C. Alippi, G. Boracchi, M. Roveri, “Just-in-time classifiers for recurrent concepts”. IEEE TNNLS, 24(4), 620-634 (2013). 

J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, A. Bouchachia, "A survey on concept drift adaptation". ACM Computing Surveys 2014

Spam Classification
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… A CHANGE DETECTION PROBLEM

L. Frittoli, M. Bocchi, S. Mella, D. Carrera, B. Rossi, F. Fragneto, R. Susella, and G. Boracchi “Strengthening Sequential Side-Channel Attacks Through Change Detection”, 
IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES), 2020(3), pp. 1-21 doi: 10.13154/tches.v2020.i3.1-21

Distribution changes in side channel attacks indicate 
a wrong guess for the key being forced.

Carefully designed attacks leverage change-detection
algorithms to achieve much higher success rates
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TUTORIAL OUTLINE
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PRESENTATION OUTLINE

Background:

• Problem formulation in random variables / signals and images.

• Main ingredients and performance measures.

• Solutions in the ideal settings.

Detection Algorithms for Random Variables:

• Anomaly Detection: the general approach and the most relevant solutions.

• Supervised, Semi-supervised, unsupervised.

• Change Detection: the general approach and the most relevant solutions.

• Sequential monitoring and histogram-based monitoring.

• Change detection in high-dimensional datastreams.
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PRESENTATION OUTLINE

Detection Algorithms for Signals and Images

• Detection by learned models:

• Reconstruction-based methods.

• Feature-based methods.

• Reference-based methods.

• Counteracting domain Shift in Detection Problems.

• Anomaly detection by deep learning models:

• Transfer Learning / Self-supervised.

• Autoencoders.

• Domain based.

• Generative models.
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DISCLAIMERS

We will consider unsupervised and semi-supervised approaches, as these better conform 
with anomaly and change detection scenarios.

We will mainly consider numerical data. In some cases, extensions apply to categorical 
or ordinal data.

In change detection, we will mainly focus on datastreams, which do not have a fixed 
length and that have to be analyzed while data are being received.

We will refer to either changes/anomalies according to our personal experience

For a complete overview, please refer to surveys reported below. 

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (July 2009), 58 pages.

Pimentel, M. A., Clifton, D. A., Clifton, L., Tarassenko, L. “A review of novelty detection” Signal Processing, 99, 215-249 (2014)

A. Zimek, E. Schubert, H.P. Kriegel. “A survey on unsupervised outlier detection in high-dimensional numerical data” Statistical Analysis and Data Mining: The ASA Data 
Science Journal, 5(5), 2012.

T. Ehret, A. Davy, JM Morel, M. Delbracio "Image Anomalies: A Review and Synthesis of Detection Methods", Journal of Mathematical Imaging and Vision, 1-34

L. Ruff, et al. “A Unifying Review of Deep and Shallow Anomaly Detection” preprint 2020 https://arxiv.org/abs/2009.11732

https://arxiv.org/abs/2009.11732


THE PROBLEM FORMULATION
Anomaly / Change Detection Problems 

in a Statistical Framework
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ANOMALIES

“Anomalies are patterns in data that do not conform to a well defined notion of normal 
behavior”

Thus:

• Normal data are generated from a stationary process 𝒫𝒫𝑁𝑁
• Anomalies are from a different process 𝒫𝒫𝐴𝐴 ≠ 𝒫𝒫𝑁𝑁

Examples:

• Frauds in the stream of all the credit card transactions

• Arrhythmias in ECG tracings

• Defective regions in an image, which do not conform a reference pattern

Anomalies might appear as spurious elements, and are typically the most informative 
samples in the stream

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (July 2009), 58 pages.
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ANOMALY-DETECTION IN A STATISTICAL FRAMEWORK

Often, the anomaly-detection problem boils down to:

Monitor a set of data (not necessarily a stream)

𝒙𝒙 𝑡𝑡 , 𝑡𝑡 = 𝑡𝑡0, … , 𝒙𝒙 𝑡𝑡 ∈ ℝ𝑑𝑑

where 𝑥𝑥(𝑡𝑡) are realizations of a random variable having pdf 𝜙𝜙𝑜𝑜, and detect outliers i.e., 
those points that do not conform with 𝜙𝜙𝑜𝑜

𝒙𝒙 𝑡𝑡 ∼ �𝜙𝜙0 normal data
𝜙𝜙1 anomalies ,

𝑡𝑡

𝒙𝒙(
𝑡𝑡) ……

𝜙𝜙1𝜙𝜙0 𝜙𝜙0
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ANOMALY-DETECTION IN A STATISTICAL FRAMEWORK

Often, the anomaly-detection problem boils down to:

Monitor a set of data (not necessarily a stream)

𝒙𝒙 𝑡𝑡 , 𝑡𝑡 = 𝑡𝑡0, … , 𝒙𝒙 𝑡𝑡 ∈ ℝ𝑑𝑑

where 𝑥𝑥(𝑡𝑡) are realizations of a random variable having pdf 𝜙𝜙𝑜𝑜, and detect outliers i.e., 
those points that do not conform with 𝜙𝜙𝑜𝑜

𝒙𝒙 𝑡𝑡 ∼ �𝜙𝜙0 normal data
𝜙𝜙1 anomalies ,

𝒙𝒙(
𝑡𝑡) ……

𝜙𝜙1𝜙𝜙0 𝜙𝜙0

Locate those samples that do not conform the normal 
ones or a model explaining normal ones

𝑡𝑡
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THE LEGAL CASE OF MR HADLUM V. MRS HADLUM (1949)

The sole evidence of adultery consisted of the birth of a child
349 days after Mr Hadlum had left for military service abroad.

Vic Barnett “The Study of Outliers: Purpose and Model” Journal of the Royal Statistical Society. Series C (Applied Statistics) Vol. 27, No. 3 (1978), pp. 242-250
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THE LEGAL CASE OF MR HADLUM V. MRS HADLUM (1949)

The sole evidence of adultery consisted of the birth of a child
349 days after Mr Hadlum had left for military service abroad.

Vic Barnett “The Study of Outliers: Purpose and Model” Journal of the Royal Statistical Society. Series C (Applied Statistics) Vol. 27, No. 3 (1978), pp. 242-250

𝜙𝜙0
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THE LEGAL CASE OF MR HADLUM V. MRS HADLUM (1949)

The sole evidence of adultery consisted of the birth of a child
349 days after Mr Hadlum had left for military service abroad.

Vic Barnett “The Study of Outliers: Purpose and Model” Journal of the Royal Statistical Society. Series C (Applied Statistics) Vol. 27, No. 3 (1978), pp. 242-250

The claim was that 349 days 
(compared with an average 
of 280 days) was discordant: 
statistically unreasonable in 
relation to the distribution 
of human gestation periods. 

𝜙𝜙0
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THE LEGAL CASE OF MR HADLUM V. MRS HADLUM (1949)

The sole evidence of adultery consisted of the birth of a child
349 days after Mr Hadlum had left for military service abroad.

Vic Barnett “The Study of Outliers: Purpose and Model” Journal of the Royal Statistical Society. Series C (Applied Statistics) Vol. 27, No. 3 (1978), pp. 242-250

The claim was that 349 days 
(compared with an average 
of 280 days) was discordant: 
statistically unreasonable in 
relation to the distribution 
of human gestation periods. 

𝜙𝜙0
Credits:

“Outlier Detection Techniques”
Hans-Peter Kriegel, Peer Kröger, Arthur 

Zimek

Tutorial in 2010 SIAM International 
Conference on Data Mining
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PROCESS CHANGES

Normal data are generated in stationary conditions, i.e. are i.i.d. realizations of a 
process 𝒫𝒫𝑁𝑁
After the change, data are generated from a different process 𝒫𝒫𝐴𝐴 ≠ 𝒫𝒫𝑁𝑁, which persists 
over time

Examples:

• Quality inspection system: faults producing flawed components

• Environmental monitoring: persistent changes in the morphology of measured 
signals

• Change of user interests in on-demand platform
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CHANGE-DETECTION IN A STATISTICAL FRAMEWORK

Often, the change-detection problem boils down to:

Monitor a stream 𝒙𝒙 𝑡𝑡 , 𝑡𝑡 = 1, … , 𝒙𝒙 𝑡𝑡 ∈ ℝ𝑑𝑑 of realizations of a random variable, and 
detect the change-point 𝜏𝜏, 

𝒙𝒙 𝑡𝑡 ∼ �𝜙𝜙0 𝑡𝑡 < 𝜏𝜏 in control state
𝜙𝜙1 𝑡𝑡 ≥ 𝜏𝜏 out of control state ,

where {𝒙𝒙 𝑡𝑡 , 𝑡𝑡 < 𝜏𝜏} are i.i.d. and 𝜙𝜙0 ≠ 𝜙𝜙1
We denote such change as: 𝜙𝜙𝑜𝑜 → 𝜙𝜙1

𝑡𝑡

𝒙𝒙(
𝑡𝑡) ……

𝜙𝜙1𝜙𝜙0

𝜏𝜏
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𝜏𝜏
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CHANGE-DETECTION IN A STATISTICAL FRAMEWORK

Here are data from an X-ray monitoring apparatus. 

There are 4 changes 𝜙𝜙𝑜𝑜 → 𝜙𝜙1 → 𝜙𝜙2 → 𝜙𝜙3 → 𝜙𝜙4 corresponding to different monitoring 
conditions and/or analyzed materials

𝜙𝜙𝑜𝑜 𝜙𝜙1 𝜙𝜙2 𝜙𝜙3 𝜙𝜙4
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PROCESS CHANGES VS ANOMALIES

Not all anomalies are due to process changes 

𝑡𝑡

𝒙𝒙(
𝑡𝑡) ……

𝜙𝜙1𝜙𝜙0 𝜙𝜙0
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PROCESS CHANGES VS ANOMALIES

Not all process changes result in anomalies

𝑡𝑡

𝒙𝒙(
𝑡𝑡) ……

𝜙𝜙1𝜙𝜙0



DETECTION PROBLEMS IN SIGNALS / IMAGES / VIDEOS
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ANOMALY DETECTION IN TIME SERIES

Similar definition holds for detecting anomalies in a time series 𝑠𝑠 ⊂ ℝ𝑑𝑑

The datastream is partitioned in segments 𝑠𝑠(𝑐𝑐) centered in a specific location 𝑐𝑐
by sliding window or expert-driven algorithms 

The goal is to determine whether each segment 

𝑠𝑠(𝑐𝑐) ∼ �𝒫𝒫𝑁𝑁 normal data
𝒫𝒫𝐴𝐴 anomalies

D. Carrera, B. Rossi, D. Zambon, P. Fragneto, and G. Boracchi "ECG Monitoring in Wearable Devices by Sparse Models" in Proceedings of ECML-PKDD 2016, 16 pages 

𝑠𝑠(𝑐𝑐)
𝑐𝑐

𝑡𝑡
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ANOMALY DETECTION IN IMAGES

Let 𝑠𝑠 be an image defined over the pixel domain 𝒳𝒳 ⊂ ℤ2,

let 𝑐𝑐 ∈ 𝒳𝒳 be a pixel and 𝑠𝑠 𝑐𝑐 the corresponding intensity.

Our goal is to locate any anomalous region in 𝑠𝑠, i.e. estimating the unknown anomaly 
mask 𝛀𝛀 defined as

if 𝑐𝑐 falls in a normal region
if 𝑐𝑐 falls in an anomalous region

Ω 𝑐𝑐 = �0
1

𝑠𝑠
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ANOMALY DETECTION IN IMAGES

Let 𝑠𝑠 be an image defined over the pixel domain 𝒳𝒳 ⊂ ℤ2,

let 𝑐𝑐 ∈ 𝒳𝒳 be a pixel and 𝑠𝑠 𝑐𝑐 the corresponding intensity.

Our goal is to locate any anomalous region in 𝑠𝑠, i.e. estimating the unknown anomaly 
mask 𝛀𝛀 defined as

if 𝑐𝑐 falls in a normal region
if 𝑐𝑐 falls in an anomalous region

Ω 𝑐𝑐 = �0
1

Ω𝑠𝑠
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PATCH-WISE ANOMALY DETECTION

The goal not determining whether the whole image is normal or anomalous, but 
locate/segment possible anomalies

Therefore, it is convenient to 

1. Analyze the image patch-wise

2. Isolate regions containing 
patches that are detected as
as anomalies
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PATCH-WISE ANOMALY DETECTION

The goal not determining whether the whole image is normal or anomalous, but
locate/segment possible anomalies

Therefore, it is convenient to 

1. Analyze the image patch-wise

2. Isolate regions containing
patches that are detected as
as anomalies
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TYPICAL ASSUMPTIONS

A training set 𝑇𝑇𝑇𝑇 is provided for configuring the AD algorithm

Depending on the algorithm

• Only normal images -> semi-supervised methods

• Unlabeled images -> unsupervised methods

• Annotated images -> supervised methods

𝑇𝑇𝑇𝑇
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DETECTING ANOMALOUS ACTIVITIES IN VIDEOS

It is very similar to image settings, but 𝒳𝒳 ⊂ ℤ2 × ℝ+ is a spatio-temporal domain

The goal is to locate any anomalous region in 𝑠𝑠, i.e. estimating the unknown anomaly 
mask 𝛀𝛀 defined as

USCD Anomaly Dataset http://www.svcl.ucsd.edu/projects/anomaly/dataset.html

if 𝑐𝑐 falls in a normal region
if 𝑐𝑐 falls in an anomalous region

Ω 𝑐𝑐 = �0
1

http://www.svcl.ucsd.edu/projects/anomaly/dataset.html
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CHANGE-DETECTION IN TIME SERIES 

Monitor a time series 𝒙𝒙 𝑡𝑡 , 𝑡𝑡 = 1, … , 𝒙𝒙 𝑡𝑡 ∈ ℝ𝑑𝑑 to detect a change-point 𝜏𝜏, 

𝒙𝒙 𝑡𝑡 ∼ �𝒫𝒫𝑁𝑁 𝑡𝑡 < 𝜏𝜏 in control state
𝒫𝒫𝐴𝐴 𝑡𝑡 ≥ 𝜏𝜏 out of control state ,

where 𝒫𝒫𝐴𝐴 ≠ 𝒫𝒫𝑁𝑁 and {𝒙𝒙 𝑡𝑡 , 𝑡𝑡 < 𝜏𝜏} typically exhibit some characteristic / pattern that is 
peculiar for normal data (e.g. similarity, smoothness, …)

G. Boracchi and M. Roveri "Exploiting Self-Similarity for Change Detection" , IJCNN 2014, pp 3339 - 3346

Normal

Leak



DETECTION ALGORITHMS: MAIN INGREDIENTS 
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THE ANOMALY / CHANGE DETECTION PROBLEMS

Anomaly-detection problem:

Locate those samples that do not conform the normal ones or a model explaining 
normal ones

Anomalies in data translate to significant information

Change-detection problem:

Given the previously estimated model, the arrival of new data invites the question: “Is 
yesterday’s model capable of explaining today’s data?”

Detecting process changes is important to understand the monitored phenomenon

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.

C. J. Chu, M. Stinchcombe, H. White "Monitoring Structural Change" Econometrica Vol. 64, No. 5 (Sep., 1996), pp. 1045-1065. 
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THE TYPICAL SOLUTIONS

Most algorithms are composed of:

• A statistic that has a known response to normal data (e.g., the average, the sample 
variance, the log-likelihood, the confidence of a classifier, an “anomaly score”…)

• A decision rule to analyze the statistic (e.g., an adaptive threshold, a confidence 
region)
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THE TYPICAL SOLUTIONS

Anomaly-detection algorithms:

Statistics and decision rules are “one-shot”, analyzing a set of historical data or each 
new data (or chunk) independently

Change-detection algorithms:

Statistics and decision rules are sequential, as they make a decision considering all the 
data received so far
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THE TYPICAL SOLUTIONS

𝑡𝑡

𝒙𝒙(
𝑡𝑡) ……

data
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THE TYPICAL SOLUTIONS

𝑡𝑡

𝒙𝒙(
𝑡𝑡) ……

𝑡𝑡

𝑆𝑆(
𝒙𝒙)

…

𝛾𝛾
statistic

data
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THE TYPICAL SOLUTIONS

𝑡𝑡

𝒙𝒙(
𝑡𝑡) ……

𝑡𝑡

𝑆𝑆(
𝒙𝒙)

…

𝛾𝛾
statistic

decision rule: 𝑆𝑆 𝒙𝒙 > 𝛾𝛾

data
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THE TYPICAL SOLUTIONS

𝑡𝑡

𝒙𝒙(
𝑡𝑡) ……

𝑡𝑡

𝑆𝑆(
𝒙𝒙)

…

𝛾𝛾
statistic

decision rule: 𝑆𝑆 𝒙𝒙 > 𝛾𝛾

data

Statistics are computed by possibly analyzing a set of historical data 
and each new data (or chunk) independently



PERFORMANCE MEASURES
Assessing performance of anomaly detection algorithms
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ANOMALY-DETECTION PERFORMANCE

Anomaly detection performance: 

• True positive rate: 𝑇𝑇𝑇𝑇𝑇𝑇 = # anomalies detected
# anomalie𝑠𝑠

• False positive rate: 𝐹𝐹𝑃𝑃𝑃𝑃 = # normal samples detected
# normal samples

You have probably also heard of 

• False negative rate (or miss-rate): 𝐹𝐹𝐹𝐹𝐹𝐹 = 1 − 𝑇𝑇𝑇𝑇𝑇𝑇
• True negative rate (or specificity): 𝑇𝑇𝑇𝑇𝑅𝑅 = 1 − 𝐹𝐹𝐹𝐹𝐹𝐹

• Precision on anomalies: 
# anomalies detected

# detections

• Recall on anomalies (or sensitivity, hit-rate): 𝑇𝑇𝑇𝑇𝑇𝑇
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TPR / FPR TRADE-OFF

There is always a trade-off between 𝑻𝑻𝑻𝑻𝑻𝑻 and 𝑭𝑭𝑭𝑭𝑭𝑭 (and similarly for derived 
quantities), which is ruled by algorithm parameters

𝑡𝑡

𝑆𝑆(
𝒙𝒙)

…

𝛾𝛾
statistic

decision rule: 𝑆𝑆 𝒙𝒙 > 𝛾𝛾
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TPR / FPR TRADE-OFF

There is always a trade-off between 𝑻𝑻𝑻𝑻𝑻𝑻 and 𝑭𝑭𝑭𝑭𝑭𝑭 (and similarly for derived 
quantities), which is ruled by algorithm parameters

Decreasing 𝛾𝛾 increases both true positive rate and false positive rates.

Increasing 𝛾𝛾 reduces both true positive rate and false positive rates.

𝑡𝑡

𝑆𝑆(
𝒙𝒙)

…
𝛾𝛾

statistic
decision rule: 𝑆𝑆 𝒙𝒙 > 𝛾𝛾
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ANOMALY-DETECTION PERFORMANCE

There is always a trade-off between 𝑻𝑻𝑻𝑻𝑻𝑻 and 𝑭𝑭𝑭𝑭𝑭𝑭 (and similarly for derived 
quantities), which is ruled by algorithm parameters

Thus, to correctly assess performance it is necessary to consider at least two indicators 
(e.g., 𝑇𝑇𝑇𝑇𝑇𝑇,𝐹𝐹𝐹𝐹𝐹𝐹)

Indicators combining both 𝑇𝑇𝑇𝑇𝑇𝑇 and 𝐹𝐹𝐹𝐹𝐹𝐹:

Accuracy = 
# anomalies detected + # normal samples not detected

# samples

F1 score = 
2# anomalies detected

# detections + # anomalies

These equal 1 in case of “ideal detector” which detects all the anomalies and has no 
false positives
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ANOMALY-DETECTION PERFORMANCE

Comparing different methods might be tricky since we have to make sure that both have 
been configured in their best conditions

Testing a large number of parameters lead to the ROC (receiver operating characteristic) 
curve

The ideal detector would achieve: 

• 𝐹𝐹𝐹𝐹𝐹𝐹 = 0%,
• 𝑇𝑇𝑇𝑇𝑇𝑇 = 100%

Thus, the closer to (0,1) the better

The largest the Area Under the 
Curve (AUC), the better

The optimal parameter is the one
yielding the point closest to (0,1)

(𝐹𝐹𝐹𝐹𝐹𝐹,𝑇𝑇𝑇𝑇𝑇𝑇) for a 
specific parameter
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CHANGE-DETECTION PERFORMANCE

In a sequential monitoring scenarios, performance are assessed in terms of the Average 
Run Length.

In particular, we denote by �𝑇𝑇 the detection time and define

𝐴𝐴𝐴𝐴𝐿𝐿0 = E
𝑥𝑥
�𝑇𝑇 | 𝜙𝜙0

which is the expected number of samples before a false alarm and

𝐴𝐴𝐴𝐴𝐿𝐿1 = E
𝑥𝑥
�𝑇𝑇 | 𝜙𝜙1

which is the expected delay for a detection

𝐴𝐴𝐴𝐴𝐿𝐿0 and 𝐴𝐴𝐴𝐴𝐿𝐿1 still depend on the algorithm parameters. 

In particular, one configures the CDT to operate at a given 𝐴𝐴𝐴𝐴𝐿𝐿0

M. Basseville, I. V. Nikiforov, "Detection of Abrupt Changes - Theory and Application", Prentice-Hall, Inc.  April 1993 

G. J. Ross, D. K. Tasoulis, N. M. Adams "Nonparametric monitoring of data streams for changes in location and scale" Technometrics, 53(4), 379-389, 2012.
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CHANGE-DETECTION PERFORMANCE

Unfortunately, it is not always possible to compute 𝐴𝐴𝐴𝐴𝐿𝐿0 and/or 𝐴𝐴𝐴𝐴𝐿𝐿1, in particular for 
nonparametric CDTs.

Then, one resorts to performing several simulations on finite sequences with a change 
at a known location 𝜏𝜏, and computing

The detection delay, 

𝐷𝐷𝐷𝐷 = E
𝑥𝑥
�𝑇𝑇 − 𝜏𝜏 | �𝑇𝑇 ≥ 𝜏𝜏, 𝜙𝜙1

and

• 𝐹𝐹𝐹𝐹𝐹𝐹 = # normal sequences where a changewas detected
# normal sequences

• 𝐹𝐹𝑁𝑁𝑅𝑅 = # sequences where changewas not detected
# changed sequences

which are defined as in the anomaly detection case, but depend on the sequence length
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CHANGE-DETECTION PERFORMANCE

These figures of merit also depend on algorithm parameters.

To perform a fair comparison among different methods one can:

• Generate long enough sequences to have 𝐹𝐹𝐹𝐹𝐹𝐹 = 0%
• Consider few parameters settings

• Draw FPR-DD curves (similar to ROC): the lower the better



ANOMALY/CHANGE DETECTION IN THE IDEAL SETTINGS
…when 𝜙𝜙0 and 𝜙𝜙1 are known
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ONE-SHOT DETECTOR: NEWMAN PEARSON TEST

Assume data are generated from a parametric distribution 𝜙𝜙𝜃𝜃 and formulate the 
following hypothesis test

𝐻𝐻0:𝜃𝜃 = 𝜃𝜃0 vs 𝐻𝐻1: 𝜃𝜃 = 𝜃𝜃1
According to the Neumann Pearson lemma, the most powerful statistic to detect changes 
is the likelihood ratio

Λ 𝑥𝑥 =
𝜙𝜙1(𝑥𝑥)
𝜙𝜙0(𝑥𝑥)

and the detection rule is Λ 𝑥𝑥 > 𝛾𝛾, where 𝛾𝛾 is set to control the false alarm rate (type I 
errors of the test).
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ONE-SHOT DETECTOR: NEWMAN PEARSON TEST

Outliers can be detected by a threshold on Λ(𝒙𝒙)

𝑡𝑡

𝒙𝒙(
𝑡𝑡) ……

𝜙𝜙1𝜙𝜙0 𝜙𝜙0

𝑡𝑡

𝛬𝛬(
𝒙𝒙)

…

𝛾𝛾

𝜙𝜙1(𝑥𝑥0)
𝜙𝜙0(𝑥𝑥0)decision rule

𝑥𝑥0
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THE CUSUM TEST ON THE LIKELIHOOD RATIO

CUSUM involves the calculation of a CUmulative SUM, which makes it a sequential
monitoring scheme.

It can be applied to the log-likelihood ratio:

log Λ 𝑥𝑥 = log
𝜙𝜙1(𝑥𝑥)
𝜙𝜙0(𝑥𝑥)

= �< 0 when 𝜙𝜙0 𝑥𝑥 > 𝜙𝜙1(𝑥𝑥)
> 0 otherwise

The CUSUM statistic is:

𝑆𝑆 𝑡𝑡 = max 0, 𝑆𝑆 t − 1 + log Λ 𝑥𝑥(𝑡𝑡)

And the decision rule is

𝑆𝑆(𝑡𝑡) > γ

M. Basseville, I. V. Nikiforov, "Detection of Abrupt Changes - Theory and Application", Prentice-Hall, Inc.  April 1993 

E. S. Page "Continuous Inspection Scheme". Biometrika. 41 (1/2): 100–115 (June 1954). 



Boracchi, Carrera, ICPR 2020

CUSUM TEST

Outliers can be detected by a threshold on Λ(𝒙𝒙)

𝑡𝑡

𝒙𝒙(
𝑡𝑡) ……

𝜙𝜙1𝜙𝜙0

𝑡𝑡

𝑆𝑆
𝑡𝑡

+

…

𝛾𝛾

Detection time

statisticdecision rule
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PARAMETRIC SEQUENTIAL MONITORING

Quickest Change-Point Detection: 

• Detection policies that minimize the expected delay to detection, subject to a fixed 
𝐴𝐴𝐴𝐴𝐿𝐿0.

• The CUSUM test is the optimal change-detection test (CDT) when minimizing the 
maximum delay (at a given 𝐴𝐴𝐴𝐴𝐿𝐿0).

• Other procedures are optimal if we use a different measure for the detection delay 
or different prior information

M. Basseville, I. V. Nikiforov, "Detection of Abrupt Changes - Theory and Application", Prentice-Hall, Inc.  April 1993 

A. Polunchenko and A. Tartakovsky, “State-of-the-art in sequential change-point detection,” Methodology and Computing in Applied Probability, 2012



STATISTICAL APPROACHES TO DETECT ANOMALIES
…when 𝜙𝜙0 and 𝜙𝜙1 are unknown
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ANOMALY DETECTION WHEN 𝝓𝝓𝟎𝟎 AND 𝝓𝝓𝟏𝟏 ARE UNKNOWN 

Most often, only a training set 𝑇𝑇𝑇𝑇 is provided:

There are three scenarios:

• Supervised: Both normal and anomalous training data are provided in 𝑇𝑇𝑇𝑇.

• Semi-Supervised: Only normal training data are provided, i.e. no anomalies in 𝑇𝑇𝑇𝑇.
• Unsupervised: 𝑇𝑇𝑇𝑇 is provided without label.

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.
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SUPERVISED ANOMALY DETECTION – DISCLAIMER

Most papers and reviews agree that supervised methods have not to be considered part 
of anomaly detection, because:

• Anomalies in general lacks of a statistical coherence 

• Not (enough) training samples are provided for anomalies

However, 

• Some supervised problems are often referred to as «detection», in case of severe 
class imbalance (e.g. fraud detection)

• Supervised models can be transferred in unsupervised settings, in particular for deep 
learning
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SUPERVISED ANOMALY DETECTION - SOLUTIONS

In supervised methods training data are annotated and divided in normal (+) and 
anomalies (−) :

𝑇𝑇𝑇𝑇 = 𝒙𝒙(𝑡𝑡),𝑦𝑦(𝑡𝑡) ,𝒙𝒙 ∈ ℝ𝑑𝑑 ,𝑦𝑦 ∈ +,− and 𝑡𝑡 < 𝑡𝑡0
Solution: 

• Train a two-class classifier to distinguish normal vs anomalous data.

During training:

• Train a classifier 𝒦𝒦 from 𝑇𝑇𝑇𝑇.

During testing:

• Compute the classifier output 𝒦𝒦 𝒙𝒙 , or 

• Set a threshold on the posterior 𝑝𝑝𝒦𝒦 − 𝒙𝒙 , or

• Select the 𝑘𝑘 −most likely anomalies
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SUPERVISED ANOMALY DETECTION – CHALLENGES

These classification problems are challenging because these anomaly-detection settings 
typically imply: 

• Class Imbalance: Normal data far outnumber anomalies

• Concept Drift: Anomalies might evolve over time, thus the few annotated anomalies 
might not be representative of anomalies occurring during operations

• Selection Bias: Training samples are typically selected through a closed-loop and 
biased procedure. Often only detected anomalies are annotated, and the vast 
majority of the stream remain unsupervised. This biases the selection of training 
samples.

A. Dal Pozzolo, G. Boracchi, O. Caelen, C. Alippi and G. Bontempi, “Credit Card Fraud Detection: a Realistic Modeling and a Novel Learning Strategy”, IEEE TNNL 2017
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FRAUD DETECTION: SUPERVISED ANOMALY DETECTION

A. Dal Pozzolo, G. Boracchi, O. Caelen, C. Alippi and G. Bontempi, “Credit Card Fraud Detection: a Realistic Modeling and a Novel Learning Strategy”, IEEE TNNL 2017
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FRAUD DETECTION: SUPERVISED ANOMALY DETECTION

This is what typically happens in fraud detection.

Class Imbalance:

• Frauds are typically less than 1% of genuine transactions

Concept Drift:

• Fraudster always implement new strategies

Sampling Selection Bias:

• Only alerted / reported transactions are controlled and annotated

• Old transactions that have not been disputed are considered genuine transactions

A. Dal Pozzolo, G. Boracchi, O. Caelen, C. Alippi and G. Bontempi, “Credit Card Fraud Detection: a Realistic Modeling and a Novel Learning Strategy”, IEEE TNNL 2017
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ANOMALY DETECTION WHEN 𝝓𝝓𝟎𝟎 AND 𝝓𝝓𝟏𝟏 ARE UNKNOWN 

Most often, only a training set 𝑇𝑇𝑇𝑇 is provided:

There are three scenarios:

• Supervised: Both normal and anomalous training data are provided in 𝑇𝑇𝑇𝑇.

• Semi-Supervised: Only normal training data are provided, i.e. no anomalies in 𝑇𝑇𝑇𝑇.
• Unsupervised: 𝑇𝑇𝑇𝑇 is provided without label.

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.

<
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SEMI-SUPERVISED ANOMALY DETECTION

In semi-supervised methods the 𝑇𝑇𝑇𝑇 is composed of normal data

𝑇𝑇𝑇𝑇 = 𝑥𝑥 𝑡𝑡 , 𝑥𝑥 ∼ 𝜙𝜙0 and 𝑡𝑡 < 𝑡𝑡0,

Very practical assumptions:

• Normal data are easy to gather and the vast majority

• Anomalous data are difficult/costly to collect/select and it would be difficult to 
gather a representative training set

• Training examples in 𝑇𝑇𝑇𝑇 might not be representative of all the possible anomalies 
that can occur

All in all, it is often safer to detect any data departing from the normal conditions

Semi-supervised anomaly-detection methods are also referred to as novelty-detection 
methods

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.

M. A. Pimentel, D. A. Clifton, L. Clifton, L. Tarassenko. “A review of novelty detection” Signal Processing, 99, 215-249 (2014)
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DENSITY-BASED METHODS

Density-Based Methods: Normal data occur in high probability regions of a stochastic 
model, while anomalies occur in the low probability regions of the model

During training: �𝜙𝜙0 can be estimated from the training set 

𝑇𝑇𝑇𝑇 = 𝑥𝑥 𝑡𝑡 , 𝑥𝑥 ∼ 𝜙𝜙0 and 𝑡𝑡 < 𝑡𝑡0,
• parametric models (e.g., Gaussian mixture models) 

• nonparametric models (e.g. KDE, histograms)

During testing:

• Anomalies are detected as data yielding �𝜙𝜙0 𝒙𝒙 < 𝜂𝜂

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.
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DENSITY-BASED METHODS: MONITORING THE LOG-LIKELIHOOD

Monitoring the log-likelihood of data w.r.t �𝜙𝜙0 allow to address anomaly-detection 
problems in multivariate data

1. During training, estimate �𝜙𝜙0 from 𝑇𝑇𝑇𝑇

2. During testing, compute 

ℒ 𝒙𝒙 𝑡𝑡 = log( �𝜙𝜙0(𝒙𝒙(𝑡𝑡)))

3. Monitor ℒ 𝒙𝒙 𝑡𝑡 , 𝑡𝑡 = 1, …

𝑡𝑡

𝒙𝒙(
𝑡𝑡)

ℒ
𝒙𝒙
𝑡𝑡

………
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DENSITY-BASED METHODS: MONITORING THE LOG-LIKELIHOOD

Monitoring the log-likelihood of data w.r.t �𝜙𝜙0 allow to address anomaly-detection 
problems in multivariate data

1. During training, estimate �𝜙𝜙0 from 𝑇𝑇𝑇𝑇

2. During testing, compute 

ℒ 𝒙𝒙 𝑡𝑡 = log( �𝜙𝜙0(𝒙𝒙(𝑡𝑡)))

3. Monitor ℒ 𝒙𝒙 𝑡𝑡 , 𝑡𝑡 = 1, …

This is quite a popular approach in either anomaly and change detection algorithms

L. I. Kuncheva, “Change detection in streaming multivariate data using likelihood detectors," IEEE Transactions on Knowledge and Data Engineering, vol. 25, no. 5, 2013.

X. Song, M. Wu, C. Jermaine, and S. Ranka, “Statistical change detection for multidimensional data," in Proceedings of International Conference on Knowledge Discovery
and Data Mining (KDD), 2007.

J. H. Sullivan and W. H. Woodall, “Change-point detection of mean vector or covariance matrix shifts using multivariate individual observations," IIE transactions, vol. 32,
no. 6, 2000.

C. Alippi, G. Boracchi, D. Carrera, M. Roveri, "Change Detection in Multivariate Datastreams: Likelihood and Detectability Loss" IJCAI 2016, New York, USA, July 9 - 13
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DENSITY-BASED METHODS

Advantages:

• �𝜙𝜙0 𝒙𝒙 indicates how safe a detection is (like a p-value)

• If the density estimation process is robust to outliers, it is possible to tolerate few 
anomalous samples in 𝑇𝑇𝑇𝑇

• in relatively small dimensions, you might use non-parametric models like 
histograms

Challenges:

• It is challenging to fit models for high-dimensional data 

• Histograms traditionally suffer of curse of dimensionality when 𝑑𝑑 increases

• Often the 1D histograms of the marginals are monitored, ignoring the correlations 
among components

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.
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DOMAIN-BASED METHODS

Domain-based methods: Estimate a boundary around normal data, rather than the 
density of normal data.

A drawback of density-estimation methods is that they are meant to be accurate in high-
density regions, while anomalies live in low-density ones.

One-Class SVM are domain-based methods defined by the normal samples at the 
periphery of the distribution.

Schölkopf, B., Williamson, R. C., Smola, A. J., Shawe-Taylor, J., Platt, J. C. "Support Vector Method for Novelty Detection". In NIPS 1999 (Vol. 12, pp. 582-588).

Tax, D. M., Duin, R. P. "Support vector domain description". Pattern recognition letters, 20(11), 1191-1199 (1999)

M. A. Pimentel, D. A. Clifton, L. Clifton, L. Tarassenko. “A review of novelty detection” Signal Processing, 99, 215-249 (2014)
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ONE-CLASS SVM (SCHÖLKOPF ET AL. 1999)

Idea: define boundaries by estimating a binary function 𝑓𝑓 that captures regions of the 
input space where density is higher. 

As in support vector methods, 𝑓𝑓 is defined in the feature space 𝐹𝐹 and decision 
boundaries are defined by a few support vectors (i.e., a few normal data).

Let 𝜓𝜓(𝒙𝒙) the feature associated to 𝒙𝒙, 𝑓𝑓 is defined as

𝑓𝑓 𝒙𝒙 = sign(< 𝑤𝑤,𝜓𝜓 𝒙𝒙 > −𝜌𝜌)

Where the hyperplane parameters 𝑤𝑤,𝜌𝜌 are optimized to yield a function that is positive 
on most training samples. Thus in the feature space, normal points can be separated 
from the origin.

A linear separation in the feature space corresponds to a variety of nonlinear boundaries 
in the space of 𝒙𝒙.

B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, J. C. Platt "Support Vector Method for Novelty Detection". In NIPS 1999 (Vol. 12, pp. 582-588).
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ONE-CLASS SVM (TAX AND DUIN 1999)

Boundaries of normal region can be also defined by an hypersphere that, in the feature 
space, encloses most of the normal data i.e., 𝜓𝜓(𝒙𝒙) for 𝒙𝒙 ∈ 𝑇𝑇𝑇𝑇.

Similar detection formulas hold, measuring the distance in the feature space from the 
sphere center. 

The sphere center can be defined in terms of support vectors.

Remarks: In both one-class approaches, the amount of samples that falls within the 
margin (outliers) is controlled by regularization parameters.

This parameter regulates the number of outliers in the training set and the detector 
sensitivity.

D. M. Tax, R. P. Duin, "Support vector domain description". Pattern recognition letters, 20(11), 1191-1199 (1999)
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ANOMALY DETECTION WHEN 𝝓𝝓𝟎𝟎 AND 𝝓𝝓𝟏𝟏 ARE UNKNOWN 

Most often, only a training set 𝑇𝑇𝑇𝑇 is provided:

There are three scenarios:

• Supervised: Both normal and anomalous training data are provided in 𝑇𝑇𝑇𝑇.

• Semi-Supervised: Only normal training data are provided, i.e. no anomalies in 𝑇𝑇𝑇𝑇.
• Unsupervised: 𝑇𝑇𝑇𝑇 is provided without label.

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.
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UNSUPERVISED ANOMALY-DETECTION

The training set 𝑇𝑇𝑇𝑇 might contain both normal and anomalous data. However, no labels 
are provided

𝑇𝑇𝑇𝑇 = 𝑥𝑥 𝑡𝑡 , 𝑡𝑡 < 𝑡𝑡0
Underlying assumption: anomalies are rare w.r.t. normal data 𝑇𝑇𝑇𝑇

In principle:

• Density/Domain based methods that are robust to outliers can be applied in an 
unsupervised scenario 

• Unsupervised methods can be improved whenever labels are available
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DISTANCE-BASED METHODS

Distance-based methods: normal data fall in dense neighborhoods, while anomalies are 
far from their closest neighbors.

A critical aspect is the choice of the similarity measure to use.

Anomalies are detected by monitoring:

• distance between each data and its 𝒌𝒌 −nearest neighbor

• the density of each data relatively to its neighbors

M. Zhao, V. Saligrama, “Anomaly detection with score functions based on nearest neighbor graphs”. NIPS 2009

A. Zimek, E. Schubert, H. Kriegel. “A survey on unsupervised outlier detection in high-dimensional numerical data” SADM 2012 

M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: Identifying density-based local outliers”, in International Conference on Management of data, 2000
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DISTANCE-BASED METHODS

Distance-based methods: normal data fall in dense neighborhoods, while anomalies are 
far from their closest neighbors.

A critical aspect is the choice of the similarity measure to use.

Anomalies are detected by monitoring:

• distance between each data and its 𝒌𝒌 −nearest neighbor

• the above distance considered relatively to neighbors

• whether they do not belong to clusters, or are at the cluster periphery, or belong to 
small and sparse clusters

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.
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DISTANCE-BASED METHODS

Distance-based methods: normal data fall in dense neighborhoods, while anomalies are 
far from their closest neighbors.

A critical aspect is the choice of the similarity measure to use.

Anomalies are detected by monitoring:

• distance between each data and its 𝒌𝒌 −nearest neighbor

• the above distance considered relatively to neighbors

• whether they do not belong to clusters, or are at the cluster periphery, or belong to 
small and sparse clusters

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.
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ISOLATION FOREST

Builds upon the rationale that
"anomalies are easier to separate from the rest of normal data"

This idea is implemented very efficiently through a forest of binary trees that are 
constructed via an iterative procedure

F. T. Liu, K. M. Ting and Z. Zhou, Isolation Forest, ICDM 2008 
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1. a component 𝑥𝑥𝑖𝑖
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ISOLATION FOREST

Builds upon the rationale that
"anomalies are easier to separate from the rest of normal data"

This idea is implemented very efficiently through a forest of binary trees that are 
constructed via an iterative procedure

F. T. Liu, K. M. Ting and Z. Zhou, Isolation Forest, ICDM 2008 

Randomly choose
1. a component 𝑥𝑥𝑖𝑖
2. a value in the range of 

projections of 𝑇𝑇𝑇𝑇 over 
the 𝑖𝑖-th component

This yields a splitting
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ISOLATION FOREST

Builds upon the rationale that
"anomalies are easier to separate from the rest of normal data"

This idea is implemented very efficiently through a forest of binary trees that are 
constructed via an iterative procedure

F. T. Liu, K. M. Ting and Z. Zhou, Isolation Forest, ICDM 2008 

This yields a splitting
criteria
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ISOLATION FOREST

Builds upon the rationale that
"anomalies are easier to separate from the rest of normal data"

This idea is implemented very efficiently through a forest of binary trees that are 
constructed via an iterative procedure

F. T. Liu, K. M. Ting and Z. Zhou, Isolation Forest, ICDM 2008 

Repeat the 
procedure on 
each node:
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ISOLATION FOREST

Builds upon the rationale that
"anomalies are easier to separate from the rest of normal data"

This idea is implemented very efficiently through a forest of binary trees that are 
constructed via an iterative procedure

F. T. Liu, K. M. Ting and Z. Zhou, Isolation Forest, ICDM 2008 

Repeat the 
procedure on 
each node:

Randomly select
a component 
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ISOLATION FOREST

Builds upon the rationale that
"anomalies are easier to separate from the rest of normal data"

This idea is implemented very efficiently through a forest of binary trees that are 
constructed via an iterative procedure

F. T. Liu, K. M. Ting and Z. Zhou, Isolation Forest, ICDM 2008 

Repeat the 
procedure on 
each node:

Randomly select
a component and 

a cut point
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ISOLATION FOREST

Builds upon the rationale that
"anomalies are easier to separate from the rest of normal data"

This idea is implemented very efficiently through a forest of binary trees that are 
constructed via an iterative procedure

F. T. Liu, K. M. Ting and Z. Zhou, Isolation Forest, ICDM 2008 

Randomly choose
a component and 
a value within the 
range and define
a splitting criteria
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ISOLATION FOREST

Builds upon the rationale that
"anomalies are easier to separate from the rest of normal data"

This idea is implemented very efficiently through a forest of binary trees that are 
constructed via an iterative procedure

F. T. Liu, K. M. Ting and Z. Zhou, Isolation Forest, ICDM 2008 

Repeat the 
procedure on the 

nodes:
Randomly select
a component and 

a cut point
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ISOLATION FOREST

Builds upon the rationale that
"anomalies are easier to separate from the rest of normal data"

This idea is implemented very efficiently through a forest of binary trees that are 
constructed via an iterative procedure

F. T. Liu, K. M. Ting and Z. Zhou, Isolation Forest, ICDM 2008 

Anomalies lies in 
leaves close to 

the root.
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ISOLATION FOREST

An anomalous point (𝑥𝑥0) can be easily isolated

Genuine points (𝑥𝑥𝑖𝑖) are instead difficult to isolate.

F. T. Liu, K. M. Ting and Z. Zhou, Isolation Forest, ICDM 2008 
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ISOLATION FOREST

Anomalies

F. T. Liu, K. M. Ting and Z. Zhou, Isolation Forest, ICDM 2008 

{IFOR [ … ]

𝑥𝑥0
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ISOLATION FOREST

Normal data

F. T. Liu, K. M. Ting and Z. Zhou, Isolation Forest, ICDM 2008 

{IFOR [ … ]

𝑥𝑥𝑖𝑖
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ISOLATION FOREST: TESTING

Compute 𝐸𝐸 ℎ 𝒙𝒙 , the average path length among all the trees in the forest, of a test 
sample 𝒙𝒙

F. T. Liu, K. M. Ting and Z. Zhou, Isolation Forest, ICDM 2008 

𝒙𝒙
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ISOLATION FOREST: TESTING

A test sample is identified as anomalous when:

𝒜𝒜 𝒙𝒙 = 2−
𝐸𝐸 ℎ 𝒙𝒙
𝑐𝑐 𝑛𝑛 > 𝛾𝛾

• 𝑛𝑛 : number of sessions in 𝑇𝑇𝑇𝑇

• 𝑐𝑐 𝑛𝑛 : average path length of unsuccessful search in Binary

Several extensions including EIF (Extendend Isolation Forest) modify the splitting criteria 
to yield anomaly scores map that better conform to normal data

Fei Tony Liu, Kai Ming Ting and Zhi-Hua Zhou, Isolation Forest, ICDM 2008

S. Hariri, M. C. Kind, and R. J. Brunner, “Extended isolation forest”, TKDE, 2019.
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Any Questions?
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LET’S MOVE OUT OF THE RANDOM VARIABLE WORLD!
Applying statistical methods to signals / image patches



Boracchi, Carrera, ICPR 2020

OUR RUNNING EXAMPLE

Goal: Automatically measure area covered by defects
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ANOMALY DETECTION IN IMAGES

The goal not determining whether the whole image is normal or anomalous, but
locate/segment possible anomalies

Therefore, it is convenient to 

1. Analyze the image patch-wise

2. Isolate regions containing
patches that are detected as
as anomalies

Normal patches

Anomalous patches



Boracchi, Carrera, ICPR 2020

REAL WORLD DETECTION PROBLEMS

Normal patches -> background

• Exhibit a specific structure (geometry) or intensities

Anomalous patches:

• Are rare elements that do not confrom with the background
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Can we pursue approaches designed
for random variables on image 

patches?
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DENSITY-BASED APPROACH ON IMAGE PATCHES

A density-based approach to AD would be:

Training

i. Split the normal image in patches 𝒔𝒔

ii. Fit a statistical model �𝜙𝜙0 = 𝒩𝒩 𝜇𝜇, Σ describing normal patches.

Testing

i. Split the test image in patches

ii. Compute �𝜙𝜙0(𝒔𝒔) the likelihood of each test patch 𝒔𝒔

iii. Detect anomalies by thresholding the likelihood

Du, B., Zhang, L.: Random-selection-based anomaly detector for hyperspectral imagery. IEEE Transactions on Geoscience and Remote sensing

X Xie, M Mirmehdi “Texture exemplars for defect detection on random textures“ – ICPR 2005

This model is rarely accurate 
on natural images.

Small patches (e.g. 2 × 2 or 
5 × 5) are typically preferred
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THE LIMITATIONS OF THE RANDOM VARIABLE MODEL

Du, B., Zhang, L.: Random-selection-based anomaly detector for hyperspectral imagery. IEEE Transactions on Geoscience and Remote sensing

X Xie, M Mirmehdi “Texture exemplars for defect detection on random textures“ – ICPR 2005

• ROC curve indicates very low
performance on the nanofiber
images 

• Density model is not accurate on 
these images  (and rarely is on 
natural images)

• Small patches (e.g. 2 × 2 or 5 ×
5) are typically preferred. The 
model becomes even more unfit 
as the patch size increases
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REAL WORLD DETECTION PROBLEMS

Random variable model does not successfully apply to signals or images (not even small 
portions)

Stacking each patch/signal 𝒔𝒔 ∈ ℝ𝑑𝑑 in a vector 𝒙𝒙 is not convenient:

• Data dimension 𝑑𝑑 becomes huge

• Strong correlations among components, difficult to directly model by a probability 
density function 𝜙𝜙0
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THE LIMITATIONS OF THE RANDOM VARIABLE MODEL

Distribution of adjacent pixel values inside a patch:
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THE LIMITATIONS OF THE RANDOM VARIABLE MODEL

Distribution of adjacent pixel values inside a patch:

Data are clearly correlated in space, and are difficult to 
model by a smooth density function (e.g., Gaussians)

The random variable model is not very appropriate for 
describing images
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THE LIMITATIONS OF THE RANDOM VARIABLE MODEL

Patches from natural images leave close to a low dimensional manifold

These means that patches can be well described by few latent variables

Bengio, Courville, Vincent, “Representation Learning: A Review and New Perspectives”, IEEE Pattern Analysis and Machine Intelligence 2013



Boracchi, Carrera, ICPR 2020

A SIMPLE EXPERIMENT

Let’s approximate this manifold with the simplest one: a linear subspace

In practice, we compute the PCA of training patches. Consider the PCA score as latent 
variables, which means projecting each patch over the linear subspace spanned by the 
first components.
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A SIMPLE EXPERIMENT

Distribution of first 6 PCA coefficients: 
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A SIMPLE EXPERIMENT

We fit a �𝜙𝜙0 = 𝒩𝒩 𝜇𝜇, Σ on PCA components to describe normal patches, and perform 
anomaly detection

PCA



ANOMALY DETECTION IN IMAGES AND SIGNALS
Out of the “Random Variable” World: 

signal-based models for images
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THE TYPICAL APPROACH

Most of the considered methods 

1. Estimate a model describing normal data (background model)

2. Use the background model to provide, for each test signal/patch, an anomaly score, 
or measure of rareness

3. Apply a decision rule to the anomaly score to detect anomalies (typically 
thresholding)

4. [optional] Perform post-processing operations to enforce smooth detections and 
avoid isolated pixels that are not consistent with neighbourhoods 

Remark: Statistical-based approaches seen before uses as background model the 
statistical distribution �𝜙𝜙0 and a statistic as anomaly score
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THE TYPICAL APPROACH

Most of the considered methods 

1. Estimate a model describing normal data (background model)

2. Use the background model to provide, for each test signal/patch, an anomaly score, 
or measure of rareness

3. Apply a decision rule to the anomaly score to detect anomalies (typically 
thresholding)

4. [optional] Perform post-processing operations to enforce smooth detections and 
avoid isolated pixels that are not consistent with neighbourhoods 

Remark: Statistical-based approaches seen before uses as background model the 
statistical distribution �𝜙𝜙0 and a statistic as anomaly score

The background model is used to 
bring an image patch into the 

“random variable world”
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THE TYPICAL APPROACH

Most of the considered methods 

1. Estimate a model describing normal data (background model)

2. Use the background model to provide, for each test signal/patch, an anomaly score, 
or measure of rareness

3. Apply a decision rule to the anomaly score to detect anomalies (typically 
thresholding)

4. [optional] Perform post-processing operations to enforce smooth detections and 
avoid isolated pixels that are not consistent with neighbourhoods 

Remark: Statistical-based approaches seen before uses as background model the 
statistical distribution �𝜙𝜙0 and a statistic as anomaly score

Once “having applied“ the background 
model, one can use anomaly detection 

methods for the “random variable world”.
This might require fitting an 

additional model
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THE THREE MAJOR INGREDIENTS

Most detection algorithms have three major ingredients:

• The background model ℳ, learned from normal data

• The statistic / anomaly score: err 𝒔𝒔 ,ℒ 𝒔𝒔 ,𝒜𝒜 𝒔𝒔 , …

• Decision rule to detect, e.g. err 𝒔𝒔 ≷ 𝛾𝛾
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SEMI-SUPERVISED ANOMALY-DETECTION IN IMAGES

Out of the "Random Variable" world

• Reconstruction-based methods

• Subspace methods

• Feature-based monitoring

• Expert-driven Features

• Data-driven Features
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SEMI-SUPERVISED ANOMALY-DETECTION IN IMAGES

Out of the "Random Variable" world

• Reconstruction-based methods

• Subspace methods

• Feature-based monitoring

• Expert-driven Features

• Data-driven Features



Boracchi, Carrera, ICPR 2020

RECONSTRUCTION-BASED METHODS

Fit a statistical model to the observation to describe dependence, apply anomaly 
detection on the independent residuals.

Detection is performed by a model ℳ which encodes and reconstructs normal data:

• During training: learn the model ℳ from training set 𝑆𝑆
• During testing: 

− Encode and reconstruct each test signal 𝒔𝒔 through ℳ. 

− Assess err(𝒔𝒔), the residual between 𝒔𝒔 and its reconstruction through ℳ
err 𝒔𝒔 = 𝒔𝒔 − �𝒔𝒔

The rationale is that ℳ can reconstruct only normal data, thus anomalies are expected 
to yield large reconstruction errors.
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MONITORING THE RECONSTRUCTION ERROR

Normal data are expected to yield values of err(𝒔𝒔) that are low, while anomalies do not. 
This holds when the model ℳ was specifically learned to describe normal data

Outliers can be detected by thresholding err(𝒔𝒔)

𝑡𝑡

er
r(
𝒔𝒔)

……

𝜙𝜙1𝜙𝜙0 𝜙𝜙0

𝛾𝛾
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RECONSTRUCTION-BASED METHODS

Popular models are:

• neural networks, in particular auto-encoders, for higher dimensional data

• projection on subspaces / manifolds

• dictionaries yielding sparse-representations

• autoregressive models for time series (ARMA, ARIMA…)

Methods based on projections and dictionaries can be also interpreted as subspace 
methods
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RECONSTRUCTION-BASED METHODS

Autoencoders are neural networks used for data reconstruction (they learn the identity 
function)

The typical structure of an autoencoder is:

…

𝑠𝑠1

𝑠𝑠𝑑𝑑

𝑠𝑠2

𝑠𝑠3

𝑠𝑠4

…

𝑠𝑠1

𝑠𝑠𝑑𝑑

𝑠𝑠2

𝑠𝑠3

𝑠𝑠4

Input layer, 
𝑑𝑑 neurons

Output layer, 
𝑑𝑑 neurons

Hidden layer, 
𝑚𝑚 neurons
𝑚𝑚 ≪ 𝑑𝑑

Encoder ℰ Decoder 𝒟𝒟
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RECONSTRUCTION-BASED METHODS

Autoencoders are trained to reconstruct all the samples in the training set. The 
reconstruction loss over the training set 𝑆𝑆 is

ℒ 𝑆𝑆 = �
𝒔𝒔∈𝑆𝑆

𝒔𝒔 − 𝒟𝒟 ℰ 𝒔𝒔 2

𝒟𝒟 ℰ ⋅ is trained via standard backpropagation algorithms (e.g. SGD)

Remarks

• Typically 𝒟𝒟 ℰ ⋅ does not provide perfect reconstruction, 
since 𝑚𝑚 ≪ 𝑑𝑑.

• Regularization terms might be included in the loss function for the latent 
representation ℰ 𝒔𝒔 to feature specific properties

Bengio, Y., Courville, A., Vincent, P. "Representation learning: A review and new perspectives". IEEE TPAMI 2013

Mishne, G., Shaham, U., Cloninger, A., & Cohen, I. Diffusion nets. Applied and Computational Harmonic Analysis (2017).
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MONITORING THE RECONSTRUCTION ERROR

Detection by reconstruction error monitoring (AE notation)

Training (Monitoring the Reconstruction Error): 

1. Train the model 𝒟𝒟(ℰ(⋅)) from the training set 𝑆𝑆

2. Learn the distribution of reconstruction errors 

err 𝒔𝒔 = 𝒔𝒔 − 𝒟𝒟 ℰ 𝒔𝒔 2, 𝒔𝒔 ∈ 𝑉𝑉

over a validation set 𝑉𝑉, such that 𝑉𝑉 ∩ 𝑆𝑆 = ∅, and define a suitable threshold 𝛾𝛾

Testing (Monitoring the Reconstruction Error):

1. Perform encoding and compute the reconstruction error 

err 𝒔𝒔 = 𝒔𝒔 − 𝒟𝒟 ℰ 𝒔𝒔 2

2. Consider 𝒔𝒔 anomalous when err 𝒔𝒔 > 𝛾𝛾
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OUTLINE ON SEMI-SUPERVISED APPROACHES

Out of the "Random Variable" world

• Reconstruction-based methods

• Subspace methods

• Feature-based monitoring

• Expert-driven Features

• Data-driven Features

• Extended models
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SUBSPACE METHODS

The underlying assumption is that 

• normal patches live in a subspace that can be identified by 𝑆𝑆

• anomalies can be detected by projecting test patches in such subspace and by 
monitoring the reconstruction error (distance with the projection)

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.

Normal
DataData
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SUBSPACE METHODS

A few example of models used for describing normal patches:

• Orthogonal basis: normal patches can be expressed by a few selected basis elements 
(Fourier, Wavelets..)

• PCA: normal patches live in the linear subspace of the first components

• Robust PCA: defined on the ℓ1 distance to be insensitive to outliers in normal data

• Kernel PCA: normal patches live in a non-linear manifold 

• Dictionaries yielding sparse representations

• Random projections

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.

Normal
DataData
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SUBSPACE METHODS: PCA-BASED MONITORING

Anomaly detection based on PCA (and similar techniques):

1. Compute the projection on the subspace,
𝒔𝒔′ = 𝑃𝑃𝑇𝑇𝒔𝒔, 𝑃𝑃 ∈ ℝ𝑑𝑑×𝑚𝑚, 𝑚𝑚 ≪ 𝑑𝑑

which is the projection over the first 𝑚𝑚 principal components and a way to reduce 
data-dimensionality. 

2. Monitor the reconstruction error:
err 𝐬𝐬 = 𝒔𝒔 − 𝑃𝑃𝑃𝑃𝑇𝑇𝒔𝒔 2

which is the distance between 𝒔𝒔 and its projection 𝑃𝑃𝑃𝑃𝑇𝑇𝒔𝒔 over the subspace of 
normal patches

2. [bis] The projection along the last principal component, is also a good anomaly 
score, as it becomes 
large at anomalies.

Normal
DataData 𝒔𝒔
𝒔𝒔𝒔
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SUBSPACE METHODS: SPARSE REPRESENTATIONS

Basic assumption: normal data live in a union of low-dimensional subspaces of the 
input space

• The model learned from 𝑆𝑆 is a matrix: the dictionary 𝐷𝐷.

• Each signal is decomposed as the sum of a few dictionary atoms (representation is 
constrained to be sparse).

• Atoms represent the many building blocks that can be used to reconstruct normal 
signals.

• There are typically more atoms than the signal dimension (redundant dictionaries). 

• Effective as long as the learned dictionary 𝐷𝐷 is very specific for normal data

M. Elad "Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing", Springer, 2010
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DICTIONARIES YIELDING SPARSE REPRESENTATIONS

Dictionaries are just matrices: 𝐷𝐷 ∈ ℝ𝑑𝑑×𝑚𝑚

𝐷𝐷 =
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DICTIONARIES YIELDING SPARSE REPRESENTATIONS

Dictionaries are just matrices: 𝐷𝐷 ∈ ℝ𝑑𝑑×𝑚𝑚

Each column of 𝐷𝐷 is an atom:

• lives in the input space ℝ𝑑𝑑

• it is one of the building blocks 
that have been learned to 
reconstruct the input signal in 
the training set 𝑆𝑆

𝒔𝒔

𝐷𝐷 =
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SPARSE REPRESENTATIONS

Let 𝒔𝒔 ∈ ℝ𝑑𝑑 be the input signal, a sparse representation is

𝒔𝒔 = �
𝑖𝑖=1

𝑚𝑚

𝛼𝛼𝑖𝑖 𝒅𝒅𝒊𝒊

a linear combination of few dictionary atoms {𝒅𝒅𝒊𝒊}, i.e., most of coefficients are such 
that 𝛼𝛼𝑖𝑖 = 0

An illustrative example in case of our patches

= 0.7 ∗ +0.1 ∗ −0.2 ∗
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SPARSE REPRESENTATIONS IN MATRIX EXPRESSION

Let 𝒔𝒔 ∈ ℝ𝑑𝑑 be the input signal, a sparse representation is

𝒔𝒔 = �
𝑖𝑖=1

𝑚𝑚

𝛼𝛼𝑖𝑖 𝒅𝒅𝒊𝒊 = 𝐷𝐷𝜶𝜶, 𝐷𝐷 ∈ ℝ𝑑𝑑×𝑚𝑚

a linear combination of few dictionary atoms {𝒅𝒅𝒊𝒊} and 𝜶𝜶 0 < 𝐿𝐿, i.e. only a few 
coefficients are nonzero, i.e. 𝜶𝜶 is sparse.

𝒔𝒔 𝜶𝜶𝐷𝐷 This vector
𝜶𝜶 = [𝛼𝛼1, … , 𝛼𝛼𝑚𝑚]

is sparse

= ∗

Overcomplete / Redundant dictionary
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SPARSE REPRESENTATIONS IN MATRIX EXPRESSION

Let 𝒔𝒔 ∈ ℝ𝑑𝑑 be the input signal, a sparse representation is

𝒔𝒔 = �
𝑖𝑖=1

𝑚𝑚

𝛼𝛼𝑖𝑖 𝒅𝒅𝒊𝒊 = 𝐷𝐷𝜶𝜶, 𝐷𝐷 ∈ ℝ𝑑𝑑×𝑚𝑚

a linear combination of few dictionary atoms {𝒅𝒅𝒊𝒊} and 𝜶𝜶 0 < 𝐿𝐿, i.e. only a few 
coefficients are nonzero, i.e. 𝜶𝜶 is sparse.

D. Carrera, B. Rossi, D. Zambon, P. Fragneto, G. Boracchi "ECG Monitoring in Wearable Devices by Sparse Models" in Proceedings of ECML-PKDD 2016, 16 pages 

D. Carrera, B. Rossi, P. Fragneto, G. Boracchi "Online Anomaly Detection for Long-Term ECG Monitoring using Wearable Devices", Pattern Recognition 2019

𝒔𝒔 𝜶𝜶𝐷𝐷
This vector

𝜶𝜶 = [𝛼𝛼1, … , 𝛼𝛼𝑚𝑚]
is sparse

Undercomplete
dictionary
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THE SPARSE CODING PROBLEM…

Sprase Coding: computing the sparse representation for an input signal 𝒔𝒔 w.r.t. 𝐷𝐷

Since 𝜶𝜶 has to be sparse, some sparsity-promoting prior need to be included. Most 
popular formulation for this optimization problem are:

• ℓ0 constrained, 

𝜶𝜶 = argmin
𝒂𝒂∈ℝ𝑚𝑚

𝐷𝐷𝒂𝒂 − 𝑠𝑠 2 s. t. 𝒂𝒂 0 < 𝐿𝐿

solved for instance by Matching Pursuit (MP), Orthogonal Matching Pursuit (OMP),…

• ℓ1 penalized (or constrained), 

𝜶𝜶 = argmin
𝒂𝒂∈ℝ𝑛𝑛

𝐷𝐷𝒂𝒂 − 𝐬𝐬 𝟐𝟐
𝟐𝟐 + 𝜆𝜆 𝒂𝒂 1, 𝜆𝜆 > 0

solved by BPDN, ISTA (proximal mapping), IRSL, ADMM… or any convex optimization tool.

Y. Pati, R. Rezaiifar, P. Krishnaprasad. “Orthogonal Matching Pursuit: recursive function approximation with application to wavelet decomposition”. Asilomar Conf. on 
Signals, Systems and Comput. 1993

𝒔𝒔 ∈ ℝ𝑑𝑑 𝜶𝜶 ∈ ℝ𝑚𝑚
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THE SPARSE CODING PROBLEM…

Sprase Coding: computing the sparse representation for an input signal 𝒔𝒔 w.r.t. 𝐷𝐷

It is solved as the following optimization problem, (e.g. via the Orthogonal Matching 
Pursuit, OMP)

𝜶𝜶 = argmin
𝒂𝒂∈ℝ𝑚𝑚

𝐷𝐷𝒂𝒂 − 𝑠𝑠 2 s. t. 𝒂𝒂 0 < 𝐿𝐿

In this illustration 𝜶𝜶 = [0.7, 0, 0, 0.1, 0, 0, 0,−0.2]

𝒔𝒔 ∈ ℝ𝑑𝑑 𝜶𝜶 ∈ ℝ𝑚𝑚

𝒔𝒔 0.7 0 0 0.1 0 0 0 −0.2𝜶𝜶 =
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… AND DICTIONARY LEARNING

Dictionary Learning: estimate 𝐷𝐷 from a training set of normal signals 𝑆𝑆 ⊂ ℝ𝑑𝑑

It is solved as the following optimization problem typically via block-coordinates descent (e.g. 
KSVD algorithm)

𝐷𝐷,𝑋𝑋 = argmin
𝐴𝐴∈ ℝ𝑑𝑑×𝑛𝑛, 𝑌𝑌∈ ℝ𝑛𝑛×𝑚𝑚

𝐴𝐴𝐴𝐴 − 𝑆𝑆 2 s. t. 𝒚𝒚𝒊𝒊 0 < 𝐿𝐿, ∀𝒚𝒚𝒊𝒊

Aharon, M.; Elad, M. Bruckstein, A. K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation IEEE TSP, 2006

𝑆𝑆 = {𝒔𝒔𝟏𝟏, … 𝒔𝒔𝒏𝒏} 𝐷𝐷 ∈ ℝ𝑑𝑑×𝑚𝑚

… .𝑇𝑇𝑇𝑇 𝐷𝐷… .
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A DICTIONARY LEARNED FROM NORMAL PATCHES

Example of training patches Few learned atoms (BPDN-based learning)
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A DICTIONARY LEARNED FROM NORMAL ECG TRACINGS

𝑆𝑆 = {𝒔𝒔𝟏𝟏, … 𝒔𝒔𝑴𝑴}

𝐷𝐷 ∈ ℝ𝑛𝑛×𝑚𝑚

… .

A few minutes of ECG signals in resting conditions
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ANOMALY DETECTION BY MONITORING THE RECONSTRUCTION ERROR

Anomalies can be directly detected by performing the sparse coding of test signals and 
then analysing the reconstruction error

err(𝒔𝒔) = 𝐷𝐷𝜶𝜶 − 𝒔𝒔 2

And as in reconstruction-based techniques, compare it against a threshold 𝛾𝛾
𝐷𝐷𝒙𝒙 − 𝐬𝐬 𝟐𝟐

𝟐𝟐 < 𝛾𝛾 → 𝐬𝐬 is normal
𝐷𝐷𝒙𝒙 − 𝐬𝐬 𝟐𝟐

𝟐𝟐 ≥ 𝛾𝛾 → 𝐬𝐬 is anomalous

D. Carrera, B. Rossi, D. Zambon, P. Fragneto, G. Boracchi "ECG Monitoring in Wearable Devices by Sparse Models" in Proceedings of ECML-PKDD 2016, 16 pages 

D. Carrera, B. Rossi, P. Fragneto, G. Boracchi "Online Anomaly Detection for Long-Term ECG Monitoring using Wearable Devices", Pattern Recognition 2019

Low err 𝒔𝒔 High err 𝒔𝒔
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ONLINE MONITORING THROUGH SPARSE REPRESENTATIONS

Normal beat: 𝐷𝐷𝒙𝒙 − 𝐬𝐬 𝟐𝟐
𝟐𝟐 < 𝛾𝛾 Anomalies 𝐷𝐷𝒙𝒙 − 𝐬𝐬 𝟐𝟐

𝟐𝟐 > 𝛾𝛾

𝑠𝑠 𝑠𝑠

m
ill

iv
ol

t

𝐷𝐷𝒙𝒙
𝒔𝒔

𝐷𝐷𝒙𝒙
𝒔𝒔
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ANOMALY DETECTION DURING SPARSE CODING

Anomalies can be directly detected during the sparse coding stage, by adopting a special 
loss during optimization.

A set of test signals is modeled as:

𝑆𝑆 = 𝐷𝐷𝐷𝐷 + 𝐸𝐸 + 𝑉𝑉

where 𝑋𝑋 is sparse, 𝑉𝑉 is a noise term, and 𝐸𝐸 is a matrix having most columns set to 
zero. Columns 𝒆𝒆𝑖𝑖 ≠ 𝟎𝟎 indicate anomalies, as they do not admit a sparse representation 
w.r.t. 𝐷𝐷

A. Adler, M. Elad, Y. Hel-Or, and E. Rivlin, “Sparse coding with anomaly detection” Journal of Signal Processing Systems, vol. 79, no. 2, pp. 179–188, 2015.
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ANOMALY DETECTION DURING SPARSE CODING

Anomalies can be detected by solving (through ADMM) the following sparse coding 
problem

argmin
𝑋𝑋,𝐸𝐸

1
2

𝑆𝑆 − 𝐷𝐷𝐷𝐷 − 𝐸𝐸 𝐹𝐹
2 + 𝜆𝜆 𝑋𝑋 1 + 𝜇𝜇 𝐸𝐸 2,1

.. and identifying as anomalies the signals corresponding to columns of 𝐸𝐸 that are 
nonzero.

A. Adler, M. Elad, Y. Hel-Or, and E. Rivlin, “Sparse coding with anomaly detection” Journal of Signal Processing Systems, vol. 79, no. 2, pp. 179–188, 2015.

Data-fidelity for normal data Sparsity Group sparsity
regularization, only a few
columns can be nonzero
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OUTLINE ON SEMI-SUPERVISED APPROACHES

• Detrending/Filtering for time-series

• Reconstruction-based methods

• Subspace methods

• Feature-based monitoring

• Expert-driven Features

• Data-driven Features

• Extended models
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TYPICAL APPROACH: MONITORING FEATURES

Feature extraction: meaningful indicators to be monitored which have a known / 
controlled response w.r.t. normal data

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.

Input signal

Feature
Extraction

Feature
vector

Anomaly/Change
detection

𝒙𝒙 𝑡𝑡 ∈ ℝ𝑚𝑚

𝑚𝑚 ≪ 𝑑𝑑
𝒔𝒔𝑡𝑡 ∈ ℝ𝑑𝑑

�𝜙𝜙0 𝒙𝒙 𝑡𝑡 ≶ 𝜂𝜂

The customary statistical
framework for anomaly detection

Feature Extraction: signal processing, 
a priori information, learning methods

Signal world Random variables world
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MONITORING FEATURE DISTRIBUTION

Normal data are expected to yield features 𝒙𝒙 that are i.i.d. and follow an unknown 
distribution 𝜙𝜙0.

Anomalous data do not, as they follow 𝜙𝜙1 ≠ 𝜙𝜙0.

We are back to our statistical framework and we can 

• learn �𝜙𝜙0 from a set features extracted from normal data 

• detect anomalous data by extracting features 𝒙𝒙 associated to each input 𝑠𝑠, and 
then testing whether �𝜙𝜙0 𝑥𝑥 < 𝛾𝛾

𝑡𝑡

𝒙𝒙(
𝑡𝑡)

� 𝜙𝜙
0
𝒙𝒙

………

𝛾𝛾
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MONITORING FEATURE DISTRIBUTION

Normal data are expected to yield features 𝒙𝒙 that are i.i.d. and follow an unknown 
distribution 𝜙𝜙0.

Anomalous data do not, as they follow 𝜙𝜙1 ≠ 𝜙𝜙0.

We are back to our statistical framework and we can 

• learn �𝜙𝜙0 from a set features extracted from normal data 

• detect anomalous data by extracting features 𝒙𝒙 associated to each input 𝑠𝑠, and 
then testing whether �𝜙𝜙0 𝑥𝑥 < 𝛾𝛾

𝑡𝑡

𝒙𝒙(
𝑡𝑡)

� 𝜙𝜙
0
𝒙𝒙

………

𝛾𝛾

Or by adopting any other statistical tool
to detect anomalies in 𝒙𝒙
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FEATURE EXTRACTION

Data dimensionality can be reduced by extracting features

Good features should:

• Yield a stable response w.r.t. normal data 

• Yield unusual response on anomalies

Examples of features seen so far:

• Reconstruction error err(𝒔𝒔)

• representation coefficients (𝑃𝑃𝑇𝑇𝒔𝒔,𝜶𝜶, … )

… but these are not the only

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.
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FEATURE EXTRACTION APPROACHES

There are two major approaches for extracting features:

Expert-driven (hand-crafted) features: computational expressions that are manually 
designed by experts to distinguish between normal and anomalous data

Data-driven features: features characterizing normal data are automatically learned from 
training set of normal samples 𝑆𝑆
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OUTLINE ON SEMI-SUPERVISED APPROACHES

• Detrending/Filtering for time-series

• Reconstruction-based methods

• Subspace methods

• Feature-based monitoring

• Expert-driven Features

• Data-driven Features

• Data-driven Features: extended models
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EXAMPLES OF EXPERT-DRIVEN FEATURES

Expert-driven features: each patch of an image 𝑠𝑠
𝐬𝐬𝑐𝑐 = {𝑠𝑠 𝑐𝑐 + 𝑢𝑢 ,𝑢𝑢 ∈ 𝒰𝒰}

Example of features are:

• the average, 

• the variance, 

• the total variation (the energy of gradients)

These can hopefully distinguish normal and anomalous patches, considering also how 
anomalous regions will be (e.g. flat or without edges)

D. Carrera, F. Manganini, G. Boracchi, E. Lanzarone "Defect Detection in SEM Images of Nanofibrous Materials", IEEE Transactions on Industrial Informatics 2017, 11 pages, 
doi:10.1109/TII.2016.2641472 
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OUTLINE ON SEMI-SUPERVISED APPROACHES

• Detrending/Filtering for time-series

• Reconstruction-based methods

• Subspace methods

• Feature-based monitoring

• Expert-driven Features

• Data-driven Features

• Data-driven Features: extended models
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EXAMPLES OF DATA-DRIVEN FEATURES

Analyze each patch of an image 𝑠𝑠
𝐬𝐬𝑐𝑐 = {𝑠𝑠 𝑐𝑐 + 𝑢𝑢 ,𝑢𝑢 ∈ 𝒰𝒰}

and determine whether it is normal or anomalous.

Data driven features: expressions to quantitatively assess whether test patches conform 
or not with the model, learned from normal data.

D. Carrera, F. Manganini, G. Boracchi, E. Lanzarone "Defect Detection in SEM Images of Nanofibrous Materials", IEEE Transactions on Industrial Informatics 2017, 11 pages, 
doi:10.1109/TII.2016.2641472 
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AUTOENCODERS AS FEATURE EXTRACTORS

Autoencoders can be also used in feature-based monitoring schemes, monitoring as 
feature the hidden/latent representation of the input signal

…

𝑠𝑠1

𝑠𝑠𝑑𝑑

𝑠𝑠2

𝑠𝑠3

𝑠𝑠4

…

𝑠𝑠1

𝑠𝑠𝑑𝑑

𝑠𝑠2

𝑠𝑠3

𝑠𝑠4

Input layer, 
𝑑𝑑 neurons

Output layer, 
𝑑𝑑 neurons

Hidden layer, 
𝑚𝑚 neurons
𝑚𝑚 ≪ 𝑑𝑑

Encoder ℰ Decoder 𝒟𝒟
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ANOMALY DETECTION BY MONITORING FEATURE DISTRIBUTION

Detection by feature monitoring (AE notation)

Training (Monitoring Feature Distribution): 

• Learn the autoencoder 𝒟𝒟(ℰ(⋅)) from the training set 𝑆𝑆

• Fit a density model �𝜙𝜙0 to the encoded features

{ℰ(𝒔𝒔), 𝒔𝒔 ∈ 𝑉𝑉}
over a validation set 𝑉𝑉, such that 𝑉𝑉 ∩ 𝑆𝑆 = ∅

• Define a suitable threshold 𝛾𝛾 for �𝜙𝜙0(𝒔𝒔)

Testing (Monitoring Feature Distribution): 

• Encode each incoming signal 𝒔𝒔 through ℰ

• Detect anomalies when the anomaly score𝒜𝒜 𝒔𝒔 = �𝜙𝜙0 ℰ(𝒔𝒔) < 𝛾𝛾
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ANOMALY DETECTION BY MONITORING PCA PROJECTIONS

Compute the projection on the subspace,
𝒔𝒔′ = 𝑃𝑃𝑇𝑇𝒔𝒔, 𝑃𝑃 ∈ ℝ𝑑𝑑×𝑚𝑚, 𝑚𝑚 ≪ 𝑑𝑑

which is the projection over the first 𝑚𝑚 principal components and a way to reduce data-
dimensionality. 

Monitor the projections 𝑃𝑃𝑇𝑇𝒔𝒔 by a suitable statistical technique (e.g. density based), as 
when monitoring ℰ(𝒔𝒔)

Normal
DataData 𝒔𝒔
𝑃𝑃𝑇𝑇𝒔𝒔
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SPARSE REPRESENTATIONS AS FEATURE EXTRACTORS

To assess the conformance of 𝒔𝒔𝑐𝑐 with 𝐷𝐷 we solve the following

Sparse coding:

𝜶𝜶 = argmin
𝒂𝒂∈ℝ𝑛𝑛

𝐷𝐷𝒂𝒂 − 𝐬𝐬 𝟐𝟐
𝟐𝟐 + 𝜆𝜆 𝒂𝒂 1, 𝜆𝜆 > 0

which is the BPDN formulation and we solve using ADMM.

The penalized ℓ1 formulation has more degrees of freedom in the reconstruction, the 
conformance of 𝒔𝒔 with 𝑫𝑫 have to be assessed monitoring both terms of the functional

S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein. "Distributed optimization and statistical learning via the alternating direction method of multipliers" 2011
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FEATURES EXTRACTED FROM SPARSE CODING

Features then include both the reconstruction error

err 𝒔𝒔 = 𝐷𝐷𝜶𝜶 − 𝐬𝐬 𝟐𝟐
𝟐𝟐

and the sparsity of the representation

𝜶𝜶 𝟏𝟏

Thus obtaining a data-driven feature vector 𝒙𝒙 = 𝐷𝐷𝜶𝜶 − 𝐬𝐬 𝟐𝟐
𝟐𝟐

𝜶𝜶 1
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DENSITY-BASED MONITORING

Normal data 

Anomalies
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FEATURES EXTRACTED FROM SPARSE CODING

Training:

• Learn from 𝑆𝑆 the dictionary 𝐷𝐷

• Compute the sparse representation w.r.t. 𝐷𝐷, thus features 𝒙𝒙 over the validation set 
𝑉𝑉, such that 𝑉𝑉 ∩ 𝑆𝑆 = ∅

• Learn from 𝑉𝑉, the distribution �𝜙𝜙0 of normal features vectors 𝒙𝒙 and the threshold 𝛾𝛾.

The model for anomaly detection is (𝐷𝐷, �𝜙𝜙0, 𝛾𝛾)

Testing:

• Perform sparse coding of a test signal 𝒔𝒔, thus get the feature vector 𝒙𝒙

• Detect anomalies when 𝒜𝒜 𝒔𝒔 = �𝜙𝜙0 𝒙𝒙 < 𝛾𝛾

D. Carrera, F. Manganini, G. Boracchi, E. Lanzarone "Defect Detection in SEM Images of Nanofibrous Materials", IEEE Transactions on Industrial Informatics 2017, 11 pages, 
doi:10.1109/TII.2016.2641472 
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FEATURES EXTRACTED FROM SPARSE CODING

Training:

• Learn from 𝑆𝑆 the dictionary 𝐷𝐷

• Compute the sparse representation w.r.t. 𝐷𝐷, thus features 𝒙𝒙 over the validation set 
𝑉𝑉, such that 𝑉𝑉 ∩ 𝑆𝑆 = ∅

• Learn from 𝑉𝑉, the distribution �𝜙𝜙0 of normal features vectors 𝒙𝒙 and the threshold 𝛾𝛾.

The model for anomaly detection is (𝐷𝐷, �𝜙𝜙0, 𝛾𝛾)

Testing:

• Perform sparse coding of a test signal 𝒔𝒔, thus get the feature vector 𝒙𝒙

• Detect anomalies when 𝒜𝒜 𝒔𝒔 = �𝜙𝜙0 𝒙𝒙 < 𝛾𝛾

D. Carrera, F. Manganini, G. Boracchi, E. Lanzarone "Defect Detection in SEM Images of Nanofibrous Materials", IEEE Transactions on Industrial Informatics 2017, 11 pages, 
doi:10.1109/TII.2016.2641472 

This is rather a flexible solution and can be adapted when
operating conditions changes (e.g. heartrate changes, images are 

acquired at different zooming level) 
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THE ROC CURVES

Tests on 40 images with 
anomalies manually 
annotated by an expert

The proposed anomaly 
detection algorithm 
outperforms expert-driven 
features and other methods 
based on sparse 
representations
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DETECTABILITY LOSS ON THESE NANOFIBERS

Selecting the good features is obviously important.

Why not stacking data-driven and expert-driven features?

Consider 𝑑𝑑 = 3, 4, 5 dimensional features

• We selectively add the three expert-driven features to the two data-driven ones 
(average gradient and variance)

• We always fit a GM model to a large-enough number of training data
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DETECTABILITY LOSS ON THESE NANOFIBERS

Anomaly detection 
performance 
progressively decay 
when 𝒅𝒅 increases 

A different test set than TII paper was here used
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DETECTABILITY LOSS AND IRRELEVANT FEATURES

We believe this because added features are irrelevant, namely features that:

• are not directly affected by the change

• do not provide any additional information for change detection purposes (i.e. leave
sKL 𝜙𝜙0,𝜙𝜙1 constant)

Adding irrelevant feature yields detectability loss. 

Other issues might affect detection performance

• A biased denisty function for �𝜙𝜙0
• Scarcity of training samples when 𝑑𝑑 increases

However, we are inclined to conclude that

• In this case these expert-driven features do not add enough relevant information 
on top of the data-driven ones (for anomaly-detection purposes).
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OUTLINE ON SEMI-SUPERVISED APPROACHES

• Detrending/Filtering for time-series

• Reconstruction-based methods

• Subspace methods

• Feature-based monitoring

• Expert-driven Features

• Data-driven Features

• Data-driven Features: extended models
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CONVOLUTIONAL SPARSITY

Data-driven features from convolutional sparse models

𝒔𝒔 ≈�
𝑖𝑖=1

𝑚𝑚

𝒅𝒅𝒊𝒊 ⊛ 𝜶𝜶𝒊𝒊 , s. t. 𝜶𝜶𝒊𝒊 is sparse

where the whole image 𝒔𝒔 is entirely encoded as the sum of 𝑛𝑛 convolutions between a 
filter 𝒅𝒅𝒊𝒊 and a coefficient map 𝜶𝜶𝒊𝒊
• Translation invariant representation

• Few small filters are typically required

• Filters exhibit very specific image structures

• Easy to use filters having different size

M. D. Zeiler, D. Krishnan, G. W. Taylor and R. Fergus “Deconvolutional networks” CVPR 2010
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EXAMPLE OF LEARNED FILTERS

Training Image Learned Filters
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EXAMPLE OF FEATURE MAPS

Coefficient maps FiltersTest Image
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FEATURES FROM CONVOLUTIONAL SPARSE MODEL

The standard convolutional sparse coding

�𝜶𝜶 = argmin
𝜶𝜶 𝑛𝑛

�
𝑖𝑖=1

𝑛𝑛

𝒅𝒅𝒊𝒊 ⊛ 𝜶𝜶𝒊𝒊 − 𝐬𝐬
𝟐𝟐

𝟐𝟐

+ 𝜆𝜆�
𝑖𝑖=1

𝑛𝑛

𝜶𝜶 1

leads to the following feature vector for each image region in 𝑐𝑐:

𝒙𝒙𝑐𝑐 =

�
𝒄𝒄

�
𝑖𝑖=1

𝑛𝑛

𝒅𝒅𝒊𝒊 ⊛ �𝜶𝜶𝒊𝒊 − 𝐬𝐬
𝟐𝟐

𝟐𝟐

�
𝑖𝑖=1

𝑛𝑛

�
𝒄𝒄

�𝜶𝜶
𝟏𝟏

…but, anomaly detection performance are rather poor
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SPARSITY IS TOO LOOSE A CRITERION FOR DETECTION

These two (normal and anomalous) 
patches exhibit same sparsity and 

reconstruction error

Coefficient
m

aps
norm

alpatch
Coefficient

m
aps

anom
alous

patch
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FEATURES FROM CONVOLUTIONAL SPARSE MODEL

Add the group sparsity of the maps on the patch support as an additional
feature

𝑥𝑥𝑐𝑐 =

�
𝒄𝒄

�
𝑖𝑖=1

𝑚𝑚

𝒅𝒅𝒊𝒊 ⊛ �𝜶𝜶𝒊𝒊 − 𝐬𝐬
𝟐𝟐

𝟐𝟐

�
𝑖𝑖=1

𝑚𝑚

�
𝒄𝒄

�𝜶𝜶
1

�
𝑖𝑖=1

𝑚𝑚

�
𝒄𝒄

�𝜶𝜶
2

D. Carrera, G. Boracchi, A. Foi and B. Wohlberg , “Detecting Anomalous Structures by Convolutional Sparse Models “  IEEE IJCNN 2015
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ANOMALY-DETECTION PERFORMANCE

On 25 different textures and 600 
test images (pair of textures to 
mimic normal/anomalous 
regions)

Best performance achieved by 
the 3-dimensional feature 
indicators

Achieve similar performance than 
steerable pyramid specifically 
designed for texture 
classification



SIMILARITY AND REFERENCE-BASED APPROACHES
Used for monitoring time series and images
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SIMILARITY-BASED METHODS

When normal data exhibit a periodic behaviour, anomalies are detected as unusual 
patterns that are not similar to training ones.

Euclidean distance between portions of training and test data

E. Keogh, J. Lin, A. Fu "Hot sax: Efficiently finding the most unusual time series subsequence" IEEE ICDM 2005 8 pp

G. Boracchi and M. Roveri "Exploiting Self-Similarity for Change Detection" , IJCNN 2014, pp 3339 - 3346

Training sequence

Test sequence
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SELF SIMILARITY IS A POWERFUL PRIOR

Texture completion 

Denoising (Regression)

Inpainting (Reconstruction)

Images courtesy of Alessandro Foi http://www.cs.tut.fi/~foi/

http://www.cs.tut.fi/%7Efoi/


Boracchi, Carrera, ICPR 2020

SELF SIMILARITY IS A POWERFUL PRIOR

Self-similarity is measured patch-wise

We consider 1D datastreams 𝑠𝑠 𝜏𝜏 , 𝜏𝜏 = 1, … , 𝑠𝑠 𝜏𝜏 ∈ ℝ

We define a patch centered at 𝑡𝑡 having size 𝜈𝜈 as

𝒔𝒔𝑡𝑡 = 𝑠𝑠 𝑡𝑡 − 𝜈𝜈 , … , 𝑠𝑠 𝑡𝑡 , … , 𝑠𝑠 𝑡𝑡 + 𝜈𝜈

Distance between patches is the ℓ2 norm of their difference

𝒔𝒔𝑡𝑡 − 𝒔𝒔𝜏𝜏 2 = �
𝑖𝑖=−𝜈𝜈

𝜈𝜈

𝑠𝑠 𝑡𝑡 + 𝑖𝑖 − 𝑠𝑠 𝜏𝜏 + 𝑖𝑖 2

𝑠𝑠 𝑡𝑡
𝒔𝒔𝑡𝑡
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MEASURING SIMILARITY FOR DETECTION PURPOSES

We build a training set for normal patches

𝐏𝐏 = 𝒔𝒔𝑡𝑡 , 𝑡𝑡 = 𝜈𝜈, … ,𝑀𝑀 − 𝜈𝜈

Training sequence

Test sequence
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MEASURING SIMILARITY FOR DETECTION PURPOSES

We build a training set for normal patches

𝐏𝐏 = 𝒔𝒔𝑡𝑡 , 𝑡𝑡 = 𝜈𝜈, … ,𝑀𝑀 − 𝜈𝜈

Training sequence

Test sequence

𝐏𝐏

…

…

…
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MEASURING SIMILARITY FOR DETECTION PURPOSES

We build a training set for normal patches

𝐏𝐏 = 𝒔𝒔𝑡𝑡 , 𝑡𝑡 = 𝜈𝜈, … ,𝑀𝑀 − 𝜈𝜈

Intuition:

�∃ 𝒔𝒔𝑢𝑢 ∈ 𝐏𝐏 similar to 𝒔𝒔𝑡𝑡,∀𝑡𝑡 < 𝑇𝑇∗
∄ 𝒔𝒔𝑢𝑢 ∈ 𝐏𝐏 similar to 𝒔𝒔𝑡𝑡,∀𝑡𝑡 ≥ 𝑇𝑇∗

Training sequence

Test sequence

𝒔𝒔𝑡𝑡

Normal
Out of Control
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MEASURING SIMILARITY FOR DETECTION PURPOSES

We build a training set for normal patches

𝐏𝐏 = 𝒔𝒔𝑡𝑡 , 𝑡𝑡 = 𝜈𝜈, … ,𝑀𝑀 − 𝜈𝜈

Intuition:

�∃ 𝒔𝒔𝑢𝑢 ∈ 𝐏𝐏 similar to 𝒔𝒔𝑡𝑡,∀𝑡𝑡 < 𝑇𝑇∗
∄ 𝒔𝒔𝑢𝑢 ∈ 𝐏𝐏 similar to 𝒔𝒔𝑡𝑡,∀𝑡𝑡 ≥ 𝑇𝑇∗

Training sequence

Test sequence

𝒔𝒔𝑡𝑡

…

…
𝒔𝒔𝒖𝒖

𝒔𝒔𝒖𝒖

Normal
Out of Control
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THE ANOMALY SCORE / CHANGE INDICATOR AND DATA-DRIVEN FEATURES

A feature 𝑥𝑥(𝑡𝑡) to quantitatively assess similarity to training data

We expect 𝑥𝑥(𝑡𝑡) to satisfy

• {𝑥𝑥 𝑡𝑡 , 𝑡𝑡 < 𝑇𝑇∗} should be i.i.d. realizations of an unknown random variable

• {𝑥𝑥 𝑡𝑡 , 𝑡𝑡 ≥ 𝑇𝑇∗} should come from a different distribution

Out of control states can be detected as changes in the distribution of 𝒙𝒙
• We can use any statistical process control technique
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FEATURE TO ASSESS SELF-SIMILARITY

The feature 𝒙𝒙(𝒕𝒕) is computer after having identified the most similar patch to 𝒔𝒔𝑡𝑡 in 𝐏𝐏.

We define 𝜋𝜋(⋅) as the map that associate to 𝑡𝑡 the location 𝜋𝜋(𝑡𝑡) of the patch  𝐏𝐏 of that 
is most similar to 𝒔𝒔𝑡𝑡

𝜋𝜋 𝑡𝑡 = argmin
𝜏𝜏=𝜈𝜈,…,𝑀𝑀−𝜈𝜈

|| 𝒔𝒔𝑡𝑡 − 𝒔𝒔𝜏𝜏||2

𝒙𝒙(𝒕𝒕) is the difference between the centers of 𝒔𝒔𝑡𝑡 and 𝒔𝒔𝜋𝜋(𝑡𝑡)

𝑥𝑥 𝑡𝑡 = 𝑠𝑠 𝑡𝑡 − 𝑠𝑠(𝜋𝜋(𝑡𝑡))

In ideal conditions 𝒙𝒙(𝒕𝒕) should be i.i.d. noise

Thus can be monitored by any Change Detection Test (or anomaly detection method)
G. Boracchi and M. Roveri "Exploiting Self-Similarity for Change Detection" , IJCNN 2014, pp 3339 - 3346

𝒔𝒔𝜋𝜋(𝑡𝑡)

𝑠𝑠 𝑡𝑡 𝑠𝑠 𝜋𝜋(𝑡𝑡)

𝒔𝒔𝑡𝑡

…

…

𝐏𝐏
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DATA DRIVEN FEATURE TO ASSESS SIMILARITY

In the real life, perfect matches are rare 

• Patches do not differ only because of noise

• Noise affects also the association function 𝜋𝜋 ⋅

However, there is an experimental evidence that patch similarity well correlates with the 
similarity between their central pixels 

• This is the idea behind Non Local Means filter [Buades et al 2005], which introduced 
a well established paradigm in signal/image processing

Therefore, as long as similarity assumption holds, it is possible to monitor the sequence 
of 𝑥𝑥(𝑡𝑡) to detect changes / anomalies

A. Buades, B. Coll, and J. Morel, “A review of image denoising algorithms, with a new one,” Multiscale Modeling Simulation, vol. 4, no. 2, p. 490, 2005.
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FEATURE TO ASSESS SELF-SIMILARITY

A. Soldevila, G. Boracchi, M. Roveri, S. Tornil-Sin and V. Puig, “Detecting and Localizing Leaks in Water Distribution Networks by Combining Expert Knowledge and Data-
Driven Models”, Under Revision

𝐏𝐏
Training set for the CDT

Test data being
monitored

Change point 𝑇𝑇∗

Detection �𝑇𝑇Feature

𝒙𝒙(
𝒕𝒕)

Flow Measurements
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HOT SAX: FINDING DISCORDS

Discords are sequences that are least similar to all the others

Discords are located by analyzing the whole sequence and comparing test each patch 
with all the others

The most unusual patch, i.e. the one having the largest distance w.r.t. its closest 
neighbohoord, is reported as a discord

In such a comparison it is important to:

• Avoid self-matches (i.e. comparison between each patch and overlapping ones)

• Adopt some efficient search criteria instead of “brute-force” search the most similar 
match

To this purpose, optimized search procedure are proposed in (Keogh et al 2005)

E. Keogh, J. Lin, A. Fu "Hot sax: Efficiently finding the most unusual time series subsequence" IEEE ICDM 2005 8 pp
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REFERENCE BASED-METHODS IN QUALITY INSPECTION

In some cases anomalies can be detected by comparing 

• the target, namely the image to be tested 

• against a reference, namely an anomaly-free image 

M. Zontak, I. Cohen: Defect detection in patterned wafers using anisotropic kernels." Machine Vision and Applications 21(2), 129{141 (2010)
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REFERENCE BASED-METHODS IN QUALITY INSPECTION

In some cases anomalies can be detected by comparing 

• the target, namely the image to be tested 

• against a reference, namely an anomaly-free image 

M. Zontak, I. Cohen: Defect detection in patterned wafers using anisotropic kernels." Machine Vision and Applications 21(2), 129{141 (2010)
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REFERENCE BASED-METHODS: E-CHUCKING

The e-chuck is adopted to safely maneuver, position and 
block the silicon wafer during production.

The device is configured by means of marking
materials and the 
markers should conform
to a reference template

Electrodes

Template

Good (normal) Bad (anomalous)
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CHANGE DETECTION IN REMOTE SENSING

A key problem in remote sensing is to detect changes, due to manmade or natural 
phenomenon, by comparing multiple (satellite) images at different times.

In the remote sensing literature this is typically referred to as change detection

reference target
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MULTIMODAL, REFERENCE BASED ANOMALY DETECTION

Non trivial when direct comparison is prevented:

• Reference and target might not be aligned nor easy to register with a global 
transformation

• Reference and target might be from different modalities / resolution / view

L. T. Luppino, F. M. Bianchi, G. Moser, S. N. Anfinsen, “Unsupervised Image Regression for Heterogeneous Change Detection” IEEE Trans. on Geoscience and Remote 
Sensing (2019)

Multispectral vs SAR images 
California flood 2017

Temperature Map from CFD

IR

RGB
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TRADITIONAL ANOMALY DETECTION SETUP

Anomaly detection deals with the 
problem of identifying data that do not 
conform to an expected behavior.

In the statistical and data-mining 
literature, anomalies are typically 
detected as samples falling in low-
density regions of a probability density 
model describing the data.
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ANOMALY DETECTION IN A PATTERN RECOGNITION SETUP

F. Leveni, L. Magri, G. Boracchi, C. Alippi, “Anomaly detection via preference embedding” ICPR 2020

Density-based or distance-based 
techniques are not effective to detect 
anomalies in a pattern-recognition setup, 
where anomalies are samples that deviate 
from unknown structures or patterns.

PIF: Preference Isolation Forest, detects 
these kind of anomalies thanks to
• Embedding in Preference Space
• An ad-hoc forest for detecting outliers in 

the preference space
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PIF [4]

Ground truth

LOF [3]

IFOR [1] EIFOR [2]

ANOMALY DETECTION

[1] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest”, in International Conference on Data Mining, IEEE, 2008, pp. 413–422.

[2] S. Hariri, M. C. Kind, and R. J. Brunner, “Extended isolation forest”, TKDE, 2019.

[3] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: Identifying density-based local outliers”, in International Conference on Management of data, 2000

[4] F. Leveni, L. Magri, G. Boracchi, C. Alippi, “Anomaly detection via preference embedding” ICPR 2020

Anomaly Scores
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PIF [4]

Ground truth

LOF [3]

IFOR [1] EIFOR [2]

ANOMALY DETECTION

[1] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest”, in International Conference on Data Mining, IEEE, 2008, pp. 413–422.

[2] S. Hariri, M. C. Kind, and R. J. Brunner, “Extended isolation forest”, TKDE, 2019.

[3] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: Identifying density-based local outliers”, in International Conference on Management of data, 2000

[4] F. Leveni, L. Magri, G. Boracchi, C. Alippi, “Anomaly detection via preference embedding” ICPR 2020

Anomaly Scores

If you want to know more about PIF,
you are welcome to join Filippo Leveni at

Poster Session PS T1.2 
on January 12 from15.30 to 16.30



COUNTERACTING DOMAIN SHIFT
IN ANOMALY DETECTION

Adaptation Strategies
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NEED FOR ADAPTATION

A challenge often occurring when performing online monitoring

Test data might differ from training data: need of adaptation, otherwise anomaly 
detection methods would be ineffective

Defects have to be detected at different zooming levels, 
that might not be present in the training set.
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NEED FOR ADAPTATION

A challenge often occurring when performing online monitoring

Test data might differ from training data: need of adaptation, otherwise anomaly 
detection methods would be ineffective

The heartbeats get transformed when the heart rate changes: 
learned models have to be adapted according to the heart rate.
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MODEL ADAPTATION

In the machine-learning literature these problems go under the name of transfer 
learning / domain adaptation

Transfer Learning (TL): adapt a model learned in the source domain (e.g. heartbeats at a 
given heartrate / fibers at a certain zoom level) to a target domain (e.g. heartbeats at an 
higher heartrate / fibers zoomed in or out)

Many TL methods have been designed for supervised / semi-supervised / unsupervised 
methods, depending on the availability of (annotated) data in the source and target 
domains.

In most anomaly detection settings, no labels in the target data are provided (typically 
they are not even provided in the source domain)

S. J. Pan and Q. Yang "A survey on transfer learning“ IEEE TKDE 2010

S. Shekhar, V. M. Patel, H. V. Nguyen, & R. Chellappa, “Generalized domain-adaptive dictionaries,” CVPR 2013
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DOMAIN ADAPTATION ON QUALITY INSPECTION

SEM images can be acquired at different zooming levels

Solution: 

• Synthetically generate training images at different zooming levels

• Learn a dictionary 𝐷𝐷𝑖𝑖 at each scale

• Combine the learned dictionaries in a multiscale dictionary 𝐷𝐷

D. Carrera, G. Boracchi, A. Foi and B. Wohlberg "Scale-invariant Anomaly Detection With multiscale Group-sparse Models" ICIP 2016

𝐷𝐷 = [ 𝐷𝐷1 𝐷𝐷2 𝐷𝐷3 𝐷𝐷4 ]
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DOMAIN ADAPTATION ON QUALITY INSPECTION

SEM images can be acquired at different zooming levels

Solution: 

• Synthetically generate training images at different zooming levels

• Learn a dictionary 𝐷𝐷𝑖𝑖 at each scale

• Combine the learned dictionaries in a multiscale dictionary 𝐷𝐷

• Sparse-coding including a penalized, group sparsity term

𝜶𝜶 = argmin
𝒂𝒂∈ℝ𝑛𝑛

1
2

𝒔𝒔 − 𝐷𝐷𝒂𝒂
2

2
+ 𝜆𝜆 𝒂𝒂 𝟏𝟏 + 𝜇𝜇�

𝒊𝒊

𝒂𝒂 2

D. Carrera, G. Boracchi, A. Foi and B. Wohlberg "Scale-invariant Anomaly Detection With multiscale Group-sparse Models" ICIP 2016
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DOMAIN ADAPTATION ON QUALITY INSPECTION

SEM images can be acquired at different zooming levels

Solution: 

• Synthetically generate training images at different zooming levels

• Learn a dictionary 𝐷𝐷𝑖𝑖 at each scale

• Combine the learned dictionaries in a multiscale dictionary 𝐷𝐷

• Sparse-coding including a penalized, group sparsity term

• Monitor a tri-variate feature vector

𝒙𝒙 =

𝒔𝒔 − 𝐷𝐷𝜶𝜶 𝟐𝟐
𝟐𝟐

𝜶𝜶 1

�
𝒊𝒊

𝜶𝜶𝒊𝒊 2

D. Carrera, G. Boracchi, A. Foi and B. Wohlberg "Scale-invariant Anomaly Detection With multiscale Group-sparse Models" ICIP 2016
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DOMAIN ADAPTATION ON QUALITY INSPECTION

Performance on SEM image dataset acquired at 4 different zooming levels (A,B,C,D). It is 
important to include group-sparsity regularization also in the sparse coding stage

D. Carrera, G. Boracchi, A. Foi and B. Wohlberg "Scale-invariant Anomaly Detection With multiscale Group-sparse Models" ICIP 2016
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DOMAIN ADAPTATION FOR ONLINE ECG MONITORING

We propose to design linear transformations 𝐹𝐹𝑟𝑟1,𝑟𝑟0 to adapt user-specific dictionaries 

𝐷𝐷𝑢𝑢,𝑟𝑟1 = 𝐹𝐹𝑟𝑟1,𝑟𝑟0 ⋅ 𝐷𝐷𝑢𝑢,𝑟𝑟0 , 𝐹𝐹𝑟𝑟0,𝑟𝑟1 ∈ ℝ
𝑚𝑚×𝑚𝑚

D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Domain Adaptation for Online ECG Monitoring” ICDM 2017,

D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Online Anomaly Detection for Long-Term ECG Monitoring using Wearable Devices", Pattern Recognition 2019
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DOMAIN ADAPTATION FOR ONLINE ECG MONITORING

We propose to design linear transformations 𝐹𝐹𝑟𝑟1,𝑟𝑟0 to adapt user-specific dictionaries 

𝐷𝐷𝑢𝑢,𝑟𝑟1 = 𝐹𝐹𝑟𝑟1,𝑟𝑟0 ⋅ 𝐷𝐷𝑢𝑢,𝑟𝑟0 , 𝐹𝐹𝑟𝑟0,𝑟𝑟1 ∈ ℝ
𝑚𝑚×𝑚𝑚

Surprisingly these transformations can be learned from a publicly available dataset 
containing ECG recordings at different heart rates from several users.

D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Domain Adaptation for Online ECG Monitoring” ICDM 2017,

D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Online Anomaly Detection for Long-Term ECG Monitoring using Wearable Devices", Pattern Recognition 2019
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LEARNING TRANSFORMATIONS

For each pair of heartrates (𝑟𝑟0, 𝑟𝑟1) we learn 𝐹𝐹𝑟𝑟0,𝑟𝑟1 by solving the following optimization 
problem (involving data from 𝐿𝐿 users of the LS-ST Dataset)

𝐹𝐹𝑟𝑟1,𝑟𝑟0 = argmin
𝐹𝐹,{𝑋𝑋𝑢𝑢}

1
2 �
𝑢𝑢=1

𝐿𝐿

𝑆𝑆𝑢𝑢,𝑟𝑟1 − 𝐹𝐹 𝐷𝐷𝑢𝑢,𝑟𝑟0 𝑋𝑋𝑢𝑢 𝐹𝐹
2 + 𝜇𝜇�

𝑢𝑢=1

𝐿𝐿

𝑋𝑋𝑢𝑢 1 +
𝜆𝜆
2 𝑊𝑊⊙𝐹𝐹 2

2 + 𝜉𝜉 𝑊𝑊 ⊙ 𝐹𝐹 1

D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Domain Adaptation for Online ECG Monitoring” ICDM 2017,

D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Online Anomaly Detection for Long-Term ECG Monitoring using Wearable Devices", Pattern Recognition 2019

Data-fidelity for heartbeats
transformed by 𝐹𝐹, computed

over all the 𝐿𝐿 users

Sparsity Weighted elastic net 
regularization to add stability

and steer 𝐹𝐹 towards 
desirable properties

The matrix 𝑊𝑊 is penalyzing less values 
along the diagonal of 𝐹𝐹, thus assuming 

transformation to be local, i.e., 
involging only neighbouring samples
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DOMAIN ADAPTATION FOR ONLINE ECG MONITORING

We adapt user-specific dictionaries through 𝐹𝐹𝑟𝑟1,𝑟𝑟0
𝐷𝐷𝑢𝑢,𝑟𝑟1 = 𝐹𝐹𝑟𝑟1,𝑟𝑟0 ⋅ 𝐷𝐷𝑢𝑢,𝑟𝑟0 , 𝐹𝐹𝑟𝑟0,𝑟𝑟1 ∈ ℝ

𝑚𝑚×𝑚𝑚

User-independent transformations enable accurate mapping of user-specific dictionaries

D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Domain Adaptation for Online ECG Monitoring” ICDM 2017,

D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Online Anomaly Detection for Long-Term ECG Monitoring using Wearable Devices", Pattern Recognition 2019

�𝐷𝐷𝑢𝑢,𝑟𝑟1

= �

𝐷𝐷𝑢𝑢,𝑟𝑟0𝐹𝐹𝑟𝑟1,𝑟𝑟0
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DOMAIN ADAPTATION FOR ONLINE ECG MONITORING

We adapt user-specific dictionaries through 𝐹𝐹𝑟𝑟1,𝑟𝑟0
𝐷𝐷𝑢𝑢,𝑟𝑟1 = 𝐹𝐹𝑟𝑟1,𝑟𝑟0 ⋅ 𝐷𝐷𝑢𝑢,𝑟𝑟0 , 𝐹𝐹𝑟𝑟0,𝑟𝑟1 ∈ ℝ

𝑚𝑚×𝑚𝑚

User-independent transformations enable accurate mapping of user-specific dictionaries

Carrera D., Rossi B., Fragneto P., and Boracchi G. "Domain Adaptation for Online ECG Monitoring” ICDM 2017,

�𝐷𝐷𝑢𝑢,𝑟𝑟1

= �

𝐷𝐷𝑢𝑢,𝑟𝑟0𝐹𝐹𝑟𝑟1,𝑟𝑟0
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DICTIONARY ADAPTATION PERFORMANCE

The proposed domain adaptation solution achieves:

• lowest signal reconstruction error

• best anomaly detection performance (AUC)

Among alternative methods for dictionary adaptation

Carrera D., Rossi B., Fragneto P., and Boracchi G. "Domain Adaptation for Online ECG Monitoring” ICDM 2017,
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ONLINE ECG MONITORING BY WEARABLE 
DEVICES
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THE BIO2BIT DEVICE

ECG signals are recorded by the BIO2BIT device
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ONLINE ECG SIGNALS BY WEARABLE DEVICES 

ECG signals are recorded by the BIO2BIT device

ECG are steadily transmitted via Bluethooth
low-energy to a Dongle mounting a Nucleo
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ONLINE ECG SIGNALS BY WEARABLE DEVICES 

Sparse Coding

• Optimized OMP for underdetermined dictionaries

• Performed in real-time on such a low-power wearable device 

M. Longoni, D. Carrera, B. Rossi, P. Fragneto, M. Pessione and G. Boracchi “A Wearable Device for Online and Long-Term ECG Monitoring”, International Joint
Conference on Artificial Intelligence (IJCAI) 2018 - Demo Track
D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Online Anomaly Detection for Long-Term ECG Monitoring using Wearable Devices", Pattern Recognition 2019
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ONLINE ECG SIGNALS BY WEARABLE DEVICES 

M. Longoni, D. Carrera, B. Rossi, P. Fragneto, M. Pessione and G. Boracchi “A Wearable Device for Online and Long-Term ECG Monitoring”, International Joint Conference 
on Artificial Intelligence (IJCAI) 2018 - Demo Track

D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Online Anomaly Detection for Long-Term ECG Monitoring using Wearable Devices", Pattern Recognition 2019

Dictionary Learning

5 minutes of ECG signals are enough to 
learn a dictionary 𝐷𝐷𝑢𝑢,𝑟𝑟0 that is:

• User-specific

• Position-specific

Describing the morphology of the 
heartbeats of that specific user in 
resting conditions

Dictionary Learning

• Conveniently performed on an host

• The learned dictionary 𝐷𝐷𝑢𝑢,𝑟𝑟0and all 
its transformed versions 𝐷𝐷𝑢𝑢,𝑟𝑟𝑖𝑖 are 
transferred to the dongle
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DIFFERENT USERS FEATURE DIFFERENT HEARTBEAT MORPHOLOGY

Dictionary has to be 
learned from each user / 
each device placement
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RESULTS: MIT-BIH DATASET 

Our solution achieves competitive 
performance against a state-of-the-art 
anomaly detector on the MIT-BIH dataset. 

However, our detector is much less 
computationally demanding

D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Online Anomaly Detection for Long-Term ECG Monitoring using Wearable Devices", Pattern Recognition 2019

MIT-BIH: arrhythmias
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B2B DATASET (IN-HOUSE DATASET WITH ARRHYTHMIAS)

Both the AUC and the 𝐹𝐹1-score are large when the heart rate increases.

The FPR is maintained almost constant

D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Online Anomaly Detection for Long-Term ECG Monitoring using Wearable Devices", Pattern Recognition 2019
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B2B: inter-user anomalies
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Any Question?
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{𝜋𝑖 , 𝝁𝑖 , Σ𝑖} 𝜶𝑛 𝑛

• 𝛾𝑛,𝑖 𝜶𝑛

𝛾𝑛,𝑖 =
𝜋𝑖𝜑𝝁𝑖,Σ𝑖

(𝜶𝑛)

σ𝑘 𝜋𝑘𝜑𝝁𝑘,Σ𝑘
(𝜶𝑛)

𝜶

𝛾1 ∼
1

2

𝛾2 ∼
1

2



{𝜋𝑖 , 𝝁𝑖 , Σ𝑖} 𝜶𝑛 𝑛

• 𝛾𝑛,𝑖 𝜶𝑛

𝛾𝑛,𝑖 =
𝜋𝑖𝜑𝝁𝑖,Σ𝑖

(𝜶𝑛)

σ𝑘 𝜋𝑘𝜑𝝁𝑘,Σ𝑘
(𝜶𝑛)

•

𝜋𝑖 =
1

𝑁
σ𝑛 𝛾𝑛,𝑖

𝜇𝑖 =
σ𝑛 𝛾𝑛,𝑖𝜶𝑛

Σ𝑛𝛾𝑛,𝑖

Σ𝑖 =
σ𝑛 𝛾𝑛,𝑖 𝜶𝑛−𝝁𝑖 𝜶𝑛−𝝁𝑖

𝑇

Σ𝑛𝛾𝑛,𝑖



𝒔

ℒ 𝒔 = ෍

𝑖

𝜋𝑖𝜑𝝁𝑖,Σ𝑖
(ℰ 𝒔 ) ,

ℰ 𝒟

𝒔 𝜶 𝒔′



𝒔

ℒ 𝒔 = ෍

𝑖

𝜋𝑖𝜑𝝁𝑖,Σ𝑖
(ℰ 𝒔 ) ,

ℰ 𝒟

𝒔 𝜶 𝒔′



𝒔 𝜶 𝒔′

𝜶 𝜸



𝒔 𝜶 𝒔′

𝜶 𝜸

𝜋𝑖 =
1

𝑁
෍

𝑛

𝛾𝑛,𝑖

𝜇𝑖 =
σ𝑛 𝛾𝑛,𝑖𝜶𝑛

Σ𝑛𝛾𝑛,𝑖

Σ𝑖 =
σ𝑛 𝛾𝑛,𝑖 𝜶𝑛 − 𝝁𝑖 𝜶𝑛 − 𝝁𝑖

𝑇

Σ𝑛𝛾𝑛,𝑖



min ෍

𝒔

𝒔 − 𝒟 ℰ 𝒔
2

2
+ 𝜆ℛ(ℰ 𝒔 )

ℛ 𝜶 = − log ෍

𝑖

𝜋𝑖𝜑𝝁𝑖,Σ𝑖
(𝜶)

Σ𝑖

ℛ(ℰ 𝒔 ) 𝒔



•

•

•



•

•

•

•

•

•







•

•

𝜓



𝜓



min
𝑅,𝜽

𝑅2 +
1

𝜈𝑁
෍

𝑛=1

𝑁

max{0, 𝜓𝜽 𝒔𝑛 − 𝒄
𝟐

− 𝑅2} + 𝜆 𝜽
2

• 𝒔𝑛

𝜓𝜽 𝒔𝑛

• 𝜈 provides a bound on the 
False Positive Rate

• 𝜆 𝜽
2

𝒔 𝜓𝜽 𝒔 − 𝒄 > 𝑅

𝑅

𝒄



min
𝑅,𝜽

𝑅2 +
1

𝜈𝑁
෍

𝑛=1

𝑁

max{0, 𝜓𝜽 𝒔𝑛 − 𝒄
𝟐

− 𝑅2} + 𝜆 𝜽
2

• 𝜓𝜽

•

•

• 𝒄

• 𝒄 𝒄0 = 𝜓0 𝒔



min
𝜽

+
1

𝑁
෍

𝑛=1

𝑁

𝜓𝜽 𝒔𝑛 − 𝒄
2

+ 𝜆 𝜽
2

• 𝜈

•

𝒜 𝒔 = 𝜓𝜽 𝒔 − 𝒄
2



•

•

•

•

•

•



𝑆
𝑆



•

•

•



𝜙𝑆

𝑆 ⊂ ℝ𝑛

𝜙𝑆

• 𝜙𝑧

•

𝜙𝑆



𝑧 ∼ 𝜙𝑧



𝑧 ∼ 𝜙𝑧



• 𝒢
𝒢

• 𝒟
𝒢

𝒢



𝑧 ∼ 𝜙𝑧

𝒢

𝒟

𝑆



𝑧 ∼ 𝜙𝑧

𝒢

𝒟

𝑆

𝒟
𝒟



𝒟 𝒢

• 𝒟 = 𝒟(𝒔)

• 𝒢 = 𝒢 𝒛

𝒔 ∈ ℝ𝑛 𝒢 𝒛 ∈ ℝ𝑑

𝒟 ⋅ : ℝ𝑛 → [0,1]

𝒢 ⋅ : ℝ𝑑 → ℝ𝑛



• 𝒟 𝒔 𝑠 ∈ 𝑆

• 1 − 𝒟 𝒔 𝑠 𝒢

• 1 − 𝒟 𝒢 𝒛 𝒛 ∼ 𝜙𝑍

𝒟

max
𝒟

E𝑠∼𝜙𝑆
log 𝒟 𝒔 + E𝑧∼𝜙𝑍

log(1 − 𝒟 𝒢 𝒛 )



• 𝒟 𝒔 𝑠 ∈ 𝑆

• 1 − 𝒟 𝒔 𝑠 𝒢

• 1 − 𝒟 𝒢 𝒛 𝒛 ∼ 𝜙𝑍

𝒟

max
𝒟

E𝑠∼𝜙𝑆
log 𝒟 𝒔 + E𝑧∼𝜙𝑍

log(1 − 𝒟 𝒢 𝒛 )

𝑠 ∼ 𝜙𝑆 𝒢 𝒛



• 𝒟 𝒔 𝑠 ∈ 𝑆

• 1 − 𝒟 𝒔 𝑠 𝒢

• 1 − 𝒟 𝒢 𝒛 𝒛 ∼ 𝜙𝑍

𝒟

max
𝒟

E𝑠∼𝜙𝑆
log 𝒟 𝒔 + E𝑧∼𝜙𝑍

log(1 − 𝒟 𝒢 𝒛 )

𝒢 𝒟

min
𝒢

max
𝒟

E𝑠∼𝜙𝑆
log 𝒟 𝒔 + E𝑧∼𝜙𝑍

log(1 − 𝒟 𝒢 𝒛 )



𝒔
𝒔
𝒟(𝒔)

𝒔

𝒛







𝒢
𝒔

𝒔 𝒢

𝒢

ℳ



𝒔 ℳ

ො𝒛 = min
𝒛

𝒢 𝒛 − 𝒔 + 𝜆 log(1 − 𝒟 𝒢 𝒛 )

• 𝒢 𝒛 − 𝒔 𝒔

• log(1 − 𝒟 𝒢 𝒛 ) 𝒢 ො𝒛

𝒢

ℳ

ො𝒛



𝒔 ℳ

ො𝒛 = min
𝒛

𝒢 𝒛 − 𝒔 + 𝜆 log(1 − 𝒟 𝒢 𝒛 )

• 𝒢 𝒛 − 𝒔 𝒔

• log(1 − 𝒟 𝒢 𝒛 ) 𝒢 ො𝒛

𝒢 𝒟

𝒜 𝒔 = 𝒢 ො𝒛 − 𝒔 + 𝜆 log(1 − 𝒟 𝒢 ො𝒛 )



𝒔 ℳ

ො𝒛 = min
𝒛

𝒢 𝒛 − 𝒔 + 𝜆 log(1 − 𝒟 𝒢 𝒛 )

• 𝒢 𝒛 − 𝒔 𝒔

• log(1 − 𝒟 𝒢 𝒛 ) 𝒢 ො𝒛

𝒢 𝒟

𝒜 𝒔 = 𝒢 ො𝒛 − 𝒔 + 𝜆 log(1 − 𝒟 𝒢 ො𝒛 )



𝒛

ℰ(𝒔)

𝒢

ℰ

𝒢(𝒛)

𝒔

𝒟
𝒢 𝒛 , 𝒛

𝒔, ℰ 𝒔



𝒛

ℰ(𝒔)

𝒢

ℰ

𝒢(𝒛)

𝒔

𝒟
𝒢 𝒛 , 𝒛

𝒔, ℰ 𝒔

min
𝒢,ℰ

max
𝒟

ℒ(𝒟, ℰ, 𝒢)

ℒ 𝒟, ℰ, 𝒢 = E𝑠∼𝜙𝑆
log 𝒟 𝒔, ℰ(𝒔 + E𝑧∼𝜙𝑍

log(1 − 𝒟 𝒢 𝒛 , 𝒛 )



𝒛

ℰ(𝒔)

𝒢

ℰ

𝒢(𝒛)

𝒔

𝒟
𝒢 𝒛 , 𝒛

𝒔, ℰ 𝒔

ℳ

ℰ = 𝒢−1



ො𝒛 = min
𝒛

𝒢 𝒛 − 𝒔 + 𝜆 log(1 − 𝒟 𝒢 𝒛 )

ො𝒛 = ℰ(𝒔)



ො𝒛 = min
𝒛

𝒢 𝒛 − 𝒔 + 𝜆 log(1 − 𝒟 𝒢 𝒛 )

ො𝒛 = ℰ(𝒔)

𝒜 𝒔 = 𝒢 ො𝒛 − 𝒔 + 𝜆 log 1 − 𝒟 𝒢 ො𝒛 =

= 𝒢(ℰ 𝒔 ) − 𝒔 + 𝜆 log 1 − 𝒟 𝒢 ℰ(𝒔)



ℛ

𝒟

𝒔 + 𝒩(0, 𝜎2) 𝒛 𝒔′ [0,1]

• ℛ 𝒔 ෤𝒔 𝒔 +
𝒩(0, 𝜎2)

• 𝒟

𝒢ℰ



ℛ

𝒟

𝒔 + 𝒩(0, 𝜎2) 𝒛 𝒔′ [0,1]

• ℛ 𝒔 ෤𝒔 𝒔 +
𝒩(0, 𝜎2)

• 𝒟

𝒢ℰ



ℛ

𝒔 + 𝒩(0, 𝜎2) 𝒛 𝒔′ [0,1]

min
ℛ

max
𝒟

E𝒔∼𝜙𝑆
log 𝒟 𝒔 + E෤𝒔∼𝜙𝑆+𝒩(0,𝜎2) log(1 − 𝒟 ℛ ෤𝒔 )

𝒟𝒢ℰ



ℛ

𝒔 + 𝒩(0, 𝜎2) 𝒛 𝒔′ [0,1]

min
ℛ

max
𝒟

E𝒔∼𝜙𝑆
log 𝒟 𝒔 + E෤𝒔∼𝜙𝑆+𝒩(0,𝜎2) log(1 − 𝒟 ℛ ෤𝒔 )

ℛ 𝒟)

𝒜 𝒔 = 1 − 𝒟(ℛ 𝒔 )

𝒟𝒢ℰ



𝒢

𝒢

𝒢

ℰ
ℰ



𝒢

𝒢

𝒢

ℰ
ℰ



𝒔 𝜶 𝒔′

𝜶 𝜸

𝜋𝑖 =
1

𝑁
෍

𝑛

𝛾𝑛,𝑖

𝜇𝑖 =
σ𝑛 𝛾𝑛,𝑖𝜶𝑛

Σ𝑛𝛾𝑛,𝑖

Σ𝑖 =
σ𝑛 𝛾𝑛,𝑖 𝜶𝑛 − 𝝁𝑖 𝜶𝑛 − 𝝁𝑖

𝑇

Σ𝑛𝛾𝑛,𝑖



𝒢

𝒢

𝒢

ℰ









•

•

•



• 𝑑

•
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