CHANGE AND ANOMALY DETECTION IN IMAGES,
SIGNALS AND DATASTREAMS

Giacomo Boracchi,

Politecnico di Milano, DEIB.
https://boracchi.faculty.polimi.it/
Diego Carrera,

System Research and Applications, STMicroelectronics, Agrate Brianza

ICPR 2020, January 10, 2021

- I POLITECNICO DI MILANO



https://boracchi.faculty.polimi.it/

GIACOMO BORACCHI

Mathematician (Universita Statale degli Studi di Milano 2004),
PhD in Information Technology (DEIB, Politecnico di Milano 2008)

Associate Professor since 2019 at DEIB (Computer Science), Polimi

Research Interests are mathematical and statistical methods for:
e Image / Signal analysis and processing

e Unsupervised learning, change / anomaly detection

Boracchi, Carrera, ICPR 2020



DIEGO CARRERA

Mathematician (Universita Statale degli Studi di Milano 2013),
PhD in Information Technology (DEIB, Politecnico di Milano 2019)

Researcher at STMicroelectronics since 2019

Research Interests are mainly focused on:
e Change detection in high dimensional datastreams
* Anomaly detection in signal and images

e Unsupervised learning algorithms

Boracchi, Carrera, ICPR 2020



ANOMALY DETECTION IN HEALTH

Mammograms

Sato et al, A primitive study on unsupervised anomaly James Heilman, MD / CC BY-SA

detection with an autoencoder in emergency head CT (https://creativecommons.org/licenses/by-sa/4.0)
volumes, SPIE Medical Imaging, 2018
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ANOMALY DETECTION FOR AUTOMATIC QUALITY CONTROL

https://www.mvtec.com/company/research/datasets/mvtec-ad
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Lys

SYLICON WAFER MANUFACTURING lfe.cugmented

Defects detected as anomalies in microscope images

Boracchi, Carrera, ICPR 2020
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DETECTION OF ANOMALOUS PATTERNS I augmened

Detect/Identify patterns in wafer defect maps

e i These might indicate faults,
N problems or malfunctioning
e in the chip production.
fi - i ; &'ﬁ
it i

i

Di Bella, Carrera, Rossi, Fragneto, Boracchi Wafer Defect Map Classification Using Sparse Convolutional Neural NetworRs ICIAPo9



Lys

AUTOMATIC AND LONG TERM EGC MONITORING fe.qugmente

Health monitoring / wearable devices:

Automatically analyze EGC tracings to detect
arrhythmias or incorrect device positioning
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D. Carrera, B. Rossi, D. Zambon, P. Fragneto, and G. Boracchi "ECG Monitoring in Wearable Devices by Sparse Models" in ECML-PKDD 2016



ANOMALOUS ACTIVITIES DETECTION IN VIDEOS

USCD Anomaly Dataset http://www.svcl.ucsd.edu/projects/anomaly/dataset.html
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FRAUD DETECTION IN CREDIT CARD TRANSACTIONS
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Dal Pozzolo A., Boracchi G., Caelen 0., Alippi C. and Bontempi G., “Credit Card Fraud Detection: a Realistic Modeling and a Novel Learning Strategy” , IEEE TNNL 2017



... A CHANGE-DETECTION PROBLEM

Environmental Monitoring

A sensor network monitoring rock faces:
detecting changes in the waveforms that are
recorded by MEMS sensors in network units.

3 A O M A L

C. Alippi, G. Boracchi, B. Wohlberg "Change Detection in Streams of Signals with Sparse Representations" in Proceedings of IEEE ICASSP 2014




... A CHANGE-DETECTION PROBLEM

Leak detection in Water Distribution Networks

flow m/s
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G. Boracchi and M. Roveri "Exploiting Self-Similarity for Change Detection” , IJCNN 2014, pp 3339 - 3346



... A CHANGE-DETECTION PROBLEM

Leak detection in Water Distribution Networks

Similar problems arise in other critical infrastructure monitoring scenarios
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G. Boracchi and M. Roveri "Exploiting Self-Similarity for Change Detection” , IJCNN 2014, pp 3339 - 3346



... A CHANGE-DETECTION PROBLEM

Time-series (including financial ones) are typically subject to changes, as the data-
generating process evolves over time.
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G.). Ross, D.K. Tasoulis, N.M. Adams “Nonparametric monitoring of data streams for changes in location and scale” Technometrics 2011



... A CHANGE-DETECTION PROBLEM

Learning problems related to predicting user preferences / interests, such as:
e Recommendation systems
e Spam / email filtering

Changes arise when users change their own preferences.

Changes have to be detected to update the system accordingly

C. Alippi, G. Boracchi, M. Roveri, “Just-in-time classifiers for recurrent concepts”. IEEE TNNLS, 24(4), 620-634 (2013).

J. Gama, I. Zliobaité, A. Bifet, M. Pechenizkiy, A. Bouchachia, "A survey on concept drift adaptation". ACM Computing Surveys 2014



.. A CHANGE DETECTION PROBLEM

Simulated data
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L. Frittoli, M. Bocchi, S. Mella, D. Carrera, B. Rossi, F. Fragneto, R. Susella, and G. Boracchi “Strengthening Sequential Side-Channel Attacks Through Change Detection”,
IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES), 2020(3), pp. 1-21 doi: 10.13154/tches.v2020.i3.1-21



TUTORIAL OUTLINE




PRESENTATION OUTLINE

Background:
* Problem formulation in random variables / signals and images.
e Main ingredients and performance measures.

e Solutions in the ideal settings.

Detection Algorithms for Random Variables:

 Anomaly Detection: the general approach and the most relevant solutions.
« Supervised, Semi-supervised, unsupervised.

e Change Detection: the general approach and the most relevant solutions.
« Sequential monitoring and histogram-based monitoring.
- Change detection in high-dimensional datastreams.

Boracchi, Carrera, ICPR 2020



PRESENTATION OUTLINE

Detection Algorithms for Signals and Images

e Detection by learned models:

e Counteracting domain Shift in Detection Problems.

Reconstruction-based methods.
Feature-based methods.
Reference-based methods.

 Anomaly detection by deep learning models:

Transfer Learning / Self-supervised.
Autoencoders.

Domain based.

Generative models.

Boracchi, Carrera, ICPR 2020



DISCLAIMERS

We will consider unsupervised and semi-supervised approaches, as these better conform
with anomaly and change detection scenarios.

We will mainly consider numerical data. In some cases, extensions apply to categorical
or ordinal data.

In change detection, we will mainly focus on datastreams, which do not have a fixed
length and that have to be analyzed while data are being received.

We will refer to either changes/anomalies according to our personal experience

For a complete overview, please refer to surveys reported below.

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (July 2009), 58 pages.
Pimentel, M. A., Clifton, D. A., Clifton, L., Tarassenko, L. “A review of novelty detection” Signal Processing, 99, 215-249 (2014)

A. Zimek, E. Schubert, H.P. Kriegel. “A survey on unsupervised outlier detection in high-dimensional numerical data” Statistical Analysis and Data Mining: The ASA Data
Science Journal, 5(5), 2012.

T. Ehret, A. Davy, JM Morel, M. Delbracio "Image Anomalies: A Review and Synthesis of Detection Methods", Journal of Mathematical Imaging and Vision, 1-34
L. Ruff, et al. “A Unifying Review of Deep and Shallow Anomaly Detection” preprint 2020 https://arxiv.org/abs/2009.11732


https://arxiv.org/abs/2009.11732

THE PROBLEM FORMULATION

Anomaly / Change Detection Problems
in a Statistical Framework



ANOMALIES

“Anomalies are patterns in data that do not conform to a well defined notion of normal
behavior”

Thus:
e Normal data are generated from a stationary process Py
e Anomalies are from a different process P, + Py

Examples:
e Frauds in the stream of all the credit card transactions
e Arrhythmias in ECG tracings
o Defective regions in an image, which do not conform a reference pattern

Anomalies might appear as spurious elements, and are typically the most informative
samples in the stream

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (July 2009), 58 pages.



ANOMALY-DETECTION IN A STATISTICAL FRAMEWORK

Often, the anomaly-detection problem boils down to:
Monitor a set of data (not necessarily a stream)
{x(t), t=1ty, ..}, x(t) eR?

where x(t) are realizations of a random variable having pdf ¢,, and detect outliers i.e.,
those points that do not conform with ¢,

¢o normal data
x(t) {gbl anomalies

Po ¢1 Po
| l @

)

x(t)

— e = - ;t
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ANOMALY-DETECTION IN A STATISTICAL FRAMEWORK

Often, the anomaly-detection problem boils down to:
Monitor a set of data (not necessarily a stream)
{x(t), t=1ty, ..}, x(t) eR?

L\ - . -l st .. € - - - A LN L___°__ _1df 1 PR B R T

Locate those samples that do not conform the normal

ones or a model explaining normal ones
X(t) ~

where - outliers i.e.,
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)

igbl anomalies

¢o ¢1 Po
' rh o —

Boracchi, Carrera, ICPR 2020



THE LEGAL CASE OF MR HADLUM V. MRS HADLUM (1949)

The sole evidence of adultery consisted of the birth of a child
349 days after Mr Hadlum had left for military service abroad.

Vic Barnett “The Study of Outliers: Purpose and Model” Journal of the Royal Statistical Society. Series C (Applied Statistics) Vol. 27, No. 3 (1978), pp. 242-250



THE LEGAL CASE OF MR HADLUM V. MRS HADLUM (1949)

The sole evidence of adultery consisted of the birth of a child
349 days after Mr Hadlum had left for military service abroad.
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THE LEGAL CASE OF MR HADLUM V. MRS HADLUM (1949)

The sole evidence of adultery consisted of the birth of a child
349 days after Mr Hadlum had left for military service abroad.
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THE LEGAL CASE OF MR HADLUM V. MRS HADLUM (1949)

The sole evidence of adultery consisted of the birth of a child
349 days after Mr Hadlum had left for military service abroad.
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PROCESS CHANGES

Normal data are generated in stationary conditions, i.e. are i.i.d. realizations of a
process Py

After the change, data are generated from a different process P, + Py, which persists
over time
Examples:

e Quality inspection system: faults producing flawed components

e Environmental monitoring: persistent changes in the morphology of measured
signals

e Change of user interests in on-demand platform

Boracchi, Carrera, ICPR 2020



CHANGE-DETECTION IN A STATISTICAL FRAMEWORK

Often, the change-detection problem boils down to:

Monitor a stream {x(t),t = 1,...}, x(t) € R? of realizations of a random variable, and
detect the change-point 7,

x(t) ~ {

where {x(t), t < t} arei.i.d. and ¢y # ¢,

P t<T in control state
¢4 t=71 outofcontrolstate’

We denote such change as: ¢, = ¢4

| bo ¢

x(t)

N N - - >

' t
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CHANGE-DETECTION IN A STATISTICAL FRAMEWORK

Often, the change-detection problem boils down to:

Monitor a stream {x(t),t = 1,..}, x(t) € R? of realizations of a random variable, and
detect the change-point 7,

x(t) ~ {
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CHANGE-DETECTION IN A STATISTICAL FRAMEWORK

Here are data from an X-ray monitoring apparatus.

There are 4 changes ¢, — ¢1 = ¢, = @3 = @, corresponding to different monitoring
conditions and/or analyzed materials
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PROCESS CHANGES VS ANOMALIES

Not all anomalies are due to process changes

Po ¢1 Po

x(t)

v
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PROCESS CHANGES VS ANOMALIES

Not all process changes result in anomalies

x(t)
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Boracchi, Carrera, ICPR 2020



DETECTION PROBLEMS IN SIGNALS / IMAGES / VIDEOS



ANOMALY DETECTION IN TIME SERIES ‘e cugmented

Similar definition holds for detecting anomalies in a time series s € R¢

The datastream is partitioned in segments s(c) centered in a specific location ¢
by sliding window or expert-driven algorithms

The goal is to determine whether each segment

Py normal data
s(€) P, anomalies

C

s) |

[

R Rl Rl j R K
Pa t

D. Carrera, B. Rossi, D. Zambon, P. Fragneto, and G. Boracchi "ECG Monitoring in Wearable Devices by Sparse Models" in Proceedings of ECML-PKDD 2016, 16 pages




ANOMALY DETECTION IN IMAGES

Let s be an image defined over the pixel domain X c Z?,
let c € X be a pixel and s(c) the corresponding intensity.

Our goal is to locate any anomalous region in s, i.e. estimating the unknown anomaly
mask Q defined as

if ¢ falls in a normal region
if ¢ falls in an anomalous region

Q(c) = {‘i

Boracchi, Carrera, ICPR 2020



ANOMALY DETECTION IN IMAGES

Let s be an image defined over the pixel domain X c Z?,
let c € X be a pixel and s(c) the corresponding intensity.

Our goal is to locate any anomalous region in s, i.e. estimating the unknown anomaly
mask Q defined as

if ¢ falls in a normal region

if ¢ falls in an anomalous region
QO
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PATCH-WISE ANOMALY DETECTION

The goal not determining whether the whole image is normal or anomalous, but
locate/segment possible anomalies

Therefore, it iS convenient to

1. Analyze the image patch-wise

2. Isolate regions containing
patches that are detected as
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The goal not determining whether the whole image is normal or anomalous, but

locate/segment possible anomalies

PATCH-WISE ANOMALY DETECTION
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TYPICAL ASSUMPTIONS

A training set TR is provided for configuring the AD algorithm
Depending on the algorithm

* Only normal images -> semi-supervised methods

* Unlabeled images -> unsupervised methods

e Annotated images -> supervised methods
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DETECTING ANOMALOUS ACTIVITIES IN VIDEOS

It is very similar to image settings, but X c Z?* x R* is a spatio-temporal domain

The goal is to locate any anomalous region in s, i.e. estimating the unknown anomaly
mask Q defined as

0 if c falls in a normal region
QO(c) = ) . :
1 if ¢ falls in an anomalous region

USCD Anomaly Dataset http://www.svcl.ucsd.edu/projects/anomaly/dataset.html



http://www.svcl.ucsd.edu/projects/anomaly/dataset.html

CHANGE-DETECTION IN TIME SERIES

Monitor a time series {x(t),t = 1, ...}, x(t) € R? to detect a change-point T,

x(t) {iPN t<rt in control state
P, t =1 outof control state ’

where P, + Py and {x(t), t < t} typically exhibit some characteristic / pattern that is
peculiar for normal data (e.g. similarity, smoothness, ..)
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G. Boracchi and M. Roveri "Exploiting Self-Similarity for Change Detection” , IJCNN 2014, pp 3339 - 3346



DETECTION ALGORITHMS: MAIN INGREDIENTS




THE ANOMALY / CHANGE DETECTION PROBLEMS

Anomaly-detection problem:

Locate those samples that do not conform the normal ones or a model explaining
normal ones

Anomalies in data translate to significant information

Change-detection problem:

Given the previously estimated model, the arrival of new data invites the question: “Is
yesterday’s model capable of explaining today’s data’”

Detecting process changes is important to understand the monitored phenomenon

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.

C. ). Chu, M. Stinchcombe, H. White "Monitoring Structural Change" Econometrica Vol. 64, No. 5 (Sep., 1996), pp. 1045-1065.



THE TYPICAL SOLUTIONS

Most algorithms are composed of:

« A statistic that has a known response to normal data (e.g., the average, the sample
variance, the log-likelihood, the confidence of a classifier, an “anomaly score”...)

o A decision rule to analyze the statistic (e.g., an adaptive threshold, a confidence
region)

Boracchi, Carrera, ICPR 2020



THE TYPICAL SOLUTIONS

Anomaly-detection algorithms:

Statistics and decision rules are “one-shot”, analyzing a set of historical data or each
new data (or chunk) independently

Change-detection algorithms:

Statistics and decision rules are sequential, as they make a decision considering all the
data received so far

Boracchi, Carrera, ICPR 2020



THE TYPICAL SOLUTIONS

data
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THE TYPICAL SOLUTIONS
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THE TYPICAL SOLUTIONS

data

decision rule: S(x) >y
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THE TYPICAL SOLUTIONS
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PERFORMANCE MEASURES

Assessing performance of anomaly detection algorithms




ANOMALY-DETECTION PERFORMANCE

Anomaly detection performance:

#{anomalies detected}

e True positive rate: TPR = #{anomalies}

#{normal samples detected}

e False positive rate: FPR = #{normal samples}

You have probably also heard of
o False negative rate (or miss-rate): FNR =1 — TPR
o True negative rate (or specificity): TNR = 1 — FPR

#{anomalies detected}
#{detections}

o Recall on anomalies (or sensitivity, hit-rate): TPR

e Precision on anomalies:

Boracchi, Carrera, ICPR 2020



TPR / FPR TRADE-OFF

There is always a trade-off between TPR and FPR (and similarly for derived
quantities), which is ruled by algorithm parameters

decision rule: S(x) >y

4 ﬁ \ statistic
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TPR / FPR TRADE-OFF

There is always a trade-off between TPR and FPR (and similarly for derived
quantities), which is ruled by algorithm parameters

Decreasing y increases both true positive rate and false positive rates.

Increasing y reduces both true positive rate and false positive rates.

decision rule: S(x) >y

4 \ statistic

rrera, ICPR 2020



ANOMALY-DETECTION PERFORMANCE

There is always a trade-off between TPR and FPR (and similarly for derived
quantities), which is ruled by algorithm parameters

Thus, to correctly assess performance it is necessary to consider at least two indicators
(e.g., TPR,FPR)

Indicators combining both TPR and FPR:

#{anomalies detected} + #{normal samples not detected}

Accur =
ccuracy #{samples}

2#{anomalies detected}

F1 score =
#{detections} + #{anomalies}

These equal 1 in case of “ideal detector” which detects all the anomalies and has no
false positives

Boracchi, Carrera, ICPR 2020



ANOMALY-DETECTION PERFORMANCE

Comparing different methods might be tricky since we have to make sure that both have

been configured in their best conditions

Testing a large number of parameters lead to the ROC (receiver operating characteristic)

curve

The ideal detector would achieve:

« FPR = 0%,

« TPR = 100% 0.8
Thus, the closer to (0,1) the better 0.6_
The largest the Area Under the =
Curve (AUC), the better 041,
The optimal parameter is the one 02|

yielding the point closest to (0,1)

(FPR,TPR) for a
specific parameter

—— STSIM
AUC = 0.619
Coding
AUC = 0.812
Variance
AUC = 0.775
e (Gradient
AUC = 0.704
— Grad & Var
AUC = 0.796
= Proposed
AUC = 0.926

FPR rrera, ICPR 2020



CHANGE-DETECTION PERFORMANCE

In a sequential monitoring scenarios, performance are assessed in terms of the Average
Run Length.

In particular, we denote by T the detection time and define
ARLy = E[T | ¢o]

which is the expected number of samples before a false alarm and
ARL, = E[T | 4]
which is the expected delay for a detection

ARL, and ARL, still depend on the algorithm parameters.

In particular, one configures the CDT to operate at a given ARL,

M. Basseville, I. V. Nikiforov, "Detection of Abrupt Changes - Theory and Application", Prentice-Hall, Inc. April 1993
G. J. Ross, D. K. Tasoulis, N. M. Adams "Nonparametric monitoring of data streams for changes in location and scale" Technometrics, 53(4), 379-389, 2012.



CHANGE-DETECTION PERFORMANCE

Unfortunately, it is not always possible to compute ARL, and/or ARL4, in particular for
nonparametric CDTs.

Then, one resorts to performing several simulations on finite sequences with a change
at a known location 7, and computing

The detection delay,
DD =E|T—7|T =, ¢,]
X

and
FPR = #{normal sequences where a change was detected}
- #{normal sequences}
#{sequences where change was not detected

#{changed sequences}

which are defined as in the anomaly detection case, but depend on the sequence length

Boracchi, Carrera, ICPR 2020



CHANGE-DETECTION PERFORMANCE

These figures of merit also depend on algorithm parameters.

To perform a fair comparison among different methods one can:

Generate long enough sequences to have FNR = 0%

Consider few parameters settings

Draw FPR-DD curves (similar to ROC): the lower the better
FPR vs DD

DD
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ANOMALY/CHANGE DETECTION IN THE IDEAL SETTINGS

..when ¢, and ¢, are known




ONE-SHOT DETECTOR: NEWMAN PEARSON TEST

Assume data are generated from a parametric distribution ¢g and formulate the
following hypothesis test
HO:H — 00 VS H]_: 0 — 01

According to the Neumann Pearson lemma, the most powerful statistic to detect changes
is the likelihood ratio

¢1(x)
$o(x)

and the detection rule is A(x) > vy, where y is set to control the false alarm rate (type |
errors of the test).

Alx) =

Boracchi, Carrera, ICPR 2020



ONE-SHOT DETECTOR: NEWMAN PEARSON TEST

Outliers can be detected by a threshold on A(x)

Po P11 bo
[ A \F.L\l ‘ \
o ® . ° « °
\R/Q o . e ° . ® . /

Boracchi, Carrera, ICPR 2020



THE CUSUM TEST ON THE LIKELIHOOD RATIO

CUSUM involves the calculation of a CUmulative SUM, which makes it a sequential
monitoring scheme.

It can be applied to the log-likelihood ratio:

log(A(x)) = log <¢1(x)> = {< 0 when ¢o(x) > ;(x)

Do(x) > 0 otherwise

The CUSUM statistic is:
S(t) = max (0, St—1) + log(A(x(t))))

And the decision rule is
S(t)>vy

M. Basseville, I. V. Nikiforov, "Detection of Abrupt Changes - Theory and Application", Prentice-Hall, Inc. April 1993

E. S. Page "Continuous Inspection Scheme". Biometrika. 41 (1/2): 100-115 (June 1954).



CUSUM TEST

Outliers can be detected by a threshold on A(x)

A
b0 $1
A \
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° o
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A . °
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\U‘; o 1 Detection time
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PARAMETRIC SEQUENTIAL MONITORING

Quickest Change-Point Detection:
e Detection policies that minimize the expected delay to detection, subject to a fixed
ARL,.
o The CUSUM test is the optimal change-detection test (CDT) when minimizing the
maximum delay (at a given ARL,).

e Other procedures are optimal if we use a different measure for the detection delay
or different prior information

M. Basseville, I. V. Nikiforov, "Detection of Abrupt Changes - Theory and Application", Prentice-Hall, Inc. April 1993
A. Polunchenko and A. Tartakovsky, “State-of-the-art in sequential change-point detection,” Methodology and Computing in Applied Probability, 2012



STATISTICAL APPROACHES TO DETECT ANOMALIES

..when ¢, and ¢, are unknown




ANOMALY DETECTION WHEN ¢, AND ¢; ARE UNKNOWN

Most often, only a training set TR is provided:

There are three scenarios:

e Supervised: Both normal and anomalous training data are provided in TR.

e Semi-Supervised: Only normal training data are provided, i.e. no anomalies in TR.
e Unsupervised: TR is provided without label.

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.



SUPERVISED ANOMALY DETECTION - DISCLAIMER

Most papers and reviews agree that supervised methods have not to be considered part
of anomaly detection, because:

e Anomalies in general lacks of a statistical coherence

* Not (enough) training samples are provided for anomalies

However,

e Some supervised problems are often referred to as «detection», in case of severe
class imbalance (e.g. fraud detection)

e Supervised models can be transferred in unsupervised settings, in particular for deep
learning

Boracchi, Carrera, ICPR 2020



SUPERVISED ANOMALY DETECTION - SOLUTIONS

In supervised methods training data are annotated and divided in normal (+) and
anomalies (—) :

TR = {(x(t),y(t)),x e R,y € {+,—}and t < t,}
Solution:
e Train a two-class classifier to distinguish normal vs anomalous data.
During training:
e Train a classifier K from TR.
During testing:
e Compute the classifier output I (x), or

o Set a threshold on the posterior p4(—|x), or
e Select the k —most likely anomalies

Boracchi, Carrera, ICPR 2020



SUPERVISED ANOMALY DETECTION - CHALLENGES

These classification problems are challenging because these anomaly-detection settings
typically imply:
e C(Class Imbalance: Normal data far outnumber anomalies

e Concept Drift: Anomalies might evolve over time, thus the few annotated anomalies
might not be representative of anomalies occurring during operations

e Selection Bias: Training samples are typically selected through a closed-loop and
biased procedure. Often only detected anomalies are annotated, and the vast

majority of the stream remain unsupervised. This biases the selection of training
samples.

A. Dal Pozzolo, G. Boracchi, 0. Caelen, C. Alippi and G. Bontempi, “Credit Card Fraud Detection: a Realistic Modeling and a Novel Learning Strategy”, IEEE TNNL 2017



FRAUD DETECTION: SUPERVISED ANOMALY DETECTION

| Expert-driven
- Data-driven

|

|

TX auth. I

|

X |

|

_> I

Alerts :

— | Terminal | — SCOre | |nvestigators :
|

—_— I

_> I

. Alerts :
Purchase TX auth. P(+|x) l
request X !
|

|

|

|

|

|

Offline

A. Dal Pozzolo, G. Boracchi, 0. Caelen, C. Alippi and G. Bontempi, “Credit Card Fraud Detection: a Realistic Modeling and a Novel Learning Strategy”, IEEE TNNL 2017



FRAUD DETECTION: SUPERVISED ANOMALY DETECTION

This is what typically happens in fraud detection.

Class Imbalance:
e Frauds are typically less than 1% of genuine transactions

Concept Drift:
e Fraudster always implement new strategies

Sampling Selection Bias:
e Only alerted / reported transactions are controlled and annotated
e 0ld transactions that have not been disputed are considered genuine transactions

A. Dal Pozzolo, G. Boracchi, 0. Caelen, C. Alippi and G. Bontempi, “Credit Card Fraud Detection: a Realistic Modeling and a Novel Learning Strategy”, IEEE TNNL 2017



ANOMALY DETECTION WHEN ¢, AND ¢; ARE UNKNOWN

Most often, only a training set TR is provided:

There are three scenarios:
e Supervised: Both normal and anomalous training data are provided in TR.

e Semi-Supervised: Only normal training cata are provided, i.e. no anomalies in TR.

e Unsupervised: TR is provided without label.

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.



SEMI-SUPERVISED ANOMALY DETECTION

In semi-supervised methods the TR is composed of normal data
TR ={x(t),x ~ ¢ppand t < t,,}

Very practical assumptions:
e Normal data are easy to gather and the vast majority

o Anomalous data are difficult/costly to collect/select and it would be difficult to
gather a representative training set

e Training examples in TR might not be representative of all the possible anomalies
that can occur

All in all, it is often safer to detect any data departing from the normal conditions

Semi-supervised anomaly-detection methods are also referred to as novelty-detection
methods

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.
M. A. Pimentel, D. A. Clifton, L. Clifton, L. Tarassenko. “A review of novelty detection” Signal Processing, 99, 215-249 (2014)



DENSITY-BASED METHODS

Density-Based Methods: Normal data occur in high probability regions of a stochastic
model, while anomalies occur in the low probability regions of the model

During training: ¢, can be estimated from the training set
TR = {x(t),x ~ ¢ppand t < t,,}
o parametric models (e.g., Gaussian mixture models)
e nonparametric models (e.g. KDE, histograms)
During testing:
 Anomalies are detected as data yielding ¢,(x) <1

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.



DENSITY-BASED METHODS: MONITORING THE LOG-LIKELIHOOD

Monitoring the log-likelihood of data w.r.t ¢, allow to address anomaly-detection
problems in multivariate data

1. During training, estimate ¢, from TR

2. During testing, compute

L(x(t)) = log(do(x(t)))
3. Monitor {£(x(¢)), t=1,...}

x(t)

(x(®)

s
o

— > t
Boracchi, Carrera, ICPR 2020



DENSITY-BASED METHODS: MONITORING THE LOG-LIKELIHOOD

Monitoring the log-likelihood of data w.r.t ¢, allow to address anomaly-detection
problems in multivariate data

1. During training, estimate ¢, from TR
2. During testing, compute

L(x()) = log(do(x(t)))
3. Monitor {£(x(¢)), t=1,...}

This is quite a popular approach in either anomaly and change detection algorithms

L. I. Kuncheva, “Change detection in streaming multivariate data using likelihood detectors," IEEE Transactions on Knowledge and Data Engineering, vol. 25, no. 5, 2013.

X. Song, M. Wu, C. Jermaine, and S. Ranka, “Statistical change detection for multidimensional data," in Proceedings of International Conference on Knowledge Discovery
and Data Mining (KDD), 2007.

J. H. Sullivan and W. H. Woodall, “Change-point detection of mean vector or covariance matrix shifts using multivariate individual observations," IIE transactions, vol. 32,
no. 6, 2000.

C. Alippi, G. Boracchi, D. Carrera, M. Roveri, "Change Detection in Multivariate Datastreams: Likelihood and Detectability Loss" 1JCAl 2016, New York, USA, July 9 - 13



DENSITY-BASED METHODS

Advantages:
. ¢o(x) indicates how safe a detection is (like a p-value)

o If the density estimation process is robust to outliers, it is possible to tolerate few
anomalous samples in TR

e in relatively small dimensions, you might use non-parametric models like
histograms

Challenges:
e Itis challenging to fit models for high-dimensional data
e Histograms traditionally suffer of curse of dimensionality when d increases

e Often the 1D histograms of the marginals are monitored, ignoring the correlations
among components

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.



DOMAIN-BASED METHODS

Domain-based methods: Estimate a boundary around normal data, rather than the
density of normal data.

A drawback of density-estimation methods is that they are meant to be accurate in high-
density regions, while anomalies live in low-density ones.

One-Class SVM are domain-based methods defined by the normal samples at the
periphery of the distribution.

Scholkopf, B., Williamson, R. C., Smola, A. )., Shawe-Taylor, )., Platt, J. C. "Support Vector Method for Novelty Detection". In NIPS 1999 (Vol. 12, pp. 582-588).
Tax, D. M., Duin, R. P. "Support vector domain description". Pattern recognition letters, 20(11), 1191-1199 (1999)

M. A. Pimentel, D. A. Clifton, L. Clifton, L. Tarassenko. “A review of novelty detection” Signal Processing, 99, 215-249 (2014)



ONE-CLASS SVM (SCHOLKOPF ET AL. 1999)

Idea: define boundaries by estimating a binary function f that captures regions of the
input space where density is higher.

As in support vector methods, f is defined in the feature space F and decision
boundaries are defined by a few support vectors (i.e., a few normal data).

Let ¥ (x) the feature associated to x, f is defined as
f(x) = sign(< w,(x) > —p)

Where the hyperplane parameters w, p are optimized to yield a function that is positive
on most training samples. Thus in the feature space, normal points can be separated
from the origin.

A linear separation in the feature space corresponds to a variety of nonlinear boundaries
in the space of x.

B. Scholkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, ). C. Platt "Support Vector Method for Novelty Detection". In NIPS 1999 (Vol. 12, pp. 582-588).



ONE-CLASS SVM (TAX AND DUIN 1999)

Boundaries of normal region can be also defined by an hypersphere that, in the feature
space, encloses most of the normal data i.e., Y(x) for x € TR.

Similar detection formulas hold, measuring the distance in the feature space from the
sphere center.

The sphere center can be defined in terms of support vectors.

Remarks: In both one-class approaches, the amount of samples that falls within the
margin (outliers) is controlled by regularization parameters.

This parameter regulates the number of outliers in the training set and the detector
sensitivity.

D. M. Tax, R. P. Duin, "Support vector domain description". Pattern recognition letters, 20(11), 1191-1199 (1999)



ANOMALY DETECTION WHEN ¢, AND ¢; ARE UNKNOWN

Most often, only a training set TR is provided:

There are three scenarios:
e Supervised: Both normal and anomalous training data are provided in TR.
e Semi-Supervised: Only normal training data are provided, i.e. no anomalies in TR.

e Unsupervised: TR is provided without label.

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.



UNSUPERVISED ANOMALY-DETECTION

The training set TR might contain both normal and anomalous data. However, no labels
are provided

TR = {x(t),t <ty }
Underlying assumption: anomalies are rare w.r.t. normal data TR

In principle:
e Density/Domain based methods that are robust to outliers can be applied in an
unsupervised scenario

e Unsupervised methods can be improved whenever labels are available

Boracchi, Carrera, ICPR 2020



DISTANCE-BASED METHODS

Distance-based methods: normal data rall in dense neighborhoods, while anomalies are
far from their closest neighbors.

A critical aspect is the choice of the similarity measure to use.

Anomalies are detected by monitoring:
o distance between each data and its k —nearest neighbor

e the density of each data relatively to its neighbors

-

M. Zhao, V. Saligrama, “Anomaly detection with score functions based on nearest neighbor graphs”. NIPS 2009
A. Zimek, E. Schubert, H. Kriegel. “A survey on unsupervised outlier detection in high-dimensional numerical data” SADM 2012
M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: Identifying density-based local outliers”, in International Conference on Management of data, 2000



DISTANCE-BASED METHODS

Distance-based methods: normal data rall in dense neighborhoods, while anomalies are
far from their closest neighbors.

A critical aspect is the choice of the similarity measure to use.

Anomalies are detected by monitoring:
o distance between each data and its k —nearest neighbor

e the above distance considered relatively to neighbors

o whether they do not belong to clusters, or are at the cluster periphery, or belong to
small and sparse clusters

A
o::«»

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.



DISTANCE-BASED METHODS

Distance-based methods: normal data rall in dense neighborhoods, while anomalies are
far from their closest neighbors.

A critical aspect is the choice of the similarity measure to use.

Anomalies are detected by monitoring:
o distance between each data and its k —nearest neighbor

e the above distance considered relatively to neighbors

e whether they do not belong to clusters, or are at the cluster periphery, or belong to
small and sparse clusters

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM lomput. Surv. 41, 3, Article 15 (2009), 58 pages.



ISOLATION FOREST

Builds upon the rationale that
"anomalies are easier to separate from the rest of normal data”

This idea is implemented very efficiently through a forest of binary trees that are
constructed via an iterative procedure
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F. T. Liu, K. M. Ting and Z. Zhou, Isolation Forest, ICDM 2008



ISOLATION FOREST

Builds upon the rationale that
"anomalies are easier to separate from the rest of normal data”

This idea is implemented very efficiently through a forest of binary trees that are
constructed via an iterative procedure

Randomly choose

@ :
.c. °,° ° O 1. a component Xx;
o ® 00O
o0
o o o0 ©
o © ¢ .‘.
o
o. PY 0. O

F. T. Liu, K. M. Ting and Z. Zhou, Isolation Forest, ICDM 2008
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ISOLATION FOREST

Builds upon the rationale that
"anomalies are easier to separate from the rest of normal data”

This idea is implemented very efficiently through a forest of binary trees that are
constructed via an iterative procedure
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ISOLATION FOREST
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ISOLATION FOREST

Builds upon the rationale that
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constructed via an iterative procedure
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ISOLATION FOREST

Builds upon the rationale that
"anomalies are easier to separate from the rest of normal data”

This idea is implemented very efficiently through a forest of binary trees that are
constructed via an iterative procedure
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ISOLATION FOREST

Builds upon the rationale that
"anomalies are easier to separate from the rest of normal data”

This idea is implemented very efficiently through a forest of binary trees that are
constructed via an iterative procedure
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ISOLATION FOREST

Builds upon the rationale that
"anomalies are easier to separate from the rest of normal data”

This idea is implemented very efficiently through a forest of binary trees that are
constructed via an iterative procedure
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ISOLATION FOREST

Builds upon the rationale that
"anomalies are easier to separate from the rest of normal data”

This idea is implemented very efficiently through a forest of binary trees that are
constructed via an iterative procedure
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ISOLATION FOREST

An anomalous point (x,) can be easily isolated

Genuine points (x;) are instead difficult to isolate.

o o
o o
¢! o
o o
o) o)
o° o e o
° ” o, Q “ 7 o o a
C'c:-c' 8 oo ,:,Gc- 8 o
o o
o o, G o o
B0 “e o% °%% o ¢ o
] & &
o
690 & oo o @ SN & oo o °
e} o > < o ) ] <
o o
(o= ] o D@ a0 g )
£
(?& T a0 é}& OOO@ a0
§9 Fod
I L o o wow
© 5o &) § o 8. &#
[y (SR
o ml o = o o
o o o
- b s
VI e & -
o S0 @ o O o
¢! o
-
o] @A()

F. T. Liu, K. M. Ting and Z. Zhou, Isolation Forest, ICDM 2008



ISOLATION FOREST

Anomalies

IFOR

F. T. Liu, K. M. Ting and Z. Zhou, Isolation Forest, ICDM 2008



ISOLATION FOREST

Normal data

IFOR

F. T. Liu, K. M. Ting and Z. Zhou, Isolation Forest, ICDM 2008



ISOLATION FOREST: TESTING

Compute E(h(x)), the average path length among all the trees in the forest, of a test
sample x

F. T. Liu, K. M. Ting and Z. Zhou, Isolation Forest, ICDM 2008



ISOLATION FOREST: TESTING

A test sample is identified as anomalous when:

_E(h(x))
Alx)=2 <) >y

e n : number of sessions in TR

e c(n) : average path length of unsuccessful search in Binary

Several extensions including EIF (Extendend Isolation Forest) modify the splitting criteria
to yield anomaly scores map that better conform to normal data

-4 -2 L] 2 4 -4 =2 L] 2 4 -4 =2 0 2 4

Fei Tony Liu, Kai Ming Ting and Zhi-Hua Zhou, Isolation Forest, ICDM 2008 (a) Standard IF (b) Rotated IF (¢) Extended IF
S. Hariri, M. C. Kind, and R. J. Brunner, “Extended isolation forest”, TKDE, 2019.



Any Questions?



STATISTICAL APPROACHES TO DETECT CHANGES

..change detection when ¢, and ¢, are unknown

POLITECNICO DI MILANO




THE CHANGE AND ANOMALY DETECTION PROBLEMS

Anomaly detection:

¢o normal data
x(£) {gbl anomalies

Change detection:

) t<rt in control state
x(t) ~1°°
¢ t=71 outofcontrolstate

In change detection we have to take into account the temporal dimension when

monitoring the stream {x(t),t =1, ...}

Boracchi, Carrera, ICPR 2020



CHANGE DETECTION APPROACHES

Parametric Settings:

The Change-Point Formulation

Non-parametric Settings:

The Change-Point Formulation
Change-Detection by Histograms
Change-Detection by Monitoring Features

Hierarchical Change-Detection Tests

Boracchi, Carrera, ICPR 2020



CHANGE DETECTION IN PARAMETRIC SETTINGS: CPM

Parametric settings:

¢, and ¢, are known up to their parameters (6, and 6,), thus the change ¢, — ¢,
corresponds to a change 6, — 64

Change-Point Methods (CPM) are sequential monitoring schemes that extend traditional
parametric hypothesis tests

These assumptions hold in some quality control application, but sometimes the change
is unpredictable (e.g. 8, it is unknown)

The basic functioning of CPM is illustrated for offline monitoring, but CMP can be
iterated to perform online change detection (sequential monitoring).

Hawkins, D. M., and Zamba, K. D. “Statistical process control for shifts in mean or variance using a changepoint formulation” Technometrics 2005

Ross, G. J. “Sequential change detection in the presence of unknown parameters”. Statistics and Computing, 24(6), 1017-1030, 2014



ILLUSTRATION OF CHANGE POINT METHOD (CPM)
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Assume a sequence of 1000 points is given and we want to find
the change point 7 inside (offline analysis)

Boracchi, Carrera, ICPR 2020



ILLUSTRATION OF CHANGE POINT METHOD (CPM)

4
[ [ .
3 * . 5
. . +
before . after . Ce
e e % * * 0‘ t. . . . *
25 + + -+ + + + + + 1
. . o “" * t ¥, * "o :’ PP L P * . o, .
. Y 2 e AT S PSR S ¢ T ST T T
* N PURAEE S S . et . L A A S M AR AR SR S )
. 3 PR W 5, wd -, . ¥ Wt du e B
= - - * . + I
1 ., v oapt s . * . R ‘“:, 1, + *’t‘* S, e fﬂ.. ”41“.,,"’ 4, : L o .+ 24,::0 LR
* + * - - v L " + v g * ¥ et * . - +~ "+ P
12 e 1 “:{u*:"% * 0”.: ’;‘* et Tt 4% A ”4’0“0:+ + “*iﬂ P ? .:1»' }ﬂ* * ﬁ“ 1,7 e e * Y e ¥y v *
[L* #H2, wgr pt " ;g’o“*’+ ot 4 Y + et ae ., * + e e % Tt + e ¥ |
0 m& - . e b # o*"‘ Y * +* * + - - » + + ww i "
hd T, M N 3 o4 2™ ‘0’9?; gt ot MR PR TP B A f,, + &, s ¥ *, . “ * M
P et T e e P - T, LR * PR * + * * s e Yo o + +h
. - + iy 3’1, * N '+ as * o+ o * o, » - " 2 * + * . b . . * *
’ *, A P * *y ., et . + * Yo * S * <
a 5 . -
*+ Yo * * * - * s + . "t * + + * L . A
. . . . Lt . R . * +
+ - + * +* *
ol . .t vt . .t |
* * * * -
* * -
3 | | | | | | | | |
] 100 200 300 400 500 600 700 800 900 1000

e Test a single point t to be a change point
e Split the dataset in two sets «before» and «after»

e Compute a test statistic I to determine whether the two sets
are from the same distribution (e.g. same mean)

e Repeat the procedure and store the value of the statistic

Boracchi, Carrera, ICPR 2020
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e Test a single point t to be a change point
e Split the dataset in two sets «before» and «after»

e Compute a test statistic I to determine whether the two sets
are from the same distribution (e.g. same mean)

e Repeat the procedure and store the value of the statistic
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e Test a single point t to be a change point
e Split the dataset in two sets «before» and «after»

e Compute a test statistic I to determine whether the two sets
are from the same distribution (e.g. same mean)

e Repeat the procedure and store the value of the statistic
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e Test a single point t to be a change point
e Split the dataset in two sets «before» and «after»

e Compute a test statistic I to determine whether the two sets
are from the same distribution (e.g. same mean)

e Repeat the procedure and store the value of the statistic
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ILLUSTRATION OF CHANGE POINT METHOD (CPM)

4 T ; |
il before - - ’ . -after
* " * ey
* . - N +* . * *+ .t . . +
20 * * 4 .t + + + o+ . =Y
LR + + * +* -
. + . + . * .l . - . +}
+ ** o . LR JC IR YDA SR Lt 47 - Fat et 4 ,g&"’
* + +” + * 0‘0 ‘+* * \d #E ’o*t * :* 1 ““ s’o‘ v,
10+ . 4 . 4t . SR SO wl o, - - e, Whle * Ll Tl em +
*, + o t+’ . . * *‘“;*‘ 1t ., ’*o*‘,"* &t ”.‘“*’4 \”* 2+ » . * t“ st e w
R + * ey . + + L LR AN Mg + PO * - Y
+:"¢'+‘ . :""%’ ’3””{; ”;‘“ ':} ?“’;*““ ’0:”}":+ * »*" ’0 "’ i P e * #“‘t ROCART h J} ‘oo s 1 *
e ¥ M ) + + + ,,0 Ll + L * *h o+ + + + ¥
UJ'? e BV T ae e f‘ gl ‘;a:‘.l;fﬁ* e 43 Yo ’+ s, % Yo o AP & ”? DRI  J "3“.\ T « 4
a‘ T Seey ot hy ;ﬁd} "+ "“*’:?: AR ‘: . o * o* I3 " te * ot R et ?.", “, * R . A &
* e . . . . # . . * . . .t ¥ 1 * .
. W ‘*4' * 3’1.“ .t . *ar . 4 A .+ + 0+ ’t F44 + * + % Y. + oy &+
A H ., R + + L, L - * . g1+ R ¥
. * + * - * 'y + . 4;' . . * + . . .
. . . . Lt . R ) + -
+ - + * +* *
ol . . vt . + 1
: * " + * +* . +
* +
3 | | | | | | | | |
0 100 200 300 400 500 600 700 g00 900 1000
160

140

120

100

a0

60

40

20

100 200 300 400

500

600

700

800

900

1000



ILLUSTRATION OF CHANGE POINT METHOD (CPM)

The point where the statistic achieves its maximum is the most likely position of the
change-point

As in hypothesis testing, it possible to set a threshold hyggg ¢ fOr Thax 1000 DY Setting
to a the probability of type | errors.
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ILLUSTRATION OF CHANGE POINT METHOD (CPM)

It is possible to extend the CPM framework to online monitoring.

At each time t:
-+ we compute the statistic Ty ¢

- we detect a change if Taxe > by

The thresholds {h;} have to be set to guarantee the ARL,

Hawkins, D. M., and Zamba, K. D. “Statistical process control for shifts in mean or variance using a changepoint formulation” Technometrics 2005



CHANGE DETECTION APPROACHES

Parametric Settings:

The Change-Point Formulation

Non-parametric Settings:

The Change-Point Formulation

Change-Detection by Histograms
Change-Detection by Monitoring Features

Hierarchical Change-Detection Tests

Boracchi, Carrera, ICPR 2020



CPM IN NONPARAMETRIC SETTINGS

Both ¢, and ¢, are unknown, thus the change ¢, — ¢, is completely unpredictable
One viable option consists in using nonparametric statistics, like:

e Mann-Whitney,

e Mood,

e Lepage,

e Kolmogorov-Smirnov,

e Cramer von Mises,
which do not require any information about ¢, or ¢5.

Ross, G. |., Tasoulis, D. K., Adams, N. M. "Nonparametric monitoring of data streams for changes in location and scale" Technometrics, 53(4), 379-389, 2012.



A REAL WORLD MONITORING EXAMPLE

In cryptography sequential side channel attacks reconstruct the secret key one bit at a

time.

At each step a bit is reconstructed by looking at the value of a distinguisher function

Errors in sequential attacks propagate in the following steps

Correlation coefficients
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Dy,
o
-

0

—0.1

0.3

0.2

0.1

b}

Distributions of the correlation coefficients

—0.1

iy}

Dy,

o
b1

0.3

Frittoli, L., Matteo, B., Silvia, M., Carrera, D., Beatrice, R., Fragneto, P., Susella, R., Boracchi G. " Strengthening Sequential Side-Channel Attacks Through Change

Detection®. CHES 2020



A REAL WORLD MONITORING EXAMPLE

Correlation coefficients

0.3 The CPM allows to identify the change in the
Lk ' distribution of the distinguisher
£ o g it One the change point 7 has been estimated
A the right value of the bit can be retrieved

—0.1 |

0 500 1,000 1,500 2,000

k
Lepage test statistics

300
200
100

0 500 4 1,000 1,500 2,000

T k

Frittoli, L., Matteo, B., Silvia, M., Carrera, D., Beatrice, R., Fragneto, P., Susella, R., Boracchi G. " Strengthening Sequential Side-Channel Attacks Through Change
Detection®. CHES 2020



CPM IN NONPARAMETRIC SETTINGS

The CPM is a very powerful framework that can be used either in online and sequential
monitoring.

Pro: CPMs do not require training samples

Con: Non parametric statistics (Mahn-Whitney, Lepage,..) are difficult to extend to
handle multivariate data.

Ross, G. |., Tasoulis, D. K., Adams, N. M. "Nonparametric monitoring of data streams for changes in location and scale" Technometrics, 53(4), 379-389, 2012.



CAN'T | GO BACK TO A FEW UNIVARIATE PROBLEMS?

Monitoring each data component independently:

x,(t) x1(1)

|
v

x(t)
[(IT1T11]
[(IT1T11]
[(I1T111]
[(I1T111]

Xq(t)

Boracchi, Carrera, ICPR 2020



CAN'T | GO BACK TO A FEW UNIVARIATE PROBLEMS?

Monitoring each data component independently:

x,(t) x1(1)

|
v

x(t)
[(IT1T11]
[(IT1T11]
[(I1T111]
[(I1T111]

Xq(t)

This is not a truly multivariate monitoring scheme.
for instance you would not be able to detect
changes affecting correlation — — :> — —

‘ Boracchl, Carrera, ICPR 2020



CAN'T | GO BACK TO A FEW UNIVARIATE PROBLEMS?

Extracting a few features / indicators that are expected to change when ¢, — ¢, and
which distribution is known under ¢,

f I..o.o
— =} >
o ® o t
) I'o 0
'O__ >
t
N\ -
&
. I.....
— e — — > :
- | >
t

Alippi, C., Boracchi, G., Roveri, M. “Change detection tests using the ICI rule” 1JCNN 2010 (pp. 1-7).



CAN'T | GO BACK TO A FEW UNIVARIATE PROBLEMS?

Extracting a few features / indicators that are expected to change when ¢, — ¢, and
which distribution is known under ¢,

f I..o.o
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o ® o t
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Not truly multivariate: only changes affecting features are detectable

Alippi, C., Boracchi, G., Roveri, M. “Change detection tests using the ICI rule” 1JCNN 2010 (pp. 1-7).



CHANGE DETECTION APPROACHES

Parametric Settings:

The Change-Point Formulation

Non-parametric Settings:

The Change-Point Formulation

Change-Detection by Histograms

Change-Detection by Monitoring Features

Hierarchical Change-Detection Tests

Boracchi, Carrera, ICPR 2020



CHANGE DETECTION BY MEANS OF HISTOGRAMS

Very often, a training set TR containing stationary data is provided, as in semi-
supervised anomaly detection methods.

The distribution of stationary data can be approximated by a histogram (/30 estimated
from TR

I
TN I
+~

. |
s I

1

r >
__________________ t

T. Dasu, S. Krishnan, S. Venkatasubramanian, and K. Yi. “An information-theoretic approach to detecting changes in multi-dimensional data streams”. Symposium on
the Interface of Statistics, Computing Science, and Applications. 2006

R. Sebastiao, J. Gama, P. P. Rodrigues, and ). Bernardes, “Monitoring incremental histogram distribution for change detection in data streams,” Lecture Notes on
Computer in Knowledge Discovery from Sensor Data, 2017.



HISTOGRAMS

An histogram h° defined over the input domain X c R% is
RO(X) = {(Sk’p’(c))}k=1,...,1<

Where {S; }; is a partitioning of X', namely S, ¢ X
USk = X and S] ﬂSi — 51',]'
K
and pp € [0,1] is the probability (estimated from X) for a sample drawn from ¢, to fall

inside Sy, i.e.

and N = #X

Boracchi, Carrera, ICPR 2020



MONITORING APPROACHES

Two major monitoring approaches using histograms:

* Likelihood-based methods

 Distance-based methods

whose applicability also depends on the partitioning scheme

M. Muja and D. G. Lowe: "Scalable Nearest Neighbor Algorithms for High Dimensional Data". TPAMI, Vol. 36, 2014



LOG-LIKELIHOOD - BASED MONITORING SCHEME

As in density-based methods, ¢, can be used to compute the
log-likelihood, which can be then monitored by univariate CDT

1. During training, estimate ¢o = {(Sk,p¢)}, _, . from TR
2. During testing, compute

L(x(6)) = log(bo(x(1)))
3. Monitor {£(x(t)), t =1, ...} which is discrete

x(t)

: £(x(t))

vy



DISTANCE - BASED MONITORING SCHEME

Ea

¢, can be used to monitor the datastream window-wise:

During training, estimate ¢o = {(Sk, p)},_, , from TR

Crop a window W over the most recent data

Estimate {py}

k=1,...K

from W to obtain ¢; = {(Sk, pt)}

Compare ¢, and ¢, by a distance d between distributions

Monitor d (¢, P1)

k=1,...,K




DISTANCE -

BASED MONITORING SCHEME: STATISTICS

Example of distances d between distributions are:

Kullback-Leibler divergence

Total variation distance, Pearson chi-square test
Kolmogorov-Smirnov, Cramer-Von-Mises distance
Possibly a kernel approximation of these distances

Boracchi, Carrera, ICPR 2020



DISTANCE - BASED MONITORING SCHEME: STOPPING RULE

Thresholding the distance is the typical stopping rule.
d(do, b1) 2 v
Thresholds:

o are defined from the empirical distribution of d(¢g, $1), which is computed
through a Bootstrap procedure.

e are given from approximation of the statistic, which typically holds asymptotically,
as in case the of Pearson

Similar approaches can be used to compare features extracted in different data-
windows.

Dasu, T., Krishnan, S., Venkatasubramanian, S., Yi, K. "An information-theoretic approach to detecting changes in multi-dimensional data streams". Symp. on the
Interface of Statistics, Computing Science, and Applications, 2006.

Ditzler G., Polikar R., “Hellinger distance based drift detection for nonstationary environments”, IEEE SSCI 2011.

Boracchi G., Cervellera C., and Maccio D. "Uniform Histograms for Change Detection in Multivariate Data" ])CNN 2017

Sebastiao R., Gama J. Mendong¢a T. "Fading histograms in detecting distribution and concept changes" 1)DSA, 2017

Bu L., Alippi C., Zhao D. “A pdf-free change detection test based on density difference estimation” TNNLS 2016

S. Liu, M. Yamada, N. Collier, and M. Sugiyama, “Change-point detection in time-series data by relative density-ratio estimation,” Neural Networks, vol. 43, pp. 72-83,
Jul. 2013



AN EXAMPLE OF DISTANCE-BASED MONITORING SCHEME

1. Compute the probabilities for an incoming batch W over {S;}
#{xl’ (S Sk N W}
1%

Py =

2. Compare hY and h" by a suitable distance, e.g.

1
dry(R%, hY) = 52 Ipr — Y| (total variation)
k

or

dps(hY, A") = vz: (ic P ) (Pearson)
= Dk

3. Run an HT on d7y (having estimated its p-values empirically) or dp (this follows a
x? distribution)

Boracchi, Carrera, ICPR 2020



PROS AND CONS OF USING HISTOGRAMS

Pros:
« Histograms are very general and flexible models.

* Some partitioning schemes can be associated with a tree having splits along a single
component. This enable very fast searches through the histogram.

Cons:
« When d increases, some partitioning schemes are not viable as they require g¢ bins.

 In general, the distribution of test statistic is unknown (in particular in multivariate
settings)

However, there is quite a lot of freedom in designing {Ss }%

Boracchi, Carrera, ICPR 2020



HISTOGRAMS YIELDING UNIFORM VOLUME

This is the most common way of constructing histograms.

Build a tessellation of supp(X) by splitting each component in g equally sized parts.

This yields g% hyper-rectangles {S,} having the same volume

Add to the histogram a
region to gather points
that during operation,
won’t fall in supp(X)

Sk =X,pp =0
being K = g% + 1

range(X,)

1
3

An example of 2D histogram g = 1/3



HISTOGRAMS YIELDING UNIFORM DENSITY

Define the partition {S; }; in such a way that all the subsets have the uniform density,
.e.,

0 2 k=1,..,K
Pie = 5 0= Lo < points

Such that each of the g® hyper-rectangles contains the
same number of points

No need to consider a separate
region for X

This is an example of k-d
trees, there are many
alternatives...

An example of 2D histogram q = 1/3

Boracchi G., Cervellera C., and Maccio D. "Uniform Histograms for Change Detection in Multivariate Data" IJCNN 2017



QUANTTREES: HISTOGRAMS FOR CHANGE DETECTION

Assume you are given a set of target probabilities {m;};=1 x and a training set TR

.'. TR @)
° 0.0.. ¢ ¢ ’
® ® o0 ¢
o %
o * *
® ..
°

G. Boracchi, D. Carrera, C. Cervellera, D. Maccio “QuantTree: Histograms for Change Detection in Multivariate Data Streams” ICML 2018



QUANTTREES: HISTOGRAMS FOR CHANGE DETECTION

Choose a dimension j at random, define the §; as the set containing the 1 — my
quantile of the marginal distribution of training samples along j

oo o

Call X, the remaining samples

G. Boracchi, D. Carrera, C. Cervellera, D. Maccio “QuantTree: Histograms for Change Detection in Multivariate Data Streams” ICML 2018



QUANTTREES: HISTOGRAMS FOR CHANGE DETECTION

The procedure is iterated on the training samples that have not been included in a bin.

%
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G. Boracchi, D. Carrera, C. Cervellera, D. Maccio “QuantTree: Histograms for Change Detection in Multivariate Data Streams” ICML 2018



QUANTTREES: HISTOGRAMS FOR CHANGE DETECTION

The procedure is iterated on the training samples that have not been included in a bin.
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G. Boracchi, D. Carrera, C. Cervellera, D. Maccio “QuantTree: Histograms for Change Detection in Multivariate Data Streams” ICML 2018



QUANTTREES: HISTOGRAMS FOR CHANGE DETECTION

The procedure is iterated on the training samples that have not been included in a bin.

[
|
: s
|
I

G. Boracchi, D. Carrera, C. Cervellera, D. Maccio “QuantTree: Histograms for Change Detection in Multivariate Data Streams” ICML 2018



QUANTTREES: HISTOGRAMS FOR CHANGE DETECTION

The procedure is iterated on the training samples that have not been included in a bin.
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G. Boracchi, D. Carrera, C. Cervellera, D. Maccio “QuantTree: Histograms for Change Detection in Multivariate Data Streams” ICML 2018



QUANTTREES: HISTOGRAMS FOR CHANGE DETECTION

QuantTree iteratively divides the input Algorithm 1 QuantTree

Input: Training set T'R containing N stationary points in

space by binary splits along a single X; number of bins A’; target probabilities {7 } .

covariate, where the cutting points are Output: The histogram h = {(Sk, 7r) }.
defined by the quantiles of the I: Set Ng =N, Lo = 0.
marginal distributions 2 fork=1,..., K do _
3: Set N. = N1 — L1, X =X\ Uj{;: S, and

L = 1‘0uncl(?r;‘*‘ N).

4: Choose a random component i € {1, ..., d}.
5: Define z,, = |x,,]; for each x,, € A.

6: Sort {zn}: 2(1) < 2(2) < ... (V)

7: Draw v € {0, 1} from a Bernoulli(0.5).

8: if v = 0 then

9: Define S, = {x € &}, [x]; < 2z }-
10: else

11: Define S;g = {X < X;ﬁ [X]i 2 E(N;.;—Lk—kl}}'
12: end if

13: Set T = Lk/f\’_.

14: end for

G. Boracchi, D. Carrera, C. Cervellera, D. Maccio “QuantTree: Histograms for Change Detection in Multivariate Data Streams” ICML 2018



QUANTTREES: HISTOGRAMS FOR CHANGE DETECTION
Theorem (ICML18)

Let T}, (-) be a statistic defined over the bin probabilities of an histogram h computed
by QuantTree.

When W ~ ¢, , the distribution of T;,(W) depends only on:
* the number of training samples N,
* the size of window W,

* the expected probabilities in each bin {m;};=1 _x

G. Boracchi, D. Carrera, C. Cervellera, D. Maccio “QuantTree: Histograms for Change Detection in Multivariate Data Streams” ICML 2018



IMPLICATIONS

In histograms constructed by QuantTrees, the bin probabilities do not depend on ¢y,
nor data dimension d.

Thus, thresholds of tests statistics can be numerically computed from univariate data
that have been synthetically generated, yet guaranteeing a controlled false positive rate.

Boracchi, Carrera, ICPR 2020



CHANGE DETECTION APPROACHES

Parametric Settings:

The Change-Point Formulation

Non-parametric Settings:

The Change-Point Formulation
Change-Detection by Histograms

Change-Detection by Monitoring Features

Hierarchical Change-Detection Tests

Boracchi, Carrera, ICPR 2020



HIERARCHICAL CHANGE-DETECTION TESTS

In nonparametric sequential monitoring it is convenient to
e online sequential CDTs for detection purposes
o offline hypothesis tests for validation purposes.

This results in two-layered (hierarchical) CDTs

Alippi, C., Boracchi, G., Roveri, M. "Hierarchical Change-Detection Tests" TNNLS 2016 pp 1- 13



HIERARCHICAL CHANGE-DETECTION TESTS

In nonparametric sequential monitoring it is convenient to
e online sequential CDTs for detection purposes
o offline hypothesis tests for validation purposes.

This results in two-layered (hierarchical) CDTs

Hierarchical Change-Detection Test

Offline HT is activated to validate [ J Estimated Change Point T
. Validation Qutcome (Y/N)
any detection

Reconfiguration
Online CDT detects process New Training Set | X

changes in the input datastream

Change Indicators | x(t)

[

_—

Datastream | S(t) The Hierarchical CDT is
automatically reconfigured

Alippi, C., Boracchi, G., Roveri, M. "Hierarchical Change-Detection Tests" TNNLS 2016 pp 1- 13



HIERARCHICAL CHANGE-DETECTION TESTS

Hierarchical CDTs can achieve a far more advantageous trade-off between false-positive
rate and detection delay than their single-layered, more traditional, counterpart.

FPR vs DD
2500
-—-HCDT
=3 Single-layered CDT
2000 RXH-F-9m 25th 75th percentiles HCDT
>
T“j \:'\\ rzo5 | 25t 75t percentiles CDT
= 1500 [y= 2.
2
L
O
O 1000
500 5
0 0.2 0.4 0.6 0.8

False alarm rate

Alippi, C., Boracchi, G., Roveri, M. "Hierarchical Change-Detection Tests" TNNLS 2016 pp 1- 13



DETECTABILITY LOSS IN
HIGH-DIMENSIONAL DATA

How data dimension affects monitoring the Log-likelihood
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OUR GOAL

Study how the data dimension d influences the change detectability, i.e., how difficult is
to solve change/anomaly detection problems

Po P1

A A
o | \
N\
d |
e | =
@ >
T t




OUR GOAL

Study how the data dimension d influences the change detectability, i.e., how difficult is
to solve change/anomaly detection problems

<15o </>1

=
\—/
Iql R




OUR GOAL

Study how the data dimension d influences the change detectability, i.e., how difficult is
to solve change/anomaly detection problems
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OUR APPROACH

To study the impact of the sole data dimension d in change-detection problems:
1. Consider a change-detection approach

2. Define a measure of change detectability that well correlates with traditional
performance measures

3. Define a measure of change magnitude that refers only to differences between

$o and ¢4

C. Alippi, G. Boracchi, D. Carrera, M. Roveri, "Change Detection in Multivariate Datastreams: Likelihood and Detectability Loss" 1JCAl 2016



OUR RESULT

We show there is a detectability loss problem, i.e. that change detectability steadily
decreases when d increases.

Detectability loss is shown by:
e Analytical derivations: when ¢, and ¢, are Gaussians
e Empirical analysis on real data: measuring the power of hypothesis tests

C. Alippi, G. Boracchi, D. Carrera, M. Roveri, "Change Detection in Multivariate Datastreams: Likelihood and Detectability Loss" 1JCAl 2016



ROADMAP TO DETECTABILITY LOSS

Preliminaries:

e The change magnitude

e The change-detection approach
e The measure of change detectability

The detectability loss
e Analytical results
e Empirical analysis

Boracchi, Carrera, ICPR 2020



THE CHANGE MAGNITUDE

We measure the magnitude of a change ¢, — ¢, by the symmetric Kullback-Leibler
divergence

sKL(¢g, $1) = KL(¢g, p1) + KL(¢p1, o) =

_ bo(x) ¢1(x)
— flog <q§1(x)) ¢do(x)dx + J log ((Po(x)) b, (x)dx

In practice, large values of sKL(¢, ¢,) correspond to changes ¢, — ¢ that are very
apparent, since sKL(¢,, ¢,) identifies an upperbound of the power of hypothesis tests
designed to detect either ¢y = ¢1 or ¢ — g

T. Dasu, K. Shankar, S. Venkatasubramanian, K. Yi, “An information-theoretic approach to detecting changes in multi-dimensional data streams” In Proc. Symp. on the
Interface of Statistics, Computing Science, and Applications, 2006



ROADMAP TO DETECTABILITY LOSS

Preliminaries:
e The change magnitude

e The change-detection approach

e The measure of change detectability

The detectability loss
e Analytical results
e Empirical analysis

Boracchi, Carrera, ICPR 2020



MONITORING THE LOG-LIKELIHOOD

A typical approach to monitor the log-likelihood
1. During training, estimate ¢, from TR

2. During testing, compute
L(x(8)) = ~log(do(x(1)))
3. Monitor {£(x(t)), t=1,...}

x(t)

(x(®)

s
([ )
([ )




ROADMAP TO DETECTABILITY LOSS

Preliminaries:
e The change magnitude
e The change-detection approach

e The measure of change detectability

The detectability loss
e Analytical results
e Empirical analysis

Boracchi, Carrera, ICPR 2020



THE CHANGE DETECTABILITY
The Signal to Noise Ratio of the change
2
E |L(x)] — E [L(x
(E, L] = E [£@)])
var [L(x)] + var [L(x)]
X~ xX~@Pq

do

SNR(¢py = ¢1) =

measures the extent to which ¢y — ¢ is detectable by statistical tools designed to
detect changes in E[L(x)]

JE L)

(x(®)

s




OUR APPROACH

To study the impact of the sole data dimension d in change-detection problems we
need to:

1. Consider a change-detection approach

2. Define a measure of change detectability that well correlates with traditional
performance measures

3. Define a measure of change magnitude that refers only to differences between

$o and ¢4

Our goal (reformulated):

Studying how the change detectability SNR(¢, — ¢,) varies in change-detection
problems that have

 different data dimensions d
e constant change magnitude sKL(¢,, ;)

C. Alippi, G. Boracchi, D. Carrera, M. Roveri, "Change Detection in Multivariate Datastreams: Likelihood and Detectability Loss" 1JCAl 2016



ROADMAP TO DETECTABILITY LOSS

Preliminaries:
e The change magnitude
e The change-detection approach
e The measure of change detectability

The detectability loss

e Analytical results

e Empirical analysis

Boracchi, Carrera, ICPR 2020



THE DETECTABILITY LOSS

Theorem (IJCAI16)
Let pg = N (ug, o) and let ¢, (x) = ¢po(Qx + v) where Q € R**? and orthogonal ,
v € R, then

C
SNR(¢pg = ¢1) < 7

Where C is a constant that depends only on sKL(¢q, 1)

C. Alippi, G. Boracchi, D. Carrera, M. Roveri, "Change Detection in Multivariate Datastreams: Likelihood and Detectability Loss" 1JCAl 2016



THE DETECTABILITY LOSS
Theorem (1JCAI16)

Let o = N (g, Zo) and let ¢, (x) = ¢po(Qx + v) where Q € R**4 and orthogonal ,
v € R4 then

C
SNR(¢py = ¢1) < P

Where C is a constant that depends only on sKL(¢q, 1)

Remarks:

o Changes of a given magnitude, sKL(¢,, ¢;), become more
difficult to detect when d increases

e DL does not depend on the change parameters
e DL does not depend on the specific detection rule
« DL does not depend on estimation errors on @,

Boracchi, Carrera, ICPR 2020



THE DETECTABILITY LOSS: THE CHANGE MODEL
Theorem (1JCAI16)

Let pg = N (Ug, Zy) and 164 b,(x) = Po(Qx + v) l/vhere Q € R¥*% and orthogonal ,
v € R, then

C
SNR(¢pg = ¢1) < 7

Where C is a constant that depends only on sKL(¢q, 1)

Boracchi, Carrera, ICPR 2020



THE DETECTABILITY LOSS: THE CHANGE MODEL

The change model ¢; (x) = ¢o(Qx + v) includes:
e Changes in the location of ¢, (i.e, +v)
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THE DETECTABILITY LOSS: THE CHANGE MODEL

The change model ¢; (x) = ¢o(Qx + v) includes:
e Changes in the location of ¢, (i.e, +v)
e Changes in the correlation of x (i.e, Qx)

It does not include changes in the scale of ¢, that can be
however detected monitoring ||x||




THE DETECTABILITY LOSS: THE GAUSSIAN ASSUMPTION

Assuming ¢y = N (ug, Zo) looks like a severe limitation.
e Other distributions are not easy to handle analytically

e We can prove that DL occurs also in random vectors having independent
components

e The result have been empirically confirmed in case of approximations of L(+)
typically used for Gaussian mixtures

Boracchi, Carrera, ICPR 2020



ROADMAP TO DETECTABILITY LOSS

Preliminaries:
e The change magnitude
e The change-detection approach
e The measure of change detectability

The detectability loss
e Analytical results

e Empirical analysis

Boracchi, Carrera, ICPR 2020



THE DETECTABILITY LOSS: EMPIRICAL ANALYSIS

The data
e Synthetically generate streams with different dimensions d
e Estimate cﬁo by Gaussian Mixture from a stationary training set
e In each stream we introduce ¢y — ¢4 such that

$1(x) = $o(Qx + v) and sKL(¢o, ¢1) = 1

o Test data: two windows 1/, and V; (500 samples each) selected before and after the

change.
VO Vl

x(t)

N 4




THE DETECTABILITY LOSS: EMPIRICAL ANALYSIS

We measure the change-detectability as:
e Compute L(o(x)) from V, and V4, obtaining W, and W,
e Compute a test statistic T (W,, W;) to compare the two
e Detect a change by an hypothesis test
T(Wo,W1) S h
where h controls the amount of false positives
e Use the power of this test to assess change detectability

(x(®)

s

([ )
()

o
()

N 4



THE HYPOTHESIS TESTS POWER ON GAUSSIAN STREAMS

Gaussians Remarks:
10— « ¢ is defined analytically
- e The t-test detects changes in the
0.8 | expectation of log(¢,(+))
- e The Lepage test detects changes in the
L 0.6 location and scale of log(¢y(+))
ﬁ% - Results
T 04

e« The HT power decays with d: DL does
i t-test log(dy (")) not only concern the upperbound of

u SNR.
== Lepage log(¢py(-)) oL | d imati but
B Lepage log(q,’A)O(-)) ° IS not due to estimation errors, bu

0 il I RN these makethingSWOrSt.
109 101 102

e t-test log (o ()

0.2

Also the power of the Lepage HT

d decreases, which indicates that the
change is more difficult to detect even
when monitoring the variance

Boracchi, Carrera, ICPR 2020



THE HYPOTHESIS TESTS POWER ON UCI DATASETS

Particle Wine

1
e {_test on Eu
Iy — r
0.8 t-test on L R
=il [epage test on Ly
—B Lepage test on £
06| pag !
3 o
2 2
o e
Ay Ay
0.4
0.2
A A h A s A
0 | | | | | 0 | | | | |
10 20 30 40 50 2 4 6 8 10
d d

Boracchi, Carrera, ICPR 2020



THE HYPOTHESIS TESTS POWER ON PARTICLE DATASET

Particle Remarks:
1 ~ o ¢,is defined through CCM a framework to
== {-test on L, control the change magnitude and vyield
0.8 -\ —A— {_test on L sKL(¢py, 1) = 1
A == Lepage test on Ly « o is a Gaussian Mixture where k is selected
ek —® Lepage test on L, by cross-validation
E | \ e Approximated expression of L(:) to prevent
o 0 I numerical approximations
AN
| Results:
05 B e DL occurs also in non-Gaussian data
B approximated by GM
; ST A e e a o DL is clearly visible at quite a low dimensions

C. Alippi, G. Boracchi, D. Carrera, M. Roveri, "Change Detection in Multivariate Datastreams: Likelihood and Detectability Loss" 1JCAl 2016
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LET’S MOVE OUT OF THE RANDOM VARIABLE WORLD!

Applying statistical methods to signals / image patches




P 4¥

OUR RUNNING EXAMPLE

Goal: Automatically measure area covered by defects
XX N

SR A\
=w'-'g§"\%7 4




ANOMALY DETECTION IN IMAGES

The goal not determining whether the whole image is normal or anomalous, but
locate/segment possible anomalies

Therefore, it is convenient to
1. Analyze the image patch-wise

2. Isolate regions containing
patches that are detected as
as anomalies

Normal patches

" L QS

Anomalous patches

L :I:.‘.::"! !1_.




REAL WORLD DETECTION PROBLEMS

Normal patches -> background

« Exhibit a specific structure (geometry) or intensities

" L\

Anomalous patches:

e Are rare elements that do not confrom with the background

. .JIJ '
_l
Boracchi, Carrera, ICPR 2020




Can we pursue approaches designed
for random variables on image
patches’



DENSITY-BASED APPROACH ON IMAGE PATCHES

A density-based approach to AD would be:
Training

I.  Split the normal image in patches s

ii. Fit a statistical modell ¢, = N (u, 2)|describing normal patches.

This model is rarely accurate
on natural images.

i.  Split the test image in patches Small patches (e.g. 2 X 2 or

5 X 5) are typically preferred

Testing

ii. Compute ¢, (s) the likelihood of each test patch s

iii. Detect anomalies by thresholding the likelihood

Du, B., Zhang, L.: Random-selection-based anomaly detector for hyperspectral imagery. IEEE Transactions on Geoscience and Remote sensing
X Xie, M Mirmehdi “Texture exemplars for defect detection on random textures” - ICPR 2005



THE LIMITATIONS OF THE RANDOM VARIABLE MODEL

e ROC curve indicates very low
performance on the nanofiber
images

0.9 r

0.8

e Density model is not accurate on
these images (and rarely is on
natural images)

0.7 r

0.6

0.5r

0.4 r

0.3 r

e Small patches (e.g. 2 X 2 or 5 X
22 patch 5) are typically preferred. The
S patch model becomes even more unfit
16x16 patch . .

as the patch size increases

0.2

0.1

Du, B., Zhang, L.: Random-selection-based anomaly detector for hyperspectral imagery. IEEE Transactions on Geoscience and Remote sensing

X Xie, M Mirmehdi “Texture exemplars for defect detection on random textures” - ICPR 2005



REAL WORLD DETECTION PROBLEMS

Random variable model does not successfully apply to signals or images (not even small
portions)

AN,

Stacking each patch/signal s € R? in a vector x is not convenient:

e Data dimension d becomes huge

e Strong correlations among components, difficult to directly model by a probability
density function ¢,

Boracchi, Carrera, ICPR 2020



THE LIMITATIONS OF THE RANDOM VARIABLE MODEL

Distribution of adjacent pixel values inside a patch:
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THE LIMITATIONS OF THE RANDOM VARIABLE MODEL

Distribution of adjacent pixel values inside a patch:

o . ;ﬁ . g o0 e e afl
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Data are clearly correlated in space, and are difficult to
model by a smooth density function (e.g., Gaussians)
The random variable model is not very appropriate for

describing images
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THE LIMITATIONS OF THE RANDOM VARIABLE MODEL

Patches from natural images leave close to a low dimensional manifold

These means that patches can be well described by few latent variables

Bengio, Courville, Vincent, “Representation Learning: A Review and New Perspectives”, IEEE Pattern Analysis and Machine Intelligence 2013



A SIMPLE EXPERIMENT

Let’s approximate this manifold with the simplest one: a linear subspace

-

In practice, we compute the PCA of training patches. Consider the PCA score as latent
variables, which means projecting each patch over the linear subspace spanned by the
first components.

Boracchi, Carrera, ICPR 2020



A SIMPLE EXPERIMENT

Distribution of first 6 PCA coefficients:
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A SIMPLE EXPERIMENT

We fit a ¢y = N (u, X) on PCA components to describe normal patches, and perform
anomaly detection

0.9
0.8
0.7
0.6
0.5

0.4r

0.3

—2x2 patch
4x4 patch
8x8 patch
—— 16x16 patch

——PCA (6 comp.)

0.2

0.1F

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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ANOMALY DETECTION IN IMAGES AND SIGNALS

Out of the “Random Variable” World:
signal-based models for images



THE TYPICAL APPROACH

Most of the considered methods
1. Estimate a model describing normal data (background model)

2. Use the background model to provide, for each test signal/patch, an anomaly score,
or measure of rareness

3. Apply a decision rule to the anomaly score to detect anomalies (typically
thresholding)

4. [optional] Perform post-processing operations to enforce smooth detections and
avoid isolated pixels that are not consistent with neighbourhoods

Remark: Statistical-based approaches seen before uses as background model the
statistical distribution ¢, and a statistic as anomaly score

Boracchi, Carrera, ICPR 2020



THE TYPICAL APPROACH

Most of the considered methods

1. Estimate a model describing normal data (background model)

2. Use the background model to provide, for each test signal/patch, an anomaly score,
or measure of rareness

3. Apply a decision rule to the anomaly score to detect anomalies (typically
thresholding)

4. [optional] Perform post-processing operations to enforce smooth detections and
avoid isolated pixels that are not consistent with neighbourhoods
The background model is used to

bring an image patch into the
“random variable world”

Remark: Statistical-ba kground model the

statistical distribution

Boracchi, Carrera, ICPR 2020




THE TYPICAL APPROACH

Most of the considered methods

Estimate a model describing normal data (background model)

2. Use the background model to provide, for each test signal/patch, an anomaly score,
or measure of rareness

3. Apply a decision rule to the anomaly score to detect anomalies (typically
thresholding)

4. [optional] Perform post-processing operations to enforce smooth detections and
avoid isolated nixels that are not con<istent with neigshhoiirhoods
Oonce “having applied” the background

model, one can use anomaly detection
methods for the “random variable world”.
This might require fitting an
additional model

Remark: Statistical ound model the

statistical distribut

Boracchi, Carrera, ICPR 2020




THE THREE MAJOR INGREDIENTS

Most detection algorithms have three major ingredients:
* The background model M, learned from normal data
* The statistic / anomaly score: err(s), L(s), A(S), ...

* Decision rule to detect, e.g. err(s) 2y

Boracchi, Carrera, ICPR 2020



SEMI-SUPERVISED ANOMALY-DETECTION IN IMAGES

Out of the "Random Variable" world

e Reconstruction-based methods
« Subspace methods

e Feature-based monitoring
« Expert-driven Features
« Data-driven Features

Boracchi, Carrera, ICPR 2020



SEMI-SUPERVISED ANOMALY-DETECTION IN IMAGES

Out of the "Random Variable" world

e Reconstruction-based methods

« Subspace methods

e Feature-based monitoring
« Expert-driven Features
« Data-driven Features

Boracchi, Carrera, ICPR 2020



RECONSTRUCTION-BASED METHODS

Fit a statistical model to the observation to describe dependence, apply anomaly
detection on the independent residuals.

Detection is performed by a model M which encodes and reconstructs normal data:
e During training: learn the model M from training set S
e During testing:
- Encode and reconstruct each test signal s through M.
- Assess err(s), the residual between s and its reconstruction through M
err(s) = [|ls — 5|

The rationale is that M can reconstruct only normal data, thus anomalies are expected
to yield large reconstruction errors.

Boracchi, Carrera, ICPR 2020



MONITORING THE RECONSTRUCTION ERROR

Normal data are expected to yield values of err(s) that are low, while anomalies do not.
This holds when the model M was specifically learned to describe normal data

Outliers can be detected by thresholding err(s)

err(s)

L 4

Boracchi, Carrera, ICPR 2020



RECONSTRUCTION-BASED METHODS

Popular models are:

* neural networks, in particular auto-encoders, for higher dimensional data
 projection on subspaces / manifolds

e dictionaries yielding sparse-representations

 autoregressive models for time series (ARMA, ARIMA...)

Methods based on projections and dictionaries can be also interpreted as subspace
methods

Boracchi, Carrera, ICPR 2020



RECONSTRUCTION-BASED METHODS

Autoencoders are neural networks used for data reconstruction (they learn the identity
function)

The typical structure of an autoencoder is:
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RECONSTRUCTION-BASED METHODS

Autoencoders are trained to reconstruct all the samples in the training set. The
reconstruction loss over the training set S is

£$) =) [Is - DE®)I,

SES
D(&(+)) is trained via standard backpropagation algorithms (e.g. SGD)

Remarks

» Typically D(E(+)) does not provide perfect reconstruction,
since m < d.

e Regularization terms might be included in the loss function for the latent
representation £(s) to feature specific properties

Bengio, Y., Courville, A., Vincent, P. "Representation learning: A review and new perspectives”. IEEE TPAMI 2013

Mishne, G., Shaham, U., Cloninger, A., & Cohen, I. Diffusion nets. Applied and Computational Harmonic Analysis (2017).



MONITORING THE RECONSTRUCTION ERROR

Detection by reconstruction error monitoring (AE notation)
Training (Monitoring the Reconstruction Error):
1. Train the model D(E(-)) from the training set S
2. Learn the distribution of reconstruction errors
err(s) = ||s — D(E(s))”z, SEV
over a validation set V, such that V. NS = @, and define a suitable threshold y

Testing (Monitoring the Reconstruction Error):
1. Perform encoding and compute the reconstruction error

err(s) = ||s — D(é’(s))”z

2. Consider s anomalous when err(s) >y

Boracchi, Carrera, ICPR 2020



OUTLINE ON SEMI-SUPERVISED APPROACHES

Out of the "Random Variable" world

e Reconstruction-based methods

« Subspace methods

e Feature-based monitoring
« Expert-driven Features
« Data-driven Features
- Extended models

Boracchi, Carrera, ICPR 2020



SUBSPACE METHODS

The underlying assumption is that
 normal patches live in a subspace that can be identified by S

e anomalies can be detected by projecting test patches in such subspace and by
monitoring the reconstruction error (distance with the projection)

Normal

Data Data

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.



SUBSPACE METHODS

A few example of models used for describing normal patches:

e Orthogonal basis: normal patches can be expressed by a few selected basis elements
(Fourier, Wavelets..)

e PCA: normal patches live in the linear subspace of the first components

 Robust PCA: defined on the #! distance to be insensitive to outliers in normal data
e Kernel PCA: normal patches live in a non-linear manifold

* Dictionaries yielding sparse representations

e Random projections

Normal

Data Data

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.



SUBSPACE METHODS: PCA-BASED MONITORING

Anomaly detection based on PCA (and similar techniques):

1. Compute the projection on the subspace,
s'=PTs, PeR¥™ m«d
which is the projection over the first m principal components and a way to reduce
data-dimensionality.

2. Monitor the reconstruction error:
err(s) = ||s — PPTs||,
which is the distance between s and its projection PPTs over the subspace of
normal patches

2. [bis] The projection along the last principal component, is also a good anomaly
score, as it becomes
large at anomalies.

Boracchi, Carrera, ICPR 2020




SUBSPACE METHODS: SPARSE REPRESENTATIONS

Basic assumption: normal data live in a union of low-dimensional subspaces of the
input space

 The model learned from S is a matrix: the dictionary D.

* Each signal is decomposed as the sum of a few dictionary atoms (representation is
constrained to be sparse).

e Atoms represent the many building blocks that can be used to reconstruct normal
signals.

* There are typically more atoms than the signal dimension (redundant dictionaries).

o Effective as long as the learned dictionary D is very specific for normal data

M. Elad "Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing”, Springer, 2010



DICTIONARIES YIELDING SPARSE REPRESENTATIONS

Dictionaries are just matrices: D € R4*™

Boracchi, Carrera, ICPR 2020
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DICTIONARIES YIELDING SPARSE REPRESENTATIONS

Dictionaries are just matrices: D € R4*™
|
) S

Each column of D is an atom:

e lives in the input space R%
e it is one of the building blocks l !
that have been learned to

reconstruct the input signal in
the training set S

Boracchi, Carrera, ICPR 2020



SPARSE REPRESENTATIONS

Let s € R? be the input signal, a sparse representation is
m

S=zaidi

i=1
a linear combination of few dictionary atoms {d;}, i.e., most of coefficients are such
that a; = 0

An illustrative example in case of our patches

! W‘ o 1 o
[ | I

Boracchi, Carrera, ICPR 2020




SPARSE REPRESENTATIONS IN MATRIX EXPRESSION

Let s € RY be the input signal, a sparse representation is

S=Zaidi=Da,

D € ]Rdxm

a linear combination of few dictionary atoms {d;} and ||a||, < L, i.e. only a few
coefficients are nonzero, i.e. a is sparse.

S

Overcomplete / Redundant dictionary

D

*

a This vector

I/a=[

al, L) am]
IS sparse

Boracchi, Carrera, ICPR 2020



SPARSE REPRESENTATIONS IN MATRIX EXPRESSION

Let s € R? be the input signal, a sparse representation is
m

s=Zaidi=Da, D € R&Xm
i=1
a linear combination of few dictionary atoms {d;} and ||a||, < L, i.e. only a few
coefficients are nonzero, i.e. « is sparse.

S D a
This vector
r a = [C(l, e ) (Zm]
—_ ° is sparse
Undercomplete
dictionary

D. Carrera, B. Rossi, D. Zambon, P. Fragneto, G. Boracchi "ECG Monitoring in Wearable Devices by Sparse Models" in Proceedings of ECML-PKDD 2016, 16 pages

D. Carrera, B. Rossi, P. Fragneto, G. Boracchi "Online Anomaly Detection for Long-Term ECG Monitoring using Wearable Devices", Pattern Recognition 2019
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THE SPARSE CODING PROBLEM...

Sprase Coding: computing the sparse representation for an input signal s w.r.t. D

s € R4 —— a € R™
Since a has to be sparse, some sparsity-promoting prior need to be included. Most
popular formulation for this optimization problem are:
o £9 constrained,

a = argmin ||[Da —s||, s.t. ||la]lp <L
acR™

solved for instance by Matching Pursuit (MP), Orthogonal Matching Pursuit (OMP),...

« ¢! penalized (or constrained),

a = argmin||Da — s||5 + A||all4, A>0
acR”"

solved by BPDN, ISTA (proximal mapping), IRSL, ADMM... or any convex optimization tool.

Y. Pati, R. Rezaiifar, P. Krishnaprasad. “Orthogonal Matching Pursuit: recursive function approximation with application to wavelet decomposition”. Asilomar Conf. on
Signals, Systems and Comput. 1993
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THE SPARSE CODING PROBLEM...

Sprase Coding: computing the sparse representation for an input signal s w.r.t. D

s € R? — a € R™

It is solved as the following optimization problem, (e.g. via the Orthogonal Matching
Pursuit, OMP)

a = argmin ||[Da —s||, s.t. ||la]lp <L
acRm

4 AR DA™ Y,

a= 0.7 —0.2

In this illustration ¢ = [0.7,0,0,0.1,0,0,0, —0.2]

Boracchi, Carrera, ICPR 2020



... AND DICTIONARY LEARNING

Dictionary Learning: estimate D from a training set of normal signals S ¢ R¢

S=1{sy,..S,} W) DeR»M

It is solved as the following optimization problem typically via block-coordinates descent (e.g.
KSVD algorithm)

[D,X] = argmin  |lAY =S|z s.t. llyillo <L, Vy;

AE ]Rd)(n’ YE ]Rnxm
AN AR
D

P 4P lﬂ"‘

Aharon, M.; Elad, M. Bruckstein, A. K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation |EEE TSP, 2006
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A DICTIONARY LEARNED FROM NORMAL PATCHES

Example of training patches Few learned atoms (BPDN-based learning)

L

N |
£

Boracchi, Carrera, ICPR 2020



A DICTIONARY LEARNED FROM NORMAL ECG TRACINGS

S = {Sl, SM}
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A few minutes of ECG signals in resting conditions
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ANOMALY DETECTION BY MONITORING THE RECONSTRUCTION ERROR

Anomalies can be directly detected by performing the sparse coding of test signals and
then analysing the reconstruction error

err(s) = ||Da — s||,
And as in reconstruction-based techniques, compare it against a threshold y

IDx —s||5 <y — s is normal
IDx —s||5 =y — s is anomalous

Low err(s) High err(s)

D] D] D)

D. Carrera, B. Rossi, D. Zambon, P. Fragneto, G. Boracchi "ECG Monitoring in Wearable Devices by Sparse Models" in Proceedings of ECML-PKDD 2016, 16 pages
D. Carrera, B. Rossi, P. Fragneto, G. Boracchi "Online Anomaly Detection for Long-Term ECG Monitoring using Wearable Devices", Pattern Recognition 2019



ONLINE MONITORING THROUGH SPARSE REPRESENTATIONS

11

L]

Normal beat: ||Dx —s||5 <y Anomalies ||[Dx — s||5 > ¥

—s
0.4( = Dx
0.2}
S 0|
N
_0.2]

Boracchi, Carrera, ICPR 2020



ANOMALY DETECTION DURING SPARSE CODING

Anomalies can be directly detected during the sparse coding stage, by adopting a special
loss during optimization.

A set of test signals is modeled as:
S=DX+E+V

where X is sparse, V' is a noise term, and E is a matrix having most columns set to
zero. Columns e; # 0 indicate anomalies, as they do not admit a sparse representation
w.rt. D

A. Adler, M. Elad, Y. Hel-Or, and E. Rivlin, “Sparse coding with anomaly detection” Journal of Signal Processing Systems, vol. 79, no. 2, pp. 179-188, 2015.



ANOMALY DETECTION DURING SPARSE CODING

Anomalies can be detected by solving (through ADMM) the following sparse coding
problem

1
argrgin <§ IS — DX — Ell# + AllXIl, + H||E||2,1)

Data-fidelity for normal data Sparsity Group sparsity
regularization, only a few
columns can be nonzero

.. and identifying as anomalies the signals corresponding to columns of E that are

NONZEro.

A. Adler, M. Elad, Y. Hel-Or, and E. Rivlin, “Sparse coding with anomaly detection” Journal of Signal Processing Systems, vol. 79, no. 2, pp. 179-188, 2015.



OUTLINE ON SEMI-SUPERVISED APPROACHES

« Detrending/Filtering for time-series

e Reconstruction-based methods
« Subspace methods

e Feature-based monitoring

« Expert-driven Features
« Data-driven Features
« Extended models

Boracchi, Carrera, ICPR 2020



TYPICAL APPROACH: MONITORING FEATURES

Feature extraction: meaningful indicators to be monitored which have a known /
controlled response w.r.t. normal data

Signalworld _Random variables world__
Input signal Feature Anomaly/Change
vector detection

U
I

> Go(x(®) S |

x(t) e R™
p m<«<d
s ER
Feature Extraction: signal processing, The customary statistical
a priori information, learning methods framework for anomaly detection

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.



MONITORING FEATURE DISTRIBUTION
Normal data are expected to yield features x that are i.i.d. and follow an unknown
distribution ¢,.
Anomalous data do not, as they follow ¢; # ¢,.

We are back to our statistical framework and we can
o learn ¢, from a set features extracted from normal data

e detect anomalous data by extracting features x associated to each input s, and
then testing whether ¢,(x) < y

QG ° ° *

o
= ® ® ® [ o °

x(t)

o(x)
—
°

Boracchi, Carrera, ICPR 2020



MONITORING FEATURE DISTRIBUTION

Normal data are expected to yield features x that are i.i.d. and follow an unknown
distribution ¢,.

Anomalous data do not, as they follow ¢; # ¢,.

We are back to our statistical framework and we can

1 learn ét fenin A mnt fnntiiean A:.+--»+~4 Lonm nn nA'TM.I A sm
q Or by adopting any other statistical tool ;
° getect to detect anomalies in x ut s, an

then tesung wieuier ggux) < y

QG ° ° *

o
= ® ® ® [ o °

x(t)

o(x)
—
°

Boracchi, Carrera, ICPR 2020



FEATURE EXTRACTION

Data dimensionality can be reduced by extracting features

Good features should:
e Yield a stable response w.r.t. normal data
e Yield unusual response on anomalies

Examples of features seen so far:
e Reconstruction error err(s)
* representation coefficients (P's, a, ...)

.. but these are not the only

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.



FEATURE EXTRACTION APPROACHES

There are two major approaches for extracting features:

Expert-driven (hand-crafted) features: computational expressions that are manually
designed by experts to distinguish between normal and anomalous data

Data-driven features: features characterizing normal data are automatically learned from
training set of normal samples S

Boracchi, Carrera, ICPR 2020



OUTLINE ON SEMI-SUPERVISED APPROACHES

« Detrending/Filtering for time-series

e Reconstruction-based methods
« Subspace methods

e Feature-based monitoring

« Expert-driven Features

« Data-driven Features
« Data-driven Features: extended models

Boracchi, Carrera, ICPR 2020



. L
EXAMPLES OF EXPERT-DRIVEN FEATURES r ‘
Expert-driven features: each patch of an image s

s, ={s(c+u),u €U}
Example of features are:
e the average,
e the variance,
 the total variation (the energy of gradients)

These can hopefully distinguish normal and anomalous patches, considering also how
anomalous regions will be (e.g. flat or without edges)

A\, Pr4"

D. Carrera, F. Manganini, G. Boracchi, E. Lanzarone "Defect Detection in SEM Images of Nanofibrous Materials", IEEE Transactions on Industrial Informatics 2017, 11 pages,
doi:10.1109/T11.2016.2641472




OUTLINE ON SEMI-SUPERVISED APPROACHES

« Detrending/Filtering for time-series

e Reconstruction-based methods
« Subspace methods

e Feature-based monitoring
« Expert-driven Features

« Data-driven Features

« Data-driven Features: extended models

Boracchi, Carrera, ICPR 2020
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EXAMPLES OF DATA-DRIVEN FEATURES

Analyze each patch of an image s
s, = {s(c+u),u €U}
and determine whether it is normal or anomalous.

Data driven features: expressions to quantitatively assess whether test patches conform
or not with the model, learned from normal data.

S\, 4T

D. Carrera, F. Manganini, G. Boracchi, E. Lanzarone "Defect Detection in SEM Images of Nanofibrous Materials", IEEE Transactions on Industrial Informatics 2017, 11 pages,
doi:10.1109/T11.2016.2641472




AUTOENCODERS AS FEATURE EXTRACTORS

Autoencoders can be also used in feature-based monitoring schemes, monitoring as
feature the hidden/latent representation of the input signal
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ANOMALY DETECTION BY MONITORING FEATURE DISTRIBUTION

Detection by feature monitoring (AE notation)
Training (Monitoring Feature Distribution):
e Learn the autoencoder D(E(+)) from the training set S

* Fit a density model ¢, to the encoded features
{E(s),s eV}
over a validation set V,suchthatV NS =0

* Define a suitable threshold y for ¢, (s)
Testing (Monitoring Feature Distribution):
* Encode each incoming signal s through &

e Detect anomalies when the anomaly score A(S) = ¢o(E(s)) <y

Boracchi, Carrera, ICPR 2020



ANOMALY DETECTION BY MONITORING PCA PROJECTIONS

Compute the projection on the subspace,

s'=PTs, PeR¥™ m«d
which is the projection over the first m principal components and a way to reduce data-
dimensionality.

Monitor the projections P”s by a suitable statistical technique (e.g. density based), as
when monitoring £(s)

Normal
Data

*pTg

Data S ..

Boracchi, Carrera, ICPR 2020



SPARSE REPRESENTATIONS AS FEATURE EXTRACTORS

To assess the conformance of s, with D we solve the following

Sparse coding:

a = argmin||Da — s||5 + A||all4, A>0
acR”

which is the BPDN formulation and we solve using ADMM.

The penalized £ formulation has more degrees of freedom in the reconstruction, the
conformance of s with D have to be assessed monitoring both terms of the functional

S. Boyd, N. Parikh, E. Chu, B. Peleato, ). Eckstein. "Distributed optimization and statistical learning via the alternating direction method of multipliers" 2011



FEATURES EXTRACTED FROM SPARSE CODING

Features then include both the reconstruction error
err(s) = ||Da — s||3
and the sparsity of the representation
lell4

Da—SMI

Thus obtaining a data-driven feature vector x = [” el
all1

Boracchi, Carrera, ICPR 2020



DENSITY-BASED MONITORING

Anomalies
T T T T T 3
. 12 L -
— T 123
ol |
~0.25 0 0.25
2
> 6 I
Iz
S 4
Normal data » 15
| 1
1 1 | | | 1 1 | 1 0-5
0 01 02 03 04 05 06 07 08

Reconstruction Error

Boracchi, Carrera, ICPR 2020



FEATURES EXTRACTED FROM SPARSE CODING
Training:
e Learn from S the dictionary D

e Compute the sparse representation w.r.t. D, thus features x over the validation set
V,suchthat VNS =0

e Learn from V, the distribution ¢, of normal features vectors x and the threshold y.
The model for anomaly detection is (D, ¢g,7)

Testing:

e Perform sparse coding of a test signal s, thus get the feature vector x

* Detect anomalies when A(s) = ¢o(x) <y

D. Carrera, F. Manganini, G. Boracchi, E. Lanzarone "Defect Detection in SEM Images of Nanofibrous Materials", IEEE Transactions on Industrial Informatics 2017, 11 pages,
doi:10.1109/T11.2016.2641472



FEATURES EXTRACTED FROM SPARSE CODING
Training:
e Learn from S the dictionary D

e Compute the sparse representation w.r.t. D, thus features x over the validation set
V,suchthat VNS =0

~)

i GOSN & 4 o - B _ .t . - £ _ - 1 £_ _ s . ___ _ - _xe e . -~ o sl

° Learn reshold y.

The mod This is rather a flexible solution and can be adapted when
Testing: operating conditions changes (e.g. heartrate changes, images are

e Perfor acquired at different zooming level)

e Detect .. . . .

I 4 r U\ 7/ |

D. Carrera, F. Manganini, G. Boracchi, E. Lanzarone "Defect Detection in SEM Images of Nanofibrous Materials", IEEE Transactions on Industrial Informatics 2017, 11 pages,
doi:10.1109/T11.2016.2641472









THE ROC CURVES

: : I
Tests on 40 images with
anomalies manually i
annotated by an expert 0.8 |

—— STSIM
The proposed anomaly 0.6 AUC = 0.619
. . Coding
detection algorithm ~ e 081
OUtperformS expert-dl’iven = Variance
features and other methods 0.4 c;j;i: 0.775
based on sparse AUC = 0.704
representations 0.9 = Crad&Var
4 AUC = 0.796
e Proposed
AUC = 0.926
0 | | |
0 0.2 0.4 0.6 0.8 1

FPR
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DETECTABILITY LOSS ON THESE NANOFIBERS

Selecting the good features is obviously important.
Why not stacking data-driven and expert-driven features?

Consider d = 3,4, 5 dimensional features

o We selectively add the three expert-driven features to the two data-driven ones
(average gradient and variance)

o We always fit a GM model to a large-enough number of training data

Boracchi, Carrera, ICPR 2020



DETECTABILITY LOSS ON THESE NANOFIBERS

Anomaly detection
performance

progressively decay
when d increases

TPR

, FPR
A different test set than TIl paper was here used

Boracchi, Carrera, ICPR 2020



DETECTABILITY LOSS AND IRRELEVANT FEATURES

We believe this because added features are irrelevant, namely features that:
e are not directly affected by the change
e do not provide any additional information for change detection purposes (i.e. leave
sKL(¢,, 1) constant)
Adding irrelevant feature yields detectability loss.

Other issues might affect detection performance
« A biased denisty function for ¢,
e Scarcity of training samples when d increases

However, we are inclined to conclude that

e In this case these expert-driven features do not add enough relevant information
on top of the data-driven ones (for anomaly-detection purposes).

Boracchi, Carrera, ICPR 2020



OUTLINE ON SEMI-SUPERVISED APPROACHES

« Detrending/Filtering for time-series

e Reconstruction-based methods
« Subspace methods

e Feature-based monitoring
« Expert-driven Features
« Data-driven Features

« Data-driven Features: extended models

Boracchi, Carrera, ICPR 2020



CONVOLUTIONAL SPARSITY

Data-driven features from convolutional sparse models
m
S~ z d,; ® «a;, s.t. «; is sparse
i=1

where the whole image s is entirely encoded as the sum of n convolutions between a
filter d; and a coefficient map «;

e Translation invariant representation

o Few small filters are typically required

e Filters exhibit very specific image structures
e Easy to use filters having different size

M. D. Zeiler, D. Krishnan, G. W. Taylor and R. Fergus “Deconvolutional networks” CVPR 2010



EXAMPLE OF LEARNED FILTERS

Carrera, ICPR 2020

Boracchi,

Learned Filters
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EXAMPLE OF FEATURE MAPS

Test Image Coefficient maps Filters

Boracchi, Carrera, ICPR 2020



FEATURES FROM CONVOLUTIONAL SPARSE MODEL

The standard convolutional sparse coding

n

Zdi ®a; —s

=1

{a} = argmin
{a}n

2 n
+2) llall
2 =1

leads to the following feature vector for each image region in c:
— 2_

[1(a0a-s)
[T

Cc

2

=1 1

..but, anomaly detection performance are rather poor

Boracchi, Carrera, ICPR 2020



SPARSITY IS TOO LOOSE A CRITERION FOR DETECTION

Normal Anomalous Q
Test Image Test Image o 2
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maatanns R s g
SRR 2 3
SaisaaibRe g 8
125R 'm"i:'-'“ﬁﬁ‘ s = b
D N
3 3
3 3
1 —Aa}
Ee
{225 c 3
i samss W - =
These two (normal and 0 5
patches exhibit same sparsity and S @

reconstruction error
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FEATURES FROM CONVOLUTIONAL SPARSE MODEL

Add the group sparsity of the maps on the patch support as an additional

feature
- 2_

m
[1(Yaoa-s
C =1

I
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INgE g

|
o~
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)
(\S)
l

D. Carrera, G. Boracchi, A. Foi and B. Wohlberg , “Detecting Anomalous Structures by Convolutional Sparse Models “ IEEE IJCNN 2015



ANOMALY-DETECTION PERFORMANCE

On 25 different textures and 600
test images (pair of textures to
mimic normal/anomalous
regions)

ROC curves from s = s, + s

Best performance achieved by

the 3-dimensional feature '!
indicators o 0.0 ? .
a === Convolutional Group on s

Achieve similar performanCe than F 04 == Convolutional on s
steerable pyramid specifically ' Patch-based on s
designed for texture «sn: Sample Moments on s
classification 0.2 :
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FPR
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SIMILARITY AND REFERENCE-BASED APPROACHES

Used for monitoring time series and images




SIMILARITY-BASED METHODS

When normal data exhibit a periodic behaviour, anomalies are detected as unusual
patterns that are not similar to training ones.

Euclidean distance between portions of training and test data

I
151

10 Pt
I %W 1 I'Hm.
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E. Keogh, J. Lin, A. Fu "Hot sax: Efficiently finding the most unusual time series subsequence"” IEEE ICDM 2005 8 pp
G. Boracchi and M. Roveri "Exploiting Self-Similarity for Change Detection” , 1)CNN 2014, pp 3339 - 3346



SELF SIMILARITY IS A POWERFUL PRIOR

Texture completion
Denoising (Regression)

Inpainting (Reconstruction)

Images courtesy of Alessandro Foi http://www.cs.tut.fi/~foi/



http://www.cs.tut.fi/%7Efoi/

SELF SIMILARITY IS A POWERFUL PRIOR

Self-similarity is measured patch-wise
We consider 1D datastreams {s(7),7=1,..}, s(t) € R

We define a patch centered at t having size v as
s; ={s(t—v),..,s(t),..,s(t+v)}
30,

Distance between patches is the £, norm of their difference

v

Ise=scllz = | ) (st +D) = s +D)°
\ =—v

Boracchi, Carrera, ICPR 2020



MEASURING SIMILARITY FOR DETECTION PURPOSES

We build a training set for normal patches
P={s,t=v,...M—v}

15 —l
104 -
0 100 200 300 400 500 600 700 800

Boracchi, Carrera, ICPR 2020



MEASURING SIMILARITY FOR DETECTION PURPOSES

We build a training set for normal patches
P = {St,t =7, ..
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MEASURING SIMILARITY FOR DETECTION PURPOSES

We build a training set for normal patches
P={s,t=v,...M—v}

Intuition:

s, € Psimilarto s;,Vt < T~
A s, € P similar to s;, vVt = T™ Out of Control
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MEASURING SIMILARITY FOR DETECTION PURPOSES

We build a training set for normal patches
P={s,t=v,...M—v}

Intuition:
s, € Psimilarto s;,Vt < T~

A s, € P similar to s;, vVt = T™ Out of Control
15| %g :
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THE ANOMALY SCORE / CHANGE INDICATOR AND DATA-DRIVEN FEATURES

A feature x(t) to quantitatively assess similarity to training data

We expect x(t) to satisfy
o {x(t),t < T*}should be i.i.d. realizations of an unknown random variable
o {x(t),t = T*} should come from a different distribution

Out of control states can be detected as changes in the distribution of x
e We can use any statistical process control technique

Boracchi, Carrera, ICPR 2020



FEATURE TO ASSESS SELF-SIMILARITY

The feature x(t) is computer after having identified the most similar patch to s; in P.

We define m(-) as the map that associate to t the location m(t) of the patch P of that
is most similar to s;

n(t) = argmin ||s; — s¢]l;
=V,...M—Vv

x(t) is the difference between the centers of s; and sy

x(t) = s(t) = s(m(t))

In ideal conditions x(t) should be i.i.d. noise

s __s@®)
2 i | L |
>4 & & w ot T e v Sr)

Thus can be monitored by any Change Detection Test (or anomaly detection method)

G. Boracchi and M. Roveri "Exploiting Self-Similarity for Change Detection” , I)JCNN 2014, pp 3339 - 3346



DATA DRIVEN FEATURE TO ASSESS SIMILARITY

In the real life, perfect matches are rare
e Patches do not differ only because of noise
e Noise affects also the association function m(-)

However, there is an experimental evidence that patch similarity well correlates with the
similarity between their central pixels

e This is the idea behind Non Local Means filter [Buades et al 2005], which introduced
a well established paradigm in signal/image processing

Therefore, as long as similarity assumption holds, it is possible to monitor the sequence
of x(t) to detect changes / anomalies

A. Buades, B. Coll, and J. Morel, “A review of image denoising algorithms, with a new one,” Multiscale Modeling Simulation, vol. 4, no. 2, p. 490, 2005.



FEATURE TO ASSESS SELF-SIMILARITY
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A. Soldevila, G. Boracchi, M. Roveri, S. Tornil-Sin and V. Puig, “Detecting and Localizing Leaks in Water Distribution Networks by Combining Expert Knowledge and Data-
Driven Models”, Under Revision



HOT SAX: FINDING DISCORDS

Discords are sequences that are /east similar to all the others

Discords are located by analyzing the whole sequence and comparing test each patch
with all the others

The most unusual patch, i.e. the one having the largest distance w.r.t. its closest
neighbohoord, is reported as a discord

In such a comparison it is important to:
e Avoid self-matches (i.e. comparison between each patch and overlapping ones)

e Adopt some efficient search criteria instead of “brute-force” search the most similar
match

To this purpose, optimized search procedure are proposed in (Keogh et al 2005)

E. Keogh, J. Lin, A. Fu "Hot sax: Efficiently finding the most unusual time series subsequence"” IEEE ICDM 2005 8 pp



REFERENCE BASED-METHODS IN QUALITY INSPECTION

In some cases anomalies can be detected by comparing
e the target, namely the image to be tested

e against a reference, namely an anomaly-free image

reference

M. Zontak, I. Cohen: Defect detection in patterned wafers using anisotropic Rernels." Machine Vision and Applications 21(2), 129{141 (2010)
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In some cases anomalies can be detected by comparing
e the target, namely the image to be tested

e against a reference, namely an anomaly-free image

reference

M. Zontak, I. Cohen: Defect detection in patterned wafers using anisotropic Rernels." Machine Vision and Applications 21(2), 129{141 (2010)



REFERENCE BASED-METHODS: E-CHUCKING

The e-chuck is adopted to safely maneuver, position and

block the silicon wafer during production.

The device is configured by means of marking

materials and the

markers should conform
to a reference template

Good (normal)

Electrodes

Bad (anomalous)
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CHANGE DETECTION IN REMOTE SENSING

A key problem in remote sensing is to detect changes, due to manmade or natural
phenomenon, by comparing multiple (satellite) images at different times.

In the remote sensing literature this is typically referred to as change detection

reference target

5774900 5775800 5778700 5777600 5778500 5774900 5775800 5776700 5778500

i L5 m\. e\ DN
5774900 5775800 S776T00 5777600

5774900 5775800 5776700 5777600 5778500

Boracchi, Carrera, ICPR 2020



MULTIMODAL, REFERENCE BASED ANOMALY DETECTION

Non trivial when direct comparison is prevented:

e Reference and target might not be aligned nor easy to register with a global
transformation

e Reference and target might be from different modalities / resolution / view

Multispectral vs SAR images
California flood 2017

(a) Landsat 8 (1)  (b) Sentinel-1A (¢2)

L. T. Luppino, F. M. Bianchi, G. Moser, S. N. Anfinsen, “Unsupervised Image Regression for Heterogeneous Change Detection” IEEE Trans. on Geoscience and Remote
Sensing (2019)



TRADITIONAL ANOMALY DETECTION SETUP

&

Anomaly detection deals with the
problem of identifying data that do not
conform to an expected behavior.

In the statistical and data-mining
literature, anomalies are typically
detected as samples falling in low-
density regions of a probability density
model describing the data.

Boracchi, Carrera, ICPR 2020



ANOMALY DETECTION IN A PATTERN RECOGNITION SETUP

Density-based or distance-based
% techniques are not effective to detect
anomalies in a pattern-recognition setup,
8 where anomalies are samples that deviate

*xt‘ from unknown structures or patterns.

PIF: Preference Isolation Forest, detects

these kind of anomalies thanks to

« Embedding in Preference Space

 An ad-hoc forest for detecting outliers in
the preference space

F. Leveni, L. Magri, G. Boracchi, C. Alippi, “Anomaly detection via preference embedding” ICPR 2020



Anomaly Scores

EIFOR [2]

ANOMALY DETECTION

Ground truth

LOF [3] PIF [4]

[1] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest”, in International Conference on Data Mining, IEEE, 2008, pp. 413-422.

[2] S. Hariri, M. C. Kind, and R. . Brunner, “Extended isolation forest”, TKDE, 2019.

[3] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: Identifying density-based local outliers”, in International Conference on Management of data, 2000
[4] F. Leveni, L. Magri, G. Boracchi, C. Alippi, “Anomaly detection via preference embedding” ICPR 2020
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[3] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: Identifying density-based local outliers”, in International Conference on Management of data, 2000
[4] F. Leveni, L. Magri, G. Boracchi, C. Alippi, “Anomaly detection via preference embedding” ICPR 2020



COUNTERACTING DOMAIN SHIFT
IN ANOMALY DETECTION

Adaptation Strategies



e 4
NEED FOR ADAPTATION

A challenge often occurring when performing online monitoring

Test data might differ from training data: need of adaptation, otherwise anomaly
detection methods would be ineffective
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Defects have to be detected at different zooming levels,

that might not be present in the training set.
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Boracchi, Carrera, ICPR 2020
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NEED FOR ADAPTATION | e
A challenge often occurring when performing online monitoring

Test data might differ from training data: need of adaptation, otherwise anomaly
detection methods would be ineffective
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The heartbeats get transformed when the heart rate changes:
learned models have to be adapted according to the heart rate.

Boracchi, Carrera, ICPR 2020



MODEL ADAPTATION

In the machine-learning literature these problems go under the name of transfer
learning / domain adaptation

Transfer Learning (TL): adapt a model learned in the source domain (e.g. heartbeats at a

given heartrate / fibers at a certain zoom level) to a target domain (e.g. heartbeats at an
higher heartrate / fibers zoomed in or out)

Many TL methods have been designed for supervised / semi-supervised / unsupervised

methods, depending on the availability of (annotated) data in the source and target
domains.

In most anomaly detection settings, no labels in the target data are provided (typically
they are not even provided in the source domain)

S. ). Pan and Q. Yang "A survey on transfer learning” IEEE TKDE 2010

S. Shekhar, V. M. Patel, H. V. Nguyen, & R. Chellappa, “Generalized domain-adaptive dictionaries,” CVPR 2013
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DOMAIN ADAPTATION ON QUALITY INSPECTION

SEM images can be acquired at different zooming levels

Solution:

* Synthetically generate training images at different zooming levels
e Learn a dictionary D; at each scale

 Combine the learned dictionaries in a multiscale dictionary D

LA T A
‘*"’

OROX
‘./ 7 v & “

\\?“\
X AN
L"k\‘\ﬂh

\’_'_.-5
//
<

AN
KA

-

!-‘
V
i

D=[ D, D, Ds D, ]

D. Carrera, G. Boracchi, A. Foi and B. Wohlberg "Scale-invariant Anomaly Detection With multiscale Group-sparse Models" ICIP 2016
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DOMAIN ADAPTATION ON QUALITY INSPECTION

SEM images can be acquired at different zooming levels

Solution:

* Synthetically generate training images at different zooming levels
e Learn a dictionary D; at each scale

 Combine the learned dictionaries in a multiscale dictionary D

e Sparse-coding including a penalized, group sparsity term

a = argmin —||S —Da|| +A||a|| +,uZ||a||

acRn

D. Carrera, G. Boracchi, A. Foi and B. Wohlberg "Scale-invariant Anomaly Detection With multiscale Group-sparse Models" ICIP 2016



DOMAIN ADAPTATION ON QUALITY INSPECTION

SEM images can be acquired at different zooming levels

Solution:

Synthetically generate training images at different zooming levels
Learn a dictionary D; at each scale

Combine the learned dictionaries in a multiscale dictionary D
Sparse-coding including a penalized, group sparsity term

Monitor a tri-variate feature vector

D. Carrera, G. Boracchi, A. Foi and B. Wohlberg "Scale-invariant Anomaly Detection With multiscale Group-sparse Models" ICIP 2016
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DOMAIN ADAPTATION ON QUALITY INSPECTION

Performance on SEM image dataset acquired at 4 different zooming levels (A,B,C,D). It is
important to include group-sparsity regularization also in the sparse coding stage

1 Ly
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Others - see Figure (b) Single Scale Series D
0 O Others - see Figure (a)
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D. Carrera, G. Boracchi, A. Foi and B. Wohlberg "Scale-invariant Anomaly Detection With multiscale Group-sparse Models" ICIP 2016
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DOMAIN ADAPTATION FOR ONLINE ECG MONITORING

We propose to design linear transformations F. .. to adapt user-specific dictionaries

— . mXxXm
Du;rl _ Frler DurrO, FrOtrl E ]:R

D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Domain Adaptation for Online ECG Monitoring” ICDM 2017,

D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Online Anomaly Detection for Long-Term ECG Monitoring using Wearable Devices", Pattern Recognition 2019
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DOMAIN ADAPTATION FOR ONLINE ECG MONITORING

We propose to design linear transformations F. .. to adapt user-specific dictionaries

— . mXxXm
Du;rl _ FrlrrO DurrO, FTOIrl E ]:R

Surprisingly these transformations can be learned from a publicly available dataset
containing ECG recordings at different heart rates from several users.

D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Domain Adaptation for Online ECG Monitoring” ICDM 2017,

D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Online Anomaly Detection for Long-Term ECG Monitoring using Wearable Devices", Pattern Recognition 2019

R
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LEARNING TRANSFORMATIONS

For each pair of heartrates (1, ;) we learn F. . by solving the following optimization
problem (involving data from L users of the LS-ST Dataset)

L L
(1 2 A
Frl,ro — argmin EZ”Su,rl —F Du,ro Xu ”F + ﬂZ”Xulll + E ”W @ F“% + €”W @ F”l
u=1 u=1

h / 7 %

Data-fidelity for heartbeats Sparsity Weighted elastic net

transformed by F, computed regularization to add stability
over all the L users and steer F towards

174 ; desirable properties
0.8 The matrix W is penalyzing less values
0.6 along the diagonal of F, thus assuming
Gl transformation to be local, i.e.,
involging only neighbouring samples
0.2
0

D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Domain Adaptation for Online ECG Monitoring” ICDM 2017,
D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Online Anomaly Detection for Long-Term ECG Monitoring using Wearable Devices", Pattern Recognition 2019
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DOMAIN ADAPTATION FOR ONLINE ECG MONITORING ' %

We adapt user-specific dictionaries through F. ;.
Du,rl — Frl,ro . Du,ro» E.

mxm
071 € R

User-independent transformations enable accurate mapping of user-specific dictionaries
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D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Domain Adaptation for Online ECG Monitoring” ICDM 2017,

D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Online Anomaly Detection for Long-Term ECG Monitoring using Wearable Devices", Pattern Recognition 2019
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DOMAIN ADAPTATION FOR ONLINE ECG MONITORING HVJ ' — L”

We adapt user-specific dictionaries through F. ;.
Du,rl — Frl,ro . Du,ro» E.
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User-independent transformations enable accurate mapping of user-specific dictionaries
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DICTIONARY ADAPTATION PERFORMANCE

The proposed domain adaptation solution achieves:

e |owest signal reconstruction error

* best anomaly detection performance (AUC)

Among alternative methods for dictionary adaptation

—&— Proposed
DTW
Cut

—a— SDDL

—a¢— Oracle

Reconstruction Error

S0 100 120

Heart Rate (bpm)

0.95

0.9

0.85
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P —.

AUC
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Heart Rate (bpm)

Carrera D., Rossi B., Fragneto P., and Boracchi G. "Domain Adaptation for Online ECG Monitoring” ICDM 2017,
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ONLINE ECG MONITORING BY WEARABLE
DEVICES



NN

THE BI02BIT DEVICE

ECG signals are recorded by the BIO2BIT device
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NN
ONLINE ECG SIGNALS BY WEARABLE DEVICES L “‘u

ECG signals are recorded by the BIO2BIT device

ECG are steadily transmitted via Bluethooth
low-energy to a Dongle mounting a Nucleo
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Boracchi, Carrera, ICPR 2020



ONLINE ECG SIGNALS BY WEARABLE DEVICES

Sparse Coding
« Optimized OMP for underdetermined dictionaries
- Performed in real-time on such a low-power wearable device

M. Longoni, D. Carrera, B. Rossi, P. Fragneto, M. Pessione and G. Boracchi “A Wearable Device for Online and Long-Term ECG Monitoring”, International Joint
Conference on Artificial Intelligence (IJCAI) 2018 - Demo Track

D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Online Anomaly Detection for Long-Term ECG Monitoring using Wearable Devices", Pattern Recognition 2019
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ONLINE ECG SIGNALS BY WEARABLE DEVICES Dictionary Learning UL

5 minutes of ECG signals are enough to
learn a dictionary Dy, ,, that is:

BIO2BIT

* User-specific
* Position-specific
Describing the morphology of the

heartbeats of that specific user in
resting conditions

Dictionary Learning
=) e Conveniently performed on an host

Modula Bluetooth
low energy

11\

T
o=

Nucleo
STM321L476RG

 The learned dictionary D, ,, and all
its transformed versions D, ,.. are
transferred to the dongle

SERVER

M. Longoni, D. Carrera, B. Rossi, P. Fragneto, M. Pessione and G. Boracchi “A Wearable Device for Online and Long-Term ECG Monitoring”, International Joint Conference
on Artificial Intelligence (I/CAI) 2018 - Demo Track

D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Online Anomaly Detection for Long-Term ECG Monitoring using Wearable Devices", Pattern Recognition 2019



DIFFERENT USERS FEATURE DIFFERENT HEARTBEAT MORPHOLOGY
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RESULTS: MIT-BIH DATASET

Our solution achieves competitive
performance against a state-of-the-art
anomaly detector on the MIT-BIH dataset.

However, our detector is much less
computationally demanding

TPR
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L

MIT-BIH: arrhythmias

Proposed
- == Coding

0

0.2

0.4 0.6 0.8
FPR

D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Online Anomaly Detection for Long-Term ECG Monitoring using Wearable Devices", Pattern Recognition 2019
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B2B DATASET (IN-HOUSE DATASET WITH ARRHYTHMIAS)

I
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Both the AUC and the F;-score are large when the heart rate increases.

The FPR is maintained almost constant

B2B: arrhythmias
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D. Carrera, B. Rossi, P. Fragneto and G. Boracchi "Online Anomaly Detection for Long-Term ECG Monitoring using Wearable Devices", Pattern Recognition 2019
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DEEP LEARNING FOR ANOMALY DETECTION

POLITECNICO DI MILANO




IMAGE CLASSIFICATION

The problem: assigning to an input image s one label [ from a fixed set of L categories A

“wheel” 65%, “tyre” 30%..

“castle” 55%, “tower” 43%..

A = {"wheel", "cars" .....
...... "castle"”, "baboon’, ... }

Boracchi, Carrera, ICPR 2020



DEEP LEARNING AND IMAGE CLASSIFICATION

Since 2010 ImageNet organizes ILSVRC (ImageNet Large Scale Visual Recognition

Challenge)

Classification error rate (top 5 accuracy):

In 2011: 25%

Deep learning

In 2012: 16% (achieved by a CNN)

In 2017: < 5% (for 29 of 38 competing teams, deep learning)

IMAGE

cchi, Carrera, ICPR 2020



DEEP LEARNING AND IMAGE CLASSIFICATION

Deep Learning boasted image classification performance, thanks to
e Advances in parallel hardware (e.g. GPU)

 Availability of large annotated dataset (e.g. the ImageNet project is a large database
visual recognition over 14M hand-annotated images in more than 20K categories)

Boracchi, Carrera, ICPR 2020



CONVOLUTIONAL NEURAL NETWORKS (CNN)

The typical architecture of a convolutional neural network

Feature maps

I Convolutions I Subsall’npling | Convolutions I Subsampling IFuIIy- connected I

Convolution filters are Thresholding + Fully connected Neural
learned for the Downsampling Network providing as
classification task at hand (ReLu + Maxpooling) output the class
scores

Boracchi, Carrera, ICPR 2020



THE OUTPUT OF A CNN

"Castle" probability

0.02

0.01

0.11

Trained
CNN

0.81

0.1

/

"Wheel"
probability

Boracchi, Carrera, ICPR 2020



CNN AS DATA-DRIVEN FEATURE EXTRACTOR

Extract high-level features from pixel data Classify

l—‘—\l_l_\

Convolution layers

s -i;_ _~; -‘ “ - 256x1
— ‘2"2;/\102#1
= 1024

Fully connected layers

4096x1



CNN AS DATA-DRIVEN FEATURE EXTRACTOR

The feature extractor and the classifier are
jointly learned in a end-to-end fashion

Extract high-level features from pixel data Classify

l_‘_\

Convolution layers Fully connected layers




SEMI-SUPERVISED APPROACHES

* CNN as data-driven feature extractor
- Transfer learning
- Self-supervised learning
- Autoencoders
- Domain-based

 (Generative models

Boracchi, Carrera, ICPR 2020



SEMI-SUPERVISED APPROACHES

* CNN as data-driven feature extractor

Transfer learning

Self-supervised learning
Autoencoders
Domain-based

 (Generative models

Boracchi, Carrera, ICPR 2020



THE THREE STEP IN ANOMALY DETECTION IN IMAGES

Recall the three major ingredients
* Feature extraction
* Anomaly score

 Decision rule

Boracchi, Carrera, ICPR 2020



CNN AS DATA-DRIVEN FEATURE EXTRACTOR

Extract high-level features from pixel data Classify

l_‘_\

Convolution layers Fully connected layers

The feature vector extracted from the last
layer can be modeled as a random vector

————— :;;»;*A;:? » 256x1
 a— 1024x]1
: 1024

4096x1




TRANSFER LEARNING

Idea:

« Use a pretrained network CNN (e.g. AlexNet), that was trained for a different task
and on a different dataset

« Throw away the last layer(s)
« Use the reduced CNN v to build a new dataset TR’ from TR:
TR' = {l/)(Si), Si (S TR}

 Train your favorite anomaly detector on TR’ to define the anomaly score and the
decision rule

Boracchi, Carrera, ICPR 2020



TRANSFER LEARNING

* Features extracted from a CNN, i.e., Y(s) is typically very large for deep networks
(e.g. ResNET). Reduce data-dimensionality by PCA defined on a set of normal features

 Anomalies can be detected by measuring distance w.r.t. normal features, possibly
using clustering to speed up performance.

Napoletano P., Piccoli F., Schettini R., "Anomaly Detection in Nanofibrous Materials by CNN-Based Self-Similarity", Sensors 2018



TRANSFER LEARNING

Pros: pretrained networks are very powerful models, since they usually trained on
datasets with million of images

cons:

* the network is not trained on normal data. Meaningful structures in normal images
might not be successfully captured by network trained on images from a different
domain (e.g. medical vs natural images)

* The anomaly score and the CNN are not jointly learned, while the end-to-end learning
strategy is the key to achieve impressive results in supervised tasks.

Boracchi, Carrera, ICPR 2020



SEMI-SUPERVISED APPROACHES

* CNN as data-driven feature extractor
- Transfer learning

- | Self-supervised learning

- Autoencoders
« Domain-based

 (Generative models

Boracchi, Carrera, ICPR 2020



SELF-SUPERVISED LEARNING

With transfer learning we use a model trained on a different dataset (e.g., Imagenet) to
address a different task (e.g., classification).

The idea of self-supervised learning is to train a model on the target dataset but solving
a different task, for which we can easily obtain the labels.

Boracchi, Carrera, ICPR 2020



SELF-SUPERVISED LEARNING

We can build a labeled dataset for multiclass classification from normal data
* Consider a set of T transformation 7’ = {t4, ..., T7}

* Apply each transformation t; to every s € TR:
TR0 = {(1;(s),i) | s€TR,i=1,...,T}
* Train a CNN on TR,y

* The output of the last layer of the CNN is used as feature vector

Boracchi, Carrera, ICPR 2020



SELF-SUPERVISED LEARNING

We can build a labeled dataset for multiclass classification from normal data
* Consider a set of T transformation 7’ = {t4, ..., T7}

* Apply each transformation t; to every s € TR:
TR0 = {(1;(s),i) | s€TR,i=1,...,T}
* Train a CNN on TR,y

* The output of the last layer of the CNN is used as feature vector

We can avoid using a pre-trained model, and train a CNN directly on our dataset

Boracchi, Carrera, ICPR 2020



SELF-SUPERVISED LEARNING

Example:
TR contains only images representing digit 3

e T contains rotations and horizontal/vertical flips

Boracchi, Carrera, ICPR 2020



SELF-SUPERVISED LEARNING

Example:

TR contains only images representing digit 3
Training set of

e T contains rotations and horizontal/vertical flips
normal data

12}

T3 7'-4-
Labeled training set
with T classes

Boracchi, Carrera, ICPR 2020



SELF-SUPERVISED LEARNING

Convolution Pooling Fully connected
Softmax

We can use the second last layer as feature vector and train an anomaly detector

Problem: we have to split our training set in two sets. The first set is used to train the
classifier, the second one to train the anomaly detector

Boracchi, Carrera, ICPR 2020



SELF-SUPERVISED LEARNING

Convolution Pooling Fully connected
Softmax

T;(s) —

a;

Another approach is to compute feed the network with the all the trasformed versions
7;(s) of the test sample s to obtain {a;}i_,

Golan, El-Yaniv, “Deep Anomaly Detection Using Geometric Transformations”, NeurlPS 2018



SELF-SUPERVISED LEARNING

Convolution Pooling Fully connected
Softmax

T;(s) —

a;

Another approach is to compute feed the network with the all the trasformed versions
7;(s) of the test sample s to obtain {a;}i_,

T
1
A(s) =1 —TZ[ai]i
i=1
Where |a;]; is the posterior probability of label i given t;(s)

Golan, El-Yaniv, “Deep Anomaly Detection Using Geometric Transformations”, NeurlPS 2018



SELF-SUPERVISED LEARNING

The set of transformation has to be properly chosen:

 if during training the trained classifier cannot discriminate the transformed samples,
it does not extract meaningful feature for anomaly detection

« Non-geometric transformations (Gaussian blur, gamma correction, sharpening) might
eliminate important features and are less performing than geometric ones

Golan, El-Yaniv, “Deep Anomaly Detection Using Geometric Transformations”, NeurlPS 2018



SEMI-SUPERVISED APPROACHES

* CNN as data-driven feature extractor
- Transfer learning
- Self-supervised learning

« | Autoencoders

« Domain-based

 (Generative models

Boracchi, Carrera, ICPR 2020



AUTOENCODERS (REVISITED)

%\
=

Encoder € Decoder D

Autoencoders can be trained directly on normal data by minimizing the reconstruction
loss:

> s = pE®),

SETR

Boracchi, Carrera, ICPR 2020



AUTOENCODERS (REVISITED)

We expect that autoencoders trained only on normal data do not provide good
reconstruction to anomalous data. Thus we can use the reconstruction error an anomaly

score:
err(s) = ||s — D(&(s))”z
: : ] e
The gradients w.r.t. the autoencoder weights % turn to be very discriminative between

normal and anomalous sample. This can be exploited in a more complex loss
L(s) = err(s) + Lgrad(s)

Where L., is designed to enforce gradients computed on data in training set to be
aligned to each other.

Then L(s) can be used as anomaly score

G. Kwon, M. Prabhushankar, D. Temel, and G. AIRegib, “Backpropagated Gradient Representations for Anomaly Detection”, ECCV 2020



AUTOENCODERS (REVISITED)

%\
=

Encoder € Decoder D

We can fit a density model (e.g. Gaussian Mixture) on a = £(s):

a~ z TiPuz;»

i

Where ¢, 5. is the pdf of V' (u;, %; )

Boracchi, Carrera, ICPR 2020



EM-ALGORITHM FOR GAUSSIAN MIXTURES

Estimation of Gaussian Mixture parameters {m;, u;, 2;} from a training set {a,, },,is typically
performed via EM-algorithm, that iterates the E and M steps

* E-step: compute the membership weights y,,; for each training sample a;,
. ﬂicpui,zi(“n)
D Tk Pup,2x (an)

Vn,i

| ]/2"’0

Bishop, “Pattern recognition and machine learning”
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EM-ALGORITHM FOR GAUSSIAN MIXTURES

Estimation of Gaussian Mixture parameters {m;, u;, 2;} from a training set {a,, },,is typically
performed via EM-algorithm, that iterates the E and M steps

* E-step: compute the membership weights y,,; for each training sample a;,

s CPui,Zl- (an)

Vni =
Tt Zk ﬂk‘Puk,Zk (a’l’l)

Y1~

N =N =

Y2 ~

Bishop, “Pattern recognition and machine lear%ng"



EM-ALGORITHM FOR GAUSSIAN MIXTURES

Estimation of Gaussian Mixture parameters {m;, u;, 2;} from a training set {a,, },,is typically
performed via EM-algorithm, that iterates the E and M steps

* E-step: compute the membership weights y,,; for each training sample a;,
. T[l'(pﬂi,zi(an)
D Tk Pup,2x (an)

* M-step: update the parameters of the Gaussian Mixture

an

Ty = %Zn Vn,i
_ XnVniln
InVYni
5, = Yn Vn,iltn—p) (an—p)"
InVYn,i

i

Bishop, “Pattern recognition and machine learning”



AUTOENCODERS (REVISITED)

%\
=

Encoder € Decoder D

We can compute the likelihood of a test sample s as:

£(8) = ) Tz, (E(5)),

i

Boracchi, Carrera, ICPR 2020



AUTOENCODERS (REVISITED)

Encoder € Decoder D

We can compute the likelihood of a test sample s as:

£(8) = ) Tz, (E(5)),

i

The autoencoder and the Gaussian Mixture are not jointly learned!

Boracchi, Carrera, ICPR 2020
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JOINT LEARNING OF AUTOENCODER AND DENSITY MODEL

given a training set of N samples use a NN to predict the membership weights of

each sample

Idea

Zong et al, “Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection



JOINT LEARNING OF AUTOENCODER AND DENSITY MODEL

Idea: given a training set of N samples use a NN to predict the membership weights of
each sample

z"nyn,i
_ Xn Vn,i(“n —u)(ay, — ﬂi)T

2nVn,i M-step

Zong et al, “Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection”, ICLR 2018
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DEEP AUTOENCODING GAUSSIAN MIXTURE MODEL

Minimize the loss:

minz s - 2)(8(5))”2 + AR(E(S))

Where

R(@) = ~10g ) mipy,z,(@)
i

Additional regularizations has to be imposed on X; to avoid trivial solution

R(E(s)) can be used an anomaly score for a sample s

Zong et al, “Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection”, ICLR 2018



SOME REMARKS

The estimation network introduces a regularization that helps to avoid local optima of
the recontruction error

The autoencoder is then able to extract meaningful feature from normal data

Density estimation enables anomaly detection, but it is a more complicated task

Boracchi, Carrera, ICPR 2020



SEMI-SUPERVISED APPROACHES

* CNN as data-driven feature extractor
- Transfer learning
- Self-supervised learning
- Autoencoders

| Domain-based

 (Generative models

Boracchi, Carrera, ICPR 2020



SUPPORT VECTOR DATA DESCRIPTION (SVDD) REVISITED

We want to find an hypersphere that, in the feature space, encloses most of the normal
data

Tax, D. M., Duin, R. P. "Support vector domain description". Pattern recognition letters, 20(11), 1191-1199 (1999)



SUPPORT VECTOR DATA DESCRIPTION (SVDD) REVISITED

We want to find an hypersphere that, in the feature space, encloses most of the normal
data

We expect that anomalous data lie outside the sphere

Tax, D. M., Duin, R. P. "Support vector domain description". Pattern recognition letters, 20(11), 1191-1199 (1999)



SUPPORT VECTOR DATA DESCRIPTION (SVDD) REVISITED

Typically the sphere is computed in a high (possibly infinite) dimensional feature space

Feature are defined using kernels
 Polinomial kernel

e Gaussian kernel

Boracchi, Carrera, ICPR 2020



SUPPORT VECTOR DATA DESCRIPTION (SVDD) REVISITED

Idea: can we learn the feature from normal data using a neural network?

o
v

Ruff et al, “Deep One-Class Classification”, ICML 2018



SOFT-BOUNDARY DEEP SVDD

Minimize the loss:

min R* + —Z max{0, |[Yg(s,) — c|| — R%} + /1||9||

R,0

* The samples s, such that
Ye(s,,) is inside the sphere do
not contribute to the loss

e v provides a bound on the
False Positive Rate

2 . -
- 2|161|” is a regularization term

A test sample s is anomalous if Yg(s) —c >R

Ruff et al, “Deep One-Class Classification”, ICML 2018



SOFT-BOUNDARY DEEP SVDD

Minimize the loss:

IEIBHRZ + —Z max{0, |[Yg(s,) — c|| — R%} + /1||9||

Remarks:

* Some contraints must be imposed on the network g to avoid trivial solutions:
- No bias terms
- Unbounded activations

¢ is not optimized but has to be precomputed from data
- ¢ must be different from ¢y = Y, (s)

Ruff et al, “Deep One-Class Classification”, ICML 2018



A SIMPLER FORMULATION: DEEP SVDD

_ 1 - 2 1le 2
min + NZ“%(S")_C” + A[161]
n=1

Cons:
 No bound on the FPR provided by v

« A threshold has to be chosen for the anomaly score:

A(s) = |[e(s) —cl|”

Ruff et al, “Deep One-Class Classification”, ICML 2018



SEMI-SUPERVISED APPROACHES

* CNN as data-driven feature extractor
- Transfer learning
- Self-supervised learning
- Autoencoders
- Domain-based

* | Generative models

Boracchi, Carrera, ICPR 2020



GENERATIVE MODELS

Goal:

generative models generate, given a training set of images (data) S, other images (data)
that are similar to those in §

Boracchi, Carrera, ICPR 2020



WHAT FOR GENERATIVE MODELS?

* Generative models can be used for data augmentation,
simulation and planning

» Realistic samples for artwork, super-resolution,
colorization, etc.

* You are getting close to the “holy grail” of modeling the
distribution of natural images

Radford, et al “Unsupervised representation learning with deep convolutional generative adversarial networks. ICLR 2016



GENERATIVE ADVERSARIAL NETWORKS (GAN)

The GAN approach:

Do not look for an explicit density model ¢ describing the manifold of natural images.
Just find out a model able to generate samples that looks like training samples § ¢ R™
Instead of sampling from ¢, just use:

« Sample a seed from a known distribution ¢,

* Feed this seed to a learned transformation that generates realistic samples, as if they
were drawn from ¢

Use a neural network to learn this transformation

Goodfellow, I., Pouget-Abadie, )., Mirza, M., Xu, B., Warde-Farley, ... & Bengio, Y. Generative adversarial nets NIPS 2014



GENERATIVE ADVERSARIAL NETWORKS (GAN)

The GAN approach:

. g‘> Generative
Network
-

Z~ (]52
Draw a sample from
the noise distribution

Goodfellow, I., Pouget-Abadie, )., Mirza, M., Xu, B., Warde-Farley, ... & Bengio, Y. Generative adversarial nets NIPS 2014




GENERATIVE ADVERSARIAL NETWORKS (GAN)

The GAN approach:

Z~¢z

—

Draw a sample from
the noise distribution

Goodfellow, I., Pouget-Abadie, )., Mirza, M., Xu, B., Warde-Farley, ... & Bengio, Y. Generative adversarial nets NIPS 2014

Generative
Network




GENERATIVE ADVERSARIAL NETWORKS (GAN)

The GAN solution: Train a pair of neural networks with different tasks that compete in a
sort of two player game.

These models are:

* Generator G that produces realistic samples e.g. taking as input some random noise.
G tries to fool the discriminator

e Discriminator D that takes as input an image and assess whether it is real or
generated by G

Train the two and at the end, keep only §

Goodfellow, I., Pouget-Abadie, )., Mirza, M., Xu, B., Warde-Farley, ... & Bengio, Y. Generative adversarial nets NIPS 2014



GAN ARCHITECTURE

Generated image

Real image from
the training set S

Boracchi, Carrera, ICPR 2020



USING GAN

]
T
]

Z~¢Z

Generated image

Discriminator D is completely useless and as such dropped. After a
successful GAN training, D is not able to distinguish the real/fake

Boracchi, Carrera, ICPR 2020



GAN

Both D and G are conveniently chosen as Neural Networks
Setting up the stage

Our networks take as input:
e D =DD(s)
« G=6G(z)

s € R" is an input image (either real or generated by G) and z € R% is some random
noise to be fed to the generator.

Our network give as output:
D(-): R™ - [0,1]
the posteriori for an input to be a true image (1)
G():RY > R"
the generated image

Goodfellow, I., Pouget-Abadie, )., Mirza, M., Xu, B., Warde-Farley, ... & Bengio, Y. Generative adversarial nets NIPS 2014



GAN TRAINING

A good discriminator is such:
 D(s) is maximum when s € S
 1—D(s) is maximum when s was generated from G

» 1—-D(G(2)) is maximum when z ~ ¢

Training D consists in maximizing the binary cross-entroy
mgx(ESNqu llogD(s)] + Ez~y, llog(1 — D(G(2)))])

Boracchi, Carrera, ICPR 2020



GAN TRAINING

A good discriminator is such:
 D(s) is maximum when s € S
 1—D(s) is maximum when s was generated from G

» 1—-D(G(2)) is maximum when z ~ ¢

Training D consists in maximizing the binary cross-entroy
mgx(ESNqu llogD(s)] + Ez~y, llog(1 — D(G(2)))])

s @

This has to be 1 since s ~ ¢5,  This has to be o since G(z)
thus images are real is a generated (fake) image

Boracchi, Carrera, ICPR 2020



GAN TRAINING

A good discriminator is such:
 D(s) is maximum when s € S
 1—D(s) is maximum when s was generated from G

» 1—-D(G(2)) is maximum when z ~ ¢

Training D consists in maximizing the binary cross-entroy
mgx(ESNqu llogD(s)] + Ez~y, llog(1 — D(G(2)))])

A good generator G is the one which makes D to fail

min max(Es-qg[log D(s)] + E;-g,[log(1 — D(G(2)))])

Boracchi, Carrera, ICPR 2020



ILLUSTRATION
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MNIST nearest sample to

the second-last

Generatedk samples column

Goodfellow, I., Pouget-Abadie, )., Mirza, M., Xu, B., Warde-Farley, ... & Bengio, Y. Generative adversarial nets NIPS 2014



INTERPOLATION IN THE LATENT SPACE

We can interpolate between two points in the latent space and obtain smooth
transitions from a digit to another one

VAYAYARARARAVAVAVA N

Goodfellow, I., Pouget-Abadie, )., Mirza, M., Xu, B., Warde-Farley, ... & Bengio, Y. Generative adversarial nets NIPS 2014



GAN FOR ANOMALY DETECTION

Idea: let us train a GAN on normal data. We expect that the generator G cannot generate
any anomalous sample s.

Problem: Given a test sample s how can we determine if it could be generated by G?

Anomalous

Latent space Manifold M of
normal data

Boracchi, Carrera, ICPR 2020



ANOGAN

Project the test sample s on the manifold M by solving the optimization problem:

min [|G(2) — s|| + 2log(1 - D(G(2)))

* |1G(2) — s|| ensures that s is well approximated by the generator

z

- log(1 —D(G(2))) ensures that the projection G(2) is similar to a real (normal)
sample

Latent space Manifold M of
normal data

Boracchi, Carrera, ICPR 2020



ANOGAN

Project the test sample s on the manifold M by solving the optimization problem:
zZ= mzin ||g(z) — S|| + Alog(1 — D(Q(z)))

° ||g(z) — s|| ensures that s is well approximated by the generator

- log(1 —D(G(2))) ensures that the projection G(2) is similar to a real (normal)
sample (since G fools D)

Anomaly score:

A(s) = |1G(2) - s|| + Alog(1 — D(G(2)))

Schlegl et al, "Unsupervised anomaly detection with generative adversarial networks to guide marker discovery", IPMI 2017



ANOGAN
Project the test sample s on the manifold M by solving the optimization problem:
2 =min |1G(2) — sl| + A1og(1 ~ D(G(2)))
° ||g(z) — s|| ensures that s is well approximated by the generator

- log(1 —D(G(2))) ensures that the projection G(2) is similar to a real (normal)
sample (since G fools D)

Anomaly score:

A(s) = |1G(2) - s|| + Alog(1 — D(G(2)))

We need to solve an optimization problem for each test sample!

Schlegl et al, "Unsupervised anomaly detection with generative adversarial networks to guide marker discovery", IPMI 2017



BIDIRECTIONAL GAN

Latent Space Data Space
Generator

Jl g ', \G(z

©

Discriminator
G
(%)

e L
J

Encoder

®
B

E

O

Donahue et al, "Adversarial feature learning", ICLR 2017



BIDIRECTIONAL GAN

Latent Space Data Space
Generator

Ot

S

Discriminator
{o]

Encoder
rgl{gn nglx L(D,E,G)

L(D,E,G) = Esp4llogD(s, E(s)] + E,~y,[l0g(1 —D(G(2), 2))]

Donahue et al, "Adversarial feature learning", ICLR 2017



BIDIRECTIONAL GAN

Latent Space Data Space
Generator

{5 J—69) .
:@_\ﬂscnmmator
| D
(%)

O

Encoder

©

E

It can be proved that on the manifold M (i.e. on normal data):

E=6""

Donahue et al, "Adversarial feature learning", ICLR 2017



ANOGAN IMPROVED

We can use BiGAN to efficiently invert the generator in AnoGAN:

2 = mi — —

Zenati et al, "Efficient GAN-based anomaly detection", Workshop ICLR 2018



ANOGAN IMPROVED

We can use BiGAN to efficiently invert the generator in AnoGAN:

2 = mi — —
Z

A(s) = 1G(2) — 51| + Alog (1 - D(6(2))) =
= [IG(£(s)) — 51| + Alog (1 - D(G(E(s)))

Zenati et al, "Efficient GAN-based anomaly detection", Workshop ICLR 2018



AUTOENCODER AS GENERATIVE MODELS

Denoising

Discriminator
R Autoencoder

€ G D

S + N(O’ 0'2) A > S, > [0,1]

e R tries to reconstruct sample s from its noisy version S=s +
N(0,0%)

* D tries to discriminate between noise-free and reconstructed
samples

Sabokrou et al, "Adversarially learned one-class classifier for novelty detection”, CVPR 2018
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Denoising

Discriminator
R Autoencoder

€ G D

S + N(O’ 0'2) A > S, > [0,1]

e R tries to reconstruct sample s from its noisy version S=s +
N(0,0%)

* D tries to discriminate between noise-free and reconstructed
samples
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AUTOENCODER AS GENERATIVE MODELS

Denoising

Discriminator
R Autoencoder

€ G D

S + N(O’ 0'2) A > S, > [0,1]

min max(Es-~g[log D($)] + Es_p 1 av(0,0%) 1081 = D(RGI)])

Sabokrou et al, "Adversarially learned one-class classifier for novelty detection”, CVPR 2018



AUTOENCODER AS GENERATIVE MODELS

Denoising L
Discriminator
R Autoencoder
e N
£ g D
\_ .
S + N(O’ 0'2) A > S, > [0,1]

min max(Es-g[log D($)] + Es_p g1 av(0,0%) 1081 = D(RG))])

We expect that R can successfully reconstruct (thus, fool D) only
normal sample:
A(s) =1 —D(R(s))

Sabokrou et al, "Adversarially learned one-class classifier for novelty detection”, CVPR 2018



AUTOENCODER AS GENERATIVE MODELS

The generator G may be able to generate samples also of anomalous class

In this case it would be impossible to use G to discriminate between normal and
anomalous samples

This may happen if the € maps
anomalous samples in region of the
latent space that were not explored
during training

,' g

ECINERER

Perera et al, "OCGAN: One-class novelty detection using GANs with constrained latent representations”, CVPR 2019



AUTOENCODER AS GENERATIVE MODELS

The generator G may be able to generate samples also of anomalous class

In this case it would be impossible to use G to discriminate between normal and
anomalous samples

This may happen if the € maps
anomalous samples in region of the
latent space that were not explored
during training

Idea: we can enforce a known
distribution on the latent space

,' g

ECINERER

Perera et al, "OCGAN: One-class novelty detection using GANs with constrained latent representations”, CVPR 2019



AUTOENCODER AS GENERATIVE MODELS

Estimation Network
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Zong et al, “Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection”, ICLR 2018
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Estimate the GM parameters as
Z.



AUTOENCODER AS GENERATIVE MODELS

The generator G may be able to generate samples also of anomalous class

In this case it would be impossible to use G to discriminate between normal and
anomalous samples

Idea: we can enforce a known
distribution on the latent space

This can be done using a latent
discriminator on the latent space

Perera et al, "OCGAN: One-class novelty detection using GANs with constrained latent representations”, CVPR 2019



MUCH MORE COMPLICATED ARCHITECTURE
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Perera et al, "OCGAN: One-class novelty detection using GANs with constrained latent representations”, CVPR 2019



MUCH MORE COMPLICATED ARCHITECTURE
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A FEW CONCLUDING REMARKS

Nowadays, anomaly detection problems are ubiquitous in engineering and applied
sciences.

The presented general framework encompasses most of algorithms in the literature,
which often boil down to

 Feature extraction (background model).
 Definition of suitable statistics (anomaly score).

« Applying decision rules to a set of random variables.

Boracchi, Carrera, ICPR 2020



A FEW CONCLUDING REMARKS

When data are characterized by complex structures, as in case of images and signals,
the feature extraction phase is the most critical one.

Data-driven models provide meaningful representations of signal and images, and these
can be used to find good feature for anomaly detection.

Detectability loss:

* when d increases, changes become more difficult to detect, at least when monitoring
the log-likelihood.

 This should be accounted when designing/learning features: irrelevant components
are harmful!

Boracchi, Carrera, ICPR 2020



A FEW CONCLUDING REMARKS

Nowadays the most powerful algorithms for feature extraction are based on deep
learning, and in particular Convolutional Neural Networks

The key of the success of CNNs is the end-to-end learning, and in our case the feature
extractor and the anomaly score are jointly learned.

Still, anomaly-detection methods based on deep learning rely on decision rule, which
has to be defined according to some statistical criteria, e.g. to guarantee a fixed false
positive rate.

Boracchi, Carrera, ICPR 2020



THANK YOU VERY MUCH!
For any questions, feel free to contact us

giacomo.boracchi@polimi.it diego.carrera@st.com

https://boracchi.faculty.polimi.it/tutorials.html

Boracchi, Carrera, ICPR 2020
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