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Images), Anomaly Detection (images, signals), Learning under limited supervision.

with Prof. Piero Fraternali

Computer Vision Research 
Giacomo Boracchi, Luca Magri, Federica Arrigoni



Research themes and relevant projects: 

- Deep Learning for Visual Recognition: Object Detection and Segmentation (CCD, SPAD, X-ray, 2D/3D Medical, Aerial 
Images), Anomaly Detection (images, signals), Learning under limited supervision.

- Multi-view Geometry: 3D Reconstruction, Calibration (Conventional / Event Cameras, X-ray, LiDar, hybrid systems), 
6DOF Pose Estimation, Foundational Research.

Computer Vision Research 
Giacomo Boracchi, Luca Magri, Federica Arrigoni



Research themes and relevant projects: 

- Deep Learning for Visual Recognition: Object Detection and Segmentation (CCD, SPAD, X-ray, 2D/3D Medical, Aerial 
Images), Anomaly Detection (images, signals), Learning under limited supervision.

- Multi-view Geometry: 3D Reconstruction, Calibration (Conventional / Event Cameras, X-ray, LiDar, hybrid systems), 
6DOF Pose Estimation, Foundational Research.

- Pattern Recognition: Clustering, Robust Model Fitting (Scan2BIM, Template Detection), Quantum Computer Vision.

Computer Vision Research 
Giacomo Boracchi, Luca Magri, Federica Arrigoni



Research themes and relevant projects: 

- Deep Learning for Visual Recognition: Object Detection and Segmentation (CCD, SPAD, X-ray, 2D/3D Medical, Aerial 
Images), Anomaly Detection (images, signals), Learning under limited supervision.

- Multi-view Geometry: 3D Reconstruction, Calibration (Conventional / Event Cameras, X-ray, LiDar, hybrid systems), 
6DOF Pose Estimation, Foundational Research.

- Pattern Recognition: Clustering, Robust Model Fitting (Scan2BIM, Template Detection), Quantum Computer Vision.

- Image/Signal Processing and Analysis: Image Enhancement and Restoration (X-ray, CCD, SPAD), Change and Outlier 
Detection (Optical fiber signals)

Computer Vision Research 
Giacomo Boracchi, Luca Magri, Federica Arrigoni



Research themes and relevant projects: 

- Deep Learning for Visual Recognition: Object Detection and Segmentation (CCD, SPAD, X-ray, 2D/3D Medical, Aerial 
Images), Anomaly Detection (images, signals), Learning under limited supervision.

- Multi-view Geometry: 3D Reconstruction, Calibration (Conventional / Event Cameras, X-ray, LiDar, hybrid systems), 
6DOF Pose Estimation, Foundational Research.

- Pattern Recognition: Clustering, Robust Model Fitting (Scan2BIM, Template Detection), Quantum Computer Vision.

- Image/Signal Processing and Analysis: Image Enhancement and Restoration (X-ray, CCD, SPAD), Change and Outlier 
Detection (Optical fiber signals)

- Change and Anomaly Detection: Design of change-detection tests for high-dimensional data (QuantTree), Sequential 
Monitoring, Datastream Mining, Anomaly Detection (tree based methods).

Computer Vision Research 
Giacomo Boracchi, Luca Magri, Federica Arrigoni

𝑆1

𝑆2

𝑆3

𝑆4 𝑆5



Research themes and relevant projects: 

- Deep Learning for Visual Recognition: Object Detection and Segmentation (CCD, SPAD, X-ray, 2D/3D Medical, Aerial 
Images), Anomaly Detection (images, signals), Learning under limited supervision.

- Multi-view Geometry: 3D Reconstruction, Calibration (Conventional / Event Cameras, X-ray, LiDar, hybrid systems), 
6DOF Pose Estimation, Foundational Research.

- Pattern Recognition: Clustering, Robust Model Fitting (Scan2BIM, Template Detection), Quantum Computer Vision.
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Detection (Optical fiber signals)
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Relevant results achieved: 

-   Selected Industrial Partners: STMicroelectronics (Quality Inspection), Gilardoni Raggi X (Explosive and Weapon 
Detection), Cisco Photonics (Change/Anomaly Detection), Huawei (SPAD imaging).

- Fundrising in tech-transfer projects: more than 1.5M€ in research projects and 0.7M€ in PhD grants.

- Publications: 200+ papers, including 25 Q1 journal articles , 26 top-tier conference papers, 6 patents
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Research collaborations
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Industry 4.0 Medical Security

Our Industrial Reach

Deep Learning for 
Visual Recognition

Computer Vision and 
Pattern Recognition

Image Processing 
and Analysis
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Industry 4.0 Medical Security

Deep Learning for 
Visual Recognition

Computer Vision and 
Pattern Recognition

Image Processing 
and Analysis

Silicon Wafer Manufacturing

OTDR Event Detection

Data stream monitoring
Template detection

Defect Detection in Point 
Clouds

3D Body scanner

Histological Image 
Segmentation

RGB-D and X-ray 
Calibration

Explosive detection

Hazard detection

Video Denoising

OCM Anomaly Detection

Online ECG Monitoring

Image Enhancement

Our reach

Image EnhancementRON time series monitoring

Battery management system

Noise Modeling in SPAD 

Cell SegmentationDefect Detection
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Silicon Wafer Manufacturing
OTDR Event Detection

Data stream monitoring

Template detection

3D Body scanner

Histological Image 
Segmentation

RGB-D and X-ray 
Calibration

Explosive detection

Prohibited Item detection

Video Denoising

OCM Anomaly Detection

Online ECG Monitoring

Image Enhancement

Silicon Wafer Manufacturing

Defect Detection in Point 
Clouds

RGB-D and X-ray 
Calibration

Signals/Streams Images 3D data

RON time series 
monitoring

Battery management system

Noise Modeling in SPAD 

Cell Segmentation

Defect Detection
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Silicon Wafer Manufacturing

OTDR Event Detection

Template detection

Histological Image 
Segmentation

RGB-D and X-ray 
Calibration

Explosive detection

OCM Anomaly Detection

Image Enhancement

TRL≥ 𝟕 TRL= 𝟓 Ongoing

RON time series monitoring

Video Denoising

Time Series Generation

Noise Modeling in SPAD 

Online ECG Monitoring

Battery management system

Cell Segmentation

Defect Detection



This Talk

• We have a background from image processing / computer vision methods, we 
are not expert in medical imaging itself.

• We got involved with medical companies / research institutes to solve of their 
specific problems.

• We typically use methods/principles that are otherwise known but 
• never used for solving the specific medical imaging task

• Cannot be used “off-the shelf”

• I present these collaborations and the way we overcame the data-scarcity 
problenm. 
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An Illustrative Case Study 
Histological Image 

Segmentation
Instance segmentation of Nuclei

Roberto Basla



Context: Histological (fluoroscopy) imaging 

The Ikoniscopeprovides a shortlist of interesting nuclei to 
be presented to the medical professional.

Segmentation

Shortlist generation



Context: Histological (fluoroscopy) imaging 

The Ikoniscope provides a shortlist of interesting nuclei to 
be presented to the medical professional.

Segmentation

Shortlist generation

Segmentation was performed with expert-driven methods 
that poorly generalize to

• Different tissues
• Different types of treatments for the sample



20
Graham, S., Vu, Q. D., Raza, S. E. A., Azam, A., Tsang, Y. W., Kwak, J. T., & Rajpoot, N. (2019). Hover-net: Simultaneous 
segmentation and classification of nuclei in multi-tissue histology images. Medical image analysis, 58, 101563.

Solution: Deep learning framework

We have designed a deep learning framework composed of a custom 
implementation of two (alternative) solutions

• Mask R-CNN 

• Hover-Net



Input Image

Input: an histological 
image



Output Image: Instance Segmentation

Output: each cell is 
expected to be 
associated to an 
individual segment

Possibly class 
information can be 
associated to each 
mask



Very effecitve indeed!



Comparison with expert-driven segmentation

• We released the trained model with 
interfaces to communicate with the 
Ikoniscope instrument.

• The model provided by us displays 
better performance than previous 
geometrical segmentation techniques,

• The new model solves the task of 
instance segmentation, enabling the 
identification of overlapping nuclei.

Geometrical approach Our model



Gathering Training Data: a Well-Known Problem

• Gathering unlabeled data is relatively easy, gathering annotations is not

• In medical images (more than in natural images) it is often important to 
quantitatively assess areas (nr of pixels) covered by a specific class, not just 
to assign image-wise labels.

• Annotating images for segmentationis incredibly time consuming

• Annotations required an histopathologist, which are costly and difficult to 
gather

• There is a high risk of receiving inconsistent labelling (annotator fatigue?)



Solution: Training on publicly available dataset

Image from a private dataset Image from data bowl



Solution: Training on publicly available dataset

Image from a private dataset Image from data bowl

However, this might not always be a viable option…
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Interstitial Segmentation in 
Kidney’s Biopsies 

Deep Learning for Visual Recognition



Almost ready for submission…



Kidney’s Biopsies

The area of renal peritubular 
interstitium(the inter-tubular, 
extra-glomerular, and extra-
vascular space) correlates 
with the evolution of Chronic 
Kidney’s Disease(CKD). 

This is considered a 
biomarkerto:

• assess the progressionof 
tumors and pathologies.

• assess the effectivenessof 
treatments.



Histological Images and CKD
The area of interstitium can be manually 
measured / segmented by operators, 
however this is a task:

• Labor intensive 

• Time consuming

• Very subjective

Deep Neural Networks for image 
segmentation are very appealing as it is:

• Automated processing,

• Repeatable results

• Still, requires annotations!



Original image Ground truth

Problem Formulation

• Semantic segmentatation of kidney biopsises (1920 x 2560 x 3 images)

• 4 classes: ‘Interstitial’ (black), ‘ Tubules’ (red), ‘ Glomerolus’ ( orange),
 ‘Other’ (yellow)



Red: interstitial
Blue: tubules
Green: Glomerules
Yellow: Other



Intrinsic Challenges

• Many souces of anatamical 
variability 
• Different pathologies

• Different conditions even within the 
same pathology group

• Few images available with the 
corresponding dense annotations.
• the average annotation time was 

about 1.5 hours per image.

• rare pathologies involved

Image Dense Annotations

Healthy Subject Healthy Subject Patient



Intrinsic Challenges

• Many souces of anatamical 
variability 
• Different pathologies

• Different conditions even within the 
same pathology group

• Few images available with the 
corresponding dense annotations.
• the average annotation time was 

about 1.5 hours per image.

• rare pathologies involved

Image Dense Annotations

Healthy Subject Healthy Subject Patient

Two solutions for fine tuning: 
- sparse annotations
- weights based on uncertainty



Fine tuning using 
sparse annotations



37Wang, G., Li, W., Zuluaga, M.A., Pratt, R., Patel, P.A., Aertsen, M., Doel, T., David, A.L., Deprest, J., Ourselin, S., et al., 2018. Interactive medical image segmentation using deep learning with image-specific fine 
tuning. IEEE transactions on medical imaging 37, 1562–1573

Solution Idea: Weak Annotations

Adopt sparse and fast-to-
obtain annotations to fine 
tune a general model on 
each specific patient / 
pathological condition

Scribbles can take less than 5 
minutes to prepare (vs 1.5hrs 
of dense annotations)



Two scribble annotators with different styles
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Scribble Fine Tuning Pipeline

Dense 
annotations

Scribble
annotations



Patients and Controls

• 11 Controls (healthy individuals) with dense annotations, overall 
32 dense annotated images.

• 20 Patients affected by different conditions. Each has scribble 
annotations on 7 images, dense annotations for testing only on 
3 images.
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𝑈0 training

The network 𝑈0 is trained on 11 healthy individuals with dense annotations, 
using overall 32 images

• Class weights to counteract class imbalance

• Data augmentation (rotation, zoom, brightness, horizontal, vertical flip)

• Patch-wise training (the network is fully convolutional, tested on arbitrary image sizes)

• Categorical cross-entropy loss (Dice ++)



42

𝑈𝑗 fine tuning

On each patient we fine tune 𝑈0 on 7 scribble annotated images
• Class weights:

𝑤 𝑖, 𝑗 = ൞
min

𝑆

𝐶 𝑖, 𝑗
, 𝐾 , 𝑖, 𝑗 ∈ 𝑆

0,  𝑖, 𝑗 ∉ 𝑆

Where 𝑆 are the scribble annotations, 𝐶 𝑖, 𝑗 is the class support, 𝐾 a maximum weight

• Pixels not included in any scribble are completely ignored
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Test Image of a Healty Subject
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Predicted Segmentation by 𝑈0 of a Healthy Subject
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GT Segmentation of a Healthy Subject
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Test image of a Patient
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Scribble Annotations for fine Tuning 𝑈0
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GT Segmentation of a Patient



Predictions vs GT for a Patient
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Qualitative Performance

Ground Truth Predictions  from Tuning using 
sparse annotations
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Quantitative Assessment, avg. class. error on all the classes 

Fine tuning on scribble 
annotations is in general 
beneficial (Wilcoxon test p-
value 0.035) 

• in 14 out of 20 patients it is 
beneficial (in particular p05)

• When it is not beneficial, 
losses are minima.

Too sparse annotations (50% 
of scribbles) are detrimental.

Scribbles from the second 
annotator are less informative 
(fine tuning detrimental)
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Quantitative Assessment on Interstitial Class

Fine tuning on scribble 
annotations is in general 
beneficial (Wilcoxon test p-
value 0.005) 



Fine tuning using 
uncertainty-based weights 



54Wang, G., Li, W., Zuluaga, M.A., Pratt, R., Patel, P.A., Aertsen, M., Doel, T., David, A.L., Deprest, J., Ourselin, S., et al., 2018. Interactive medical image segmentation using deep learning with image-specific fine 
tuning. IEEE transactions on medical imaging 37, 1562–1573

Solution Idea: Uncertainty Estimation

Along with class posterior, 
networks can be modified to 
provide estimates of 
uncertainty in their 
predictions.

We integrate uncertainty 
estimates from MCD in the 
fine-tuning on scribble 
annotations
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Dropout 

Dropout randomly set to zero connections in the network.

• Active during training to reduce the risk of overfitting: the network is seen as 
training an ensemble of models.

• Disabled during inference: the network returns an aggregation of individual 
estimates.

We add two dropout layers to the U-net architecture 𝑈0
𝐷 and follow the same 

training on dense annotations and fine-tuning on scribbles as for 𝑈0.
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Scribble + MC Dropout Fine Tuning Pipeline

Dense 
annotations

Scribble
annotations

𝑼𝟎
𝑫

𝑼𝒋
𝑫

Dropout
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Uncertainty Estimation in Bayesian Networks

Bayesian networks keep dropout active during inference

During the 𝑡-th call of the network 𝑈0
𝐷 on the same test image we obtain

𝑈0
𝐷 𝐼 ↦ 𝑝𝑐,𝑡 , 𝑐 = 1, . . , 4, 𝑡 = 1, … , 𝑇

• The network 𝑈0
𝐷 returns different outputs 𝒑𝒕 when fed with the same input 𝐼.

• The network 𝑈0
𝐷 output is given by the average posterior ҧ𝑝𝑐,𝑡 𝑖, 𝑗  over all the 

network calls.
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Uncertainty Estimation in Bayesian Networks

We can compute the network uncertainty for each class 𝑐, as
𝒱𝑐 𝑖, 𝑗 = 𝒜𝑐 𝑖, 𝑗 + ℰ𝑐 𝑖, 𝑗

𝒱𝑐 𝑖, 𝑗 =
1

𝑇
෍

𝑡

𝑝𝑐,𝑡(𝑖, 𝑗)(1 − 𝑝𝑐,𝑡(𝑖, 𝑗)) +
1

𝑇
෍

𝑡

𝑝𝑐,𝑡 𝑖, 𝑗 − ҧ𝑝𝑐,𝑡 𝑖, 𝑗
2

• 𝒜𝑐 aleatoric uncertainty: due to noise in the inference data, unavoidable.

• ℰ𝑐 epistemic uncertainty: due to model knowledge and can be reduced by 
providing more training data.
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Uncertainty Estimation on an Mild Pathology

High uncertainity pixels are close to cell boundaries
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Uncertainty Estimation on a Severe Pathology

On the patient 𝑈0
𝐷 is way more uncertain, with larger uncertainty estimates.

We use uncertainty to weight more errors on scribbles overlapping to uncertain regions 
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Fine tuning using uncertainty estimates

The network is fine tuned using weights that uses as class weights
𝑤𝑐 𝑖, 𝑗 = 𝒱𝑐 𝑖, 𝑗

• That are conveniently clipped to 1 when they exceed 0.8.

• Uncertanty weights are used only on scribble annotations.



62

Quantitative Assessment, avg. class. error on all the classes 

Fine tuning using uncertainty 
weights provide superior 
improvements than before.

However, 𝑈0
𝐷 performance are 

lower than 𝑈0.
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Quantitative Assessment, avg. class. error interstitial class

The performance 
improvement is even more 
consistent (19 out of 20) 
through the patients and 
apparent 

𝑈𝑗
𝐷still outperforms 𝑈𝑗 in 9 

out of 20 cases 
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Conclusions

• Patient-specific fine tuning is beneficial
• Experiments comparing «all-patients» fine-tuning vs patient-specific fine tuning 

demonstrates this

• This effect underlines the major differences in patterns among patients

• Our solution addresses key challenges:
• Training under limited annotated images

• Adaptationto different visual characteristics of pathologies

• Uncertainty estimates.

• Uncertainty maps were estimated from an expert who routinely engages in 
diagnosis and treatment planning based on these images.
• In a qualitative comparison high-uncertainty images are deemed the most difficult from 

the expert to segment as well

• Limitation: severe dependance on annotation style and amount
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3D Segmentation
on Mice Brain (MRI)

3D CNN for skull stripping and lesion assessment

Marcello De Salvo
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Under Preparation…
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Context

Research collaboration with a laboratory investigating recovery from 
Traumatic Brain Injuries (TBI) via pre-clinical studies.

Goal: Design tools to automatically process brain MRI of mice/rats under 
study. These are useful to compute biomarkers to assess the recovery.

Rodents Model

(this is not a NN…)

Healty brain TBI MRI Assessing 3D 
Lesion Volume

Hyppocampus LesionCortex Lesion
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Problem Formulation

3D image from MRI 𝐼 ∈ ℝ+𝐻×𝑊×𝐷×𝐶

Each voxel contains signal intensity
3D Semantic segmentation mask

 ෡∆ ∈ 𝐾𝐻×𝑊×𝐷 
𝑓: ℝ+ 𝐻×𝑊×𝐷×𝐶 → 𝐾 𝐻×𝑊×𝐷



Challenges

• Atalas-based approaches are not viable.

• Shortage of annotated data:
• 3D segmentation is extremely time consuming

• Require experts' annotation

• Lack of annotated training data or pre-trained models on mice/rats

• Domain shift w.r.t humans, where there are multiple annotated data
• Lesions modify the shape of atlas and prevent using standard approaches. 

• Lesion is typically not a target class in datasets

• Different types of MRI (FLASH, Rare)

• Different species (mice/rats)



Idea of the Solution to compensate for annotation shortage

• Formulating auxiliary learning problems where it is possible to get supervision
• Segmentation of additional regions, not only the target ones, but also some for which 

we can get auxiliary annotated data.

• Skull-Stripping as an additional learning task.

• Classifier in the latent space (TBI/healty).

• Two-headed segmentation network trained on multiple data sources.

• Combination of different loss functions.

 



R-Net 3D overview



R-Net 3D architecture

• 3D U-net layout

• Three output 
branches:
• Lesion (softmax)

• Skull-stripping 
(sigmoid)

• TBI/Healthy 
rodent classifier

• Multi-task 
learning loss
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Dataset

▪ 48 FLASH

▪ 38 RARE

▪ 25 DTI

Provided with N4 Bias 
field correction

Binary 
segmentation

0 – Background
1 – Brain tissue

FLASH – 𝟎. 𝟏𝟑𝐦𝐦 – 𝟏𝟏𝟎𝐱𝟖𝟎𝐱𝟑𝟎𝟎

DTI – 𝟎. 𝟏𝟐, 𝟎. 𝟏𝟐, 𝟎. 𝟑 𝐦𝐦 − 𝟏𝟐𝟎𝐱𝟏𝟐𝟎𝐱𝟐𝟖RARE – 𝟎. 𝟏, 𝟎. 𝟏, 𝟎. 𝟑 𝐦𝐦 − 𝟏𝟓𝟎𝐱𝟏𝟓𝟎𝐱𝟑𝟕 

3D U-Net Skull Stripping
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FLASH – DICE > 97% GT PREDICTION

3D U-Net Skull Stripping
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Dataset

▪ 145 RARE

Provided with N4 Bias 
field correction

Four Classes

0 – Background
1 – Lesion
2 – Ipsi Ventricle
3 – Contra Ventricle

2

1

3

RARE – DICE > 97%

3D U-Net RARE Lesion Segmentation
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Dataset

▪ 33 FLASH

▪ 16 RARE

Provided with N4 Bias 
field correction

Four Classes

0 – Background
1 – Lesion
2 – Ipsi Ventricle
3 – Contra Ventricle
4 – Third Ventricle

2

1

3

4

DICE > 90%

3D U-Net RARE + FLASH Lesion Segmentation
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3D U-Net FLASH Lesion Segmentation
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3D U-Net Flash Roi Segmentation

Different Annotations: 9 regions from healthy individuals, 4 regions from TBI
- Background (label 0)
- Lesion (red, label 1)
- Cortex contra (green, label 2)
- Cortex ispi (blue, label 3)
- Hippo contra (yellow, label 4)
- Hippo ipsi (light blue, label 5)
- CC contra (light brown, label 10)
- CC ipsi (light green, label 11)
- Ventricle contra (dark blue, label 12)
- Ventricle ipsi (light blue, label 13)
- Third Ventricle (green, label 14)
- EC contra (pink, label 15)
- EC ipsi (purple, label 16)

1

2

3

4

5

12

14

16

10
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3D U-Net Flash Roi Segmentation

Multi Atlas CNN
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3D U-Net Flash Roi Segmentation

Multi Atlas CNN
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Volume Lesion Estimation

Tested on 16 extra mice, 
divided in two groups:

• TBI treated

• TBI control (no treatment)

Comparison against manual 
annotations
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R-3Net and manual annotations are correlated



An Expert-driven Data 
Generation Pipeline for 

Histological Images
Roberto Basla, Loris Giulivi, Luca Magri, Giacomo Boracchi,

“An expert-driven data generation pipeline for histological images”
International Symposium on Biomedical Imaging, May 2024

Roberto Basla





Data Generation for Instance Segmentation

Goal: Train instance segmentation networks for different tissues

Challenges: 

• Limited availability of annotated data, in particular for different treatment of 
the nuclei, different types of cells, pathologies…

• Traditional Data Augmentation might not significantly increase the variability 
of the dataset in very low data regimes.

• Data Generation might result in inconsistent images

Solution: our pipeline generate realistic images to be regulated by expert-
tunable parameters, starting from very few annotations.



Our data generation pipeline: Blob Generation

• We first generate a set of artificial blobs ෨𝐵 (a) by interpolating boundary 
points of available masks.

We first generate a set of artificial 
blobs ෨𝐵 (a) by interpolating 
boundary points of available masks.



Rationale: Blob Appearance

We want to preserve two key realism 
aspects: the appearance of blobs and their 
positioning over the image. 

To preserve blob shapes, we assume 
homotopic equivalence between different 
sections (or projections) of the same 3D 
nucleus 

As blobs are obtained as sections of similar 
nuclei, we generate blobs by interpolating 
blob boundaries. The texture is instead 
preserved by a style transfer Neural 
Network.



Rationale: Blob Placement

We want to preserve two key realism aspects: the appearance of blobs and 
their positioning over the image. 

• To preserve the distribution, we perform a greedy optimization procedure on 
a distribution parametrized over the available real images (obtained by 
blurring).

Distribution
Parameters



Our data generation pipeline: Blob Placement

• Then, we obtain our Ground Truth ෩𝑀 (b) by greedily placing our blobs to 
maximize the coverage of a defined density distribution 𝑃. 𝑃 can be either 
expert-defined or, as in our case, modeled from data using Perlin Noise.

• Ken Perlin, “Improving noise,” in Proceedings of the 29th annual conference on Computer graphics and interactive techniques, 2002

Prior 𝑃
Blobs placement 

over 𝑃 ( ෩𝑀)Then, we obtain our Ground Truth ෩𝑀
(b) by greedily placing our blobs to 
maximize the coverage of a defined 
density distribution 𝑃. 𝑃 can be either 
expert-defined or, as in our case, 
modeled from data using Perlin Noise.



Our data generation pipeline: Style Transfer

• Finally, we perform style transfer (c) to transform the ground truth ෩𝑀 into a 
histological image ሚ𝐼 according to a reference style ෨𝑅.

ሚ𝐼

෨𝑅

෩𝑀Finally, we perform style transfer (c) 
to transform the ground truth ෩𝑀
into a histological image ሚ𝐼 according 
to a reference style ෨𝑅.



Experiments

We tested our method by generating datasets using an increasing number of 
images/nuclei. We compared the results obtained by training a SOTA instance 
segmentation model (HoVerNet) on both generated datasets and the images 
used for generation.

Graham, Simon, et al. "Hover-net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images." Medical image analysis, 2019

1 image w/ GT
Our Pipeline

HoVerNet
Training

500 images 
w/ GT

HoVerNet
Training

DICE
DICE2

AJI
AJI+

Evaluation



Placement example

Image Generation



Results

A State-of-the-Art Instance Segmentation model can increase its performance in 
very low-data regimes (down to 1 annotated image with ~30 nuclei). 
Approaching the performance of models trained on a whole dataset (~700 
images).
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“As Unsupervised as 
Possible” 

Cell Counting

Luca Alessandrini
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Context – Cell Counting

Need of precise density estimation

Goal:

• Count the number of cells, to infer the density, and segment them, to 
infer properties

Challenges: 

• No segmentation annotations provided

• Image at different densities may exhibit different properties
• Illumination

• Scattering
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Context – Cell Counting

Cells have a completely different appearance than the Ikonisys ones, these 
are «farmed» in a bioreactor

Example at three density levels:

           Low                             Medium                            High
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Research Directions

Develop weakly-supervised segmentation tools on low densities and use 
this for fine tuning a detection network as the density grow.

Still work in progress, hopefully to be published

           Low                             Medium                            High



Cell segmentation 

Multiple Instance Learning in 
Digital Pathology



MIL for Digital Pathology
• Whole Slide Images (WSIs) are extremely large and usually come with slide-level labels

(e.g., responder vs. non-responder)

CNN

Responder/ 
Non responder

Life expectation

Very Large Image



Challenges in Digital Pathology

Challenges:

• Images are very large

• Little supervision

• It is often not possible to map to WSI labels (set labels) to portions ot the 
image (instance labels)

• Set-learning settings, but set-learning models are meant for way smaller 
inputs



MIL for Digital Pathology
• Whole Slide Images (WSIs) are extremely large and usually come with slide-level labels

(e.g., responder vs. non-responder)

• WSIs are divided into smaller image tiles (patches), which are treated as instances within a 
bag (the WSI)



Multiple Instance Learning (MIL)
• A weakly supervised learning approach where data is grouped into bags of instances

• Labels are provided only at the bag level, not for individual instances

• A bag is labelled positive if at least one instance is positive; otherwise, it is labelled 
negative

• Instance-level labellingis not done manually - the model infers which instances are 
positive or negative during training



Concluding Remaks
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Conclusions
Automated tools for processing biomedical images calls for Computer Vision 
methods that:

• Solve different problems than natural images (segmentation, MIL, way more 
popular here!)

• Face severe shortage of annotation

• Face severe domain shift problems on very specific tasks

Different strategies to counteracting lack of annotation:

• Sparse supervision

• Multi-Task Learning (auxiliary problems)

• (Controlled) data generation

• … and of course leveraging task-agnostic self-supervised vision encoders.
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