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Routed Optical Networks

Datastreams @Router 1 Datastreams @Router 2

sssss

In order to define the best
routing strategies, each router
needs to autonomously
assess the transmission
quality on each channel
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Problem Formulation

Change Detection in Data Streams...

..and often also in time series... as the problem boils down to
this, once having computed independent residuals
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Change-Detection in a Statistical Framework

Monitor a stream {x(t),t = 1,..}, x(t) € R? of realizations of a
random variable, and detect the change-point 7,
oo t<T7 in control state
x(t) ~ {qbl t =1 outof control state ’

where {x(t), t < t} are i.i.d. and ¢, # ¢,
Typically, ¢; is unknown and only TR = {x(t) ~ ¢ } is given

x(t)

N 4
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Change-Detection in a Statistical Framework

Here are data from an X-ray monitoring apparatus.

There are 4 changes ¢, = ¢1 = ¢, = ¢p3 = ¢, corresponding to
different monitoring conditions and/or analvzed materials

x10-3 ¢O £ 1072 ¢1 ¥ 103 ¢2 x 10 ¢3 % 103 ¢4.

h -22 Jat il 2

1 15 {4l I h.5

05 ]! 1, | ! p
ns 1 - hs

¢ -:ms- i 1An5 K] -.15}(_':}‘1J T 1 1.Au'c T T U ots i -A.ns T 1.15;“:'“ TR TE T 1-2134'] oos 1A-:15 8] 112134‘

[ \f | | | |

X | | | |
1.1+ '
105 .
0.95
| | | |
3000 6000 9000 12000 15000

t Giacomo Boracchi



»

Multivariate Monitoring -

X2

v

Po

A
[ ] I \
~
-
v L
>

L Giacomo Boracchi



Multivariate Monitoring
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Multivariate Monitoring

Monitoring the distribution
of covariance is not always
a viable option
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The Mainstream
Change-Detection Approach



Three ingredients

Most change-detection algorithm consists in

i. A model ¢, describing ¢,
ii. A statistic " to test incoming data

iii. A (sequential) decision rule that monitors T to detect changes
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lllustration

do data
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lllustration
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lllustration
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Illustration
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Desiderata, Challenges and Goals
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Desiderata in change detection

i. The model ¢, describing ¢, has to be:
- general and simple
- learnable from a training set

ii. The statistic I used to test incoming data has to:
- provide a controlled response under ¢,
- provide a different response under ¢4

iii. A decision rule that monitors J° has to:
- promptly detect changes and

- control FPR (type | error in hypothesis testing) or ARL (averge run length in
sequential monitoring)

Giacomo Boracchi



The challenges we address

Most of the research has been devoted to univariate monitoring schemes:
- These are the historical settings in SPC

- Extension to monitoring classification / regression error are straightforward

- Nonparametric statistics (i.e., statistics that do not assume ¢, known) are
typically based on ranking, thus limited to 1d case.

« Parametric models ¢, properly matching ¢, are difficult to find

* Non-parametric models often require:
- prohibitively large training sets
- prohibitively long computing times

Giacomo Boracchi



Our Goal

Build a model ¢, and a truly multivariate monitoring scheme that:
- allows change detection in multivariate, possibly high dimensional data
- guarantees a control over the false positives without any assumption on ¢,
- requires only little training data for configuration
- it is efficient to test

Giacomo Boracchi



Our Goal

Build a model ¢, and a truly multivariate monitoring scheme that:

allows change detection in multivariate, possibly high dimensional data
guarantees a control over the false positives without any assumption on ¢,
requires only little training data for configuration

it is efficient to test

We adopt histograms to build the model ¢, describing the
distribution of stationary data.
There is a lot of flexibility in designing a histogram!

We’ve found a way to make change-detection easier: QuantTree

Giacomo Boracchi



QuantTrees:
Histograms for Change Detection

A partitioning scheme specifically
designed for change detection

G. Boracchi, D. Carrera, C. Cervellera, D. Maccio “QuantTree: Histograms for Change Detection in Multivariate Data Streams” ICML 2018



QuantTree: Histograms for Change Detection in Multivariate Data Streams

Giacomo Boracchi! Diego Carrera' Cristiano Cervellera’ Danilo Maccio 2
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QuantTrees: Histograms for change detection

Assume you are given a set of target probabilities {m;};—1 x and a
training set TR

o TR
": TR O
*
® [ *
8, %0 ° .
® ® o o
o
K ® °
¢ o® Inputs:
- K the number of bins,
¢ -{m;}i=1 .k the bin probabilities
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QuantTrees: Histograms for change detection

Choose a dimension j at random, define the §; as the set containing the
1 — m, quantile of the marginal distribution of training samples along j
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QuantTrees: Histograms for change detection

The procedure is iterated on the training samples that have not been
included in a bin.
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QuantTrees: Histograms for change detection

The procedure is iterated on the training samples that have not been
included in a bin.
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QuantTrees: Histograms for change detection

The procedure is iterated on the training samples that have not been
included in a bin.
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QuantTrees: Histograms for change detection

The procedure is iterated on the training samples that have not been
included in a bin.
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QuantTree Construction

Algorithm 1 QuantTree

QuantTree iteratively divides the inpUt Input: Training set T'R containing N stationary points in

. . . X'; number of bins A’; target probabilities {7 } .
Space by blnary SplItS along d Smgle Output: The histogram h = {(Sk, Tr) } .

covariate, where the cutting points I: Set No = N, Lo = 0.
are defined by the quantiles of the 2 fork =1,.., K do _T
. R . 3: Set N, = N1 — Lg_1. X = X'\ Uj-:::ﬁ.: S;, and
marglnal dlStI’IbUtlonS L = 1‘01.11‘1(1(??&\”.
4 Choose a random component i € {1, ..., d}.
5: Define z,, = [x,|; for each x,, € A.
6: Sort {zn }: 2(1) < 22) < .- 2(Ny)-
7 Draw v € {0, 1} from a Bernoulli(0.5).
8: if v = 0 then
9: Define Sy, = {x € &}, [x]; < 2z, }-
10: else
[ 1: Define Sj, = {X e X [X]i > E(NI.:—L:{-FU}‘
12: end if
[3: Set T = Lkifrf\'r.
14: end for

G. Boracchi, D. Carrera, C. Cervellera, D. Maccio “QuantTree: Histograms for Change Detection in Multivariate Data Streams” ICML 2018



QuantTree Construction

QuantTree iteratively divides the input

space by binary splits along a single
covariate, where the cutting points
are defined by the quantiles of the
marginal distributions

Algorithm 1 QuantTree

The QuantTree construction is
randomized by the random selection
of the component for each split and

whether to take the m; or 1 — m;
quantile

Input: Training set T R containing N stationary points in

X'; number of bins A’; target probabilities {7 } .

Output: The histogram h = {(Sk, Tr) } .

l: Set _"?\'r{:} — _"?\"T., L[] — ”
2. fork=1..... K do
3: Set Np = Ng—1 — Lg—1, X = X'\ ch;:;.: S5, and

L = 1‘0und(?r‘l"N).
4 Choose a random component i € {1, ..., d}.
5 Define z,, = [x,|; for each x,, € A.
6: Sort {zn }: 2(1) < 22) < .- 2(Ny)-
7: Draw v € {0, 1} from a Bernoulli(0.5).
8

; if v = 0 then
9: Define Sy, = {x € &}, [x]; < 2z, }-
10: else
I11: Define S;g = {X i~ X;ﬁ [X]i 2 ’E(N;.;—Lk—kl}}'
12: end if
13: Set T = Lkifrf\'r.
14: end for

G. Boracchi, D. Carrera, C. Cervellera, D. Maccio “QuantTree: Histograms for Change Detection in Multivariate Data Streams” ICML 2018



QuantTree Partitioning

Each QuantTree produces a
partitioning of the input domain X

1Sk, Ty}

Where 7, are the probabilities
estimated from TR, can slightly

depart from the target {m;} (they
match when m;, N is an integer)

G. Boracchi, D. Carrera, C. Cervellera, D. Maccio “QuantTree: Histograms for Change Detection in Multivariate Data Streams” ICML 2018



QuantTrees Test Statistic

Batch-wise change detection

1. Monitor a batch of v test samples
W ={x(),..,x(t+v)}

2. Dispatch samples in bins {S;} and
compute the number of samples in

each bin {y,} S,
3. Compute any test statistic depending on {y;}

K
vk — WTk)z
e.g. T,(W) = Z -
k=1 k

4. Compare it against a threshold y
(W) >y

G. Boracchi, D. Carrera, C. Cervellera, D. Maccio “QuantTree: Histograms for Change Detection in Multivariate Data Streams” ICML 2018



QuantTrees Test Statistic

Batch-wise change detection

1. Monitor a batch of v test samples
W ={x(),..,x(t+v)}

2. Dispatch samples in bins {S;} and 51
compute the number of samples in
eaclﬁ hin (A ) C
How can we set the detection threshold y to control FPR?
3. COMpuic any test stausuL ucpciiulig Uil Wk O
53

K
(Vi — vig)?
e.g. T,(W) = Z -
k=1 f

4. Compare it against a threshold y
(W) >y

54 55

G. Boracchi, D. Carrera, C. Cervellera, D. Maccio “QuantTree: Histograms for Change Detection in Multivariate Data Streams” ICML 2018



QuantTrees Statistics

Theorem (ICML18)

Let T, (+) be a statistic defined over the bin probabilities of a histogram h
computed by QuantTree.

For any stationary batch W ~ ¢, , the distribution of T,,(W) depends
only on:

* the number of training samples N = #TR,
* the batch size W,

* the expected probabilities in each bin {m;};—1 g

G. Boracchi, D. Carrera, C. Cervellera, D. Maccio “QuantTree: Histograms for Change Detection in Multivariate Data Streams” ICML 2018



Implications

In histograms constructed by QuantTrees, test statistics do not depend on
¢, nor data dimension d. No need of bootstrap, small TR viable.

Detection threshold ¥y can be numerically computed from synthetic data:
1. Generating data according to a 1D Y, (e.g., ¥, is uniform [0,1])

2. Define a QT histogram h = {S,,m } on TR

3. Generate stationary test batches W ~ y,, the test statistic

4. Compute the threshold y from the empirical distribution of T} (W)

Pearson Total Variation

. K=32 K=128 | K=32 K =128 N v
0001 64 102 25 13 1096 64
| 62.75 187 52 85 16384 256
001 54 172 23 ) 1006 64 Example of Thresholds y
| 53.25 171 a7 81 16384 256
0.05 16 156 21 a1 1096 64
- 45.75 157 44 78 16384 256

G. Boracchi, D. Carrera, C. Cervellera, D. Maccio “QuantTree: Histograms for Change Detection in Multivariate Data Streams” ICML 2018



Implications

In histograms constructed by QuantTrees, the bin probabilities do not
depend on ¢,, nor data dimension d.

Thus, thresholds of tests statistics can be numerically computed from
univariate data that have been synthetically generated yet guaranteeing a
controlled false positive rate.

d>1 d =1
Training | O(KNlog N)  O(Nlog N)
Test O(K) O(log K)

G. Boracchi, D. Carrera, C. Cervellera, D. Maccio “QuantTree: Histograms for Change Detection in Multivariate Data Streams” ICML 2018



Change Detection By QuantTrees

Training:

* Define a QT h = {Sk, fix} from TR with target probabilities {m;};=1 g
* Compute threshold y on synthetic data using {fiy}i=1 . x, v, N = #TR
Testing

e (Gather a batch of test samples W

« Compute the test statistic

K
(yx — vi)*
(W) = z X - i
k=1 k

* Detect a change when 7,(W) >y

G. Boracchi, D. Carrera, C. Cervellera, D. Maccio “QuantTree: Histograms for Change Detection in Multivariate Data Streams” ICML 2018



Experiments on False Positive Control

QT algorithms can control FPR (target @ = 0.05) without resorting to
bootstrap and better than asymptotic approximation

0.08

K=32,N=4096
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T 0.05 -
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64
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0.06 1 &

d

32 64

Test on synthetic data ¢ is a Gaussian. High dispersion in statitsics from
random bin probabilities {m;,}
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Experiments on Detection Power (AUC)
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QT with Pearson Statistics are among the most powerful CD algorithms

Uniform bin probabilities m;, = 1/K are better than random probabilities
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Experiments on Real World Datasets

dataset qt unif pearson  qt unif asym qtunif tv  kdtree voronoi density qt random
article FPR  (.042 0.065 0.044 0.053  0.063 0.057 0.054
partic AUC 0.876 0.886 0.865 0.841 0.530 (0.529 (0.842
rotein FPR  (0.046 0.064 0.046 0.055  0.065 0.059 0.050
] AUC (.978 0.978 0.972 0.969  0.564 0.591 0.962
credit FPR  0.045 0.064 0.046 0.051 0.060 0.061 0.054
' AUC (.800 0.810 0.781 0.788  0.532 0.721 0.753
FPR 0.043 0.063 0.044 0.053  0.058 0.059 0.055
sensorless .
AUC 1.000 1.000 1.000 L0000  0.517 0.627 1.000
nino FPR  0.041 0.063 0.042 0.053  0.064 0.058 0.050
AUC 0.833 0.825 0.811 0.819  0.558 0.546 0.802
Shruce FPR  0.042 0.067 0.041 0.056  0.065 0.058 0.052
P AUC 1.000 1.000 1.000 L.000  0.560 1.000 1.000
FPR  0.043 0.061 0.045 0.053  0.066 0.062 0.052
lodgepole
AUC 1.000 1.000 1.000 1.000  0.580 1.000 1.000
nsects FPR 0.042 0.063 0.043 0.052  0.062 0.058 0.051
TR auc 0912 0.910 0892  0.854 0897 0994 0877

Table 2: Results for the QuantTree algorithm on real datasets for N = 4096, K' = 32. For each dataset, the

FPR and AUC are repoted, averaged over 100 runs for each method.

Also on real world datasets, QT can control the FPR and is very powerful!

eikmeans
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0.512
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0.050
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0.047
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0.050
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0.051
0.517

0.049
0.854
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Another practical result about QuantTree
Threshold

Giacomo Boracchi



QuantTree Statistics

Theorem (TKDE22)

Let h = {Sy, .} be a partitioning of the input domain in K bins built
using the QuantTree algorithm with target probabilities {my}r=1 . k-

Let py be the expected probability of S, under ¢y, namely py = Py (Sk).

Then, the probabilities (p4, ..., px) follow a Dirichlet distribution
K—1

(p1)-»0g) ~ D| m N, m;N, ..., 1—Z7Tj N+1
j=1

L. Frittoli, D. Carrera, G. Boracchi "Nonparametric and Online Change Detection in Multivariate Datastreams using QuantTree" IEEE TKDE 2022



QuantTree Statistics

Theorem (TKDE22)

Let h = {Sy, .} be a partitioning of the input domain in K bins built
using the QuantTree algorithm with target probabilities {my}r=1 . k-

Let py be the expected probability of S, under ¢y, namely py = Py (Sk).
Then, the probabilities (p4, ..., px) follow a Dirichlet distribution

(p1; ---:pK) ~D 7T1N,7T2N, L) 1 —

/

The probabilities of the K

bins of a QuantTree under The QuantTree parameters
any ¢

L. Frittoli, D. Carrera, G. Boracchi "Nonparametric and Online Change Detection in Multivariate Datastreams using QuantTree" IEEE TKDE 2022




QuantTree Statistics

Theorem (TKDE22)

Let h = {Sy, .} be a partitioning of the input domain in K bins built
using the QuantTree algorithm with target probabilities {my}r=1 . k-

Let py be the expected probability of S, under ¢y, namely py = Py (Sk).

Then, the probabilities (p4, ..., px) follow a Dirichlet distribution
K—1
(P1) - Pg) ~ D| TN, 3N, ..., | 1 - Z i |N + 1
j=1

No need to sample points, no need to construct histograms!
We can directly draw the bin probabilities a QuantTree would produce!

L. Frittoli, D. Carrera, G. Boracchi "Nonparametric and Online Change Detection in Multivariate Datastreams using QuantTree" IEEE TKDE 2022



Differences between m; and p;,

m, and 1T, represent the
empirical frequency of
points in the bin Sy.
Sometimes they do coincide
(often we assume they do)

These are used to construct
the QuantTree histogram,
but might not corresponds
to the true bin probabilities

51

T, = # training points in S,




Differences between m;, and p;,

{pi} are the true bin
probabilities. Thus, each py, is
the area of the bin S} under the
unknown ¢,. The true bin
probabilities {p,} follow a
Dirichlet distribution.

Given a batch W, the number of
points falling in each bin {y;} is
a realization of a multinomial

distribution p, = area of bin S,
M (pq, ..., P>V, K) under ¢y




Implications

1. Draw the expected bin probabilities (p4, ..., pg) from the Dirichlet with
parameters {m, }
2. Draw the number of samples (y;, ..., Yx) falling in each bin from a
multinomial distribution having parameters (p4, ..., Px)
(yl' '":yK) ~ M(pl' - P, V, K)
3. Compute the values of test statistics T3, (+)
4. Compute the threshold y from the empirical distribution of T} (-)

MonteCarlo procedure to compute threshold y without generating batches
of data under 4, without even constructing the QuantTree!

L. Frittoli, D. Carrera, G. Boracchi "Nonparametric and Online Change Detection in Multivariate Datastreams using QuantTree" IEEE TKDE 2022



Pros and Cons
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Advantages of QT

Provide a truly multivariate monitoring scheme that:

« Enables change detection in a nonparametric manner (no assumption
on ¢,), possibly in high dimensional data d;

* Guarantees control over the false positives for any statistic 7, (W)

It requires little training data TR (while alternatives based on
bootstrap do);

* |t is rather efficient to use, compared to other schemes.

Giacomo Boracchi



Limitations

Like any test based on histograms, QT does not perceive distribution
changes “within” a bin.

Giacomo Boracchi



Limitations

Depending on the bin partitioning, this apparent distribution change
cannot be perceived by QuantTree!

“

Y X
O
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QuanTree Monitoring
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QuanTree Monitoring

Sl 53 S4- Sl 53 54
® O ® o
%2° ° o o0 ®
A X o’ Y X
“.’ O O °. ®
.;.f “C'r O
o Q—'
o o $ o o $
PR ( Jp4
® o0 S ® ‘0
o @ o ©

Giacomo Boracchi



QuanTree Monitoring
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Likelihood- based monitoring

When we have an estimate of the “type” of ¢, likelihood-based statistics are more
powerful.
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o *0000
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Likelihood- based monitoring

Fit ¢, on stationary data

Giacomo Boracchi



Likelihood- based monitoring

Compute L(x(t)) = log(Po(x(t)) on test data

Giacomo Boracchi



Likelihood- based monitoring

These samples are very
unusual w.r.t. ¢,
¢o(x) would be very low!

Po A bo
L(x(1)) o o L(x(t))
°
00O
o°
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Limitations

e Like any test based on histograms, QT does not perceive distribution
changes “within” a bin.

* Poor in efficiency compared to other tree structures (e.g., kdTrees that
are balanced)

e Just an Hyoothesis Testing: it does not perform sequential monitoring

Giacomo Boracchi



Limitations

e Like any test based on histograms, QT does not perceive distribution
changes “within” a bin.

* Poor in efficiency compared to other tree structures (e.g., kdTrees that
are balanced)

e Just an Hyoothesis Testing: it does not perform sequential monitoring
This can be fixed!

Giacomo Boracchi



QT-Exponential Weighted Moving Average
(QT-EWMA)

Sequential Monitoring by QuantTrees

L. Frittoli, D. Carrera, G. Boracchi "Nonparametric and Online Change Detection in Multivariate Datastreams using QuantTree" IEEE TKDE 2022
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Nonparametric and Online Change Detection in
Multivariate Datastreams Using QuantTree

Luca Frittoli™, Diego Carrera, and Giacomo Boracchi
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Sequential Monitoring Settings

Online monitoring:

- At time t, a new sample x(t) arrive and a decision must be made



Sequential Monitoring Settings

Online monitoring:
- At time t, a new sample x(t) arrive and a decision must be made

- After ¢y = ¢4, the evidence for a change increases and the test is
expected to be more powerful

bo d1 “nice” (sequential) test statistic

1.5 8 thresholds hy

6

4

T

0 200 400 600 800 1000 0 200 400 600 800 1000
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Sequential Monitoring Settings

Online monitoring:

At time t, a new sample x(t) arrive and a decision must be made

After ¢y = ¢, the evidence for a change increases and the test is
expected to be more powerful

There is no clear notion of false alarm, rather measure the expected
time between false positive, Average Run Length ARL,

ARLy = Ex[t|x ~ ¢y]
Similarly, rather than the test power (TPR or AUC), measure the
expected detection delay
ARL; = Ex[®|x ~ ¢4]



Sequential Monitoring Challenges

Computational Challenges:
Each decision should be made in constant time
Impossible to store previously observed data as a reference

Theoretical Challenges:
Difficult to define sequential statistics with multivariate data

Difficult to define, for a target value of ARL,, the corresponding
threshold y = y(ARL,) which do not depend on ¢,

Bootstrap is often not a viable alternative since we need to consider
temporal evolution of the analysis




EWMA: Exponential Weighted Moving Average

EWMA is a standard sequential monitoring scheme for 1D datastreams

We take inspiration from ECDD for concept-drift monitoring
ZO — O, Zt: (1 — A)Zt—l + A €

- e; € {0,1} is the classification error of a classifier at time t

- A €[0,1] is a parameter regulating test “reactiveness”

As a matter of fact

- Z; is in stationary conditions tends to the average classification error

- After a change, Z; moves towards the post-change classification error

G. J. Ross, N. M. Adams, D. K. Tasoulis, and D. ). Hand "Exponentially Weighted Moving Average Charts for Detecting Concept Drift"
Pattern Recogn. Lett. 33, 2 (Jan. 2012), 191-198 2012



EWMA: Detection Scheme

In ECDD it is possible to set a detection rule controlling ARL,
Zt > Po + LtO-Zt

Defining the sequence {L.}; is very complicated as these depend on Py,
(the estimated classification error).
A «simple» problem to address via MonteCarlo simulation is, given a

value L and p,, to estimate the corresponding ARL,
Montecarlo(L,py) = ARL,

It is also possible «to revert» this by setting up a suitable Montecarlo
scheme such that, provided ARL, and p, one estimates L

This holds true because e; follows a Bernoulli distribution

G. J. Ross, N. M. Adams, D. K. Tasoulis, and D. ). Hand “Exponentially Weighted Moving Average Charts for Detecting Concept Drift"
Pattern Recogn. Lett. 33, 2 (Jan. 2012), 191-198 2012



Sequential Monitoring by QT: Idea

Using EWMA over QuantTree bins:

- Replace e; by statistics derived from an indicator functions defined on

each single bin (this is also a binary quantity).
_ _ 0 Xt $ Sk
yk,t — H(xt € Sk) — {1 Xt = Sk

note that Eg_[vi¢] = pi (the probability for a sample to fall in Sy)

L. Frittoli, D. Carrera, G. Boracchi "Nonparametric and Online Change Detection in Multivariate Datastreams using QuantTree" IEEE TKDE 2022



Sequential Monitoring by QT: Idea

Using EWMA over QuantTree bins:

- Replace e; by statistics derived from an indicator functions defined on
each single bin (this is also a binary quantity).

- Compute a «bin-wise» EWMA statistic corresponding proportion of samples
falling in each bin. This is exactly the same as the classification error

Zk,() — O, Zk,tz (1 — A)Zk,t—l + /‘lyk,t Vk — 1, ,K

L. Frittoli, D. Carrera, G. Boracchi "Nonparametric and Online Change Detection in Multivariate Datastreams using QuantTree" IEEE TKDE 2022



Sequential Monitoring by QT: Idea

Using EWMA over QuantTree bins:

Replace e; by statistics derived from an indicator functions defined on
each single bin (this is also a binary quantity).

Compute a «bin-wise» EWMA statistic corresponding proportion of samples
falling in each bin. This is exactly the same as the classification error

Aggregate all the EWMA statistics in a Pearson-like statistic
K

T - z (Z.s - ﬁk)z

T
k=1 k

Which is the Pearson Statistics monitoring how much the bin-wise EWMA
departs from iy

L. Frittoli, D. Carrera, G. Boracchi "Nonparametric and Online Change Detection in Multivariate Datastreams using QuantTree" IEEE TKDE 2022



Sequential Monitoring by QT: Idea

Using EWMA over QuantTree bins:

Replace e; by statistics derived from an indicator functions defined on
each single bin (this is also a binary quantity).

Compute a «bin-wise» EWMA statistic corresponding proportion of samples
falling in each bin. This is exactly the same as the classification error

Aggregate all the EWMA statistics in a Pearson-like statistic

Compute a sequence of detection thresholds {y;} via the MonteCarlo
procedure described [Ross 2012], but leveraging QT properties to speed up
simulations

L. Frittoli, D. Carrera, G. Boracchi "Nonparametric and Online Change Detection in Multivariate Datastreams using QuantTree" IEEE TKDE 2022




The QT-EWMA Algorithm

find in which bin each sample falls

Algorithm 1: QT-EWMA

input :datastream x1,x9,..., target {’ﬂ‘j}g{:b thresholds {h:}:, TR
output : detection flag ChangeDetected, detection time t*

1 ChangeDetected < False, t" < o0;

2 estimate QT histogram {(S;, 7;)}j—rfrom TR and define {#;};=, as in (4);

SZ%Q%’}‘%J;Vj:l,...,K; i . . .

4 fort=1,...do monitor the empirical bin

5 |y Lz € S)); probabilities by EWMA statistics Z; ;
6 Zj,t — (1—)\)Zj,t_1 —|—)\y3"t, j = 1...,K;

7 Ty < S8 (Zje — 75)% )75 L

s | T > thea measure the deviation from the

9 ChangeDetected < True, t* <« t; expected probabilities by 7}
10 break;
d

N detect a change when T; exceeds
13 return ChangeDetected,t” a threshold ht

L. Frittoli, D. Carrera, G. Boracchi "Nonparametric and Online Change Detection in Multivariate Datastreams using QuantTree" IEEE TKDE 2022



Example

Univariate datastream (7 = 500) QT-EWMA statistic
1.5 8 || = = = thresholds hy
1
6
0.5 .
5 4
0
2
—0.5
0
—1
0 200 400 ; 600 800 1000 0 200 400 ; 600 800 1000

The deviation of the bin probabilities from their expected values measured
by J; increases after a distribution change

Giacomo Boracchi



QT-EWMA: Thresholds {h;} computation

The theoretical properties of QuantTree guarantee that our statistics are
independent from ¢, and d.

Test statistics depends on N, the target ARL,, the parameter A and {m; }

We set h; to keep a constant probability of a false alarm at each time ¢
1

ARL,

We design an efficient Monte Carlo scheme to compute these thresholds
using theoretical results from QT.

P(:]}>Vt|7"r<y‘crv’[<t):a:

We regularize {y.} by fitting a polynomial in t~1 to the empirical
estimates

L. Frittoli, D. Carrera, G. Boracchi "Nonparametric and Online Change Detection in Multivariate Datastreams using QuantTree" IEEE TKDE 2022



Experiments: synthetic Gaussian data

We set different ARL, values and measure the empirical ARL, of QT-EWMA
and the other considered methods

Empirical vs target ARLg, d = 4

—F— QT-EWMA
QT
—6— SPLL

5000 || —#— SPLL-CPM _— Goal: preserve the target ARL
e Scan-B

empirical ARLg
S
S
o

1000
500

500 1000 2000 5000
target ARLg

[SPLL] L. Kuncheva “Change Detection in Streaming Multivariate Data Using Likelihood Detectors”, IEEE TKDE, 2011
[Scan-B] S. Li et al. “M-Statistic for Kernel Change-Point Detection”, Advances in Neural Information Processing Systems, 2015



Experiments: synthetic Gaussian data

Detection delay vs FA, d = 4

We set different ARL, values and wo| | B amEwe

observe the trade-off between . \ —4— SPLL
. ; —tp— SPLL-CPM
detection delay and false alarm rate 8 A— Scan-B

!
o

detection delay

: : : = IR
20 \ \ ‘ /
Goal 1: minimize the IOW% =0

detection delay

40

Goal 2: maintain the target false
alarm rates depending on the
target ARL,

Giacomo Boracchi



Experiments: Real data

INSECTS, N = 64 INSECTS, N = 128
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What if we have very little training data?

Giacomo Boracchi



QT-EWMA-update

When TR is very small, T, are very far from the true probabilities, and

K
7 z (Zie — ﬁk)z
t = -
k=1 Tk

Is not very powerful as a test statistic

Idea: update bin probabilities 77;, as long as no change is detected

ﬁk,o = 1Ty, and ﬁk,t = (1 - a)t)ﬁk,t—1 T WYk ¢
Where
1
Wy =
PTB(IN+Y)

regulates the updating speed, and tends to 0 as t increases.

L. Frittoli, D. Carrera, G. Boracchi "Nonparametric and Online Change Detection in Multivariate Datastreams using QuantTree" IEEE TKDE 2022



QT-EWMA-update Updating Speed

The updating speed is regulated by
1

" B(N +t)

- High values or f are meant to prevent updating the bin probabilities
after the change

- The updating speed [ is a parameter of QT-EWMA-update.

W

- A sequence of detection thredsholds depending on f can be computed
to grant nonparametric and sequential monitoring

L. Frittoli, D. Carrera, G. Boracchi "Nonparametric and Online Change Detection in Multivariate Datastreams using QuantTree" IEEE TKDE 2022



Concluding Remarks and Extensions

Giacomo Boracchi



Concluding Remarks on QuantTree

QuantTree is an effective, theoretically grounded monitoring scheme for
multivariate datastreams.

Our focus is to be nonparametric and control “False Alarms”.
Histograms are flexible, design them to yield a comfortable monitoring!

Enables new type of investigation (like class-wise distribution for
change-detection).

Giacomo Boracchi



Concluding Remarks on QuantTree

Extended Variants of QuantTrees:

- Kernel QuantTrees allow arbitrary-shaped bins, increasing detection power

QuantTree (w/o PCA) QuantTree (w/ PCA) KQT (Euclidean) KQT (Mahalanobis) KQT (Weighted Mahalanobis)

: Alakt (c) __ d (e)

Figure 1. QuantTree generates bins as intersection of hyperplanes, performing cuts along the axis (a). After a preprocessing through
PCA, the cuts are oriented along the principal directions (b). Kernel QuantTree generates bins that are subsets of d-dimensional spheres
according to the underlying kernel functions, namely the Euclidean (c), Mahalanobis (d) and Weighted Mahalanobis (e) distances.

D. Stucchi, P. Rizzo, N. Folloni, G. Boracchi, "Kernel QuantTree" International Conference on Machine Learning, ICML 2023



Concluding Remarks on QuantTree

Extended Variants of QuantTrees:
- Kernel QuantTrees allow arbitrary-shaped bins, increasing detection power

- Multi-modal QuantTrees enable monitoring when ¢, corresponds to a set
of different distributions {¢g;}. Batch-wise monitoring and identification
of the generating modality.

o Sz 53 Sa| @010 P02 X Bin probability vectors

E r
Q

[ih) o|O o 9 . @
% S (») o x 1 2 7]
% 000 & x X w v %
© o e x%xx E’J
g’ ;éx X . X %
G B T
w S Sk| || | —

Fig. 2. Left: two stationary batches drawn from two modalities ¢p ; and ¢q o, and their contour plot. Note that here ¢p 2 is non-Gaussian and multipeaked.
A QuantTree partitioning is drawn in red lines. Right: corresponding bin-probability vectors w! and #2. MMQT provides CD capabilities in a multimodal
batch-wise setting, where any batch drawn from ¢g, | or ¢p2 is considered stationary.

D. Stucchi, L. Magri, D. Carrera, G. Boracchi, "Multimodal Batch-wise Change Detection" IEEE TNNLS 2023



Thank you! Questions’

1 |
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EI o
https://github.com/diegocarrera89/quantTree

[ |
Repository where you can find all the
resources available from download
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https://github.com/diegocarrera89/quantTree
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