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This Talk

» We have a background from image processing / computer vision methods, we
are not expert in medical imaging itself.

* We got involved with medical companies / research institutes to solve of their
specific problems.

» We typically use methods/principles that are otherwise known but
* never used for solving the specific medical imaging task
e Cannot be used “off-the shelf”

* | present these collaborations and the way we overcame the data-scarcity
problenm.



An Illustrative Case Study
Histological Image
Segmentation

Instance segmentation of Nuclei

\
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Context: Histological (fluoroscopy) imaging

The lkoniscope provides a shortlist of interesting nuclei to
be presented to the medical professional.

Shortlist generation

Jo=ol"

Segmentation




Context: Histological (fluoroscopy) imaging

The lkoniscope provides a shortlist of interesting nuclei to
be presented to the medical professional.

Shortlist generation

'

Segmentation

Segmentation was performed with expert-driven methods
that poorly generalize to

* Different tissues

 Different types of treatments for the sample



Solution: Deep learning framework

We have designed a deep learning framework composed of a custom
implementation of two (alternative) solutions
e Mask R-CNN

* Hover-Net

Graham, S., Vu, Q. D., Raza, S. E. A., Azam, A,, Tsang, Y. W., Kwak, |. T., & Rajpoot, N. (2019). Hover-net: Simultaneous
segmentation and classification of nuclei in multi-tissue histology images. Medical image analysis, 58, 101563.



Input Image

Input: an histological
Image




Output Image: Instance Segmentation

Output: each cell is
expected to be
associated to an
individual segment

Possibly class
information can be
associated to each
mask




Very effecitve indeed!




Comparison with expert-driven segmentation

e We released the trained model with
interfaces to communicate with the
lkoniscope instrument.

* The model provided by us displays
better performance than previous
geometrical segmentation techniques,

* The new model solves the task of
instance segmentation, enabling the
identification of overlapping nuclei.

Geometrical approach Our model



Gathering Training Data: a Well-Known Problem

* Gathering unlabeled data is relatively easy, gathering annotations is not

* In medical images (more than in natural images) it is often important to
quantitatively assess areas (nr of pixels) covered by a specific class, not just
to assign image-wise labels.

* Annotating images for segmentation is incredibly time consuming

e Annotations required an histopathologist, which are costly and difficult to
gather

* There is a high risk of receiving inconsistent labelling (annotator fatigue?)



Solution: Training on publicly available dataset

Image from a private dataset Image from data bowl




Solution: Training on publicly available dataset

Image from a private dataset Image from data bowl

However, this might not always be a viable option...
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Kidney’s Biopsies

The area of renal peritubular
interstitium (the inter-tubular,
extra-glomerular, and extra-
vascular space) correlates
with the evolution of Chronic
Kidney’s Disease (CKD).

This is considered a
biomarker to:
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* assess the progression of
tumors and pathologies.

e assess the effectiveness of
treatments.




Histological Images and CKD

The area of interstitium can be manually
measured / segmented by operators,
however this is a task:

 Labor intensive
* Time consuming
* Very subjective

Deep Neural Networks for image
segmentation are very appealing as it is:

e Automated processing,
e Repeatable results
e Still, requires annotations!




Problem Formulation

« Semantic segmentatation of kidney biopsises (1920 x 2560 x 3 images)

4 classes: ‘Interstitial’ (black), ‘Tubules’ (red), ‘Glomerolus’ (orange),
‘Other’ (yellow)

Original image Ground truth




Red: interstitial
Blue: tubules
Green: Glomerules




Intrinsic Challenges

* Many souces of anatamical
variability
« Different pathologies

» Different conditions even within the
same pathology group

Dense Annotations

* Few images available with the
corresponding dense annotations.

* the average annotation time was
about 1.5 hours per image.

 rare pathologies involved



Intrinsic Challenges
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Fine tuning using
sparse annotations



Solution Idea: Weak Annotations

Adopt sparse and fast-to-
obtain annotations to fine
tune a general model on
each specific patient /
pathological condition

Scribbles can take less than g
minutes to prepare (vs 1.5hrs
of dense annotations)

Wang, G., Li, W., Zuluaga, M.A., Pratt, R., Patel, P.A., Aertsen, M., Doel, T., David, A.L., Deprest, ]., Ourselin, S., et al., 2018. Interactive medical image segmentation using deep learning with image-specific fine
tuning. IEEE transactions on medical imaging 37, 1562-1573



Two scribble annotators with different styles

Figure 3: Sample histological image (a) and corresponding annotations from the main (a) and the alternative
(b) annotators.



Scribble Fine Tuning Pipeline

Training Base Model

Dense

annotations Dataset

Patient |

Scribble
annotations

Fine Tuning on Patient j

ﬂ |:|J<|:|>
ﬂ —> 3x3 conv, batch norm, RelLU
— 2x2 max pooling
E —» 2x2 transposed conv
iy
y——

—» 1x1 convy, softmax

Figure 5: Adopted U-Net architecture.

Segmentation Prediction on Patient j

Images of
Patient j

Segmenting

Figure 1: Proposed pipeline for training the initial network U, fine-tuning the patient-specific network U;, and

predicting the segmentation of kidney structures.



Patients and Controls

11 Controls (healthy individuals) with dense annotations, overall
32 dense annotated images.

20 Patients affected by different conditions. Each has scribble
annotations on 7 images, dense annotations for testing only on
3 images.

Pathological condition Patient IDs Num_b er
of patients

Membrano-proliferative glomerulonephritis p01, p02, p03, p04, pl4

Membrano-proliferative glomerulonephritis (early stage) | p19 6 (30%)

ANCA-associated glomerulonephritis p05, p06, p08, p09 4 (20%)

Tubulo-interstitial nephritis pl6 1 (5%)

Minimal change disease pl3, pl8 2 (10%)

IgA nephropathy (mild) p07

IlgA Nephropathy (mild — moderate) pl2

IlgA Nephropathy (moderate) pl0, pll

IgA Nephropathy (moderate — severe) pl5 5 (25%)

Minimal non-specific abnormalities pl7, p20 2 (10%)

Total 20 (100%)

Table 1

Distribution of pathological conditions in the dataset.



Uy training

The network U is trained on 11 healthy individuals with dense annotations,
using overall 32 images
 Class weights to counteract class imbalance
 Data augmentation (rotation, zoom, brightness, horizontal, vertical flip)
* Patch-wise training (the network is fully convolutional, tested on arbitrary image sizes)
* Categorical cross-entropy loss (Dice ++)

Training Base Model




U; fine tuning

On each patient we fine tune U, on 7 scribble annotated images

 Class weights:
(18] )
min (C(i,j)'K)'(l']) €S
L0, Gj)es
Where S are the scribble annotations, C(i,j) is the class support, K a maximum weight
 Pixels not included in any scribble are completely ignored

w(i,j) =

Fine Tuning on Patient j

Dataset
Patient j
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Predicted Segmentation by U, of a Healthy Subject

Predicted segmentation overlapped with image of a healthy subject




GT Segmentation of a Healthy Subject

Ground truth segmentation overlapped with image of a healthy subject




Test image of a Patient




Scribble Annotations for fine Tuning U,

Scribble annotation overlapped with image of a patient affected by PAS




GT Segmentation of a Patient

Ground truth segmentation overlapped with image of a patient affected by PAS




Predictions vs GT for a Patient

Ground truth segmentation of a patient affected by PAS

Predicted segmentation of a patient affected by PAS



Qualitative Performance

cround Truth Predictions from Tuning using
sparse annotations




Quantitative Assessment, avg. class. error on all the classes

. . . Initial Fine-tuned Uj
FIne tunlng on scribble Patient network 100% scribbles | 50% scribbles 100% scribbles
. . . Uo main annotator main annotator | secondary annotator

annotations IS In general 001 0.900 0012 0.876 o.ygos

. . . 002 0.837 0.868 0.826 0.875

beneficial (Wilcoxon test p- p03 0671 0646 0665 0'586

004 0.796 0.806 0.666 0.805

value 0.035)

006 0.674 0.785 0.798 0.783

* in 14 out of 20 patients it is o0s 0 51 056t 0 75 0560

. . . . 509 0.603 0.627 0.643 0.628

beneficial (Iﬂ partlcular p05) p10 0.818 0.830 0.820 0.808

o1l 0.562 0.537 0.649 0.435

* When it is not beneficial, s 002 0010 0560 0ot6

losses are minima. e 0504 0701 0727 0610

016 0.741 0.746 0.818 0.593

Too sparse annotations (50% o 0705 0728 0 663 0721

of scribbles) are detrimental. g 0608 0.ro9 0.504 0.0

. Median 0.769 0.791 0.705 0.681
Scribbles from the second [interquartile range] | [0.668; 0.844] | [0.707; 0.857] | [0.649; 0.819] [0.606; 0.811]

Table 2

anm Otator alre leSS I nfO rm at|Ve Mean dice scores for all classes obtained by the deterministic network Uy, the networks U; fine-tuned using 100%
of the main annotator's scribbles, the networks U; fine-tuned using 50% of the main annotator’s scribbles, and

(fl ne tU nin g detrl me ntal> the networks fine-tuned U; using 100% of the secéndary annotator's scribbles.



Quantitative Assessment on Interstitial Class

. . . Initial Fine-tuned U;
Fine tuning on scri bble Patient network | 100% scribbles | 50% scribbles | 100% scribbles
. . . U, main annotator | main annotator | secondary annotator
annotations IS InN general p01 0.702 0.818 0.760 0.809
beneficial (Wil test s ca0 | o7eo 05% 0666
- P . : : :

ene ICla | Coxon eS p p04 0.802 0.828 0.806 0.833

p05 0.870 0.910 0.871 0.907

Val uc 0‘005> p06 0.852 0.843 0.870 0.817

p07 0.748 0.841 0.748 0.782

p08 0.697 0.797 0.718 0.473

p09 0.847 0.783 0.777 0.788

pl0 0.876 0.809 0.866 0.858

pll 0.783 0.734 0.735 0.726

pl2 0.797 0.848 0.865 0.644

pl3 0.757 0.820 0.772 0.820

pl4 0.759 0.829 0.853 0.784

plb 0.799 0.832 0.746 0.674

pl6 0.653 0.723 0.798 0.618

pl7 0.615 0.708 0.719 0.697

pl8 0.839 0.858 0.853 0.867

pl9 0.793 0.802 0.630 0.732

p20 0.742 0.862 0.717 0.802

Median 0.788 0.819 0.775 0.783
[interquartile range] | [0.732; 0.811] | [0.788; 0.842] [0.743; 0.853] [0.694; 0.818]

Table 3

Dice scores for the class cpp; obtained using the deterministic network U, the networks U; fine-tuned using
100% of the main annotator’s scribbles, the networks U; fine-tuned using 50% of the main annotator’s scribbles,
and the networks U; fine-tuned using 100% of the secondary annotator’s scribbles.



Fine tuning using
uncertainty-based weights



Solution Idea: Uncertainty Estimation

Along with class posterior, | i‘ N
networks can be modified to " Q\\l
provide estimates of , h
uncertainty in their
predictions.

We integrate uncertainty
estimates from MCD in the
fine-tuning on scribble
annotations

Wang, G., Li, W., Zuluaga, M.A., Pratt, R., Patel, P.A., Aertsen, M., Doel, T., David, A.L., Deprest, ]., Ourselin, S., et al., 2018. Interactive medical image segmentation using deep learning with image-specific fine
tuning. IEEE transactions on medical imaging 37, 1562-1573



Dropout

Dropout randomly set to zero connections in the network.

* Active during training to reduce the risk of overfitting: the network is seen as
training an ensemble of models.

* Disabled during inference: the network returns an aggregation of individual
estimates.

We add two dropout layers to the U-net architecture Uy and follow the same
training on dense annotations and fine-tuning on scribbles as for U,.



Scribble + MC Dropout Fine Tuning Pipeline

Training Base Model w H_{
et ﬂﬂ Dropout @{ﬁ

P ", P
‘*- DE%/ == ol

igure 5: Adopted U-Net architecture.

Dense
annotations

Fine Tuning on Patient j Segmentation Prediction on Patient j

Dataset
Patient |

Segmenting

Scribble
annotations

Figure 1: Proposed pipeline for training the initial network U, fine-tuning the patient-specific network U;, and
predicting the segmentation of kidney structures.



Uncertainty Estimation in Bayesian Networks

Bayesian networks keep dropout active during inference
During the t-th call of the network UY on the same test image we obtain

* The networ

* The networ
network ca

Ug () »perc=1,..,4t=1,.,T

< UY returns different outputs p, when fed with the same input I.
< Ug output is given by the average posterior p,.(i,j) over all the

|s.



Uncertainty Estimation in Bayesian Networks

We can compute the network uncertainty for each class c, as
Vc(i»j) — Uqc(i»j) + gc(i'j)

Vi) =2 Y PereNA = Porli)) 47 Y (Poeid) = Pealih))

* A, aleatoric uncertainty: due to noise in the inference data, unavoidable.

» £, epistemic uncertainty: due to model knowledge and can be reduced by
providing more training data.



Uncertainty Estimation on an Mild Pathology

High uncertainity pixels are close to cell boundaries




Uncertainty Estimation on a Severe Pathology

On the patient UZ is way more uncertain, with larger uncertainty estimates.




Fine tuning using uncertainty estimates

The network is fine tuned using weights that uses as class weights
Wc(i»j) — Vc(i:j)

e That are conveniently clipped to 1 when they exceed 0.8.

* Uncertanty weights are used only on scribble annotations.



Quantitative Assessment, avg. class. error on all the classes

. . . . Initial Fine-tuned UP Fine-tuned
FI n e tu n I n g USI n g u n Ce rtal nty Patient network 100% scribbles 100‘% scribbles all
M M M upb main annotator | secondary annotator patients
weights provide superior i 3516 057 355 057
. p02 0.734 0.848 0.814 0.531
improvements than before. 03 0.606 0,659 0.665 0.370
D p04 0.648 0.649 0.680 0.415
p05 0.491 0.756 0.777 0.411
However, Uy performance are
p07 0.615 0.635 0.593 0.500
lower than UO . p08 0.849 0.856 0.826 0.556
p09 0.586 0.627 0.634 0.333
pl0 0.716 0.757 0.789 0.348
pll 0.508 0.621 0.601 0.354
pl2 0.693 0.799 0.686 0.445
pl3 0.880 0.894 0.822 0.465
pl4 0.716 0.713 0.796 0.397
pl5 0.569 0.748 0.232 0.467
pl6 0.719 0.775 0.799 0.419
pl7 0.836 0.824 0.825 0.381
pl8 0.692 0.688 0.734 0.525
pl9 0.807 0.698 0.750 0.426
p20 0.811 0.849 0.825 0.547
Median 0.705 0.757 0.781 0.429
[interquartile range] | [0.605; 0.808] | [0.681; 0.830] [0.676; 0.816] [0.393; 0.476]

Table 4
Mean dice scores for all classes obtained using the Bayesian network U(f), the networks UJ.D fine-tuned using 100%

of the main annotator’s scribbles, the networks Ujp fine-tuned using 100% of the secondary annotator’s scribbles,
and the networks fine-tuned using all patients (main annotator).



Quantitative Assessment, avg. class. error interstitial class

Initial Fine-tuned UP Fine-tuned
Th e p e rfo rm a n Ce Patient network 100% scribbles 100‘{/0 scribbles all
. M up main annotator | secondary annotator atients
improvement is even more 5o 5779 076 0715 0610
. p02 0.619 0.741 0.673 0.689
consistent (19 out of 20) e 068 0540 0882 0747
. p04 0.597 0.813 0.805 0.750
th rough the patients and pO5 0.403 0.864 0.881 0.703
p06 0.680 0.872 0.869 0.667
appare Nt p07 0.782 0.799 0.614 0.595
p08 0.764 0.779 0.648 0.721
. . p09 0.717 0.846 0.864 0.585
UP still OutperfOFmS U:ing p10 0.759 0.888 0.839 0.667
] J pll 0.483 0.742 0.633 0.594
pl2 0.761 0.833 0.756 0.731
OUt Of 20 Cases pl3 0.789 0.792 0.650 0.630
pld 0.724 0.854 0.847 0.553
pl5 0.585 0.861 0.526 0.714
pl6 0.667 0.830 0.811 0.575
pl7 0.688 0.700 0.674 0.493
pl8 0.795 0.820 0.821 0.734
pl9 0.837 0.762 0.796 0.667
p20 0.819 0.851 0.805 0.739
Median 0.721 0.825 0.801 0.667
[interquartile range] | [0.655; 0.780] | [0.784; 0.852] [0.667; 0.841] [0.595; 0.724]

Table 5
Dice scores for the class ¢ p; obtained using the Bayesian network U(f), the networks UJ.D fine-tuned using 100% of
the main annotator’s scribbles, the networks UJD fine-tuned using 100% of the secondary annotator’s scribbles, and

the networks fine-tuned using all patients (main annotator). Summaries are in terms of median and interquartile
range because the data are not normally distributed.



Conclusions

* Patient-specific fine tuning is beneficial

e Experiments comparing «all-patients» fine-tuning vs patient-specific fine tuning
demonstrates this

 This effect underlines the major differences in patterns among patients

* Our solution addresses key challenges:
 Training under limited annotated images
» Adaptation to different visual characteristics of pathologies
e Uncertainty estimates.

* Uncertainty maps were estimated from an expert who routinely engages in
diagnosis and treatment planning based on these images.
 In a qualitative comparison high-uncertainty images are deemed the most difficult from
the expert to segment as well

* Limitation: severe dependance on annotation style and amount
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context

Research collaboration with a laboratory investigating recovery from
Traumatic Brain Injuries (TBI) via pre-clinical studies.

Goal: Design tools to automatically process brain MRI of mice/rats under
study. These are useful to compute biomarkers to assess the recovery.
Cortgx Hyppocampus Lesion Lesion

Rodents Model Healty brain
(this is not a NN...) Lesion Volume

Assessing 3D



Proble Formulation

3D image from MRI I € R+HXWHDXC fiR¥ HXWXDXC _y ¢ HXWXD 3D Semantic segmentation mask

N

Each voxel contains signal intensity A € KHXWXD




Challenges

» Atalas-based approaches are not viable.

 Shortage of annotated data:
e 3D segmentation is extremely time consuming
e Require experts' annotation
* Lack of annotated training data or pre-trained models on mice/rats

* Domain shift w.r.t humans, where there are multiple annotated data
 Lesions modify the shape of atlas and prevent using standard approaches.
 Lesion is typically not a target class in datasets
« Different types of MRI (FLASH, Rare)

* Different species (mice/rats)



ldea of the Solution to compensate for annotation shortage

* Formulating auxiliary learning problems where it is possible to get supervision

e Segmentation of additional regions, not only the target ones, but also some for which
we can get auxiliary annotated data.

 Skull-Stripping as an additional learning task.
* Classifier in the latent space (TBl/healty).

* Two-headed segmentation network trained on multiple data sources.
* Combination of different loss functions.



R-Net 3D overview

3D MRI Input (Tiw/T2w) Lesion and ROl mask Brain Mask

Pre-processing

N4 Bias

Reorient

Augment
Resample Post-processing
Normalize Generate full volume predictions

Return to original resolution

3D Convolutional Neural Network

|nDU‘[ LJLOER........ > Brain Rol
Prediction [Prediciton

Random cropping
R-Net



R-Net 3D architecture
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3D U-Net Skull Stripping

Dataset

N
0coo = 48 FLASH
(000 ) = 38 RARE
(600 ) = 25 DTl
=HERN Provided with N4 Bias

A 1001
\/\ field correction

’ Binary
segmentation
0 — Background
1 — Brain tissue

RARE-0.1,0.1,0.3 mm — 150x150x37 DT -0.12,0.12,0.3 mm — 120x120x28




3D U-Net Skull Stripping

FLASH - DICE > 97% — s, Y PREDICTION




3D U-Net RARE Lesion Segmentation

N
(000 Dataset
(600 ) » 145 RARE
[ 5o o‘ ] Provided with N4 Bias
O~ field correction
< 101 ,\

- Four Classes

0 — Background

1 — Lesion

2 — Ipsi Ventricle

3 — Contra Ventricle




3D U-Net RARE + FLASH Lesion Segmentation

Dataset
[ 500 ] = 33 FLASH
= 16 RARE
[ °e° ] Provided with N4 Bias
||:|| field correction

- Four Classes
0 — Background

1 — Lesion

2 — Ipsi Ventricle

3 — Contra Ventricle
4 — Third Ventricle

H




3D U-Net FLASH Lesion Segmentation

Original Ground Truth Predicted




3D U-Net Flash Roi Segmentation

Different Annotations: 9 regions from healthy individuals, 4 regions from TBI
- Background (label o)

- Lesion (red, label 1)

- Cortex contra (green, label 2)

- Cortex ispi (blue, label 3)

- Hippo contra (yellow, label 4)

- Hippo ipsi (light blue, label 5)

- CC contra (light brown, label 10)

- CC ipsi (light green, label 11)

- Ventricle contra (dark blue, label 12)
- Ventricle ipsi (light blue, label 13)

- Third Ventricle (green, label 14)

- EC contra (pink, label 15)

- EC ipsi (purple, label 16)




3D U-Net Flash Roi Segmentation

Multi Atlas CNN



3D U-Net Flash Roi Segmentation

Multi Atlas CNN



Volume Lesion Estimation

Tested on 16 extra mice,
divided in two groups:

Manual - lesion volume 5mpi N-NET - lesion volume 5mpi
e TBI treated 409 0.0033 409
0.0025
* TBI control (no treatment) |
30- °. 30 .
03 ey
o ole o

10= [ ] 10=-

. . ® . ®
Comparison against manual £ 2] . E 20- .
annotations

L d
L]

0
1 1 1 1
TBI - Veh TBI - Treated TEBI - Veh TBI - Treated



R-3Net and manual annotations are correlated

Model comparision_5m

-
U-NET
Vs,
Manual
Pearsonr
r 0.9741
e 95% confidence interval 0.9400 to 0.9889
f’;/ R squared 0.0488

10 20 30 40 50
U-NET
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Generation Pipeline for
Histological Images

Roberto Basla, Loris Giulivi, Luca Magri, Giacomo Boracchi,
“An expert-driven data generation pipeline for histological images”
International Symposium on Biomedical Imaging, May 2024

Roberto Basla



AN EXPERT-DRIVEN DATA GENERATION PIPELINE FOR HISTOLOGICAL IMAGES

Roberto Basla, Loris Giulivi, Luca Magri, Giacomo Boracchi

{name.surname } @polimi.it

ABSTRACT

Deep Learning (DL) models have been successfully applied
to many applications including biomedical cell segmentation
and classification in histological images. These models re-
quire large amounts of annotated data which might not al-
ways be available, especially in the medical field where an-
notations are scarce and expensive. To overcome this limi-
tation, we propose a novel pipeline for generating synthetic
datasets for cell segmentation. Given only a handful of anno-
tated images, our method generates a large dataset of images
which can be used to effectively train DL instance segmenta-
tion models. Our solution is designed to generate cells of real-
istic shapes and placement by allowing experts to incorporate
domain knowledge during the generation of the dataset.

Index Terms— Instance Segmentation, Data Generation,
Deep Learning.

DEIB. Politecnico di Milano, Italy

can only be applied to already-existing samples resulting in
a limited increase of variability. Image generation, instead,
has the potential to obtain a large amount of diverse data, en-
abling more effective model training. On the flip side, this
also requires generating annotations (here also referred to as
blobs) that are pixel-wise consistent with generated samples.

A few efforts have been made towards generating
both image and GT. These rely on DL models like Generative
Adversarial Networks (GANSs) [4] that, while providing good
results, do not enable to steer the image generation towards
images featuring desired properties like the cell distribution
and spacing. Other works break down the generation prob-
lem to make it more controllable, but are limited to re-using
cell masks from real data [2], or generating blobs at random
[5]. yielding potentially unrealistic results. Other approaches
extract blobs from real images and place them over an empty
canvas to create the image mask [6l[7]. Lastly, works such as



Data Generation for Instance Segmentation

Goal: Train instance segmentation networks for different tissues

Challenges:

 Limited availability of annotated data, in particular for different treatment of
the nuclei, different types of cells, pathologies...

* Traditional Data Augmentation might not significantly increase the variability
of the dataset in very low data regimes.

* Data Generation might result in inconsistent images

Solution: our pipeline generate realistic images to be regulated by expert-
tunable parameters, starting from very few annotations.



Our data generation pipeline: Blob Generation

(a) Blob generation (b) Blob placement (c) Style transfer

[0,1]
‘- ¥ Kd
Prior estimation ® '
I I
o
u;’@ P _
‘ [ <> Random sample

We first generate a set of artificial .

blobs B (a) by interpolating NG e

boundary points of available masks. i A
R O
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Rationale: Blob Appearance

We want to preserve two key realism

aspects: the appearance of blobs and their
positioning over the image.

To preserve blob shapes, we assume
homotopic equivalence between different
sections (or projections) of the same 3D
nucleus

As blobs are obtained as sections of similar
nuclei, we generate blobs by interpolating
blob boundaries. The texture is instead
preserved by a style transfer Neural
Network.




Rationale: Blob Placement

We want to preserve two key realism aspects: the appearance of blobs and
their positioning over the image.

 To preserve the distribution, we perform a greedy optimization procedure on
a distribution parametrized over the available real images (obtained by
blurring).

g

Distribution
Parameters




Our data generation pipeline: Blob Placement

(:)Blob generation (:)Blob placement () Style transfer

ﬁq' |
- ; o
M &

Prior estimation

I

Random sample

Blobs placement
over P (M)

Then, we obtain our Ground Truth M
(b) by greedily placing our blobs to
maximize the coverage of a defined
density distribution P. P can be either
expert-defined or, as in our case,
modeled from data using Perlin Noise.

* Ken Perlin, “Improving noise,” in Proceedings of the 29th annual conference on Computer graphics and interactive techniques, 2002



Our data generation pipeline: Style Transfer

(@) Blob generation (b) Blob placement (¢) Style transfer
- 0,1] %
N
) .
Prior estimation -
I

B ~E
‘ [ <> Random sample

Finally, we perform style transfer (c)
to transform the ground truth M
into a histological image I according
to a reference style R.




Experiments

We tested our method by generating datasets using an increasing number of
images/nuclei. We compared the results obtained by training a SOTA instance

segmentation model (HoVerNet) on both generated datasets and the images
used for generation.

500 images

, Evaluation
1 image w/ GT - w/ GT HoVerNet
Our Pipeline > o
Training
HoVerNet
Training

Graham, Simon, et al. "Hover-net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images." Medical image analysis, 2019

[
»




Generated image Mask overlay
0

Image Generation

Placement example
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Generated image

Generated image Mask overlay Generated image Mask overlay
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Results

A State-of-the-Art Instance Segmentation model can increase its performance in
very low-data regimes (down to 1 annotated image with ~30 nuclei).
Approaching the performance of models trained on a whole dataset (~700
images).
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“As Unsupervised as
Possible”
Cell Counting




Context - Cell Counting

Need of precise density estimation
Goal:

e Count the number of cells, to infer the density, and segment them, to
infer properties

Challenges:
* No segmentation annotations provided

* Image at different densities may exhibit different properties
* lllumination
 Scattering



Context - Cell Counting

Cells have a completely different appearance than the Ikonisys ones, these
are «farmed» in a bioreactor

Example at three density levels:

Medium




Research Directions

Develop weakly-supervised segmentation tools on low densities and use
this for fine tuning a detection network as the density grow.

Still work in progress, hopefully to be published
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MIL for Digital Pathology

« Whole Slide Images (WSIs) are extremely large and usually come with slide-level labels
(e.g., responder vs. non-responder)

Very Large Image

Responder/
Non responder

Life expectation




Challenges in Digital Pathology

Challenges:
* Images are very large
e Little supervision

* It is often not possible to map to WSI labels (set labels) to portions ot the
image (instance labels)

* Set-learning settings, but set-learning models are meant for way smaller
Inputs



MIL for Digital Pathology

« Whole Slide Images (WSIs) are extremely large and usually come with slide-level labels
(e.g., responder vs. non-responder)

« WSIs are divided into smaller image tiles (patches), which are treated as instances within a
bag (the WSI)
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Multiple Instance Learning (MIL)

* A weakly supervised learning approach where data is grouped into bags of instances
 Labels are provided only at the bag level, not for individual instances

* A bag is labelled positive if at least one instance is positive; otherwise, it is labelled
negative

* Instance-level labelling is not done manually - the model infers which instances are
positive or negative during training

Single Instance Learning Multi-Instance Learning
w + + " _ r\
3 + + i = o
5 ko
2 o = = )
g q + 'I = %
?_ + ¢ = o

! [— ]

KR

! Negative Instances
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Concluding Remaks



Conclusions

Automated tools for processing biomedical images calls for Computer Vision
methods that:

* Solve different problems than natural images (segmentation, MIL, way more
popular herel)

 Face severe shortage of annotation
* Face severe domain shift problems on very specific tasks

Different strategies to counteracting lack of annotation:

e Sparse supervision

 Multi-Task Learning (auxiliary problems)

« (Controlled) data generation

e .. and of course leveraging task-agnostic self-supervised vision encoders.

Chen, R.J., Ding, T., Lu, M.Y. et al. Towards a general-purpose foundation model for computational pathology. Nat Med 30, 850-862 (2024)
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