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* (a) Data stream @1, . . ., @, € R%. (b) Anomaly scores s at different time instants t, from left to right.
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(a) Density. (b) Structure.




Anomalies



Anomaly detection in health

Mammograms

(https://creativecommons.org/licenses/by-sa/4.0)
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SYLICON WAFER MANUFACTURING

Defects detected as anomalies in microscope images

Lys

life.augmented G. Boracchi



Automatic and long term Egc monitoring KLys

life.augmented

Health monitoring / wearable devices:

Automatically analyze EGC tracings to detect
arrhythmias or incorrect device positioning

L

Carrera D., Rossi B., Fragneto P., Boracchi G. "Online Anomaly Detection for Long-Term ECG Monitoring using Wearable Devices", Pattern Recognition 2019




Anomalous activities detection in videos

USCD Anomaly Dataset http://www.svcl.ucsd.edu/projects/anomaly/dataset.html



http://www.svcl.ucsd.edu/projects/anomaly/dataset.html

Anomaly Detection for automatic quality control



https://www.mvtec.com/company/research/datasets/mvtec-ad/

3D Anomaly Detection

anomaly-free anomalous ground truth anomaly-free anomalous ground truth
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Bergmann, Paul, Xin Jin, David Sattlegger, and Carsten Steger. "The mvtec 3d-ad dataset for unsupervised 3d anomaly detection and localization." arXiv:2112.09045 (2021).



Logical constraints anomaly detection
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Fig. 3 Example images of the MVTec LOCO AD dataset for each of the five dataset categories. Each category contains anomaly-free train,
validation, and test images. Additional test images contain various structural and logical anomalies. Pixel-precise ground truth annotations are
provided for all anomalies

Bergmann, Paul, Kilian Batzner, Michael Fauser, David Sattlegger, and Carsten Steger. "Beyond dents and scratches: Logical constraints in
unsupervised anomaly detection and localization." IJCV (2022%: 947-969.



The Problem Formulation



Anomalies

“Anomalies are patterns in data that do not conform to a well defined notion of
normal behavior”

Thus:

 Normal data are generated from a stationary process Py
 Anomalies are from a different process P, # Py

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (July 2009), 58 pages.



Anomalies

“Anomalies are patterns in data that do not conform to a well defined notion of
normal behavior”

Thus:
 Normal data are vectors drawn from a stationary distribution ¢,
 Anomalies are vectors drawn from a different distribution ¢; # ¢,

¢o Po
\!'L\l —

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (July 2009), 58 pages.



Anomalies

“Anomalies are patterns in data that do not conform to a well defined notion of
normal behavior”

Thus:
 Normal data are generated from a stationary process Py
 Anomalies are from a different process P, +# Py

Examples of Anomalies:

* Frauds in the stream of all the credit card transactions

e Arrhythmias in ECG tracings

« Defective regions in an image, which do not conform a reference pattern

 Anomalies might appear as spurious elements, and are typically the most
informative samples in the stream

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (July 2009), 58 pages.



Problem formulation: Anomaly Detection in images

Let s be an image defined over the pixel domain X c Z?,
let c € X be a pixel and s(c) the corresponding intensity.

Our goal is to locate any anomalous region in s, i.e. estimating the unknown anomaly
mask € defined as

if ¢ falls in a normal region
if ¢ falls in an anomalous region

Q(c) = {‘1
S
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Problem formulation: Anomaly Detection in images

Let s be an image defined over the pixel domain X c Z?,
let c € X be a pixel and s(c) the corresponding intensity.

Our goal is to locate any anomalous region in s, i.e. estimating the unknown anomaly
mask Q defined as

Q(c) = {O if ¢ falls in a normal region

1 if ¢ falls in an anomalous region
Q
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Patch-wise Anomaly detection

The goal not determining whether the whole image is normal or anomalous, but

locate/segment possible anomalies

Therefore, it is convenient to

1.
2.

Analyze the image patch-wise

Isolate regions containing
patches that are detected as
as anomalies
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Patch-wise Anomaly detection

The goal not determining whether the whole image is normal or anomalous, but

locate/segment possible anomalies

Therefore, it is convenient to

1.
2.

Analyze the image patch-wise

Isolate regions containing
patches that are detected as
as anomalies
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The Mainstream Solutions



The three major ingredients

Most detection algorithms have three major ingredients:
e The background model M, learned from normal data
* The statistic / anomaly score: err(s), L(s), A(s), ...

 Decision rule to detect, e.g. err(s) 2 y possibly controlling the FPR, as in other
statistical detection methods
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The three major ingredients

Most detection algorithms have three major ingredients:
e The background model M, learned from normal data
* The statistic / anomaly score: err(s), L(s), A(s), ...

 Decision rule to detect, e.g. err(s) 2 y possibly controlling the FPR, as in other
statistical detection methods
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Anomaly Detection By Sparse *=«
Representations

Diego Carrera, Beatrice Rossi, Pasqualina Fragneto, Giacomo Boracchi “Online Anomaly Detection for Long-Term
ECG Monitoring using Wearable Devices”, Pattern Recognition, 2019

Marco Longoni, Diego Carrera, Beatrice Rossi, Pasqualina Fragneto, Marco Pessione, Giacomo Boracchi, "A
Wearable Device for Online and Long-Term ECG Monitoring" 1)CAl 2018 - Demo Track

Carrera D., Rossi B., Fragneto P., and Boracchi G. "Domain Adaptation for Online ECG Monitoring” ICDM 2017,

Diego Carrera, Fabio Manganini, Giacomo Boracchi, Ettore Lanzarone, "Defect Detection in SEM Images of
Nanofibrous Materials“ IEEE TIlI, 2017

Diego Carrera, Giacomo Boracchi, Alessndro Foi and Brendt Wohlberg "Scale-invariant Anomaly Detection With
Multiscale Group-sparse Models" IEEE ICIP 2016



Dictionaries Yielding Sparse Representations

Dictionaries are just matrices! D € R™™

Each column is called an atom:
e lives in the input space

« itis one of the learned building blocks
to reconstruct the input signal

A good background model
e Unsupervised models

e Easy to plug in a change/anomaly detection
framework

e Easy to adapt
 Simple and interpretable

R &l
]
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Sparse Representations

Let s € R™ be the input signal, a sparse representation is
M

SZEXL' di!

i=1
A sparse representation is a linear combination of few dictionary atoms {d;}

= 0.7 = +0.1 = —0.2 *
|
c —
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Sparse Representations

Let s € R™ be the input signal, a sparse representation is
M

s=2xidi=Dx

i=1
A sparse representation is a linear combination of few dictionary atoms {d;} and
lx|lo < L, i.e. only a few coefficients are nonzero, i.e. x is sparse.

This vector
— . / X = [xl, ey xM]
] IS sparse

G. Boracchi




Sparse Coding and Dictionary Learning

Sprase Coding: computing the sparse representation for an input signal s w.r.t. D

s € R" ﬁ JE—
L - L

x= 0.7, 0,

Dictionary Learning: estimate D from a training set of signals S

S={s1-Su} :> D € R™™

T .
S!!}'_i»l! N K
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Online Monitoring through Sparse Representations

Training:

* Learn a dictionary D from a training set S containing normal instances
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Online Monitoring through Sparse Representations

Training:
* Learn a dictionary D from a training set S containing normal instances
 Learn how normal data are reconstructed by D
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Online Monitoring through Sparse Representations

Training: W
e Learn a dictionary D from a training set S containing normal instances £ '
* Learn how normal data are reconstructed by D ”

Anomalous

12

Anomaly Detection:

Sparse Coding: encode each test signal s w.r.t. D, and
assess its conformance with D.
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Anomaly Detection in Heartbeats

The solution is general and can be customized to different scenarios,
including ECG monitoring.

Here we learn user-specific dictionaries to detect arrytthmias as

-0.25 0 0.25

heartbeats that do not conform to the user morphology / 3
12 +
60 bpm 60 bpm 10 {25
i T | 17 EEEEEEEE \L
| —] 81
i i L6t °
- R . Eé .
T 2r |
P
Qg i g | ol
| INENEENNEE NN ' ' ' ' ' ' ' : ' 0.5
0 0.1 62 03 04 05 06 07 08
Different users feature different Reconstruction Error

heartbeat morphology 7 Ibx=sli3

Diego Carrera, Beatrice Rossi, Pasqualina Fragneto, Giacomo Boracchi “Online Anomaly Detection for Long-Term ECG Monitoring using Wearable Devices”, Pattern Recognition, 2019



Domain Adaptation for Online ECG Monitoring

The issue:

Dictionary has to be learned from each user
e ECG tracings for training can be only acquired in resting conditions
During daily activities heart-rate changes and do not match the learned dictionary

60 bpm 90 bpm 120 bpm
R R R
P
T T
1,./\ ) .
= Jv
s Qs

The heartbeats get transformed when the heart rate changes:
learned models have to be adapted according to the heart rate.

S

60 bpm 90 bpm 120 bpm
R R R
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Domain Adaptation for Online ECG Monitoring

We propose to design linear transformations F. , to adapt user-specific dictionaries

—_ . mXxXm
Du,T1 - Frl,ro Du,ro’ FT'O,Tl E ]:R

Surprisingly these transformations can be learned from a publicly available dataset
containing ECG recordings at different heart rates from several users

User-independent transformations enable accurate mapping of user-specific dictionaries
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Carrera D., Rossi B., Fragneto P., and Boracchi G. "Domain Adaptation for Online ECG Monitoring” ICDM 2017,



Domain Adaptation for Online ECG Monitoring

We propose to design linear transformations F. , to adapt user-specific dictionaries
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Surprisingly these transformations can be learned from a publicly available dataset
containing ECG recordings at different heart rates from several users

User-independent transformations enable accurate mapping of user-specific dictionaries
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Carrera D., Rossi B., Fragneto P., and Boracchi G. "Domain Adaptation for Online ECG Monitoring” ICDM 2017,




ML: Long Term ECG monitoring in wearables 1S7,

life.augmented

Efficient variant of the sparse coding has been implemented in an MCU, to enable
online and long term ECG monitoring. Automatic detection of anomalies (e.g.,
arrhythmias) and domain adaptation to track heart rate variations. The model is based
on a learned and user-specific model of heartbeats.

ELECTAODES

Marco Longoni, Diego Carrera, Beatrice Rossi, Pasqualina Fragneto, Marco Pessione, Giacomo Boracchi, "A Wearable Device for Online and
Long-Term ECG Monitoring" 1JCAI 2018 - Demo Track https://boracchi.faculty.polimi.it/Projects/ECG_Monitoring/lJCAl_2018_Demo.html



https://boracchi.faculty.polimi.it/Projects/ECG_Monitoring/IJCAI_2018_Demo.html

Domain Adaptation on Quality Inspection

The Issue:

 SEM images can be acquired at different zooming levels
Solution:

« Synthetically generate training images at different zooming levels
e Learn a dictionary for each scale

 Combine all the learned dictionaries in a multiscale dictionary D
* Perform sparse-coding including a penalized, group sparsity term

LAV Tam

‘ S
o) o S
D, D3 |

Carrera D., Boracchi G., Foi A. and B. Wohlberg "Scale-invariant Anomaly Detection With multiscale Group-sparse Models" IEEE ICIP 2016




The Elephant in the Room....




Anomaly Detection by Deep Learning Models

In 2018 the «deep learning» tsunami meets Anomaly Detection

AutoEncoder
- n H H Tl oot

Training

Phase CNN | ViT
 Trained on normal data
e possibly pretrained
e Student teacher architectures

Napoletano P., Piccoli F, Schettini R., "Anomaly Detection in Nanofibrous Materials by CNN-Based Self-Similarity", Sensors 2018
Zong et al, “Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection”, ICLR 2018

- X2

S R o
SRS SIAZ AN

L ~(V-‘4.“ V7, ¥/ S APIs
KAl LN

Ly 4@«’,«1’(}%};‘@‘

.‘f N | AR

P -

Sabokrou, Mohammad, et al. "Deep-anomaly: Fully convolutional neural network for fast anomaly detection in crowded scenes.” CVIU 2018
Burlina, Philippe, Neil Joshi, and I. Wang. "Where's Wally now? Deep generative and discriminative embeddings for novelty detection.”" CVPR 2019
Defard, Thomas, et al. “PADIM: a patch distribution modeling framework for anomaly detection and localization.” ICPR 2020

Bergmann, Paul, et al. "Uninformed students: Student-teacher anomaly detection with discriminative latent embeddings." CVPR 2020



Zero-Shot Anomaly Detection

Yunkang Cao, Jiangning Zhang , Luca Frittoli, Yugi Cheng, Weiming Shen, and Giacomo Boracchi
“AdaClLIP: Adapting CLIP with Hybrid Learnable Prompts for Zero-Shot Anomaly Detection” ECCV, 2024



Zero Shot Deep Learning

Learning perception from the supervision contained in

natural language paired with images. l
o “A cat sitting » Text »

CLIP: a Text encoder and an Image encoder projecting on a chair” Encoder

latent representations in the same space.

The latent representations of a text and of an image are

nearby when the two portraits similar content N

Zero-Shot CLIP
- Take pre-trained CLIP
- Consider the class names as text {t;}

- Classify an image I by associating it to the text {¢t;}
that is closest to I according to CLIP.

Radford, Alec, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry et al. "Learning
transferable visual models from natural language supervision.”" ICML, 2021.



The Zero-Shot Paradigm in Anomaly Detection

—

Training
Phase

“Cold Start” limitation: need to gather data before starting monitoring

However, pre-trained Vision-Language Models “Rnow” the visual pattern of defects.

Testing images may exhibit universal patterns, either normal or anomalous, that VLMs
can identify.

Jeong, ., Zou, Y., Kim, T., Zhang, D., Ravichandran, A., Dabeer, 0.: “Winclip: Zero-/few-shot anomaly classification and segmentation”. CVPR 2023



The Zero-Shot Paradigm in Anomaly Detection

Zero-shot AD: Enable detecting
anomalies even without normal “this is g
images for training. damaged item” »

»

Rationale behind Zero-shot AD: Er(t)

* Adopt a pretrained CLIP Image and
Text Encoders

e Query for “defective”, “broken” or
“damaged” prompts

* Detect as anomalous images that
are close to these prompts in the E1(z1)
latent space.

e Possibly adopt “normal” text
prompts as well

» 1€,(z1) — Ex (D] = 0

»

o |1€,(22) — €r(D)]] > 0

E1(z2)

Jeong, J., Zou, Y., Kim, T., Zhang, D., Ravichandran, A., Dabeer, 0.: “Winclip: Zero-/few-shot anomaly classification and segmentation”. CVPR 2023



AdacClip

Remarks:

e CLIP is trained on natural image-text, not
specialized for anomaly detection.

* There is a large availability of defect
detection annotated datasets.

Idea behind AdacCLIP:

* Leverage defect-detection datasets as
auxiliary annotated data to fine tune
learnable prompts into a zero-shot
framework from CLIP.

e Adaptation adheres to the zero-shot learning
paradigm, as long as testing images do not
belong to categories presented in the
auxiliary AD dataset.

Training Data

Unsupervised
AD

Zero-shot AD

Normal Images on
Target Categories

Annotated Images
on Auxiliary Data
(optional)

All Paradigms

Target categories

Yunkang Cao, Jiangning Zhang , Luca Frittoli, Yuqi Cheng, Weiming Shen, and Giacomo Boracchi “AdaCLIP: Adapting CLIP with
Hybrid Learnable Prompts for Zero-Shot Anomaly Detection” ECCV, 2024




AdacClip

AdacCLIP fine tunes on auxiliary datasets projection and prompting layers. Static prompts are
shared across all images and dynamic prompts are generated based on the testing image
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Yunkang Cao, Jiangning Zhang, Luca Frittoli, Yugi Cheng, Weiming Shen, and Giacomo Boracchi “AdaCLIP: Adapting CLIP with
Hybrid Learnable Prompts for Zero-Shot Anomaly Detection” ECCV, 2024



AdacClip

AdacCLIP fine tunes on auxiliary datasets projection and prompting layers. Static prompts are
shared across all images and dynamic prompts are generated based on the testing image
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category.
Yunkang Cao, Jiangning Zhang, Luca Frittoli, Yugi Cheng, Weiming Shen, and Giacomo Boracchi “AdaCLIP: Adapting CLIP with
Hybrid Learnable Prompts for Zero-Shot Anomaly Detection” ECCV, 2024



Filippo Leveni Luca Magri

Structure-based Anomaly
Detection

Filippo Leveni, Luca Magri, Cesare Alippi, Giacomo Boracchi “Preference Isolation Forest for Structure-based
Anomaly Detection” Under Review

Filippo Leveni, Luca Magri, Cesare Alippi and Giacomo Boracchi “Hashing for Structure-based Anomaly Detection”
International Conference on Image Analisys and Processing (ICIAP) 2023 Best Paper Award

Filippo Leveni, Luca Magri, Giacomo Boracchi, Cesare Alippi, “Anomaly detection via preference embedding”
International Conference on Pattern Recognition (ICPR) 2020,



Structure-based Anomaly Detection

Density-based Anomaly Detection
Anomalies are identified as samples that
lie in low-density regions.

The background model M is trained to
extract i.i.d. indicators or anomaly scores,
to move the AD problem in the random-
variable settings.

G. Boracchi



Structure-based Anomaly Detection

Density-based Anomaly Detection
Anomalies are identified as samples that
lie in low-density regions.

The background model M is trained to
extract i.i.d. indicators or anomaly scores,
to move the AD problem in the random-
variable settings.

Structure-based Anomaly Detection

In some cases, anomalies are better
identified as samples that do not
conform to low-dimensional
manifolds.




Structure-based Anomaly Detection

Structure-based Anomaly Detection

In some cases, anomalies are better
identified as samples that do not
conform to low-dimensional
manifolds.

Such as periodic texture in 2D images




Structure-based Anomaly Detection

Structure-based Anomaly Detection

The only assumption: the analytical
expression of the model family F
describing normal data.

* Assume a local structure e.g.,
“locally approximated by
planes”.

anomaly-free anomalous ground truth

bagel l

cookie

Truly “unsupervised settings” no
training data needed, neither pre-
trained models!

"The MVTec 3D-AD Dataset for Unsupervised 3D Anomaly Detection and Localization".

Normal data are locally approximated by parabolic
shapes or even planes. Anomalies (cracks, spikes,
holes) depart from these assumptions.


https://arxiv.org/pdf/2112.09045

PIF: Preference Isolation Forest

PIF has two major components:

i) Preference Embedding, that maps input data the (high-dimensional) Preference
Space, by fitting models from the family F.

ii) Preference Isolation, to detect anomalies as isolated points in the Preference Space.

(a) Input data X = G U A. (b) Preference space P. (c) Anomaly scores «.
MDS visualizaztion

Filippo Leveni, Luca Magri, Giacomo Boracchi, Cesare Alippi, “Anomaly detection via preference embedding” International
Conference on Pattern Recognition (ICPR) 2020.



i) Preference Embedding

Map points from the ambient space to Preference Space.
EX->P

L. Magri, A. Fusiello, “T-linkage: A continuous relaxation of j-linkage for multi-model fitting”, IEEE CVPR, 2014



i) Preference Embedding

Map points from the ambient space to Preference Space.
EX->P

A set {04, ..., 0,,} of models from family F are fit on X by randomly sampling
minimum sets (with m > 0).

L. Magri, A. Fusiello, “T-linkage: A continuous relaxation of j-linkage for multi-model fitting”, IEEE CVPR, 2014



i) Preference Embedding

To each model-point pair we associate a preference value in [0,1]:
* 0 means x does not belong the the model 8;, namely |F(x,8;)| > €
 ~ 1 means x has a strong preference for 8;, namely |F(x,0;)| = 0

Sampled models
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L. Magri, A. Fusiello, “T-linkage: A continuous relaxation of j-linkage for multi-model fitting”, IEEE CVPR, 2014




i) Preference Embedding

The prefence embdding consists in associating each point x to all its preferences w.r.t.
the m sampled models.

o(F(x,0;)), if|F(x0;)<e

Ex such that ;=
P Pli 0, otherwise

Sampled models

This is mapping £: X — [0,1]™ corresponds pﬁ. '_
to the preference embedding '

points
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L. Magri, A. Fusiello, “T-linkage: A continuous relaxation of j-linkage for multi-model fitting”, IEEE CVPR, 2014



ii) Preference Isolation _HEN P

] q
H B B
In the preference space:
e genuine points cluster together \\
e anomalies appear far apart ' | P
Idea: use isolation-based AD schemes to detect anomalies 1
LN
MDS(P)

0,

Visualized via MDS,
distances in P measured

by Tanimoto
0,

Filippo Leveni, Luca Magri, Giacomo Boracchi, Cesare Alippi, “Anomaly detection via preference embedding” International
Conference on Pattern Recognition (ICPR) 2020,



Preference Isolation

Any isolation-based AD can be used in P, returning an anomaly score.
Anomaly Scores computed in the Preference Space
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(a) Input data. (b) 1For |14] (c) EiFor [15] (d) LOF |13] (e) PIF

However, distances in the preference space are not the same as in X, and isolation-
based methods based on Eucliedean distance fall short in AD.

Filippo Leveni, Luca Magri, Cesare Alippi, Giacomo Boracchi “Preference Isolation Forest for Structure-based Anomaly Detection” Under Review



Preference Isolation

Distances in the Preference Space are better
measured by Jaccad, Tanimoto, Ruzicka distances

b
To effectively detect anomalies in P we construct oo
a forest of Voronoi tesselations (Voronoi i-Tree), ; 7
based on any of the above distances a c

An efficient variant, where trees are constucted
based on hashing of the Ruzicka distance has
been also investigated.

Filippo Leveni, Luca Magri, Cesare Alippi and Giacomo Boracchi “Hashing for Structure-based Anomaly Detection” International
Conference on Image Analisys and Processing (ICIAP) 2023 Best Paper Award



Anomaly Score

The anomaly score is computed from the forest ¥ as in IFOR,
_E[D(x)]
ay(x) =2 c(¥)

where

 E[D(x)] is the average depth reached by a point
* c(y) is a normalizing factor depending on the forest

This score underpins the intuition that
normal samples reaches leaves at
larger depths than anomalous ones,
which can be easily isolated by a

few splits




Anomaly Score

The anomaly score is computed from the forest ¥ as in IFOR,
_E[D(x)]
ay(x) =2 c(¥)

where

 E[D(x)] is the average depth reached by a point
* c(y) is a normalizing factor depending on the forest

This score underpins the intuition that
normal samples reaches leaves at
larger depths than anomalous ones,
which can be easily isolated by a

few splits




Sliding PIF

Sometimes only local knowledge about
model family F is available.

We can sample models @; belonging to a local
family by performing PIF in a sliding-window
fashion.

Planes to approximate a
surface § belonging to an
unknown family F.
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It is sufficient to opt for any model Plane
family F matching the normal 50
manifold’s dimensionality to estimate
{04, ...,0,,} for the Preference 5
Embedding.

Sphere

We might generalize to broader

families of matching dimensionality

and allow for more flexible local Quadric
approximations. 2

Ground
truth




Concluding Remarks -]

Anomaly detection is a very hot
research problem with multiple
applications

The field underwent the «deep learning
tsunamis», but still faces a dual nature

* Model based e .

Patch Embeddings F”

M Learnable
Frozen

., Anomaly
Score

e Statistical

> Proj

That need to be taken into account
when designing novel solutions.

a photo of a normal {CLS} |
-[ a photo of a broken {CLS}

a

a photo of a damaged {CLS}

Textual Captions

. Normal/Abnormal Text Embedding Static/Dynamic Prompting Token



	Slide 1: Anomaly Detection in Images 
	Slide 3: Giacomo Boracchi
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 11: Anomalies
	Slide 12: Anomaly detection in health 
	Slide 13
	Slide 14
	Slide 15: SYLICON WAFER MANUFACTURING
	Slide 16: Automatic and long term Egc monitoring
	Slide 17: Anomalous activities detection in videos
	Slide 18: Anomaly Detection for automatic quality control
	Slide 19: 3D Anomaly Detection
	Slide 20: Logical constraints anomaly detection 
	Slide 21: The Problem Formulation
	Slide 22: Anomalies
	Slide 23: Anomalies
	Slide 24: Anomalies
	Slide 25: Problem formulation: Anomaly Detection in images
	Slide 26: Problem formulation: Anomaly Detection in images
	Slide 27: Patch-wise Anomaly detection
	Slide 28: Patch-wise Anomaly detection
	Slide 30: The Mainstream Solutions
	Slide 31: The three major ingredients
	Slide 32: The three major ingredients
	Slide 37: Anomaly Detection By Sparse Representations
	Slide 38: Dictionaries Yielding Sparse Representations
	Slide 39: Sparse Representations
	Slide 40: Sparse Representations
	Slide 41: Sparse Coding and Dictionary Learning
	Slide 42: Online Monitoring through Sparse Representations
	Slide 43: Online Monitoring through Sparse Representations
	Slide 44: Online Monitoring through Sparse Representations
	Slide 45: Anomaly Detection in Heartbeats
	Slide 46: Domain Adaptation for Online ECG Monitoring
	Slide 47: Domain Adaptation for Online ECG Monitoring
	Slide 48: Domain Adaptation for Online ECG Monitoring
	Slide 49: ML: Long Term ECG monitoring in wearables
	Slide 50: Domain Adaptation on Quality Inspection
	Slide 51: The Elephant in the Room…. 
	Slide 52: Anomaly Detection by Deep Learning Models
	Slide 53: Zero-Shot Anomaly Detection
	Slide 54: Zero Shot Deep Learning
	Slide 55: The Zero-Shot Paradigm in Anomaly Detection
	Slide 56: The Zero-Shot Paradigm in Anomaly Detection
	Slide 57: AdaClip
	Slide 58: AdaClip
	Slide 59: AdaClip
	Slide 61: Structure-based Anomaly Detection
	Slide 62: Structure-based Anomaly Detection
	Slide 63: Structure-based Anomaly Detection
	Slide 64: Structure-based Anomaly Detection
	Slide 65: Structure-based Anomaly Detection
	Slide 66: PIF: Preference Isolation Forest 
	Slide 67: i) Preference Embedding
	Slide 68: i) Preference Embedding
	Slide 69: i) Preference Embedding
	Slide 70: i) Preference Embedding
	Slide 71: ii) Preference Isolation
	Slide 72: Preference Isolation
	Slide 73: Preference Isolation
	Slide 74: Anomaly Score
	Slide 75: Anomaly Score
	Slide 76: Sliding PIF
	Slide 77: Sliding PIF
	Slide 78: Concluding Remarks

