
Boracchi

Change Detection fundamentals
and applications to learning in
nonstationary environments

Giacomo Boracchi

June 27th, 2024

Ulsan National Institute of Science and Technology

giacomo.boracchi@polimi.it

mailto:giacomo.boracchi@polimi.it

Boracchi

Tutorial Outline
• Learning in Nonstationary Environments (NSE): the General Picture

• Fraud Detection

• Problem Formulation Concept Drift and Learning in NSE

• Major Approaches in Learning in NSE

• Concept Drift Detection by monitoring
• classification error

• raw data distribution

• Adaptation Strategies:
• Active Approaches

• Passive Approaches

• Concluding Remarks

Boracchi

Disclaimer

This tutorial is meant to illustrate the major challenges and the basic
principles for learning in NSE.

The major expected outcome is to cast LNSE problems in a standard
(statistical) framework, providing you the tools for possibly understanding
other solutions not illustrated here

I will present a few methods, but these are not an exhaustive (nor
updated) survey on the field

Boracchi

The General Picture

Boracchi

General ML Framework

Prediction

Typical assumption in ML:

Incoming data (both training or
testing) are independent and
identically distributed (i.i.d.)

realizations of an unknown process

The major focus is towards making
data-driven models able to extract
information out of training data (TR)
to perform inference on test data (TS) Model

i.i.d. data

Environment

Rmk: Predictions does not
influence the environment,

nor 𝑇𝑇𝑇𝑇/𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇/𝑇𝑇𝑇𝑇

Boracchi

This Course Framework
In a streaming scenario i.i.d. assumption
often does not hold:

• the environment might be changing
or adversarial

• It is not possible to ignore the model-
environment interactions, since
model outcomes are influencing the
environment, or the way supervision
is provided (feedback)

These settings call for:

• Techniques to learn-adapt the data-
driven model

• Techniques to monitor the model-
environment interaction

Prediction

Model

Environment

Input/Feedback

Not i.i.d.

Rmk: Predictions might
influence the environment or

𝑇𝑇𝑇𝑇

Boracchi

At each time instant 𝑡𝑡
• we get an input 𝑥𝑥𝑡𝑡 from a stream

• we generate a prediction �𝑦𝑦𝑡𝑡
• we get feedback 𝑦𝑦𝜏𝜏 (𝜏𝜏 < 𝑡𝑡)

• we update the model as the
learning problem might change

Example: Fraud Detection

You classify each transaction 𝑥𝑥𝑡𝑡 assigning
a label �𝑦𝑦𝑡𝑡(genuine/fraudulent), investigators check
only those labels and return a feedback 𝑦𝑦𝑡𝑡 after a while.
Feedbacks are not representative of the entire stream, and possibly delayed

Learning in Non-Stationary Environment

Prediction �𝑦𝑦𝑡𝑡

Model

Environment

Feedback 𝑦𝑦𝜏𝜏 , 𝜏𝜏 < 𝑡𝑡

Input 𝑥𝑥𝑡𝑡

Boracchi

Tutorial Overview

Typical assumption in ML:

Training and incoming data are i.i.d.

This course:

Training and incoming are either nonstationary or chosen by an
adversarial

These settings are often encountered in real-world applications on
streaming data, e.g., to detect frauds in credit card transaction.

The course provides an overview of techniques to employ data-driven
models in these streaming settings

Boracchi

Fraud Detection
A Cool Example for Learning in NSE

BoracchiDal Pozzolo A., Boracchi G., Caelen O., Alippi C. and Bontempi G., “Credit Card Fraud Detection: a Realistic Modeling and a Novel Learning Strategy” , IEEE TNNLS 2017

Boracchi

Fraud Detection

Dal Pozzolo A., Boracchi G., Caelen O., Alippi C. and Bontempi G., “Credit Card Fraud Detection: a Realistic Modeling and a Novel Learning Strategy” , IEEE TNNLS 2017

Boracchi

The Terminal

Terminal

Purchase

Transaction
Blocking

Rules

TX
request

TX auth.

Scoring
Rules

Classifier

Investigators

Alerts

Feedbacks
(𝒙𝒙,𝑦𝑦)

𝑃𝑃(+|𝒙𝒙)

𝒙𝒙

TX auth.
𝒙𝒙

Alerts
score

Offline

Boracchi

The Terminal

Acceptance checks like:
• Correct PIN

• Number of attempts

• Card status (active, blocked)

• Card balance / availability

are immediately performed.

These checks are done in real time, and preliminary filter our purchases:
when these checks are not satisfied, the card/transaction can be blocked.

Otherwise, a transaction request is entered in the system that include
information of the actual purchase:

• transaction amount, merchant id, location, transaction type, date time, …

Boracchi

Blocking rules

Terminal

Purchase

Transaction
Blocking

Rules

TX
request

TX auth.

Scoring
Rules

Classifier

Investigators

Alerts

Feedbacks
(𝒙𝒙,𝑦𝑦)

𝑃𝑃(+|𝒙𝒙)

𝒙𝒙

TX auth.
𝒙𝒙

Alerts
score

Offline

1

Boracchi

Transaction Blocking Rules

Association rules (if-then-else statements) like*

IF Internet transactions AND compromised website THEN deny the
transaction

These rules:
• are expert-driven, designed by investigators

• involves quite simple expressions with a few data

• are easy to interpret

• have always «deny the transaction» as statement (otherwise the transaction is
accepted)

• are executed in real time

All the transaction RX passing these rules are authorized transactions and
further analyzed by the FDS

(*) Transaction blocking rules are confidential and this is just a likely example

Boracchi

Near Real Time Processing

Terminal

Purchase

Transaction
Blocking

Rules

TX
request

Scoring
Rules

Classifier

Investigators

Alerts

Feedbacks
(𝒙𝒙,𝑦𝑦)

𝑃𝑃(+|𝒙𝒙)

TX auth.

Alerts
score

Offline

Real time

Boracchi

Feature Augmentation

A feature vector 𝒙𝒙 is associated to each authorized transaction.

The components of 𝒙𝒙 include data about the current transaction and
customary shopping habits of the cardholder, e.g.:

• the average expenditure

• the average number of transactions per day

• the cardholder age

• the location of the last purchases

• …

and are very informative for fraud-detection purposes

Overall, about 40 features are extracted in near-real time.

Boracchi

Near Real Time Processing

Terminal

Purchase

Transaction
Blocking

Rules

TX
request

Scoring
Rules

Classifier

Investigators

Alerts

Feedbacks
(𝒙𝒙,𝑦𝑦)

𝑃𝑃(+|𝒙𝒙)

Alerts
score

Offline

Real time

Transaction data

Augmented data

e.g. average amount

TX auth.
𝒙𝒙

TX auth.
𝒙𝒙

Feature Augmentation

Boracchi

Scoring Rules

Terminal

Purchase

Transaction
Blocking

Rules

TX
request

TX auth.

Scoring
Rules

Classifier

Investigators

Alerts

Feedbacks
(𝒙𝒙,𝑦𝑦)

𝑃𝑃(+|𝒙𝒙)

𝒙𝒙

TX auth.
𝒙𝒙

Alerts
score

Offline

1

Feature Augmentation

Boracchi

Scoring Rules

Scoring rules are if-then-else statements that:
• are being processed in near-real time

• are expert-driven, designed by investigators.

• Operate on augmented features (components of 𝒙𝒙)

• Assign a score: the larger the score the riskier the transaction. The score can be
seen as an estimate of the probability for 𝒙𝒙 to be a fraud, according to
investigator expertise.

• Feature vector receiving large scores are alerted

• Are easy to interpret and are designed by investigators

Boracchi

Scoring Rules

Examples* of scoring rules might be:
• IF previous transaction in a different country AND less than 2 hours since the

previous transaction, AND operation using PIN THEN fraud score = 0.95

• IF amount > average of transactions + 3𝜎𝜎 AND country is a fiscal paradise AND
customer travelling habits low THEN fraud score = 0.75

(*) Scoring rules are confidential and these are just likely examples

Boracchi

Expert-Driven Models in fraud detection

Terminal

Purchase

Transaction
Blocking

Rules

TX
request

TX auth.

Scoring
Rules

Classifier

Investigators

Alerts

Feedbacks
(𝒙𝒙,𝑦𝑦)

𝑃𝑃(+|𝒙𝒙)

𝒙𝒙

TX auth.
𝒙𝒙

Alerts
score

Offline

1

Expert-driven

Interpretable rules
enable interaction/adjustment

Boracchi

Expert-Driven vs Data-Driven models

Scoring rules are an expert-driven model, thus:
• Can detect well-known / reasonable frauds

• Involve few components of the feature vector

• Difficult to exploit correlation among features

Boracchi

Expert-Driven vs Data-Driven models

Scoring rules are an expert-driven model, thus:
• Can detect well-known / reasonable frauds

• Involve few components of the feature vector

• Difficult to exploit correlation among features

Fraudulent patterns can be directly learned from data, by means of a
data-driven model.

This has the potential to:
• Simultaneously analyze several components of the feature vector

• Uncover complex relations among features that cannot be identified by
investigator

These relations can be meaningful for separating frauds from genuine
transactions

𝐾𝐾 𝒙𝒙 = � fraud
genuine𝒙𝒙 =

Boracchi

Data-driven models in fraud detection

Terminal

Purchase

Transaction
Blocking

Rules

TX
request

TX auth.

Scoring
Rules

Classifier

Investigators

Alerts

Feedbacks
(𝒙𝒙,𝑦𝑦)

𝑃𝑃(+|𝒙𝒙)

𝒙𝒙

TX auth.
𝒙𝒙

Alerts
score

Offline

Expert-driven
Data-driven

Boracchi

Data-driven models in fraud detection

Terminal

Purchase

Transaction
Blocking

Rules

TX
request

TX auth.

Scoring
Rules

Classifier

Investigators

Alerts

Feedbacks
(𝒙𝒙,𝑦𝑦)

𝑃𝑃(+|𝒙𝒙)

𝒙𝒙

TX auth.
𝒙𝒙

Alerts
score

Offline

Expert-driven
Data-driven

Near real time

Boracchi

Classifiers in Fraud Detection

In practice, the classifier 𝐾𝐾 then can assign a label where the label
�𝑦𝑦 ∈ +,− i.e., {«𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, «𝑔𝑔𝑔𝑔𝑔𝑔𝑓𝑓𝑔𝑔𝑔𝑔𝑔𝑔𝑓} to each incoming feature vector 𝒙𝒙

𝐾𝐾 considers transactions labeled as ‘+’ as frauds

𝐾𝐾𝒙𝒙 𝐾𝐾 𝒙𝒙 ∈ {+,−}

Boracchi

Classifiers in Fraud Detection

It is not feasible to alert all transactions labeled as frauds.

Only few transactions that are very likely to be frauds can be alerted.

Thus, the FDS typically consider 𝑝𝑝𝐾𝐾(+|𝒙𝒙), an estimate of the probability
for 𝒙𝒙 to be a fraud according to 𝐾𝐾

Since this is a binary classification problem 𝑝𝑝𝐾𝐾(−|𝒙𝒙) = 1 − 𝑝𝑝𝐾𝐾(+|𝒙𝒙)

and only transactions yielding 𝑝𝑝𝐾𝐾 + 𝒙𝒙 ≈ 1 raise an alert

𝐾𝐾𝒙𝒙 𝑝𝑝𝐾𝐾(+|𝒙𝒙)

Boracchi

Investigators Provide Feedbacks

Terminal

Purchase

Transaction
Blocking

Rules

TX
request

TX auth.

Scoring
Rules

Classifier

Investigators

Alerts
𝑃𝑃(+|𝒙𝒙)

𝒙𝒙

TX auth.
𝒙𝒙

Alerts
score

Update rules
“expert-driven”

Update/retrain the classifier
“data-driven”

Boracchi

Investigators

Investigators are professionals that are experienced in analyzing credit
card transactions:

• they design blocking/scoring rules

• they call cardholders to check whether alerts correspond to frauds

• as soon as they detect a fraud, they block the card

• they annotate the true label of checked transactions

The labels associated to transactions comes in the form of feedbacks and
can be used to re-train/update 𝐾𝐾
Given the limited number of investigators, the large number of
transactions, the multiple sources of alerts, etc … it is important to
provide very precise alerts

Boracchi

Investigators’ feedback: Supervised Information

Terminal

Purchase

Transaction
Blocking

Rules

TX
request

TX auth.

Scoring
Rules

Classifier

Investigators

Feedbacks
(𝒙𝒙,𝑦𝑦)

𝒙𝒙

TX auth.
𝒙𝒙

Expert-driven
Data-driven

Alerts
𝑃𝑃(+|𝒙𝒙)

Alerts
score

The Model

The Environment

The Environment

Transaction

Environment eveolves over time:
- Customers’ habits change
- New fraudulent strategies appear

Boracchi

Investigators’ feedback: Supervised Information

Terminal

Purchase

Transaction
Blocking

Rules

TX
request

TX auth.

Scoring
Rules

Classifier

Investigators

Feedbacks
(𝒙𝒙,𝑦𝑦)

𝒙𝒙

TX auth.
𝒙𝒙

Offline

Expert-driven
Data-driven

Alerts
𝑃𝑃(+|𝒙𝒙)

Alerts
score

Delayed Supervision
non i.i.d. sampling

Boracchi

Problem Formulation
Classification over Datastreams

Boracchi

Classification Over Datastreams

The problem: classification over a potentially infinitely long stream of data
𝑋𝑋 = {𝒙𝒙𝟎𝟎,𝒙𝒙𝟏𝟏, … , }

Data-generating process 𝒳𝒳 generates tuples 𝒙𝒙𝑡𝑡 ,𝑦𝑦𝑡𝑡 ∼ 𝜙𝜙𝒙𝒙,𝑦𝑦

• 𝒙𝒙𝑡𝑡 is the observation at time 𝑡𝑡 (e.g., 𝒙𝒙𝑡𝑡 ∈ ℝ𝑑𝑑)

• 𝑦𝑦𝑡𝑡 is the associated label which is (often) unknown (𝑦𝑦𝑡𝑡 ∈ Λ)

Boracchi

Classification Over Datastreams

Typical assumptions:
• Inputs are independent and identically distributed (i.i.d.)

𝒙𝒙𝒕𝒕,𝑦𝑦𝑡𝑡 ∼ 𝜙𝜙𝒙𝒙,𝑦𝑦

• An initial training set 𝑇𝑇𝑇𝑇 = 𝒙𝒙0,𝑦𝑦0 , … , 𝒙𝒙𝑛𝑛,𝑦𝑦𝑛𝑛 is provided for learning 𝐾𝐾
• 𝑇𝑇𝑇𝑇 contains data generated in stationary conditions

The classifier is trained (i.e. its parameters are estimated) by optimizing
some loss function (e.g. binary cross-entropy, hinge loss, …) over 𝑇𝑇𝑇𝑇.

A stationary condition of 𝓧𝓧 is denoted as concept.

Boracchi

Classification error

A classifier estimates for each input 𝒙𝒙 a label �𝑦𝑦 (*)
�𝑦𝑦 = 𝐾𝐾 𝒙𝒙

And – hopefully – it often happens that �𝑦𝑦 = 𝑦𝑦.

Here, we consider the classification error to measure how good a learned
model 𝐾𝐾 matches the distribution 𝜙𝜙𝒙𝒙,𝑦𝑦, namely

𝑝𝑝 = #{�𝑦𝑦𝑖𝑖 ≠ 𝑦𝑦𝑖𝑖 , 𝑔𝑔 ∈ 𝑇𝑇}
being 𝑇𝑇 «a reference set» for assessing the error

(*) Classifiers typically return the posterior probability of each class

Boracchi

Training the Classifier

Training

𝑇𝑇𝑇𝑇 = 𝒙𝒙,𝑦𝑦 𝑖𝑖 , 𝑔𝑔 = 1, … ,𝑁𝑁, 𝒙𝒙,𝑦𝑦 𝑖𝑖∼ 𝜙𝜙𝑥𝑥,𝑦𝑦

𝐾𝐾

𝒳𝒳 Data generating process 𝒳𝒳 ∼ 𝜙𝜙𝑥𝑥,𝑦𝑦

Boracchi

Training Set

genuine

fraud

𝒙𝒙 = avg. month amount
transaction amount

Boracchi

The output of the classifier

Boracchi

Btw… that was a Neural Network

Boracchi

The output of the classifier

Boracchi

Classification (Inference)

𝒳𝒳 Data generating process 𝒳𝒳 ∼ 𝜙𝜙𝑥𝑥,𝑦𝑦

𝐾𝐾

Classify

(𝒙𝒙𝑡𝑡 ,𝑦𝑦𝑡𝑡)

�𝑦𝑦𝑡𝑡 = 𝐾𝐾(𝒙𝒙𝒕𝒕)𝒙𝒙𝒕𝒕 ∼ 𝜙𝜙𝒙𝒙

Boracchi

Supervised Information (performance assessment)

(𝒙𝒙𝑡𝑡 ,𝑦𝑦𝑡𝑡)

�𝑦𝑦𝑡𝑡 = 𝐾𝐾(𝒙𝒙𝒕𝒕)

𝒳𝒳 Data generating process 𝒳𝒳 ∼ 𝜙𝜙𝑥𝑥,𝑦𝑦

𝐾𝐾

Gather all the supervised information { 𝒙𝒙𝒕𝒕,𝑦𝑦𝑡𝑡 ∼ 𝜙𝜙𝒙𝒙,𝑦𝑦}

These are very useful for:

• assessing performance of 𝐾𝐾

𝑝𝑝 𝑇𝑇 =
1
𝑇𝑇�

𝑡𝑡

𝑔𝑔𝑡𝑡

where 𝑔𝑔𝑡𝑡 = �0, if �𝑦𝑦𝑡𝑡 = 𝑦𝑦𝑡𝑡
1, if �𝑦𝑦𝑡𝑡 ≠ 𝑦𝑦𝑡𝑡

• updating 𝐾𝐾

Classify

Update,
Assess performance

𝑦𝑦𝝉𝝉
𝒙𝒙𝒕𝒕 ∼ 𝜙𝜙𝒙𝒙

Boracchi

The output of the classifier

Boracchi

Learning in Nonstationary
(Streaming) Environments

The Problem Formulation

Boracchi

Concept Drift

Unfortunately, in the real world, datastream 𝒳𝒳 might change
unpredictably during operation.

The data generating process is then modeled as:
𝒙𝒙𝒕𝒕,𝑦𝑦𝑡𝑡 ∼ 𝜙𝜙𝑡𝑡 𝒙𝒙,𝑦𝑦

We say that concept drift occurs at time 𝑡𝑡 if
𝜙𝜙𝑡𝑡 𝒙𝒙,𝑦𝑦 ≠ 𝜙𝜙𝑡𝑡+1 𝒙𝒙,𝑦𝑦

We also say 𝒳𝒳 becomes nonstationary.

𝑇𝑇𝑇𝑇 is always assumed i.i.d.

After the change (e.g. 10 days), data are no more i.i.d. because data are
not identically distributed after

Boracchi

Distribution Changes

𝜙𝜙𝒙𝒙,𝑦𝑦
0

Boracchi

Distribution Changes

𝜙𝜙𝒙𝒙,𝑦𝑦
1
𝜙𝜙𝒙𝒙,𝑦𝑦
1

Boracchi

What happens when 𝜙𝜙𝒙𝒙,𝑦𝑦
0 → 𝜙𝜙𝒙𝒙,𝑦𝑦

1 ?

Classifier output over training data

𝜙𝜙𝒙𝒙,𝑦𝑦
0

Boracchi

What happens when 𝜙𝜙𝒙𝒙,𝑦𝑦
0 → 𝜙𝜙𝒙𝒙,𝑦𝑦

1 ?

Here is what happens when distribution changes

𝜙𝜙𝒙𝒙,𝑦𝑦
1

Boracchi

What happens when 𝜙𝜙𝒙𝒙,𝑦𝑦
0 → 𝜙𝜙𝒙𝒙,𝑦𝑦

1 ?

Here is what happens when distribution changes

𝜙𝜙𝒙𝒙,𝑦𝑦
1

Classification
errors

Boracchi

What happens when 𝜙𝜙𝒙𝒙,𝑦𝑦
0 → 𝜙𝜙𝒙𝒙,𝑦𝑦

1 ?

Here is what happens when distribution changes

The classification error increases!

𝜙𝜙𝒙𝒙,𝑦𝑦
1

Boracchi

Problem formulation learning in NSE

The task: learn an adaptive classifier 𝐾𝐾𝑡𝑡 to predict labels
�𝑦𝑦𝑡𝑡 = 𝐾𝐾𝑡𝑡 𝒙𝒙𝑡𝑡

 in an online manner having a low classification error over time:

1
𝑇𝑇
�
𝑡𝑡=1

𝑇𝑇

𝑔𝑔𝑡𝑡 , where 𝑔𝑔𝑡𝑡 = �0, if �𝑦𝑦𝑡𝑡 = 𝑦𝑦𝑡𝑡
1, if �𝑦𝑦𝑡𝑡 ≠ 𝑦𝑦𝑡𝑡

This classifier should also operate when the distribution generating the
input data changes.

• Measuring and monitoring the classification error

• Updating the classifier

Boracchi

Adaptation
Do we Really Need Smart Adaptation Strategies?

Boracchi

Simple Adaptation Strategies

Consider two simple adaptation
strategies and a simple concept drift

• Incremental: continuously update 𝐾𝐾𝑡𝑡
using all supervised couples

• Sliding Window: Train 𝐾𝐾𝑡𝑡 using only
the last 𝛿𝛿 supervised couples

Boracchi

Simple Adaptation Strategies

Classification error of two simple adaptation strategies
• Black dots: 𝐾𝐾𝑡𝑡 uses all supervised couples at time 𝑡𝑡
• Red line: 𝐾𝐾𝑡𝑡 uses only the last 𝛿𝛿 supervised couples

Alippi, C., Boracchi, G., Roveri, M. (2013). Just-in-time classifiers for recurrent concepts. IEEE TNNLS 620-634.

Boracchi

The LNSE loop

This are the standard (stationary/i.i.d.) ML settings

Model
Feedback 𝑦𝑦𝜏𝜏

Input 𝑥𝑥𝑡𝑡

Environment

Prediction �𝑦𝑦𝑡𝑡

Boracchi

Classifier

The blue solid line denotes the expected error of the classifier that is
never updated. The classification error changes only because the
classification problem is changing (concept drift).

Boracchi

The LNSE loop

This is the most simple pipeline in LNSE, which includes model adaptation

Different
solutions follow
different form of

adaptation. Prediction �𝑦𝑦𝑡𝑡

Model
Feedback 𝑦𝑦𝜏𝜏

Input 𝑥𝑥𝑡𝑡

Prediction �𝑦𝑦𝜏𝜏
Feedback 𝑦𝑦𝜏𝜏

AdaptationEnvironment

Boracchi

Simple Adaptation Strategies

Classification error of two simple adaptation strategies
• Black dots: 𝐾𝐾𝑡𝑡 uses all supervised couples at time 𝑡𝑡
• Red line: 𝐾𝐾𝑡𝑡 uses only the last 𝛿𝛿 supervised couples

Alippi, C., Boracchi, G., Roveri, M. (2013). Just-in-time classifiers for recurrent concepts. IEEE TNNLS 620-634.

Just including
"fresh" training
samples is not

enough

Boracchi

The LNSE loop

This is the most simple pipeline in LNSE, continuous adaptation

The incremental
classifier (the black

dashed line),
appends the new
label 𝑦𝑦𝑡𝑡 to 𝑇𝑇𝑇𝑇 and
forces retraining

over the entire 𝑇𝑇𝑇𝑇

Prediction �𝑦𝑦𝑡𝑡

Model
Feedback 𝑦𝑦𝜏𝜏

Input 𝑥𝑥𝑡𝑡

Prediction �𝑦𝑦𝜏𝜏
Feedback 𝑦𝑦𝜏𝜏

AdaptationEnvironment

Boracchi

Simple Adaptation Strategies

Classification error of two simple adaptation strategies
• Black dots: 𝐾𝐾𝑡𝑡 uses all supervised couples at time 𝑡𝑡
• Red line: 𝐾𝐾𝑡𝑡 uses only the last 𝛿𝛿 supervised couples

Alippi, C., Boracchi, G., Roveri, M. (2013). Just-in-time classifiers for recurrent concepts. IEEE TNNLS 620-634.

Need to integrate
supervised samples in
stationary conditions

Boracchi

The LNSE loop

More sophisticated adaptation strategies are possible

Prediction �𝑦𝑦𝑡𝑡

Model
𝑦𝑦𝜏𝜏

𝑥𝑥𝑡𝑡

Prediction �𝑦𝑦𝜏𝜏
Feedback 𝑦𝑦𝜏𝜏

AdaptationEnvironment

More Change
Detection

Test

Change
Detection

Test

Boracchi

Simple Adaptation Strategies

Classification error of two simple adaptation strategies
• Black dots: 𝐾𝐾𝑡𝑡 uses all supervised couples at time 𝑡𝑡
• Red line: 𝐾𝐾𝑡𝑡 uses only the last 𝛿𝛿 supervised couples

Alippi, C., Boracchi, G., Roveri, M. (2013). Just-in-time classifiers for recurrent concepts. IEEE TNNLS 620-634.

Adaptive Learning
algorithms trade-off

the two aspects

Boracchi

Monitoring

Change
Detection

Test

Boracchi

Change Detection: Problem Formulation
.. In a statistical framework

Boracchi

Process Changes

Normal data are generated in stationary conditions, i.e. are i.i.d.
realizations of a process 𝒫𝒫𝑁𝑁
After the change, data are generated from a different process 𝒫𝒫𝐴𝐴 ≠ 𝒫𝒫𝑁𝑁,
which persists over time

Examples:
• Quality inspection system: faults producing flawed components

• Environmental monitoring: persistent changes in the morphology of measured
signals

• Change of user interests in on-demand platform

Boracchi

Change-Detection in a Statistical Framework

Often, the change-detection problem boils down to:

Monitor a stream 𝒙𝒙 𝑡𝑡 , 𝑡𝑡 = 1, … , 𝒙𝒙 𝑡𝑡 ∈ ℝ𝑑𝑑 of realizations of a
random variable, and detect the change-point 𝜏𝜏,

𝒙𝒙 𝑡𝑡 ∼ �𝜙𝜙0 𝑡𝑡 < 𝜏𝜏 in control state
𝜙𝜙1 𝑡𝑡 ≥ 𝜏𝜏 out of control state ,

where {𝒙𝒙 𝑡𝑡 , 𝑡𝑡 < 𝜏𝜏} are i.i.d. and 𝜙𝜙0 ≠ 𝜙𝜙1
We denote such change as: 𝜙𝜙𝑜𝑜 → 𝜙𝜙1

𝑡𝑡

𝒙𝒙(
𝑡𝑡)

……

𝜏𝜏

𝜙𝜙1𝜙𝜙0

Boracchi

Change-Detection in a Statistical Framework

Often, the change-detection problem boils down to:

Monitor a stream 𝒙𝒙 𝑡𝑡 , 𝑡𝑡 = 1, … , 𝒙𝒙 𝑡𝑡 ∈ ℝ𝑑𝑑 of realizations of a
random variable, and detect the change-point 𝜏𝜏,

𝒙𝒙 𝑡𝑡 ∼ �𝜙𝜙0 𝑡𝑡 < 𝜏𝜏 in control state
𝜙𝜙1 𝑡𝑡 ≥ 𝜏𝜏 out of control state ,

where {𝒙𝒙 𝑡𝑡 , 𝑡𝑡 < 𝜏𝜏} are i.i.d. and 𝜙𝜙0 ≠ 𝜙𝜙1
We denote such change as: 𝜙𝜙𝑜𝑜 → 𝜙𝜙1

𝑡𝑡

𝒙𝒙(
𝑡𝑡) ……

𝜙𝜙1𝜙𝜙0

𝜏𝜏

Boracchi

Change-Detection in a Statistical Framework

Here are data from an X-ray monitoring apparatus.

There are 4 changes 𝜙𝜙𝑜𝑜 → 𝜙𝜙1 → 𝜙𝜙2 → 𝜙𝜙3 → 𝜙𝜙4 corresponding to
different monitoring conditions and/or analyzed materials

𝜙𝜙𝑜𝑜 𝜙𝜙1 𝜙𝜙2 𝜙𝜙3 𝜙𝜙4

Boracchi

Change Detection Questions

Change-detection question:

Given the previously estimated model, the arrival of new data invites the
question: “Is yesterday’s model capable of explaining today’s data?”

Detecting process changes is important to understand the monitored
phenomenon

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.

C. J. Chu, M. Stinchcombe, H. White "Monitoring Structural Change" Econometrica Vol. 64, No. 5 (Sep., 1996), pp. 1045-1065.

Boracchi

The Typical Solution

Most algorithms are composed of:
• A statistic that has a known response to normal data (e.g., the average, the

sample variance, the log-likelihood, the confidence of a classifier, an “anomaly
score”…)

• A decision rule to analyze the statistic (e.g., an adaptive threshold, a confidence
region)

Boracchi

Statistics and Decision Rules

Change-detection algorithms:

Statistics and decision rules are sequential, as they make a decision
considering --in principle-- all the data received so far. Integrating
information over time makes these algorithms able to detect subtle
changes as well.

E.g.: The cumulative average of all the points

Boracchi

The Typical Solution

𝑡𝑡

𝒙𝒙(
𝑡𝑡) ……

data

Boracchi

The Typical Solution

𝑡𝑡

𝒙𝒙(
𝑡𝑡) ……

𝑡𝑡

𝑇𝑇(
𝒙𝒙)

…

𝛾𝛾
statistic

data

Boracchi

The Typical Solutions

𝑡𝑡

𝒙𝒙(
𝑡𝑡) ……

𝑡𝑡

𝑇𝑇(
𝒙𝒙)

…

𝛾𝛾
statistic

decision rule: 𝑇𝑇 𝒙𝒙 > 𝛾𝛾

data

Boracchi

The Typical Solutions

By changing 𝛾𝛾 it is possible to achieve different detection performance
(e.g. more true positive, more false positives)

𝑡𝑡

𝑇𝑇(
𝒙𝒙)

…

𝛾𝛾
statistic

decision rule: 𝑇𝑇 𝒙𝒙 > 𝛾𝛾

Boracchi

The Typical Solutions

By changing 𝛾𝛾 it is possible to achieve different detection performance
(e.g. more true positive, more false positives)

𝑡𝑡

𝑇𝑇(
𝒙𝒙)

…

𝛾𝛾
statistic

decision rule: 𝑇𝑇 𝒙𝒙 > 𝛾𝛾

Boracchi

Statistics and Decision Rules

Detection rules often rely on thresholds, namely 𝛾𝛾
In both these cases: It is of primary concern to control false positives,
namely “how often” a change/anomaly is detected within stationary data.

Boracchi

Controlling False Positives in Change Detection

In change-detection false positives are controlled by the Average Run
Length 𝐴𝐴𝑇𝑇𝐿𝐿0 :

𝐴𝐴𝑇𝑇𝐿𝐿0 = E𝒙𝒙 �̂�𝜏 𝒙𝒙 ∼ 𝜙𝜙0]
Thus denotes the expected time between false positive detections

Boracchi

Controlling False Positives in Change Detection

A good change-detection test is accompanied with a table/rule/formula
that defines, for a target value of 𝐴𝐴𝑇𝑇𝐿𝐿0, the corresponding threshold 𝛾𝛾

𝛾𝛾 = 𝛾𝛾(𝐴𝐴𝑇𝑇𝐿𝐿0)
Watch out: thresholds depend on the statistics 𝑇𝑇, which in turn might
depend on the distribution of the monitored data 𝜙𝜙𝑥𝑥0

Threshold computation for change-detection algorithm is more
complicated than in anomaly-detection algorithm since bootstrap
procedure has to consider temporal evolution of the analysis

Boracchi

Learning in NSE by Monitoring
the Classification Error

…when 𝜙𝜙0 and 𝜙𝜙1 are unknown

Boracchi

Monitoring the Classification Error

The simplest approach consist in monitoring the classification error
(or similar performance measure)

Model
Feedback 𝑦𝑦𝜏𝜏

Input 𝑥𝑥𝑡𝑡

Environment

Prediction �𝑦𝑦𝑡𝑡

Boracchi

Monitoring the Classification Error

The simplest approach consist in monitoring the classification error
(or similar performance measure)

Prediction �𝑦𝑦𝑡𝑡

Model
Feedback 𝑦𝑦𝜏𝜏

Input 𝑥𝑥𝑡𝑡

Prediction �𝑦𝑦𝜏𝜏
Feedback 𝑦𝑦𝜏𝜏

Change
Detection

Test

Adaptation

Environment
When a
feedback

 𝑦𝑦𝜏𝜏 is
provided

Boracchi

Monitoring the Classification Error

The simplest approach consist in monitoring the classification error
(or similar performance measure)

Pro:
• The classification error is the most straightforward figure of merit to monitor

• Changes prompts adaptation only when performance are affected

Cons:
• CD detection from supervised samples only

Model
Feedback 𝑦𝑦𝜏𝜏

Input 𝑥𝑥𝑡𝑡

Prediction �𝑦𝑦𝜏𝜏
Feedback 𝑦𝑦𝜏𝜏

Change
Detection

Test

Adaptation

Environment
When a
feedback

 𝑦𝑦𝜏𝜏 is
provided

Prediction �𝑦𝑦𝑡𝑡

Boracchi

Monitoring the Classification Error

The element-wise classification error 𝑔𝑔𝑡𝑡 follows a Bernoulli pdf
𝑔𝑔𝑡𝑡 ∼ Bernulli(𝑝𝑝0)

Which is a discrete probability distribution of a random variable which:

• Takes the value 1 with probability 𝑝𝑝0
• Takes the value 0 with probability 1 − 𝑝𝑝0
Where 𝜋𝜋0 is the expected classification error when 𝒙𝒙 ∼ 𝜙𝜙0

expect Bernulli(𝑝𝑝0) = 𝑝𝑝0, variance Bernulli(𝑝𝑝0) = 𝑝𝑝0(1 − 𝑝𝑝0)

Boracchi

Monitoring the Classification Error

The sum of errors 𝑔𝑔𝑡𝑡 in a window of 𝝂𝝂 samples follows a Binomial pdf

�
𝑡𝑡=𝑇𝑇−𝜈𝜈

𝑇𝑇

𝑔𝑔𝑡𝑡 ∼ ℬ 𝑝𝑝0, 𝜈𝜈

which is also a discrete distribution

expect ℬ 𝑝𝑝0, 𝜈𝜈 = 𝜈𝜈𝑝𝑝0, variance ℬ 𝑝𝑝0, 𝜈𝜈 = 𝑝𝑝0
Gaussian approximation holds when 𝜈𝜈 is sufficiently large

1
𝜈𝜈

 ℬ 𝑝𝑝0, 𝜈𝜈 ≈ 𝒩𝒩 𝑝𝑝0,
𝑝𝑝0
𝜈𝜈

The average classification error over disjoint windows of 𝜈𝜈 samples 𝑝𝑝𝑡𝑡 = 1
𝜈𝜈
∑𝑡𝑡=𝑇𝑇−𝜈𝜈𝑇𝑇 𝑔𝑔𝑡𝑡

can be approximated as a sequence of i.i.d. realization of a Gaussian distributed
random value. Overlaps among the windows drop the independence.

Boracchi

Monitoring the Classification Error: DDM

Basic idea behind Drift Detection Method (DDM):

J. Gama, P. Medas, G. Castillo, and P. Rodrigues. “Learning with Drift Detection” SBIA. Springer, Berlin, 286–295, 2004

Boracchi

Monitoring the Classification Error: DDM

Basic idea behind Drift Detection Method (DDM):
• Detect concept drift as an outlier in the classification error

Boracchi

Monitoring the Classification Error: DDM

Basic idea behind Drift Detection Method (DDM):
• Detect concept drift as an outlier in the classification error

• In stationary conditions error decreases, look for outliers in the right tail

Boracchi

Monitoring the Classification Error: DDM

1. During monitoring, steadily compute 𝑝𝑝𝑖𝑖 and 𝜎𝜎𝑖𝑖 = 𝑝𝑝𝑖𝑖 1 −𝑝𝑝𝑖𝑖
𝑖𝑖

𝑡𝑡

𝑥𝑥

𝑡𝑡

𝑝𝑝𝑖𝑖 + 𝜎𝜎𝑖𝑖

These are the
sample estimates
of the mean and

standard deviation
of the Gaussian of
the average error
over the first 𝑔𝑔

samples

Boracchi

Monitoring the Classification Error: DDM

1. During monitoring, steadily compute 𝑝𝑝𝑖𝑖 and 𝜎𝜎𝑖𝑖 = 𝑝𝑝𝑖𝑖 1 −𝑝𝑝𝑖𝑖
𝑖𝑖

2. Let 𝑝𝑝min be the minimum error before 𝑔𝑔 and 𝜎𝜎min = 𝑝𝑝min 1 −𝑝𝑝min
𝑖𝑖

𝑡𝑡

𝑝𝑝𝑖𝑖 + 𝜎𝜎𝑖𝑖

𝑝𝑝min + 𝜎𝜎min

Boracchi

Monitoring the Classification Error: DDM

1. During monitoring, steadily compute 𝑝𝑝𝑖𝑖 and 𝜎𝜎𝑖𝑖 = 𝑝𝑝𝑖𝑖 1 −𝑝𝑝𝑖𝑖
𝑖𝑖

2. Let 𝑝𝑝min be the minimum error before 𝑔𝑔 and 𝜎𝜎min = 𝑝𝑝min 1 −𝑝𝑝min
𝑖𝑖

3. Detect concept drift when 𝑝𝑝𝑖𝑖 + 𝜎𝜎𝑖𝑖 > 𝑝𝑝min + 3 ∗ 𝜎𝜎min

𝑝𝑝𝑖𝑖 + 𝜎𝜎𝑖𝑖

𝑝𝑝min + 𝜎𝜎min

𝑡𝑡

This is an heuristic
decision rule, that
does not guarantee
control over FPR

𝑝𝑝min + 3σmin

Boracchi

Adaptation Heuristic in DDM

Adaptation

Boracchi

Monitoring the Classification Error: DDM

1. During monitoring, steadily compute 𝑝𝑝𝑖𝑖 and 𝜎𝜎𝑖𝑖 = 𝑝𝑝𝑖𝑖 1 −𝑝𝑝𝑖𝑖
𝑖𝑖

2. Let 𝑝𝑝min be the minimum error before 𝑔𝑔 and 𝜎𝜎min = 𝑝𝑝min 1 −𝑝𝑝min
𝑖𝑖

3. Raise a “warning” when 𝑝𝑝𝑖𝑖 + 𝜎𝜎𝑖𝑖 > 𝑝𝑝min + 2 ∗ 𝜎𝜎min
4. Detect concept drift when 𝑝𝑝𝑖𝑖 + 𝜎𝜎𝑖𝑖 > 𝑝𝑝min + 3 ∗ 𝜎𝜎min

𝑝𝑝𝑖𝑖 + 𝜎𝜎𝑖𝑖

𝑝𝑝min + 𝜎𝜎min

𝑝𝑝min + 3σmin
𝑝𝑝min + 2σmin

𝑡𝑡

Boracchi

Post-detection Adaptation: DDM
Use supervised samples in between warning and drift alert to reconfigure the classifier

𝑡𝑡

𝑥𝑥

𝑝𝑝𝑖𝑖 + 𝜎𝜎𝑖𝑖

𝑝𝑝min + 𝜎𝜎min

𝑝𝑝𝑖𝑖 + 3𝜎𝜎𝑖𝑖
𝑝𝑝𝑖𝑖 + 2𝜎𝜎𝑖𝑖

𝑡𝑡

𝑇𝑇𝑇𝑇

Boracchi

Post-detection Adaptation: DDM
Use supervised samples in between warning and drift alert to reconfigure the classifier

Warning alerts non that are not followed by a drift alert are discarded and considered
false-positive detections

𝑝𝑝min + 𝜎𝜎min

𝑝𝑝𝑖𝑖 + 3𝜎𝜎𝑖𝑖
𝑝𝑝𝑖𝑖 + 2𝜎𝜎𝑖𝑖

𝑡𝑡

𝑝𝑝𝑖𝑖 + 𝜎𝜎𝑖𝑖

Boracchi

Other Monitoring Solutions for the
Classification Error

Adaptation

Boracchi

Monitoring the Classification Error: EDDM

Early Drift Detection Methods (EDDM) performs similarly but monitors the
average distance between misclassified samples

• Average distance between two mis-classifier samples is expected to decrease
under CD

• They aim at detecting gradual drifts

M. Baena-García, J. Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavaldá, R. Morales-Bueno. “Early drift detection method“ In Fourth
International Workshop on Knowledge Discovery from Data Streams (2006)

Boracchi

Monitoring the Classification Error: EWMA

Use the Exponential Weighted Moving Average (EWMA) as tests statistic
EWMA statistic, which is a convex combination of current error and
average over the previous ones

𝑍𝑍𝑡𝑡 = 1 − 𝜆𝜆 𝑍𝑍𝑡𝑡−1 + 𝜆𝜆 𝑔𝑔𝑡𝑡 , 𝑍𝑍0 = 0
where 𝜆𝜆 ∈ 0,1 is a configuration parameter, 𝑔𝑔𝑡𝑡 ∈ 0,1

G. J. Ross, N. M. Adams, D. K. Tasoulis, and D. J. Hand "Exponentially Weighted Moving Average Charts for Detecting Concept Drift"
Pattern Recogn. Lett. 33, 2 (Jan. 2012), 191–198 2012

Boracchi

Monitoring the Classification Error: EWMA

Use the Exponential Weighted Moving Average (EWMA) as tests statistic
EWMA statistic, which is a convex combination of current error and
average over the previous ones

𝑍𝑍𝑡𝑡 = 1 − 𝜆𝜆 𝑍𝑍𝑡𝑡−1 + 𝜆𝜆 𝑔𝑔𝑡𝑡 , 𝑍𝑍0 = 0
where 𝜆𝜆 ∈ 0,1 is a configuration parameter, 𝑔𝑔𝑡𝑡 ∈ 0,1
Now, if you expand the expression

𝑍𝑍𝑡𝑡 = 1 − 𝜆𝜆 1 − 𝜆𝜆 𝑍𝑍𝑡𝑡−2 + 𝜆𝜆 𝑔𝑔𝑡𝑡−1 + 𝜆𝜆 𝑔𝑔𝑡𝑡 ,
…

𝑍𝑍𝑡𝑡 = � 1 − 𝜆𝜆 𝑡𝑡−𝑖𝑖𝜆𝜆𝑔𝑔𝑖𝑖

G. J. Ross, N. M. Adams, D. K. Tasoulis, and D. J. Hand "Exponentially Weighted Moving Average Charts for Detecting Concept Drift"
Pattern Recogn. Lett. 33, 2 (Jan. 2012), 191–198 2012

Boracchi

Monitoring the Classification Error: EWMA

Use the Exponential Weighted Moving Average (EWMA) as tests statistic
EWMA statistic, which is a convex combination of current error and
average over the previous ones

𝑍𝑍𝑡𝑡 = 1 − 𝜆𝜆 𝑍𝑍𝑡𝑡−1 + 𝜆𝜆 𝑔𝑔𝑡𝑡 , 𝑍𝑍0 = 0
where 𝜆𝜆 ∈ 0,1 is a configuration parameter, 𝑔𝑔𝑡𝑡 ∈ 0,1
Now, if you expand the expression

𝑍𝑍𝑡𝑡 = 1 − 𝜆𝜆 1 − 𝜆𝜆 𝑍𝑍𝑡𝑡−2 + 𝜆𝜆 𝑔𝑔𝑡𝑡−1 + 𝜆𝜆 𝑔𝑔𝑡𝑡 ,
…

𝑍𝑍𝑡𝑡 = � 1 − 𝜆𝜆 𝑡𝑡−𝑖𝑖𝜆𝜆𝑔𝑔𝑖𝑖

G. J. Ross, N. M. Adams, D. K. Tasoulis, and D. J. Hand "Exponentially Weighted Moving Average Charts for Detecting Concept Drift"
Pattern Recogn. Lett. 33, 2 (Jan. 2012), 191–198 2012

In stationary conditions 𝑍𝑍𝑡𝑡 is an estimate of
𝑝𝑝0, since all 𝑔𝑔𝑖𝑖 have the same expectation.

Since 𝜆𝜆 ∈ 0,1 , then
1 − 𝜆𝜆 𝑡𝑡−𝑖𝑖𝜆𝜆 decreases as 𝑔𝑔 increases, thus

recent samples have larger weights

Boracchi

Monitoring the Classification Error: EWMA

Any change 𝜙𝜙0 → 𝜙𝜙1 introduces a bias in 𝑍𝑍𝑡𝑡, as it includes values in the
statistic that are generated with expectation 𝑝𝑝1 > 𝑝𝑝0, the classification
error after the change.

The Exponential Weighted Moving Average expression

𝑍𝑍𝑡𝑡 = � 1 − 𝜆𝜆 𝑡𝑡−𝑖𝑖𝜆𝜆𝑔𝑔𝑖𝑖

Assigns much smaller weights to old samples 𝑔𝑔𝑖𝑖 𝑔𝑔 ≪ 𝑡𝑡, and is mostly
influenced by recent classification errors 𝑔𝑔𝑖𝑖 , 𝑔𝑔 ≈ 𝑡𝑡
The parameter 𝜆𝜆 (typically set in [0.1, 0.3]) regulates how fast the
contribution of past observations decay and how quickly 𝑍𝑍𝑡𝑡 converges
toward 𝑝𝑝1 after the change

G. J. Ross, N. M. Adams, D. K. Tasoulis, and D. J. Hand "Exponentially Weighted Moving Average Charts for Detecting Concept Drift"
Pattern Recogn. Lett. 33, 2 (Jan. 2012), 191–198 2012

Boracchi

Monitoring the Classification Error: EWMA

A natural choice for a decision rule in our settings consists in:
𝑍𝑍𝑡𝑡 > 𝑝𝑝0 + 𝐿𝐿 𝜎𝜎𝑍𝑍𝑡𝑡

Where 𝜎𝜎𝑍𝑍𝑡𝑡 can corresponds to

𝜎𝜎𝑍𝑍𝑡𝑡 = std 𝑍𝑍𝑡𝑡 = 𝜎𝜎0
𝜆𝜆

2 − 𝜆𝜆
1 − 1 − 𝜆𝜆 2𝑡𝑡

being 𝜎𝜎0 the standard deviation of the classification error.

This expression holds for a general EWMA monitoring scheme.

G. J. Ross, N. M. Adams, D. K. Tasoulis, and D. J. Hand "Exponentially Weighted Moving Average Charts for Detecting Concept Drift"
Pattern Recogn. Lett. 33, 2 (Jan. 2012), 191–198 2012

Boracchi

Unfortunately…

Before adopting the EWMA detection rule in practice
𝑍𝑍𝑡𝑡 > 𝑝𝑝0 + 𝐿𝐿 𝜎𝜎𝑍𝑍𝑡𝑡

There are quite a few things to set

1. How to estimate 𝑝𝑝0 and 𝜎𝜎0? These are typically unknown, while the
monitoring scheme assume these are given!

2. How to set 𝐿𝐿 to guarantee a certain 𝐴𝐴𝑇𝑇𝐿𝐿0?

Boracchi

EWMA for Bernoulli Random Variables
The classifier error before the change has a constant expectation 𝑝𝑝0 with the
standard deviation 𝜎𝜎0 = 𝑝𝑝0(1 − 𝑝𝑝0)
Replace 𝑝𝑝0 with its BLUE (Best Linear Unbiased Estimator) �̂�𝑝0,𝑡𝑡 at time 𝑡𝑡

�̂�𝑝0,𝑡𝑡 =
𝑡𝑡

𝑡𝑡 + 1
�̂�𝑝0,𝑡𝑡−1 +

1
𝑡𝑡 + 1

𝑔𝑔𝑡𝑡 =
1
𝑡𝑡
�𝑔𝑔𝑖𝑖

Compute the corresponding variance of �̂�𝑝0,𝑡𝑡 from the formula for Bernoulli RV

�𝜎𝜎0,𝑡𝑡
2 = �̂�𝑝0,𝑡𝑡(1 − �̂�𝑝0,𝑡𝑡)

plug this in the variance of the EWMA statistic (which indeed scales �𝜎𝜎0,𝑡𝑡)

�𝜎𝜎𝑍𝑍𝑡𝑡 = �𝜎𝜎0,𝑡𝑡
𝜆𝜆

2 − 𝜆𝜆
1 − 1 − 𝜆𝜆 2𝑡𝑡

Boracchi

Stopping Rule for EWMA for Bernoulli

When replacing the true values 𝑝𝑝0 and 𝜎𝜎0 by their estimates in the control chart
we have that

𝑍𝑍𝑡𝑡 > �̂�𝑝0,𝑡𝑡 + 𝐿𝐿 �𝜎𝜎𝑍𝑍𝑡𝑡
To preserve a target 𝐴𝐴𝑇𝑇𝐿𝐿0 the control limit becomes time-dependent

𝑍𝑍𝑡𝑡 > �̂�𝑝0,𝑡𝑡 + 𝐿𝐿𝑡𝑡 �𝜎𝜎𝑍𝑍𝑡𝑡
Defining the sequence 𝐿𝐿𝑡𝑡 𝑡𝑡 is very complicated as these depend on �̂�𝑝0,𝑡𝑡.

A «simpler» problem to address via MonteCarlo simulation is, given a value 𝐿𝐿
and 𝑝𝑝0, to estimate the corresponding 𝐴𝐴𝑇𝑇𝐿𝐿0

𝑀𝑀𝑀𝑀𝑔𝑔𝑡𝑡𝑔𝑔𝑀𝑀𝑓𝑓𝑓𝑓𝑀𝑀𝑀𝑀 𝐿𝐿,𝑝𝑝0 → 𝐴𝐴𝑇𝑇𝐿𝐿0
It is also possible «to revert» this by setting up a suitable Montecarlo scheme
such that, provided 𝐴𝐴𝑇𝑇𝐿𝐿0 and 𝑝𝑝0 one estimates 𝐿𝐿, as described in the paper.

Sparks, R.S., 2000. CUSUM charts for signalling varying location shifts. J. Qual. Technol. 32.

Boracchi

Stopping Rule for EWMA for Bernoulli

So, it is possible to estimate by Montecarlo simulations a function
𝑓𝑓: 𝑃𝑃0,𝐴𝐴0 → 𝐿𝐿

that returns 𝐿𝐿 yielding 𝐴𝐴𝑇𝑇𝐿𝐿0 = 𝛼𝛼0 over Bernoulli streams having 𝑝𝑝0 = 𝑃𝑃0.
This can be done by polynomial fit in 𝑝𝑝0 over the results of MonteCarlo
simulations, and yields a function to be invoked at each iteration of the
algorithm since �𝒑𝒑𝟎𝟎,𝒕𝒕 does change

Ross, Adams, Tasoulis, Hand "Exponentially Weighted Moving Average Charts for Detecting Concept Drift" Pattern Recogn. Lett. 33, 2012

𝐿𝐿
𝑝𝑝 0

,𝑡𝑡

Boracchi

Stopping Rule for EWMA for Bernoulli

Very Important: thresholds does not depend on 𝝓𝝓𝟎𝟎

• The distribution of EWMA statistic does not depend on 𝜙𝜙0, as it
monitors Bernoulli realizations that depends exclusively on 𝑝𝑝0 ->

• The Montecarlo simulation has been done considering the above
estimator of �̂�𝑝0,𝑡𝑡, use always this estimator

• Thresholds depend on the monitoring parameters 𝐴𝐴𝑇𝑇𝐿𝐿0, 𝜆𝜆

Ross, Adams, Tasoulis, Hand "Exponentially Weighted Moving Average Charts for Detecting Concept Drift" Pattern Recogn. Lett. 33, 2012

𝐿𝐿
𝑝𝑝 0

,𝑡𝑡

Boracchi

Adaptation in EWDMA

Like DDM, classifier reconfiguration is performed by monitoring 𝑍𝑍𝑡𝑡 also at
a warning level

𝑍𝑍𝑡𝑡 > 𝑝𝑝0,𝑡𝑡 + 0.5 𝐿𝐿 �̂�𝑝0,𝑡𝑡 𝜎𝜎𝑡𝑡

Once CD is detected, the first sample raising a warning is used to isolate
samples from the new distribution and retrain the classifier.

This is a heuristic criteria for defining a classifier update.

Ross, Adams, Tasoulis, Hand "Exponentially Weighted Moving Average Charts for Detecting Concept Drift" Pattern Recogn. Lett. 33, 2012

Boracchi

EWMA Monitoring for concept drift

Ross, Adams, Tasoulis, Hand "Exponentially Weighted Moving Average Charts for Detecting Concept Drift" Pattern Recogn. Lett. 33, 2012

𝐿𝐿𝑡𝑡 = 𝑓𝑓 �̂�𝑝0,𝑡𝑡 ,𝐴𝐴𝑇𝑇𝐿𝐿0 in the paper they refer to 𝐿𝐿𝑡𝑡
since it is a function of �̂�𝑝0,𝑡𝑡, i.e. 𝐿𝐿 �̂�𝑝0,𝑡𝑡 . The
function for 𝐿𝐿 does not depend on the time.

Boracchi

Monitoring the Input
Distribution
… when 𝜙𝜙0 and 𝜙𝜙1 are both unknown

Change
Detection

Test

Boracchi

Monitoring Input Distribution

Pros:
• Monitoring 𝜙𝜙 𝒙𝒙 does not require supervised samples

• Enables the detection of both real and virtual concept drift

• Detection before prediction

Cons:
• CD that does not affect 𝜙𝜙(𝒙𝒙) are not perceivable (e.g. classes’ swap)

• In principle, changes not affecting 𝜙𝜙 𝑦𝑦 𝒙𝒙 do not require reconfiguration.

• Difficult to design sequential detection tools when streams are multivariate and
drawn from an unknown distribution

Prediction �𝑦𝑦𝑡𝑡
ModelEnvironment

Input 𝑥𝑥𝑡𝑡 Change
Detection

Test
Adaptation

Boracchi

Monitoring Input Distribution
by Comparing Windows

Boracchi

The Motivating Idea

Detect CD at time 𝑡𝑡 by comparing two different windows.
In practice, one computes:

𝒮𝒮(𝑊𝑊0,𝑊𝑊𝑡𝑡)
• 𝑊𝑊0: reference window of past (stationary) data

• 𝑊𝑊𝑡𝑡: sliding window of recent (possibly changed) data

• 𝒮𝒮 is a suitable statistic over the classification error

𝑥𝑥

𝑊𝑊0 𝑊𝑊𝑡𝑡

Boracchi

Window Comparison: Major Approaches

Hypothesis testing:

• Select 𝑊𝑊0, a reference window from the initial concept: 𝑊𝑊0 ⊂ 𝑇𝑇𝑇𝑇
• As data arrives, crop a window 𝑊𝑊𝑡𝑡 from the latest samples

• Detect concept drift by comparing an appropriate test statistic with 𝛾𝛾
𝒮𝒮 𝑊𝑊0,𝑊𝑊𝑡𝑡 ≶ 𝛾𝛾

𝑥𝑥

𝑊𝑊0 𝑊𝑊𝑡𝑡

Boracchi

Window Comparison: Major Approaches

Hypothesis testing:

• Select 𝑊𝑊0, a reference window from the initial concept: 𝑊𝑊0 ⊂ 𝑇𝑇𝑇𝑇
• As data arrives, crop a window 𝑊𝑊𝑡𝑡 from the latest samples

• Detect concept drift by comparing an appropriate test statistic with 𝛾𝛾
𝒯𝒯 𝑊𝑊0,𝑊𝑊𝑡𝑡 ≶ 𝛾𝛾

𝑥𝑥

𝑊𝑊0 𝑊𝑊𝑡𝑡

Tackle the change-detection problem as anomaly detection
on batches cropped from the datastream

Example of statistics: t-test (Hotelling t-square) statistics
for detecting shifts in the batch expectation for scalar

(multivariate) streams, respectively

Boracchi

Window Comparison: Major Approaches

ADWIN: Compare the averages of scalar inputs over two adjacent windows
having increasing size.

Whenever two “large enough” subwindows of the stream exhibit “distinct
enough” averages, detect a change and drop the old samples in 𝑊𝑊.

ADWIN: ADAPTIVE WINDOWING
• Initialize Window 𝑊𝑊
• for each 𝑡𝑡 > 0 do
 𝑊𝑊 ← 𝑊𝑊 ∪ {𝑥𝑥𝑡𝑡} (add 𝑥𝑥𝑡𝑡 to the head of 𝑊𝑊)

• repeat Drop elements from the tail of 𝑊𝑊
 until |𝜇𝜇0 − 𝜇𝜇1 | < 𝜖𝜖 holds for every split
of 𝑊𝑊 into 𝑊𝑊 = [𝑊𝑊𝑊,𝑊𝑊𝑊]

• Output µ𝑊𝑊

𝑊𝑊 = 101010110111111

Bifet A., Gavaldà R. "Learning from time-changing data with adaptive windowing" SIAM Int. Conference on Data Mining 2007

Boracchi

Window Comparison: Major Approaches

ADWIN: Compare the averages of scalar inputs over two adjacent windows
having increasing size.

Whenever two “large enough” subwindows of the stream exhibit “distinct
enough” averages, detect a change and drop the old samples in 𝑊𝑊.

𝑊𝑊 = 101010110111111
𝑊𝑊0 = 1, 𝑊𝑊1 = 01010110111111

𝜇𝜇0 𝜇𝜇1

ADWIN: ADAPTIVE WINDOWING
• Initialize Window 𝑊𝑊
• for each 𝑡𝑡 > 0 do
 𝑊𝑊 ← 𝑊𝑊 ∪ {𝑥𝑥𝑡𝑡} (add 𝑥𝑥𝑡𝑡 to the head of 𝑊𝑊)

• repeat Drop elements from the tail of 𝑊𝑊
 until |𝜇𝜇0 − 𝜇𝜇1 | < 𝜖𝜖 holds for every split
of 𝑊𝑊 into 𝑊𝑊 = [𝑊𝑊𝑊,𝑊𝑊𝑊]

• Output µ𝑊𝑊

Bifet A., Gavaldà R. "Learning from time-changing data with adaptive windowing" SIAM Int. Conference on Data Mining 2007

Boracchi

Window Comparison: Major Approaches

ADWIN: Compare the averages of scalar inputs over two adjacent windows
having increasing size.

Whenever two “large enough” subwindows of the stream exhibit “distinct
enough” averages, detect a change and drop the old samples in 𝑊𝑊.

Bifet A., Gavaldà R. "Learning from time-changing data with adaptive windowing" SIAM Int. Conference on Data Mining 2007

𝑊𝑊 = 101010110111111
𝑊𝑊0 = 1, 𝑊𝑊1 = 01010110111111
𝑊𝑊0 = 10, 𝑊𝑊1 = 1010110111111

…
𝑊𝑊0 = 101010110, 𝑊𝑊1 = 111111

|𝜇𝜇0 − 𝜇𝜇1 | ≥ 𝜖𝜖

ADWIN: ADAPTIVE WINDOWING
• Initialize Window 𝑊𝑊
• for each 𝑡𝑡 > 0 do
 𝑊𝑊 ← 𝑊𝑊 ∪ {𝑥𝑥𝑡𝑡} (add 𝑥𝑥𝑡𝑡 to the head of 𝑊𝑊)

• repeat Drop elements from the tail of 𝑊𝑊
 until |𝜇𝜇0 − 𝜇𝜇1 | < 𝜖𝜖 holds for every split
of 𝑊𝑊 into 𝑊𝑊 = [𝑊𝑊𝑊,𝑊𝑊𝑊]

• Output µ𝑊𝑊 ADWIN2: efficient variant reducing computation and memory footprint

Boracchi

Window Comparison: Major Approaches
1. Hypothesis testing

2. ADWIN: Compare the averages of scalar inputs over two adjacent windows

3. Compute empirical distributions of raw data over 𝑊𝑊0 and 𝑊𝑊𝑡𝑡 and compare

• The Kullback-Leibler divergence

T. Dasu, Sh. Krishnan, S. Venkatasubramanian, and K. Yi. "An Information-Theoretic Approach to Detecting Changes in Multi-
Dimensional Data Streams". In Proc. of the 38th Symp. on the Interface of Statistics, Computing Science, and Applications, 2006

Boracchi

Window Comparison: Major Approaches
1. Hypothesis testing

2. ADWIN: Compare the averages of scalar inputs over two adjacent windows

3. Compute empirical distributions of raw data over 𝑊𝑊0 and 𝑊𝑊𝑡𝑡 and compare

• The Kullback-Leibler divergence

• The Hellinger distance

G. Ditzler and R. Polikar, “Hellinger distance based drift detection for nonstationary environments” in Computational Intelligence
in Dynamic and Uncertain Environments (CIDUE), 2011 IEEE Symposium on, April 2011, pp. 41–48.

Boracchi

Window Comparison: Major Approaches
1. Hypothesis testing

2. ADWIN: Compare the averages of scalar inputs over two adjacent windows

3. Compute empirical distributions of raw data over 𝑊𝑊0 and 𝑊𝑊𝑡𝑡 and compare

• The Kullback-Leibler divergence

• The Hellinger distance

• The density ratio over the two windows using kernel methods (to overcome
curse of dimensionality problems when computing empirical distributions)

Kawahara, Y. and Sugiyama, M. "Sequential change-point detection based on direct density-ratio estimation". Statistical Analysis
and Data Mining, 5(2):114–127, 2012.

Boracchi

Other Schemes for Monitoring
the Input Distribution

Boracchi

Change Detection Approaches

• The Change-Point Formulation
• Parametric

• Non-parametric

• Change-Detection by Monitoring Features / the Log-likelihood

• Change-Detection by Histograms

Boracchi

Change Detection in Parametric Settings: CPM

Change-Point Methods (CPM) are sequential monitoring schemes that
extend traditional parametric hypothesis tests.

Parametric settings: 𝜙𝜙0 and 𝜙𝜙1 are known up to their parameters (𝜃𝜃0 and
𝜃𝜃1), thus the change 𝜙𝜙0 → 𝜙𝜙1 corresponds to a change 𝜃𝜃0 → 𝜃𝜃1
Non-Parametric settings: Both 𝜙𝜙0 and 𝜙𝜙1 are unknown, the change 𝜙𝜙0 →
𝜙𝜙1 is completely unpredictable

Pro: CPMs do not require training samples
Pro: They provide fixed 𝐴𝐴𝑇𝑇𝐿𝐿0
Con: These nonparametric statistics are not meant for multivariate data.

Hawkins, D. M., and Zamba, K. D. “Statistical process control for shifts in mean or variance using a changepoint formulation” Technometrics 2005

Ross, G. J. “Sequential change detection in the presence of unknown parameters”. Statistics and Computing, 24(6), 1017-1030, 2014

Boracchi

Change Detection in Parametric settings: CPM

In Statistical Process Control, monitoring is divided in two phases:

• Offline / Phase I: Given a sequence {𝑥𝑥𝑡𝑡}, determine whether it contains
a change point 𝜏𝜏 or not. This is “one-shot test”

• Online / Phase II: data arrive steadily, and decision has to be taken as
data flows (online).

We illustrate first the basic CPM scheme in offline monitoring, then we
show how a Phase I mechanism can be iterated to perform online change
detection (sequential monitoring).

Hawkins, D. M., and Zamba, K. D. “Statistical process control for shifts in mean or variance using a changepoint formulation” Technometrics 2005

Ross, G. J. “Sequential change detection in the presence of unknown parameters”. Statistics and Computing, 24(6), 1017-1030, 2014

BoracchiD. M. Hawkins, P. Qiu, and C. W. Kang, “The changepoint model for statistical process control,” Journal of Quality Technology, vol. 35, No. 4, pp. 355–366, 2003.

Boracchi

The Change Point Method (CPM)

Assume a sequence 𝑋𝑋 of 1000 points is given and we want
to find the change point 𝜏𝜏 inside (offline analysis)

𝒙𝒙 𝑡𝑡 ∼ �𝜙𝜙0 𝑡𝑡 < 𝜏𝜏
𝜙𝜙1 𝑡𝑡 ≥ 𝜏𝜏

Assume we are given a statistic 𝒮𝒮𝑡𝑡 to compare two datasets
𝐴𝐴𝑡𝑡 ,𝐵𝐵𝑡𝑡 ⊂ 𝑋𝑋 coming before and after 𝑡𝑡

𝑋𝑋

Boracchi

The Change Point Method (CPM)

• Test a single point 𝑡𝑡 to be a change point

• Split the dataset in two sets 𝐴𝐴𝑡𝑡 ,𝐵𝐵𝑡𝑡 ⊂ 𝑋𝑋, namely samples «before» and
«after» the putative change at 𝑡𝑡

• Compute a test statistic 𝒮𝒮𝑡𝑡 = 𝒮𝒮 𝐴𝐴𝑡𝑡 ,𝐵𝐵𝑡𝑡 to determine whether the two sets
are from the same distribution (e.g. same mean)

• Repeat the procedure 𝑡𝑡 = 𝛿𝛿, … , 1000 − 𝛿𝛿 and store the value of the statistic

before after

𝑡𝑡

𝐴𝐴𝑡𝑡 𝐵𝐵𝑡𝑡

Boracchi

The Change Point Method (CPM)

before after

𝑡𝑡

𝐴𝐴𝑡𝑡 𝐵𝐵𝑡𝑡

• Test a single point 𝑡𝑡 to be a change point

• Split the dataset in two sets 𝐴𝐴𝑡𝑡 ,𝐵𝐵𝑡𝑡 ⊂ 𝑋𝑋, namely samples «before» and
«after» the putative change at 𝑡𝑡

• Compute a test statistic 𝒮𝒮𝑡𝑡 = 𝒮𝒮 𝐴𝐴𝑡𝑡 ,𝐵𝐵𝑡𝑡 to determine whether the two sets
are from the same distribution (e.g. same mean)

• Repeat the procedure 𝑡𝑡 = 𝛿𝛿, … , 1000 − 𝛿𝛿 and store the value of the statistic

Boracchi

The Change Point Method (CPM)

before after

𝑡𝑡

𝐴𝐴𝑡𝑡 𝐵𝐵𝑡𝑡

• Test a single point 𝑡𝑡 to be a change point

• Split the dataset in two sets 𝐴𝐴𝑡𝑡 ,𝐵𝐵𝑡𝑡 ⊂ 𝑋𝑋, namely samples «before» and
«after» the putative change at 𝑡𝑡

• Compute a test statistic 𝒮𝒮𝑡𝑡 = 𝒮𝒮 𝐴𝐴𝑡𝑡 ,𝐵𝐵𝑡𝑡 to determine whether the two sets
are from the same distribution (e.g. same mean)

• Repeat the procedure 𝑡𝑡 = 𝛿𝛿, … , 1000 − 𝛿𝛿 and store the value of the statistic

Boracchi

The Change Point Method (CPM)

before after

𝑡𝑡

𝐴𝐴𝑡𝑡 𝐵𝐵𝑡𝑡

• Test a single point 𝑡𝑡 to be a change point

• Split the dataset in two sets 𝐴𝐴𝑡𝑡 ,𝐵𝐵𝑡𝑡 ⊂ 𝑋𝑋, namely samples «before» and
«after» the putative change at 𝑡𝑡

• Compute a test statistic 𝒮𝒮𝑡𝑡 = 𝒮𝒮 𝐴𝐴𝑡𝑡 ,𝐵𝐵𝑡𝑡 to determine whether the two sets
are from the same distribution (e.g. same mean)

• Repeat the procedure 𝑡𝑡 = 𝛿𝛿, … , 1000 − 𝛿𝛿 and store the value of the statistic

Boracchi

The Change Point Method (CPM)

before after

𝑡𝑡

𝑡𝑡

𝒮𝒮𝑡𝑡

𝐴𝐴𝑡𝑡 𝐵𝐵𝑡𝑡

Boracchi

The Change Point Method (CPM)

The point where the statistic achieves its maximum is the most likely
position of the change-point

As in hypothesis testing, it possible to set a threshold ℎ1000,𝛼𝛼 for
𝒮𝒮max,1000 by setting to 𝛼𝛼 the probability of type I errors.

The CPM framework can be extended to online monitoring, and in this
case it is possible to control the 𝐴𝐴𝑇𝑇𝐿𝐿0

𝒮𝒮max,1000

ℎ1000,𝛼𝛼

Boracchi

The CPM Formulation

Phase I (offline): test all the possible splits ∀ 𝑡𝑡 ∈ [1,𝑁𝑁], being 𝑁𝑁 = #𝑋𝑋

• Define 𝐴𝐴𝑡𝑡 = 𝑥𝑥 𝑓𝑓 , 0 ≤ 𝑓𝑓 < 𝑡𝑡 and 𝐵𝐵𝑡𝑡 = 𝑥𝑥 𝑓𝑓 , 𝑡𝑡 ≤ 𝑓𝑓 ≤ 𝑁𝑁
• Compute the test statistic

𝒮𝒮𝑡𝑡 = 𝒮𝒮(𝐴𝐴𝑡𝑡 ,𝐵𝐵𝑡𝑡)
• We claim that 𝑥𝑥 𝑡𝑡 𝑡𝑡 contains a change point when

𝒮𝒮max,𝑁𝑁 = max
𝑡𝑡

(𝒮𝒮𝑡𝑡) > 𝛾𝛾𝑁𝑁

The threshold 𝛾𝛾𝑁𝑁 has to be set to control type I errors under 𝐻𝐻0 ∶ 𝑋𝑋 ∼ 𝜙𝜙0
• The estimated change point location is

�̂�𝜏 = argmax
𝑡𝑡

(𝒮𝒮𝑡𝑡) > 𝛾𝛾𝑁𝑁

Boracchi

Threshold Computation (Offline Analysis)

Finding a threshold 𝛾𝛾𝑁𝑁 guaranteeing control over type I error is not trivial,
as this depends on the distribution of 𝓢𝓢𝒎𝒎𝒎𝒎𝒙𝒙,𝑵𝑵 under 𝑋𝑋 ∼ 𝜙𝜙0
Rmk: the distribution of 𝒮𝒮max,𝑁𝑁 is very complicated due to the high
correlation between the {𝓢𝓢𝒕𝒕,𝑵𝑵} statistics.

Other options:

• Bonferroni approximations for 𝒮𝒮𝑚𝑚𝑚𝑚𝑥𝑥,𝑁𝑁, but this is too loose an
approximation: there are many comparisons (𝑁𝑁), one per sample

• Asymptotic bounds for 𝒮𝒮𝑚𝑚𝑚𝑚𝑥𝑥,𝑁𝑁, but these are only available for certain
statistics 𝒮𝒮, thus wouldn’t apply to all distribution 𝜙𝜙0 (and would
possibly yield a coarse approximation at early monitoring stages)

• Resort to MonteCarlo simulations

Boracchi

Threshold Computation (offline analysis)

𝛾𝛾𝑁𝑁

𝛼𝛼𝛼 of the area

Therefore we resort to bootstrap.

• Draw many (?!) sequences 𝑋𝑋 ∼ 𝜙𝜙0
• Compute the statistic 𝒮𝒮max,𝑁𝑁 for each sequence and store their values

• Set the threshold as the quantile of this empirical distribution

Empirical distribution of 𝑇𝑇max,𝑁𝑁

Boracchi

Threshold Computation

𝛾𝛾𝑁𝑁

𝛼𝛼𝛼 of the area

Therefore we resort to bootstrap.

• Draw many (?!) sequences 𝑋𝑋 ∼ 𝜙𝜙0
• Compute the statistic 𝒮𝒮max,𝑁𝑁 for each sequence and store their values

• Set the threshold as the quantile of this empirical distribution

The computed thresholds depends on many factors:
• The distribution of input data 𝜙𝜙0
• The length of the sequence 𝑁𝑁
• The target FPR 𝛼𝛼

Boracchi

Threshold Computation

𝛾𝛾𝑁𝑁

𝛼𝛼𝛼 of the area

Therefore we resort to bootstrap.

• Draw many (?!) sequences 𝑋𝑋 ∼ 𝜙𝜙0
• Compute the statistic 𝒮𝒮max,𝑁𝑁 for each sequence and store their values

• Set the threshold as the quantile of this empirical distribution

The computed thresholds depends on many factors:
• The distribution of input data 𝜙𝜙0
• The length of the sequence 𝑁𝑁
• The target FPR 𝛼𝛼

The same bootstrap procedure has to be repeated
for each 𝝓𝝓𝟎𝟎 (TR) and 𝑵𝑵

BoracchiG. J. Ross, D. K. Tasoulis, and N. M. Adams, “Nonparametric monitoring of data streams for changes in location and scale,” Technometrics, vol. 53, no. 4, pp. 379–389, 2011.

BoracchiG. J. Ross, D. K. Tasoulis, and N. M. Adams, “Nonparametric monitoring of data streams for changes in location and scale,” Technometrics, vol. 53, no. 4, pp. 379–389, 2011.

Boracchi

CPM in non-parametric settings

Any statistics for HT could be used in both online and offline change-point
methods. A better option would be to adopt nonparametric statistics, like:

• Mann-Whitney,

• Mood,

• Lepage,

• Two sample Kolmogorov-Smirnov,

• Cramer von Mises,

which do not require any information about 𝜙𝜙0 or 𝜙𝜙1.
A relevant advantage: sequences for computing the threshold can be
generated by an arbitrarily distribution 𝜓𝜓, as the test statistic 𝑇𝑇 does not
depend on 𝜙𝜙0. Synthetic data generation rather than bootstrap

Ross, G. J., Tasoulis, D. K., Adams, N. M. "Nonparametric monitoring of data streams for changes in location and scale" Technometrics, 53(4), 379-389, 2012.

Boracchi

CPM in non-parametric settings

The (two samples) Kolmogorov Smirnov and Cramer Von Mises are very
general test statistics, as they assess variations in the empirical
distribution of data.

However, these "omnibus" tests have low power, and it is better to focus
on statistics detecting specific types changes in 𝜙𝜙0

• Location Changes: i.e., 𝜙𝜙1 𝑥𝑥 = 𝜙𝜙0(𝑥𝑥 + δ)
• Scale Changes: i.e., 𝜙𝜙1 𝑥𝑥 = 𝜙𝜙0(𝛿𝛿𝑥𝑥)

In practice it is very unlikely that 𝜙𝜙1and 𝜙𝜙0would differ while having the
same expectation and variance.

Boracchi

Nonparametric Statistics for Scale and Location

Most of nonparametric statistics ranks the observations

𝑓𝑓𝑟𝑟 𝑥𝑥 𝑔𝑔 = �
𝑖𝑖≠𝑗𝑗

𝐼𝐼(𝑥𝑥 𝑔𝑔 > 𝑥𝑥(𝑗𝑗))

The Mann-Whitney statitic to assess location changes between two sets

The Mood statistic to assess scale changes between two sets

Both Mann-Withney and Mood statistics:

• Can be used to compare two sets 𝐴𝐴,𝐵𝐵
• Are independent from 𝜙𝜙0 the distribution of the observations 𝑥𝑥(𝑡𝑡)

Boracchi

Mann-Whitney Statistic for two sets A and B
The idea

When 𝑁𝑁 i.i.d. samples are spread over two
sets A and B, the expectation of the sum in
in 𝐴𝐴 of ranks computed over 𝐴𝐴,𝐵𝐵 , should
be like “the average rank” over [𝐴𝐴,𝐵𝐵]

𝐸𝐸 �
𝑥𝑥 𝑡𝑡 ∈𝐴𝐴

𝑓𝑓(𝑥𝑥(𝑡𝑡)) = #𝐴𝐴 ∗
#[𝐴𝐴,𝐵𝐵] + 1

2

The 𝑈𝑈 statistic measures how much the sum
in 𝐴𝐴 of ranks over [𝐴𝐴,𝐵𝐵]

�
𝑥𝑥 𝑡𝑡 ∈𝐴𝐴

𝑓𝑓(𝑥𝑥(𝑡𝑡))

deviates from #𝐴𝐴 ∗ #[𝐴𝐴,𝐵𝐵]+1
2

m = length(A(:)); n = length(B(:));
N = m + n;

% row vector containing both dataset
D = [A(:); B(:)]';
% labels,
L = [ones(1, m) , zeros(1, n)];
[~, indx] = sort(D);
V = L(indx);
xx =[1 : size(D, 2)]; % ranks

% U: Wilcoxon / Mann-Whitney statistic
U = xx * V';

%% compute normalization terms
mu = m * (N + 1) / 2;
sigma = m * n * (N + 1) / 12;

%% compute the normalized test statistic
U = abs(U - mu) / sqrt(sigma);

Boracchi

Mann-Whitney Statistic for two sets A and B
The idea

When 𝑁𝑁 i.i.d. samples are spread over two
sets A and B, the expectation of the sum in
in 𝐴𝐴 of ranks computed over 𝐴𝐴,𝐵𝐵 , should
be like “the average rank” over [𝐴𝐴,𝐵𝐵]

𝐸𝐸 �
𝑥𝑥 𝑡𝑡 ∈𝐴𝐴

𝑓𝑓(𝑥𝑥(𝑡𝑡)) = #𝐴𝐴 ∗
#[𝐴𝐴,𝐵𝐵] + 1

2

The 𝑈𝑈 statistic measures how much the sum
in 𝐴𝐴 of ranks over [𝐴𝐴,𝐵𝐵]

�
𝑥𝑥 𝑡𝑡 ∈𝐴𝐴

𝑓𝑓(𝑥𝑥(𝑡𝑡))

deviates from #𝐴𝐴 ∗ #[𝐴𝐴,𝐵𝐵]+1
2

m = length(A(:)); n = length(B(:));
N = m + n;

% row vector containing both dataset
D = [A(:); B(:)]';
% labels,
L = [ones(1, m) , zeros(1, n)];
[~, indx] = sort(D);
V = L(indx);
xx =[1 : size(D, 2)]; % ranks

% U: Wilcoxon / Mann-Whitney statistic
U = xx * V';

%% compute normalization terms
mu = m * (N + 1) / 2;
sigma = m * n * (N + 1) / 12;

%% compute the normalized test statistic
U = abs(U - mu) / sqrt(sigma);

Boracchi

Mann-Whitney Statistic for two sets A and B
The idea

When 𝑁𝑁 i.i.d. samples are spread over two
sets A and B, the expectation of the sum in
in 𝐴𝐴 of ranks computed over 𝐴𝐴,𝐵𝐵 , should
be like “the average rank” over [𝐴𝐴,𝐵𝐵]

𝐸𝐸 �
𝑥𝑥 𝑡𝑡 ∈𝐴𝐴

𝑓𝑓(𝑥𝑥(𝑡𝑡)) = #𝐴𝐴 ∗
#[𝐴𝐴,𝐵𝐵] + 1

2

The 𝑈𝑈 statistic measures how much the sum
in 𝐴𝐴 of ranks over [𝐴𝐴,𝐵𝐵]

�
𝑥𝑥 𝑡𝑡 ∈𝐴𝐴

𝑓𝑓(𝑥𝑥(𝑡𝑡))

deviates from #𝐴𝐴 ∗ #[𝐴𝐴,𝐵𝐵]+1
2

m = length(A(:)); n = length(B(:));
N = m + n;

% row vector containing both dataset
D = [A(:); B(:)]';
% labels,
L = [ones(1, m) , zeros(1, n)];
[~, indx] = sort(D);
V = L(indx);
xx =[1 : size(D, 2)]; % ranks

% U: Wilcoxon / Mann-Whitney statistic
U = xx * V';

%% compute normalization terms
mu = m * (N + 1) / 2;
sigma = m * n * (N + 1) / 12;

%% compute the normalized test statistic
U = abs(U - mu) / sqrt(sigma);

When 𝐴𝐴 ∼ 𝜙𝜙0 and 𝐵𝐵 ∼ 𝜙𝜙0 ⋅ −𝛿𝛿 , the ranks of
elements in 𝐵𝐵 will be larger (𝛿𝛿 > 0) or smaller

𝛿𝛿 < 0 than those in 𝐴𝐴

Boracchi

Mood Statistic for two sets A and B

The idea

When 𝑁𝑁 i.i.d. samples are divided in
two sets A and B, then

𝐸𝐸[𝑓𝑓 𝑥𝑥 𝑡𝑡) =
𝑁𝑁 + 1

2
the expected rank of each point under
𝐻𝐻0 = “both sets are identically
distributed” is (𝑁𝑁 + 1)/2
𝑀𝑀 measures the (squared) deviation of
ranks of samples in 𝐴𝐴 from this
expectation

m = length(A(:)); n = length(B(:));
N = m + n;

% row vector containing both dataset
D = [A(:); B(:)]';

% compute the rank
[vs, vi] = sort(D);
[x, r] = sort(vi);

% Mood Statistic,
M = sum((r(1 : m) - (N + 1) / 2).^2);

% Expectation of Mood Stats
mu = m * (N^2 - 1) / 12;

% Standard deviation of Mood Stats
sigma = m*n*(N + 1)*(N - 2)* (N+2) / 180;

%% compute the normalized test statistic
M = abs((M - mu)) / sqrt(sigma);

Boracchi

Mood Statistic for two sets A and B

The idea

When 𝑁𝑁 i.i.d. samples are divided in
two sets A and B, then

𝐸𝐸[𝑓𝑓 𝑥𝑥 𝑡𝑡) =
𝑁𝑁 + 1

2
the expected rank of each point under
𝐻𝐻0 = “both sets are identically
distributed” is (𝑁𝑁 + 1)/2
𝑀𝑀 measures the (squared) deviation of
ranks of samples in 𝐴𝐴 from this
expectation

m = length(A(:)); n = length(B(:));
N = m + n;

% row vector containing both dataset
D = [A(:); B(:)]';

% compute the rank
[vs, vi] = sort(D);
[x, r] = sort(vi);

% Mood Statistic,
M = sum((r(1 : m) - (N + 1) / 2).^2);

% Expectation of Mood Stats
mu = m * (N^2 - 1) / 12;

% Standard deviation of Mood Stats
sigma = m*n*(N + 1)*(N - 2)* (N+2) / 180;

%% compute the normalized test statistic
M = abs((M - mu)) / sqrt(sigma);

When 𝐴𝐴 ∼ 𝜙𝜙0(⋅) and 𝐵𝐵 ∼ 𝜙𝜙0 𝛿𝛿 ⋅ , the ranks of
elements in 𝐵𝐵 will be more extreme (𝛿𝛿 > 1) or

condensed 𝛿𝛿 < 1 than those in 𝐴𝐴.
This results in a larger/smaller variance of ranks,
which corresponds to larger values of 𝑀𝑀 statistics

Boracchi

How to monitor for both Location and Scale Changes?

In practice we don’t know if 𝜙𝜙0 and 𝜙𝜙1 would differ because of location or
scale changes

Using Mood and Mann-Whitney in parallel makes difficult to control the
𝐴𝐴𝑇𝑇𝐿𝐿0 (or type I error in the offline scenario)

Better to monitor location and scale jointly: use the Lepage Test statistic
𝐿𝐿 = 𝑈𝑈2 + 𝑊𝑊2

Boracchi

CPM for Online Monitoring

Observations arrive steadily,
𝑥𝑥 1 , … , 𝑥𝑥 𝑁𝑁 , …

possibly forming an infinite stream

At each new arrival, a Change-Point Method (CPM) assesses if the
distribution of the observations differs from the previous samples.

The primary issue is the detection, but the CPM monitoring scheme
performs also the estimation of change point location, once the detection
is signalled.

In fact any online CPM returns
• �𝑇𝑇, the time instant when the change is detected,
• �̂�𝜏, the estimate of the change time-instant

Boracchi

Two Issues in CPMs for Online Monitoring

In principle, one may iterate the offline approach presented before – at
each new arrival.

Two issues:

• How to compute the thresholds?

• Iterating CPM becomes time and resources demanding..

Even if we compute 𝛾𝛾𝑁𝑁 for the offline analysis, these thresholds would
not be appropriate for online analysis

Boracchi

Threshold Computation: Online CPM

Quantiles of test statistic 𝒮𝒮max,𝑡𝑡 used for offline analysis cannot be used,
since 𝛾𝛾𝑡𝑡 has to be set controlling the conditional probability that

𝑃𝑃 𝒮𝒮max,𝑡𝑡 > 𝛾𝛾𝑡𝑡 | 𝒮𝒮max,𝑡𝑡−1 < 𝛾𝛾𝑡𝑡−1, … , 𝒮𝒮max,1 < 𝛾𝛾1 < 𝛼𝛼

Still, one may resort to numerical simulations to compute them in a
sequential manner.

A few methods can set the false alarm probability (FAP) to be the same in
each point, that is, 𝑃𝑃(𝒮𝒮max,𝑡𝑡 > 𝛾𝛾𝑡𝑡 | 𝑥𝑥 ∼ 𝜙𝜙0) = 𝛼𝛼 for all 𝑡𝑡,

then the 𝐴𝐴𝑇𝑇𝐿𝐿0 relates to 𝛼𝛼 as

𝛼𝛼 =
1

𝐴𝐴𝑇𝑇𝐿𝐿0

Boracchi

Threshold Computation: Online CPM

For each desired value of 𝛼𝛼:

Generate a dataset 𝐷𝐷 of one million streams containing 5000 points
drawn from an arbitrary distribution 𝝍𝝍 (e.g. 𝑁𝑁(0, 1)). This is feasible
when 𝒮𝒮 is a distribution-free statistic, as this does not depend on 𝜙𝜙0.
• For 𝑡𝑡 = 1, …

• Evaluate the statistics over each stream in 𝐷𝐷 and compute 𝒮𝒮max,𝑡𝑡

• Compute 𝛾𝛾𝑡𝑡 over sequences in 𝐷𝐷 such that
𝑃𝑃 𝒮𝒮max,𝑡𝑡 > 𝛾𝛾𝑡𝑡 | 𝒮𝒮max,𝑡𝑡−1 < 𝛾𝛾𝑡𝑡−1, … , 𝒮𝒮max,1 < 𝛾𝛾1 < 𝛼𝛼

• Remove from 𝐷𝐷 streams where 𝒮𝒮max,𝑡𝑡 > 𝛾𝛾𝑡𝑡
• Interpolate the values of 𝛾𝛾𝑡𝑡 by some parametric function of 𝑡𝑡, to “fill in

possible gaps” and to smooth all the estimates.

Boracchi

Threshold Computation

Here is an example of polynomial cofficients modeling 𝛾𝛾𝑡𝑡

Boracchi

Online Monitoring: Ranks Computation

Ranks computation requires storing all the data in memory

Also time requirement grows at each new observation

This is usually infeasible when working with data streams.

Solution: discretization of the older part of the stream

• Past data are stored in an histogram (ranks computed from quantized
values)

• A window over the most recent data is kept to process these
accurately

• Introduce an upper bound in memory and time requirements

Boracchi

Data Quantization

Boracchi

Data Quantization

Sliding window
𝑊𝑊𝑤𝑤,𝑡𝑡

over the stream

Quantize past data in 𝑚𝑚
values (range is defined

from a training sequence)

Boracchi

Data Quantization

𝑊𝑊𝑤𝑤,𝑡𝑡

Boracchi

Data Quantization

𝑊𝑊𝑤𝑤,𝑡𝑡

Boracchi

Ranks Computation

Each point’s rank is now defined as

𝑓𝑓 𝑥𝑥𝑡𝑡 = 𝑓𝑓𝑤𝑤 𝑥𝑥𝑡𝑡 + �
𝑖𝑖=1

𝑚𝑚

𝑀𝑀𝑖𝑖 𝐼𝐼 𝑥𝑥𝑡𝑡 > 𝑣𝑣𝑗𝑗 − 1

the sum over 𝑊𝑊 plus the rank w.r.t the histogram

𝑀𝑀1

𝑀𝑀12

𝑀𝑀20

𝑊𝑊𝑤𝑤,𝑡𝑡
𝑣𝑣12𝑣𝑣1

Boracchi

Data Quantization

Pros: When windowing is used, the maximum number of operation
performed becomes constant (when 𝑡𝑡 > 𝑤𝑤)

Cons: loss of accuracy in rank computation (std adjustement)
Cons: No post-detection diagnosis possible when 𝜏𝜏 falls before 𝑊𝑊𝑤𝑤,𝑡𝑡

The change point outcomes is

𝜏𝜏 = argmax
𝑡𝑡∈𝑊𝑊𝑤𝑤,𝑡𝑡

𝑇𝑇𝑡𝑡

Boracchi

Change Detection Approaches

• The Change-Point Formulation
• Parametric

• Non-parametric

• Change-Detection by Monitoring Features / the Log-likelihood

• Change-Detection by Histograms

Boracchi

CMPs are nice, but statistics based on
sorting holds for scalar sterams

Boracchi

Now we investigate solutions meant for
multivariate data streams

Boracchi

Change Detection by Monitoring Features

Most often, a training set 𝑇𝑇𝑇𝑇 containing stationary data is provided, as in
semi-supervised anomaly detection methods.

Extract indicators (features), which are expected to change when 𝜙𝜙0 → 𝜙𝜙1
and which distribution is known under 𝜙𝜙0

Alippi, C., Boracchi, G., Roveri, M. “Change detection tests using the ICI rule” IJCNN 2010 (pp. 1-7).

mean

dispersion

𝑡𝑡

𝒙𝒙(
𝑡𝑡)…

𝑇𝑇𝑇𝑇

Boracchi

Nonparametric settings: Sequential Monitoring

Examples of decision rules for features
• CPM, which can control the 𝐴𝐴𝑇𝑇𝐿𝐿0
• NP-CUSUM, to detect changes in the data expectation

• ICI rule, to detect changes in the data expectation

Unfortunately most nonparametric statistics and the decision rules do not
apply to multivariate data.

Different features are being monitored separately
Ross, G. J., Tasoulis, D. K., Adams, N. M. "Nonparametric monitoring of data streams for changes in location and scale"
Technometrics, 53(4), 379-389, 2012.

Alippi, C., Boracchi, G., Roveri, M. “Change detection tests using the ICI rule” Proceedings of IJCNN 2010 (pp. 1-7).

Tartakovsky, A. G., Veeravalli, V. V. "Change-point detection in multichannel and distributed systems". Applied Sequential
Methodologies: Real-World Examples with Data Analysis, 173, 339-370, 2004

Alippi C., Boracchi G. and Roveri M. "Ensembles of Change-Point Methods to Estimate the Change Point in Residual Sequences" Soft
Computing, Springer, Volume 17, Issue 11 (2013)

Boracchi

Monitoring the Log-Likelihood:
A Mainstream Change Detection Approach

Boracchi

Three ingredients

Most change-detection algorithm consists in

i. A model �𝜙𝜙0 describing 𝜙𝜙0
ii. A statistic 𝒯𝒯 to test incoming data:

iii. A decision rule that monitors 𝒯𝒯 to detect changes

Boracchi

Illustration
data

𝑡𝑡

𝒙𝒙(
𝑡𝑡)

…

𝜙𝜙1𝜙𝜙0

…

Boracchi

Illustration

𝑡𝑡

…

statistic values
�𝜙𝜙0

data

𝑡𝑡

𝒙𝒙(
𝑡𝑡)

…

𝜙𝜙1𝜙𝜙0

…
ℒ
𝒙𝒙
𝑡𝑡

Boracchi

Illustration

𝑡𝑡

…

statistic

statistic values
�𝜙𝜙0

data

𝑡𝑡

𝒙𝒙(
𝑡𝑡)

…

𝜙𝜙1𝜙𝜙0

…
ℒ
𝒙𝒙
𝑡𝑡

Boracchi

Illustration
data

𝑡𝑡

…

𝛾𝛾𝑡𝑡

Detection time

statistic

decision rule ℒ 𝒙𝒙 𝑡𝑡 ≷ 𝛾𝛾𝑡𝑡 statistic values
�𝜙𝜙0

𝑡𝑡

𝒙𝒙(
𝑡𝑡)

…

𝜙𝜙1𝜙𝜙0

…
ℒ
𝒙𝒙
𝑡𝑡

Boracchi

Monitoring the log-likelihood

Fit a general density model �𝜙𝜙0 from 𝑇𝑇𝑇𝑇
• Gaussian Mixtures

• Nonparametric Models (KDE)

Statistic to monitor:
ℒ 𝒙𝒙 𝑡𝑡 = −log(�𝜙𝜙0(𝒙𝒙(𝑡𝑡)))

Heuristic decision rule
ℒ 𝒙𝒙 𝑡𝑡 > 𝛾𝛾

L. I. Kuncheva, “Change detection in streaming multivariate data using likelihood detectors," IEEE Transactions on Knowledge and Data Engineering, 2013.

X. Song, M. Wu, C. Jermaine, and S. Ranka, “Statistical change detection for multidimensional data," in Proceedings of International Conference on Knowledge
Discovery and Data Mining (KDD), 2007.

J. H. Sullivan and W. H. Woodall, “Change-point detection of mean vector or covariance matrix shifts using multivariate individual observations," IIE transactions, vol.
32, no. 6, 2000.

Boracchi

Monitoring the log-likelihood

Fit a general density model �𝜙𝜙0 from 𝑇𝑇𝑇𝑇
• Gaussian Mixtures

• Nonparametric Models (KDE)

Statistic to monitor:
ℒ 𝒙𝒙 𝑡𝑡 = −log(�𝜙𝜙0(𝒙𝒙(𝑡𝑡)))

Heuristic decision rule
ℒ 𝒙𝒙 𝑡𝑡 > 𝛾𝛾

L. I. Kuncheva, “Change detection in streaming multivariate data using likelihood detectors," IEEE Transactions on Knowledge and Data Engineering, 2013.

X. Song, M. Wu, C. Jermaine, and S. Ranka, “Statistical change detection for multidimensional data," in Proceedings of International Conference on Knowledge
Discovery and Data Mining (KDD), 2007.

J. H. Sullivan and W. H. Woodall, “Change-point detection of mean vector or covariance matrix shifts using multivariate individual observations," IIE transactions, vol.
32, no. 6, 2000.

Computing the log
prevents numerical errors

in case of Gaussian
densities. For Gaussian
mixtures this can be

approximated

Boracchi

Sequential Monitoring the log-likelihood

A good baseline for truly sequential and non parametric monitoring:

1. Fit a general density model �𝜙𝜙0 from 𝑇𝑇𝑇𝑇
�𝜙𝜙0 = fit_density_model 𝒙𝒙 𝑡𝑡 , 𝑡𝑡 = 1, … ,𝑁𝑁

2. For each test sample 𝒙𝒙(𝑡𝑡) compute the log-likeihood

3. Adopt a nonparametric CPM over the stream of likelihood values
𝐿𝐿 = {−log(�𝜙𝜙0(𝒙𝒙(𝑡𝑡))) , 𝑡𝑡 = 1, … , }

Boracchi

Batch-wise anomaly-detection in the log-likelihood

1. Fit a general density model �𝜙𝜙0 from 𝑇𝑇𝑇𝑇 and compute the log
likelihood from the last portion of 𝑇𝑇 training samples (which have not
been used to fit the density model �𝜙𝜙0):

�𝜙𝜙0 = fit_density_model 𝒙𝒙 𝑡𝑡 , 𝑡𝑡 = 1, … ,𝑁𝑁 − 𝑇𝑇
𝑇𝑇𝑇𝑇1 = −log �𝜙𝜙0 𝒙𝒙 𝑡𝑡 , 𝑡𝑡 = 𝑁𝑁 − 𝑇𝑇 + 1, … ,𝑁𝑁

2. Divide the incoming stream in batches and compute the likelihood
over each batch 𝑊𝑊𝑡𝑡

𝑇𝑇𝑇𝑇 = −log �𝜙𝜙0 𝒙𝒙 𝑡𝑡 , 𝑡𝑡 ∈ 𝑊𝑊𝑡𝑡

3. Detect anomalies as a left-tailed two-sample t-test comparing the
distributions of likelihood values over 𝑇𝑇𝑇𝑇1 and 𝑇𝑇𝑇𝑇

C. Alippi, G. Boracchi, D. Carrera, M. Roveri, "Change Detection in Multivariate Datastreams: Likelihood and Detectability Loss" IJCAI 2016,

Boracchi

CUSUM control chart (parametric case)

Fit a general density model �𝜙𝜙0 from 𝑇𝑇𝑇𝑇
• Gaussian Mixtures

• Nonparametric Models (KDE)

Make a guess on �𝜙𝜙1
• Statistic to monitor:

𝒮𝒮 𝑡𝑡 = log
�𝜙𝜙1 𝒙𝒙 𝑡𝑡
�𝜙𝜙0 𝒙𝒙 𝑡𝑡

+ 𝒯𝒯 𝑡𝑡 − 1

+

• Decision rule
𝒮𝒮 𝑡𝑡 > 𝛾𝛾

Boracchi

Histograms in Change Detection

Boracchi

Histograms

An histogram ℎ0 defined over the input domain 𝒳𝒳 ⊂ ℝ𝑑𝑑 is
ℎ0 𝒳𝒳 = 𝑇𝑇𝑘𝑘 ,𝑝𝑝𝑘𝑘0 𝑘𝑘=1,…,𝐾𝐾

Where 𝑇𝑇𝑘𝑘 𝑘𝑘 is a disjoint covering of 𝒳𝒳, namely 𝑇𝑇𝑘𝑘 ⊂ 𝒳𝒳

�
𝑘𝑘

𝑇𝑇𝑘𝑘 = 𝒳𝒳 and 𝑇𝑇𝑗𝑗 ∩ 𝑇𝑇𝑖𝑖 = 𝛿𝛿𝑖𝑖,𝑗𝑗

and 𝑝𝑝𝑘𝑘0 ∈ [0,1] is the probability (estimated from 𝑇𝑇𝑇𝑇) for a sample drawn
from 𝜙𝜙0 to fall inside 𝑇𝑇𝑘𝑘, i.e.

𝑝𝑝𝑘𝑘0 =
𝑚𝑚𝑘𝑘

𝑁𝑁
and 𝑁𝑁 = #𝑇𝑇𝑇𝑇

Boracchi

Change Detection by Means of Histograms

The distribution of stationary data can be approximated by a histogram
�𝜙𝜙0 estimated from a given training set 𝑇𝑇𝑇𝑇 containing stationary data

T. Dasu, S. Krishnan, S. Venkatasubramanian, and K. Yi. “An information-theoretic approach to detecting changes in multi-
dimensional data streams”. Symposium on the Interface of Statistics, Computing Science, and Applications. 2006

R. Sebastião, J. Gama, P. P. Rodrigues, and J. Bernardes, “Monitoring incremental histogram distribution for change detection in
data streams,” Lecture Notes on Computer in Knowledge Discovery from Sensor Data, 2017.

𝑡𝑡

𝒙𝒙(
𝑡𝑡)…

𝑇𝑇𝑇𝑇

�𝜙𝜙0

Boracchi

Monitoring Approaches

Two major monitoring approaches using histograms:

• Likelihood-based methods

• Distance-based methods

whose applicability also depends on the partitioning scheme

Boracchi

Log-likelihood – Based Monitoring Scheme

As in density-based methods, �𝜙𝜙0 can be used to compute the log-
likelihood, which can be then monitored by univariate CDT

1. During training, estimate �𝜙𝜙0 = 𝑇𝑇𝑘𝑘 ,𝑝𝑝𝑘𝑘0 𝑘𝑘=1,…,𝐾𝐾 from 𝑇𝑇𝑇𝑇

2. During testing, compute
ℒ 𝒙𝒙 𝑡𝑡 = �𝜙𝜙0 𝒙𝒙 𝑡𝑡

3. Monitor ℒ 𝒙𝒙 𝑡𝑡 , 𝑡𝑡 = 1, … which is now discrete

Boracchi

Log-likelihood – Based Monitoring Scheme

As in density-based methods, �𝜙𝜙0 can be used to compute the log-
likelihood, which can be then monitored by univariate CDT

1. During training, estimate �𝜙𝜙0 = 𝑇𝑇𝑘𝑘 ,𝑝𝑝𝑘𝑘0 𝑘𝑘=1,…,𝐾𝐾 from 𝑇𝑇𝑇𝑇

2. During testing, compute
ℒ 𝒙𝒙 𝑡𝑡 = �𝜙𝜙0 𝒙𝒙 𝑡𝑡 = 𝑝𝑝𝑘𝑘0 s. t. 𝒙𝒙 𝑡𝑡 ∈ 𝑇𝑇𝑘𝑘

3. Monitor ℒ 𝒙𝒙 𝑡𝑡 , 𝑡𝑡 = 1, … which is now discrete

This is the problem of
associating each

incoming sample to the
corresponding bin

Boracchi

Log-likelihood – Based Monitoring Scheme

As in density-based methods, �𝜙𝜙0 can be used to compute the log-
likelihood, which can be then monitored by univariate CDT

1. During training, estimate �𝜙𝜙0 = 𝑇𝑇𝑘𝑘 ,𝑝𝑝𝑘𝑘0 𝑘𝑘=1,…,𝐾𝐾 from 𝑇𝑇𝑇𝑇

2. During testing, compute
ℒ 𝒙𝒙 𝑡𝑡 = �𝜙𝜙0 𝒙𝒙 𝑡𝑡 = 𝑝𝑝𝑘𝑘0 s. t. 𝒙𝒙 𝑡𝑡 ∈ 𝑇𝑇𝑘𝑘

3. Monitor ℒ 𝒙𝒙 𝑡𝑡 , 𝑡𝑡 = 1, … which is now discrete

𝑡𝑡

𝒙𝒙(
𝑡𝑡)…

ℒ
𝒙𝒙
𝑡𝑡

…

Boracchi

Distance-Based (or batch) Monitoring Scheme

�𝜙𝜙0 can be used to monitor the datastream window-wise:

• During training, estimate �𝜙𝜙0 = 𝑇𝑇𝑘𝑘 ,𝑝𝑝𝑘𝑘0 𝑘𝑘=1,…,𝐾𝐾 from 𝑇𝑇𝑇𝑇

• Crop a window 𝑊𝑊 over the most recent data

• Estimate �𝜙𝜙1 = 𝑇𝑇𝑘𝑘 ,𝑝𝑝𝑘𝑘1 𝑘𝑘=1,…,𝐾𝐾 from 𝑊𝑊

• Compare �𝜙𝜙0 and �𝜙𝜙1 by a distance 𝑓𝑓 between distributions

• Monitor 𝑓𝑓 �𝜙𝜙0, �𝜙𝜙1

𝑡𝑡

𝒙𝒙(
𝑡𝑡)…

𝑇𝑇𝑇𝑇

�𝜙𝜙0 �𝜙𝜙1

𝑊𝑊

𝑓𝑓(�𝜙𝜙0, �𝜙𝜙1)

Boracchi

Distance-Based (or batch) Monitoring Scheme

�𝜙𝜙0 can be used to monitor the datastream window-wise:

• During training, estimate �𝜙𝜙0 = 𝑇𝑇𝑘𝑘 ,𝑝𝑝𝑘𝑘0 𝑘𝑘=1,…,𝐾𝐾 from 𝑇𝑇𝑇𝑇

• Crop a window 𝑊𝑊 over the most recent data

• Estimate �𝜙𝜙1 = 𝑇𝑇𝑘𝑘 ,𝑝𝑝𝑘𝑘1 𝑘𝑘=1,…,𝐾𝐾 from 𝑊𝑊

• Compare �𝜙𝜙0 and �𝜙𝜙1 by a distance 𝑓𝑓 between distributions

• Monitor 𝑓𝑓 �𝜙𝜙0, �𝜙𝜙1

𝑡𝑡

𝒙𝒙(
𝑡𝑡)…

𝑇𝑇𝑇𝑇

�𝜙𝜙0 �𝜙𝜙1

𝑊𝑊

𝑓𝑓(�𝜙𝜙0, �𝜙𝜙1)

Here bins are defined by
�𝜙𝜙0, we just have to

associate each sample to
the corresponding bin

Boracchi

Distance-Based Monitoring scheme: Stopping Rule

Thresholding the distance is the typical stopping rule.
𝑓𝑓 �𝜙𝜙0, �𝜙𝜙1 ≷ 𝛾𝛾

• 𝛾𝛾 defined from the empirical distribution of 𝑓𝑓 �𝜙𝜙0, �𝜙𝜙1 , which is computed
through a Bootstrap procedure.

• 𝛾𝛾 given from approximation of the statistic, which typically holds asymptotically,
as in case the of the Pearson statistics

Similar approaches can be used to compare features extracted in different
data-windows.

Dasu, T., Krishnan, S., Venkatasubramanian, S., Yi, K. "An information-theoretic approach to detecting changes in multi-dimensional data streams". Symp. on the
Interface of Statistics, Computing Science, and Applications, 2006.

Ditzler G., Polikar R., “Hellinger distance based drift detection for nonstationary environments”, IEEE SSCI 2011.

Boracchi G., Cervellera C., and Maccio D. "Uniform Histograms for Change Detection in Multivariate Data" IJCNN 2017

Sebastião R., Gama J. Mendonça T. "Fading histograms in detecting distribution and concept changes" IJDSA, 2017

Bu L., Alippi C., Zhao D. “A pdf-free change detection test based on density difference estimation” TNNLS 2016

S. Liu, M. Yamada, N. Collier, and M. Sugiyama, “Change-point detection in time-series data by relative density-ratio estimation,” Neural Networks, 2013

Boracchi

An example of distance-based monitoring scheme

1. Compute the probabilities for an incoming batch 𝑊𝑊 over {𝑇𝑇𝑘𝑘}

𝑝𝑝𝑘𝑘𝑊𝑊 =
#{𝒙𝒙𝑖𝑖 ∈ 𝑇𝑇𝑘𝑘 ∩𝑊𝑊}

𝜈𝜈

2. Compare ℎ0 and ℎ𝑊𝑊 by a suitable distance, e.g.

𝑓𝑓𝑇𝑇𝑇𝑇 ℎ0, ℎ𝑊𝑊 =
1
2
�
𝑘𝑘

|𝑝𝑝𝑘𝑘0 − 𝑝𝑝𝑘𝑘𝑊𝑊| (total variation)

or

𝑓𝑓𝑃𝑃𝑃𝑃 ℎ0,ℎ𝑊𝑊 = 𝜈𝜈�
𝑘𝑘

𝑝𝑝𝑘𝑘0 − 𝑝𝑝𝑘𝑘𝑊𝑊
2

𝑝𝑝𝑘𝑘0
 (Pearson)

3. Run an HT on 𝑓𝑓𝑇𝑇𝑇𝑇 (having estimated its p-values empirically) or 𝑓𝑓𝑃𝑃
(this follows a 𝜒𝜒-square distribution)

Boracchi

Pros and Cons of using histograms

Pros:

• Histograms are very general and flexible models.

• Some partitioning schemes can be associated with a tree having splits
along a single component (kd-trees, quantTrees). This enable very fast
searches through the histogram.

Cons:

• When 𝑓𝑓 increases, grids are not a viable option, since they require 𝑞𝑞𝑑𝑑
bins.

• In general, the distribution of test statistic is unknown

Boracchi

Pros and Cons of using histograms

Pros:

• Histograms are very general and flexible models.

• Some partitioning schemes can be associated with a tree having splits
along a single component (kd-trees, quantTrees). This enable very fast
searches through the histogram.

Cons:

• When 𝑓𝑓 increases, grids are not a viable option, since they require 𝑞𝑞𝑑𝑑
bins.

• In general, the distribution of test statistic is unknown

However, there is quite a lot of freedom in
designing 𝑇𝑇𝑘𝑘 𝑘𝑘

Boracchi

Histograms yielding uniform volume

“grids”: the most common way of constructing histograms.

Build a tessellation of supp(𝑇𝑇𝑇𝑇) by splitting each component in 𝑞𝑞 equally
sized parts.

This yields 𝑞𝑞𝑑𝑑 hyper-rectangles 𝑇𝑇𝑘𝑘 having the same volume

An example of 2D histogram 𝑞𝑞 = 1/3

1
3

range(X1)

1 3
ra

ng
e(

X 2
)

Boracchi

Histograms yielding uniform volume

“grids”: the most common way of constructing histograms.

Build a tessellation of supp(𝑇𝑇𝑇𝑇) by splitting each component in 𝑞𝑞 equally
sized parts.

This yields 𝑞𝑞𝑑𝑑 hyper-rectangles 𝑇𝑇𝑘𝑘 having the same volume

An example of 2D histogram 𝑞𝑞 = 1/3

1
3

range(X1)

1 3
ra

ng
e(

X 2
)

Add to the histogram a region to
gather points that during
operation, won’t fall in supp 𝑇𝑇𝑇𝑇

𝑇𝑇𝐾𝐾 = 𝑇𝑇𝑇𝑇,𝑝𝑝𝐾𝐾0 = 0

being 𝐾𝐾 = 𝑞𝑞𝑑𝑑 + 1

Boracchi

Histograms yielding uniform density

Define the partition 𝑇𝑇𝑘𝑘 𝑘𝑘 in such a way that all the subsets have the
uniform density, i.e.,

𝑝𝑝𝑘𝑘0 ≈
1
𝐾𝐾

 , 𝑟𝑟 = 1, . . ,𝐾𝐾

Such that each of the 𝑞𝑞𝑑𝑑 hyper-rectangles contains the
same number of points

No need to consider a bin for �𝑋𝑋

Boracchi G., Cervellera C., and Maccio D. "Uniform Histograms for Change Detection in Multivariate Data" IJCNN 2017

An example of 2D histogram 𝑞𝑞 = 1/3

𝑁𝑁
9

 points

Boracchi

Histograms yielding uniform density

Define the partition 𝑇𝑇𝑘𝑘 𝑘𝑘 in such a way that all the subsets have the
uniform density, i.e.,

𝑝𝑝𝑘𝑘0 ≈
1
𝐾𝐾

 , 𝑟𝑟 = 1, . . ,𝐾𝐾

Such that each of the 𝑞𝑞𝑑𝑑 hyper-rectangles contains the
same number of points

No need to consider a bin for �𝑋𝑋

Boracchi G., Cervellera C., and Maccio D. "Uniform Histograms for Change Detection in Multivariate Data" IJCNN 2017

An example of 2D histogram 𝑞𝑞 = 1/3

𝑁𝑁
9

 points

This is an example of k-d tree,
there are many alternatives…

Boracchi

Adaptation in NSE

Adaptation

Boracchi

Adaptation Strategies Under Concept Drift

Two main solutions in the literature:

• Active: the classifier 𝐾𝐾𝑡𝑡 is combined with statistical tools to detect
concept drift and pilot the adaptation

• Passive: the classifier 𝐾𝐾𝑡𝑡 undergoes continuous adaptation
determining every time which supervised information to preserve

Which is best depends on the expected change rate and
memory/computational availability

Boracchi

Active Approaches

Peculiarities:

• Rely on an explicit drift-detection mechanism: such as an outlier
detection or a change detection test (CDT)

• Specific post-detection adaptation procedures to isolate data
generated after the change, which are coherent with the new concept

Pro:

• Also provide information that CD has occurred

• Can improve their performance in stationary conditions

• Alternatively, classifier adapts only after detection

Cons:

• Difficult to handle incremental and gradual drifts

Boracchi

Passive Approaches

Passive approaches:

• Do not have an explicit CD detection mechanism

• They are aware that 𝜙𝜙𝑡𝑡(𝒙𝒙,𝑦𝑦) might change at any time and at any
rate

• Perform continuous adaptation of their model(s) parameters at each
new arrival

They can be divided in:

• Single model methods

• Ensemble methods

Boracchi

Adaptation in Active
Approaches

Boracchi

Methods Based on Windows Comparison

Boracchi

Paired Learners

To cope with concept drift, we paired a stable online learner with a
reactive one. A stable learner 𝑇𝑇 predicts based on all of its experience,
whereas a reactive learner 𝑇𝑇𝑊𝑊 predicts based on its experience over a
short, recent window of time.

Bach, S.H.; Maloof, M., "Paired Learners for Concept Drift" ICDM '08.

𝑥𝑥

𝑡𝑡

𝑥𝑥

𝑇𝑇
𝑇𝑇𝑊𝑊

Boracchi

Paired Learners

To cope with concept drift, we paired a stable online learner with a
reactive one. A stable learner 𝑇𝑇 predicts based on all of its experience,
whereas a reactive learner 𝑇𝑇𝑊𝑊 predicts based on its experience over a
short, recent window of time.

Paired Learning copes with concept drift by:

• Leveraging the interplay between reactive and stable learners

• Analyze the differences in their accuracy to cope with concept drift

Bach, S.H.; Maloof, M., "Paired Learners for Concept Drift" ICDM '08.

Boracchi

Paired Learners

𝑇𝑇𝑊𝑊

𝑇𝑇

Boracchi

Paired Learners
Limitations of fixed window methods:

• A too reactive 𝑇𝑇𝑊𝑊 may have difficulty acquiring any target concept

• A too stable learner 𝑇𝑇 may be overly burdened by knowledge of a previous
concept to learn a new one.

Strengths:

• 𝑺𝑺 outperforms 𝑹𝑹𝑾𝑾 when acquiring a stationary concept,

• 𝑹𝑹𝑾𝑾 outperforms 𝑺𝑺 when the concept changes.

Idea:

• Detect a change when 𝑇𝑇𝑊𝑊 outperforms 𝑇𝑇 over a short window of time

• Adapt to the new concept by replacing 𝑇𝑇 with 𝑇𝑇𝑊𝑊
• Predictions are always provided by the stable classifier 𝑇𝑇

Boracchi

Paired Learners

Two classifiers are trained and steadily updated
• A stable online learner (𝑇𝑇) that predicts based on all the supervised samples

• A reactive one (𝑇𝑇𝑤𝑤) trained over a short sliding window

During operation
• Only 𝑇𝑇 provides the outputs of the model

• Predictions of 𝑇𝑇𝑤𝑤 are computed but not provided

• As soon as, on the most recent samples, 𝑹𝑹𝒘𝒘 outperforms 𝑇𝑇 over a test window
of length 𝑤𝑤, then detect CD

Adaptation consists in replacing 𝑇𝑇 by 𝑇𝑇𝑤𝑤

Bach, S.H.; Maloof, M., "Paired Learners for Concept Drift" ICDM '08.

Boracchi

Paired Learners

Bach, S.H.; Maloof, M., "Paired Learners for Concept Drift" ICDM '08.

This is to keep track of classification
errors 𝜖𝜖𝑡𝑡over the window 𝑤𝑤

Boracchi

Paired Learners

Bach, S.H.; Maloof, M., "Paired Learners for Concept Drift" ICDM '08.

Predictions are only provided by 𝑇𝑇

Boracchi

Paired Learners

Bach, S.H.; Maloof, M., "Paired Learners for Concept Drift" ICDM '08.

Drift deteceted when more than 𝜃𝜃 times
over the latest 𝑤𝑤 samples, 𝑇𝑇𝑊𝑊 provides

a correct prediction while 𝑇𝑇 does not

Boracchi

Paired Learners

Bach, S.H.; Maloof, M., "Paired Learners for Concept Drift" ICDM '08.

Adaptation: 𝑇𝑇𝑊𝑊 replaces 𝑇𝑇 and the error
computation is reset

Detection suggests that samples before 𝑡𝑡 −
𝑤𝑤 do not conform with the current status of

the process

Boracchi

JUST-IN-TIME Classifiers

Boracchi

JIT Classifiers

Idea:

• use different
change-detection
methods to
segment the
stream in
stationary
distributions

• After the change,
recover useful
knowledge from
the past observed
concepts

JIT: learns on stationary
segments of the

stream

Boracchi

Just In Time Classifiers

JIT classifiers are described in terms of:
• concept representations

• operators for concept representations

JIT classifiers are able to:

• detect abrupt CD (both real or virtual)

• identify a new training set for the new concept and exploit recurrent concepts

JIT classifiers leverage:

• sequential techniques to detect CD, monitoring both classification error and raw
data distribution

• statistical techniques to identify the new concept and possibly recurrent ones

C. Alippi, G. Boracchi, M. Roveri "Just In Time Classifiers for Recurrent Concepts" IEEE TNNLS 2016

Boracchi

An example of Concept Representations

𝐶𝐶𝑖𝑖 = (𝑍𝑍𝑖𝑖 ,𝐹𝐹𝑖𝑖 ,𝐷𝐷𝑖𝑖)
𝑍𝑍𝑖𝑖 = 𝒙𝒙𝟎𝟎,𝑦𝑦0 , … , 𝒙𝒙𝒏𝒏,𝑦𝑦𝑛𝑛 : supervised samples provided during the
𝑔𝑔th concept
𝐹𝐹𝑖𝑖 features describing 𝑝𝑝(𝒙𝒙) of the 𝑔𝑔th concept. We take:

• the sample mean 𝑀𝑀 ⋅
• the power-low transform of the sample variance 𝑉𝑉(⋅)

extracted from non-overlapping sequences

𝐷𝐷𝑖𝑖 features for detecting concept drift. These include:
• the sample mean 𝑀𝑀 ⋅
• the power-low transform of the sample variance 𝑉𝑉(⋅)
• the average classification error 𝑝𝑝𝑡𝑡(⋅)

extracted from non-overlapping sequences

In stationary conditions features are i.i.d.

Boracchi

JIT Classifiers: the Algorithm

Concept Representations
𝐶𝐶 = (𝑍𝑍,𝐹𝐹,𝐷𝐷)

• 𝑍𝑍: set of supervised samples

• 𝐹𝐹: set of features for assessing concept
equivalence

• 𝐷𝐷: set of features for detecting concept drift

Initial Training

Use the initial training sequence to build
the concept representation 𝐶𝐶0

Boracchi

JIT Classifiers: Initial training

𝑡𝑡

𝐶𝐶0

𝑇𝑇𝑇𝑇

Build 𝐶𝐶0, a practical representation of the current concept
• Characterize both 𝜙𝜙(𝒙𝒙) and 𝜙𝜙 𝑦𝑦|𝒙𝒙 in stationary conditions

Boracchi

JIT Classifiers: the Algorithm

Concept Representations
𝐶𝐶 = (𝑍𝑍,𝐹𝐹,𝐷𝐷)

• 𝑍𝑍 : set of supervised samples

• 𝐹𝐹 : set of features for assessing concept
equivalence

• 𝐷𝐷 : set of features for detecting concept
drift

Operators for Concepts
• 𝒟𝒟 concept-drift detection

• Υ concept split

• ℰ equivalence operators

• 𝒰𝒰 concept update

Boracchi

JIT Classifiers: the Algorithm

Concept Update:

During operations, each input
sample is analyzed to:

• Extract features that are
appended to 𝐹𝐹𝑖𝑖

• Append supervised
information in 𝑍𝑍𝑖𝑖

thus updating the current
concept representation

Boracchi

JIT Classifiers: Concept Update

𝑡𝑡

𝐶𝐶0

𝑇𝑇𝑇𝑇

The concept representation 𝐶𝐶0 is always updated during operation,
• Including supervised samples in 𝑍𝑍0 (to describe 𝑝𝑝(𝑦𝑦|𝒙𝒙))
• Computing feature 𝐹𝐹0 (to describe 𝑝𝑝(𝒙𝒙))
• Computing feature 𝐷𝐷0

Boracchi

JIT Classifiers: the Algorithm

Concept Drift Detection:

The current concept representation is
analyzed by 𝒟𝒟 to determine whether
concept drift has occurred

Boracchi

JIT Classifiers: Concept Drift Detection

Determine when features in 𝑫𝑫 are no more stationary
• 𝒟𝒟 monitoring the datastream by means of online and sequential change-

detection tests (CDTs)

• Depending on features, both changes in 𝜙𝜙 𝑦𝑦 𝒙𝒙 and 𝜙𝜙(𝒙𝒙) can be detected

• �𝑇𝑇 is the detection time

𝑡𝑡�𝑇𝑇

𝐶𝐶0
𝒟𝒟(𝐶𝐶0) = 1

Boracchi

An example of detection operator

𝒟𝒟 𝐶𝐶𝑖𝑖 ∈ {0,1}
Implements online change-detection tests (CDTs) based on the
Intersection of Confidence Intervals (ICI) rule

The ICI-rule is an adaptation technique used to define adaptive supports
for polynomial regression

The ICI-rule determines when feature sequence (𝐷𝐷𝑖𝑖) cannot be fit by a
zero-order polynomial, thus when 𝑫𝑫𝒊𝒊 is non stationary

ICI-rule requires Gaussian-distributed features but no assumptions on the
post-change distribution

A. Goldenshluger and A. Nemirovski, “On spatial adaptive estimation of nonparametric regression” Math. Meth. Statistics,1997.

V. Katkovnik, “A new method for varying adaptive bandwidth selection” IEEE Trans. on Signal Proc, vol. 47, pp. 2567–2571, 1999.

Boracchi

JIT Classifiers: the Algorithm

Concept Split

Divide the current concept 𝐶𝐶𝑖𝑖−1 into two
concepts 𝐶𝐶𝑘𝑘 and 𝐶𝐶𝑙𝑙, with the former
being consistent with the current state
of the process

Boracchi

JIT Classifiers: Concept Split

Goal: estimating the change point 𝜏𝜏 (detections are always delayed).
Samples in between �̂�𝜏 and �𝑇𝑇
Uses statistical tools for performing an offline and retrospective analysis
over the recent data, like:

• as hypothesis tests (HT)

• change-point methods (CPM)

𝑡𝑡�𝑇𝑇�̂�𝜏

Boracchi

JIT Classifiers: Concept Split

Given �̂�𝜏, two different concept representations are built

𝑡𝑡�𝑇𝑇�̂�𝜏

1

𝐶𝐶1𝐶𝐶0

Boracchi

Examples of Concept Split Operator

Υ(𝐶𝐶0) = (𝐶𝐶0,𝐶𝐶1)
It performs an offline analysis on 𝐹𝐹𝑖𝑖 (just the feature detecting the change) to
estimate when concept drift has actually happened

Detections �𝑇𝑇 are delayed w.r.t. the actual change point 𝜏𝜏
Change-Point Methods implement the following hypothesis test on the feature
sequence:

�
𝐻𝐻0: "𝐹𝐹𝑖𝑖 contains i. i. d. samples"
𝐻𝐻1: "𝐹𝐹𝑖𝑖 contains a change point"

testing all the possible partitions of 𝐹𝐹𝑖𝑖 and determining the most likely to
contain a change point

ICI-based CDTs implement a refinement procedure to estimate 𝜏𝜏 after having
detected a change at �𝑇𝑇.

Boracchi

JIT Classifiers: the Algorithm

Concept Equivalence

Look for concepts that are equivalent to
the current one.

Gather supervised samples from all the
representations 𝐶𝐶𝑗𝑗 that refers to the
same concept

Boracchi

JIT Classifiers: Comparing Concepts

Concept equivalence is assessed by
• comparing features 𝐹𝐹 to determine whether 𝜙𝜙 𝒙𝒙 is the same on 𝐶𝐶𝑚𝑚 and 𝐶𝐶𝑛𝑛

using a test of equivalence

• comparing classifiers trained on 𝐶𝐶𝑚𝑚 and 𝐶𝐶𝑛𝑛 to determine whether 𝜙𝜙 𝑦𝑦 𝒙𝒙 is the
same

𝑡𝑡�𝑇𝑇

𝐶𝐶𝑛𝑛 𝐶𝐶𝑚𝑚

ℰ 𝐶𝐶𝑚𝑚,𝐶𝐶𝑛𝑛 = 1

�̂�𝜏

Boracchi

Testing for Equivalence

Conventional HTs are meant to assess if two populations are different and
assume under 𝑯𝑯𝟎𝟎 that “they are the same”

When there is not enough statistical evidence to conclude that the two
populations are different, there is no hint on whether the two populations
are the same.

We use Two One-Sided t-Test (TOST) to assess equivalence of 𝐹𝐹0 and 𝐹𝐹1.
In TOST, 𝐻𝐻0 corresponds to the non-equivalence of the two populations.
Discarding 𝐻𝐻0 implies accepting that the two populations are equivalent.

[40] P. Bauer and M. Kieser, “A unifying approach for confidence intervals and testing of equivalence and difference,” Biometrika,
vol. 83, no. 4, pp. pp. 934–937, 1996. http://www.jstor.org/stable/2337298

http://www.jstor.org/stable/2337298

Boracchi

JIT Classifiers: the Algorithm

Label Prediction:

The classifier 𝐾𝐾 is reconfigured using all
the available supervised couples

Boracchi

The Passive Approach
Classifiers undergoing continuous adaptation

Boracchi

Passive Approach

Passive approaches:

• Do not have an explicit CD detection mechanism

• They are aware that 𝜙𝜙𝑡𝑡(𝒙𝒙,𝑦𝑦) might change at any time / any rate

• Perform continuous adaptation of their model(s) parameters at each
new arrival

They can be divided in:

• Single model methods

• Ensemble method

Boracchi

Passive Approach

• Overcomes the potential disadvantage of active methods that can get
false alarms or delays in the detection of drift.

• Potentially better suited for slow concept drifts.

• Potential disadvantage not addressing concept drift detection: don’t
inform of whether concept drift is occurring.

Boracchi

Single Classifier Models

Lower computational costs

Mainly related to specific classifiers

• CVFDT: Concept-adapting Very Fast Decision
Tree learner, and online decision tree algorithm that incrementally
learns from a sliding window

P. Domingos and G. Hulton, “Mining high-speed data streams” in Proc. of the sixth ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 71–80, 2000.

G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data streams” in Proc. of Conference on Knowledge Discovery in
Data, pp. 97–106, 2001.

Boracchi

Single Classifier Models

Lower computational costs

Mainly related to specific classifiers

• CVFDT: Concept-adapting Very Fast Decision
Tree learner, and online decision tree algorithm that incrementally
learns from a sliding window

• OLIN: fuzzy-logic based approach that exploits a sliding window

L. Cohen, G. Avrahami-Bakish, M. Last, A. Kandel, and O. Kipersztok, "Real-time data mining of non-stationary data streams from
sensor networks", Information Fusion, vol. 9, no. 3, pp. 344–353, 2008.

Boracchi

Single Classifier Models

Lower computational costs

Mainly related to specific classifiers

• CVFDT: Concept-adapting Very Fast Decision
Tree learner, and online decision tree algorithm that incrementally
learns from a sliding window

• OLIN: fuzzy-logic based approach that exploits a sliding window

• An Extreme Learning Machine has been also combined with a time-
varying NN

Y. Ye, S. Squartini, and F. Piazza, "Online sequential extreme learning machine in nonstationary environments", Neurocomputing,
vol. 116, no. 20, pp. 94–101, 2013

Boracchi

Ensemble methods

Boracchi

A Dilemma of Sorts

The ability of an algorithm to
recall old information that it
has learned in the past

Plasticity

The ability for an algorithm to
learn new information when
data are available

Stability

Sounds like we could have two opposing ideas!

Boracchi

Ensemble Methods

An ensemble of multiple models is preserved in memory
ℋ = ℎ0, … ,ℎ𝑁𝑁

Each individual ℎ𝑖𝑖 , 𝑔𝑔 = 1, … ,𝑁𝑁 is typically trained from a different training
set and could be from different models

Final prediction of the ensemble is given by (weighted) aggregation of the
individual predictions

ℋ 𝒙𝒙𝒕𝒕 = argmax
𝒚𝒚∈𝚲𝚲

�
𝒉𝒉𝒊𝒊∈𝓗𝓗

𝛼𝛼𝑖𝑖 ℎ𝑖𝑖 𝒙𝒙𝑡𝑡 = 𝑦𝑦

Typically, one assumes data arrives in batches and each classifier is
trained over a batch

Boracchi

Ensemble Methods

An ensemble of multiple models is preserved in memory
ℋ = ℎ0, … ,ℎ𝑁𝑁

Each individual ℎ𝑖𝑖 , 𝑔𝑔 = 1, … ,𝑁𝑁 is typically trained from a different training
set and could be from a different model

Final prediction of the ensemble is given by (weighted) aggregation of the
individual predictions

ℋ 𝒙𝒙𝒕𝒕 = argmax
𝒚𝒚∈𝚲𝚲

�
𝒉𝒉𝒊𝒊∈𝓗𝓗

𝛼𝛼𝑖𝑖 ℎ𝑖𝑖 𝒙𝒙𝑡𝑡 = 𝑦𝑦

Typically, one assumes data arrives in batches and each classifier is
trained over a batch

The weight 𝛼𝛼𝑖𝑖 encodes how reliable the
prediction from ℎ𝑖𝑖 is at the current time.

Different methods set different weighting schemes, which are typically
based on the posterior of ℎ𝑖𝑖 or the accuracy of ℎ𝑖𝑖 over recent data

Boracchi

Ensemble Methods and Concept Drift

Each individual ℎ𝑖𝑖 implicitly refers to a component of a mixture
distribution characterizing a concept

Often, ensemble methods assume data (supervised and unsupervised) are
provided in batches

Adaptation can be achieved by:

• updating each individual: either in batch or online manner

• dynamic aggregation: adaptively defining weights 𝛼𝛼𝑖𝑖(𝑡𝑡)
• structural update: including new (pruning old) individuals in the

ensemble, possibly recovering past ones that are useful in case of
recurrent concepts

Kuncheva, L. I. "Classifier ensembles for changing environments" In Workshop on Multiple Classifier Systems. MCS. 1–15 2004.

Boracchi

Ensemble Methods and Concept Drift

Ensemble based approaches provide a natural fit to the problem of learning in
nonstationary settings,

• Ensembles tend to be more accurate than single classifier-based systems
due to reduction in the variance of the error

• Stability: flexible to easily incorporate new data into a classification model,
simply by adding new individuals to the ensemble and by updating each
individual

• Plasticity: provide a natural mechanism to forget irrelevant knowledge, by
simply removing old individual(s) from the ensemble

• They can operate in continuously drifting environments

Adaptive strategies can be applied to add/remove classifiers by on individual
classifier and the ensemble error

Kuncheva, L. I. "Classifier ensembles for changing environments" In Workshop on Multiple Classifier Systems. MCS. 1–15 2004.

Boracchi

Streaming Ensemble Algorithm: SEA

An ensemble of a fixed number of individuals ℋ performs

• batch learning

• structural update to adapt to concept drift

Two additional classifiers are stored ℎ𝑡𝑡 and ℎ𝑡𝑡−1
• ℎ𝑡𝑡 is being trained on the current batch

• ℎ𝑡𝑡−1 is the classifier trained on the previous batch

W. N. Street and Y. Kim, "A streaming ensemble algorithm (SEA) for large scale classification", in Proceedings to the 7th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 377–382, 2001

Boracchi

Streaming Ensemble Algorithm: SEA

When a new batch 𝑇𝑇 = 𝒙𝒙𝟎𝟎𝒕𝒕 ,𝑦𝑦0𝑡𝑡 , 𝒙𝒙𝟏𝟏𝒕𝒕 ,𝑦𝑦1𝑡𝑡 , … , 𝒙𝒙𝑩𝑩𝒕𝒕 ,𝑦𝑦𝐵𝐵𝑡𝑡 arrives

• train ℎ𝑡𝑡 on 𝑇𝑇
• test ℎ𝑡𝑡−1 on 𝑇𝑇
• If the ensemble is not full (#ℋ < 𝑁𝑁), add ℎ𝑡𝑡−1 to ℋ
• Otherwise, remove ℎ𝑖𝑖 ∈ ℋ that is less accurate on 𝑇𝑇 (as far as this is

worst than ℎ𝑡𝑡−1)
Classifier ℎ𝑡𝑡 is never added as its performance on the current batch are
affected by overfitting

Adaptation to concept drift is performed by replacing individuals (no
update of each individual instead)

Pruning the ensemble to improve the overall performance
W. N. Street and Y. Kim, "A streaming ensemble algorithm (SEA) for large scale classification", in Proceedings to the 7th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 377–382, 2001

Boracchi

Streaming Ensemble Algorithm: SEA

The individuals are decision trees,
which enables fast processing

Majority voting as aggregation
strategy over the ensemble

“Quality” of an individual is an
indicator to favor individuals that
correctly classify recent samples in
𝑺𝑺 where the ensemble was
“undecided” providing a score
close to 0.5 (in two class
problems)

W. N. Street and Y. Kim, "A streaming ensemble algorithm (SEA) for large scale classification", in Proceedings to the 7th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 377–382, 2001

Boracchi

Dynamic Weighted Majority: DWM

Dynamic weighted majority (DWM) is an ensemble where:

• Individuals are trained on different batches of data and regularly
updated at a pre-defined frequency

• Each individual is associated to a weight {𝛼𝛼𝑖𝑖}
• Predictions are made by weighted majority voting

• Weights 𝛼𝛼𝑖𝑖 are decreased to individuals that are not accurate on the
samples of the current batch

• Individuals having low weights are dropped

• When the ensemble makes a wrong guess, a new individual is added

• The ensemble size is also dynamic as it might vary over time

Kolter, J. and Maloof, M. "Dynamic weighted majority: An ensemble method for drifting concepts". Journal of Machine Learning
Research 8, 2755–2790. 2007

Boracchi

Learns++ .NSE

Batch-learning algorithm performing predictions based on a weighted
majority voting scheme:

• Two different weighting schemes for individuals and training samples

• Misclassified training samples receive large weights: samples from
new concepts are often misclassified, thus receive large weights.

• Weights of the individuals depends on the time-adjusted errors on
current and past batches: old individuals can be recovered in case of
recurrent concepts

• Old individuals are not discarded

Elwell R. and Polikar R., “Incremental Learning of Concept Drift in Nonstationary Environments” IEEE TNNLS , vol. 22, 2011.

Boracchi

Concluding Remarks

Boracchi

Comments from my personal experience

In Learning problems the classification error is typically the most
important figure of merit.

• In this scenario, in general, false positives hurt less than detection
delays

• Things might change on class unbalance

Active approaches might be penalized due to their detection delay, while
passive approaches might start adaptation earlier

Boracchi

Comments from my personal experience

Providing enough i.i.d. samples for reconfiguration seems more critical.
When estimating the change-time:

• Overestimates of 𝜏𝜏 provide too few samples

• Underestimates of 𝜏𝜏 provide non i.i.d. data

• Worth using accurate SPC methods like change-point methods (CPMs)

D. M. Hawkins, P. Qiu, and C. W. Kang, “The changepoint model for statistical process control” Journal of Quality Technology, 2003.
𝑡𝑡�𝑇𝑇�̂�𝜏

Boracchi

Comments from my personal experience

Exploiting recurrent concept is important

• Providing additional samples could make the difference

• Mitigate the impact of false positives

Boracchi

Comments from my personal experience

• Ensemble classifier approaches have had more success that single
classifier implementations for nonstationary environments

• Hybrid approaches (active & passive) can be beneficial!

• In practice, a weighted majority vote is a better strategy as long as we
have a reliable estimate of a classifiers error

Boracchi

Comments from my personal experience

We have combined
• a JIT classifier using recurrent concepts

• a sliding window classifier

As in paired learners,
• JIT is meant to provide the best post-detection adaptation and best performance

in a stationary state

• The sliding window classifier is meant to provide the quickest reaction to CD

We used a simple aggregation "Predictions are made by the most accurate
classifier over the last 20 samples"
Actually, this ensemble performed very well, combining the advantages of
the two classifiers

C. Alippi, G. Boracchi and M. Roveri, “Just In Time Classifiers for Recurrent Concepts” IEEE Transactions on Neural Networks and
Learning Systems, 2013. vol. 24, no.4, pp. 620 -634

Boracchi

The ensemble using jit classifier

	Change Detection fundamentals and applications to learning in nonstationary environments
	Tutorial Outline
	Disclaimer
	The General Picture
	General ML Framework
	This Course Framework
	Learning in Non-Stationary Environment
	Tutorial Overview
	Fraud Detection
	Diapositiva numero 10
	Fraud Detection
	The Terminal
	The Terminal
	Blocking rules
	Transaction Blocking Rules
	Near Real Time Processing
	Feature Augmentation
	Near Real Time Processing
	Scoring Rules
	Scoring Rules
	Scoring Rules
	Expert-Driven Models in fraud detection
	Expert-Driven vs Data-Driven models
	Expert-Driven vs Data-Driven models
	Data-driven models in fraud detection
	Data-driven models in fraud detection
	Classifiers in Fraud Detection
	Classifiers in Fraud Detection
	Investigators Provide Feedbacks
	Investigators
	Investigators’ feedback: Supervised Information
	Investigators’ feedback: Supervised Information
	Problem Formulation
	Classification Over Datastreams
	Classification Over Datastreams
	Classification error
	Training the Classifier
	Training Set
	The output of the classifier
	Btw… that was a Neural Network
	The output of the classifier
	Classification (Inference)
	Supervised Information (performance assessment)
	The output of the classifier
	Learning in Nonstationary (Streaming) Environments
	Concept Drift
	Distribution Changes
	Distribution Changes
	What happens when 𝜙 𝒙,𝑦 0 → 𝜙 𝒙,𝑦 1 ?
	What happens when 𝜙 𝒙,𝑦 0 → 𝜙 𝒙,𝑦 1 ?
	What happens when 𝜙 𝒙,𝑦 0 → 𝜙 𝒙,𝑦 1 ?
	What happens when 𝜙 𝒙,𝑦 0 → 𝜙 𝒙,𝑦 1 ?
	Problem formulation learning in NSE
	Adaptation
	Simple Adaptation Strategies
	Simple Adaptation Strategies
	The LNSE loop
	Classifier
	The LNSE loop
	Simple Adaptation Strategies
	The LNSE loop
	Simple Adaptation Strategies
	The LNSE loop
	Simple Adaptation Strategies
	Monitoring
	Change Detection: Problem Formulation�.. In a statistical framework
	Process Changes
	Change-Detection in a Statistical Framework
	Change-Detection in a Statistical Framework
	Change-Detection in a Statistical Framework
	Change Detection Questions
	The Typical Solution	
	Statistics and Decision Rules	
	The Typical Solution	
	The Typical Solution	
	The Typical Solutions	
	The Typical Solutions
	The Typical Solutions
	Statistics and Decision Rules	
	Controlling False Positives in Change Detection
	Controlling False Positives in Change Detection
	Learning in NSE by Monitoring the Classification Error
	Monitoring the Classification Error
	Monitoring the Classification Error
	Monitoring the Classification Error
	Monitoring the Classification Error
	Monitoring the Classification Error
	Monitoring the Classification Error: DDM
	Monitoring the Classification Error: DDM
	Monitoring the Classification Error: DDM
	Monitoring the Classification Error: DDM
	Monitoring the Classification Error: DDM
	Monitoring the Classification Error: DDM
	Adaptation Heuristic in DDM
	Monitoring the Classification Error: DDM
	Post-detection Adaptation: DDM
	Post-detection Adaptation: DDM
	Other Monitoring Solutions for the Classification Error
	Monitoring the Classification Error: EDDM
	Monitoring the Classification Error: EWMA
	Monitoring the Classification Error: EWMA
	Monitoring the Classification Error: EWMA
	Monitoring the Classification Error: EWMA
	Monitoring the Classification Error: EWMA
	Unfortunately…
	EWMA for Bernoulli Random Variables
	Stopping Rule for EWMA for Bernoulli
	Stopping Rule for EWMA for Bernoulli
	Stopping Rule for EWMA for Bernoulli
	Adaptation in EWDMA
	EWMA Monitoring for concept drift
	Monitoring the Input Distribution
	Monitoring Input Distribution
	Monitoring Input Distribution by Comparing Windows
	The Motivating Idea
	Window Comparison: Major Approaches
	Window Comparison: Major Approaches
	Window Comparison: Major Approaches
	Window Comparison: Major Approaches
	Window Comparison: Major Approaches
	Window Comparison: Major Approaches
	Window Comparison: Major Approaches
	Window Comparison: Major Approaches
	Other Schemes for Monitoring �the Input Distribution
	Change Detection Approaches
	Change Detection in Parametric Settings: CPM
	Change Detection in Parametric settings: CPM
	Diapositiva numero 141
	The Change Point Method (CPM)
	The Change Point Method (CPM)
	The Change Point Method (CPM)
	The Change Point Method (CPM)
	The Change Point Method (CPM)
	The Change Point Method (CPM)
	The Change Point Method (CPM)
	The CPM Formulation
	Threshold Computation (Offline Analysis)
	Threshold Computation (offline analysis)
	Threshold Computation
	Threshold Computation
	Diapositiva numero 154
	Diapositiva numero 155
	CPM in non-parametric settings
	CPM in non-parametric settings
	Nonparametric Statistics for Scale and Location
	Mann-Whitney Statistic for two sets A and B
	Mann-Whitney Statistic for two sets A and B
	Mann-Whitney Statistic for two sets A and B
	Mood Statistic for two sets A and B
	Mood Statistic for two sets A and B
	How to monitor for both Location and Scale Changes?
	CPM for Online Monitoring
	Two Issues in CPMs for Online Monitoring
	Threshold Computation: Online CPM
	Threshold Computation: Online CPM
	Threshold Computation
	Online Monitoring: Ranks Computation
	Data Quantization
	Data Quantization
	Data Quantization
	Data Quantization
	Ranks Computation
	Data Quantization
	Change Detection Approaches
	CMPs are nice, but statistics based on sorting holds for scalar sterams
	Now we investigate solutions meant for multivariate data streams
	Change Detection by Monitoring Features
	Nonparametric settings: Sequential Monitoring
	Monitoring the Log-Likelihood:�A Mainstream Change Detection Approach
	Three ingredients
	Illustration
	Illustration
	Illustration
	Illustration
	Monitoring the log-likelihood
	Monitoring the log-likelihood
	Sequential Monitoring the log-likelihood
	Batch-wise anomaly-detection in the log-likelihood
	CUSUM control chart (parametric case)
	Histograms in Change Detection
	Histograms
	Change Detection by Means of Histograms
	Monitoring Approaches
	Log-likelihood – Based Monitoring Scheme
	Log-likelihood – Based Monitoring Scheme
	Log-likelihood – Based Monitoring Scheme
	Distance-Based (or batch) Monitoring Scheme
	Distance-Based (or batch) Monitoring Scheme
	Distance-Based Monitoring scheme: Stopping Rule
	An example of distance-based monitoring scheme
	Pros and Cons of using histograms
	Pros and Cons of using histograms
	Histograms yielding uniform volume
	Histograms yielding uniform volume
	Histograms yielding uniform density
	Histograms yielding uniform density
	Adaptation in NSE
	Adaptation Strategies Under Concept Drift
	Active Approaches
	Passive Approaches
	Adaptation in Active Approaches
	Methods Based on Windows Comparison
	Paired Learners
	Paired Learners
	Paired Learners
	Paired Learners
	Paired Learners
	Paired Learners
	Paired Learners
	Paired Learners
	Paired Learners
	JUST-IN-TIME Classifiers
	JIT Classifiers
	Just In Time Classifiers
	An example of Concept Representations
	JIT Classifiers: the Algorithm
	JIT Classifiers: Initial training
	JIT Classifiers: the Algorithm
	JIT Classifiers: the Algorithm
	JIT Classifiers: Concept Update
	JIT Classifiers: the Algorithm
	JIT Classifiers: Concept Drift Detection
	An example of detection operator
	JIT Classifiers: the Algorithm
	JIT Classifiers: Concept Split
	JIT Classifiers: Concept Split
	Examples of Concept Split Operator
	JIT Classifiers: the Algorithm
	JIT Classifiers: Comparing Concepts
	Testing for Equivalence
	JIT Classifiers: the Algorithm
	The Passive Approach
	Passive Approach
	Passive Approach
	Single Classifier Models
	Single Classifier Models
	Single Classifier Models
	Ensemble methods
	A Dilemma of Sorts
	Ensemble Methods
	Ensemble Methods
	Ensemble Methods and Concept Drift
	Ensemble Methods and Concept Drift
	Streaming Ensemble Algorithm: SEA
	Streaming Ensemble Algorithm: SEA
	Streaming Ensemble Algorithm: SEA
	Dynamic Weighted Majority: DWM
	Learns++ .NSE
	Concluding Remarks
	Comments from my personal experience
	Comments from my personal experience
	Comments from my personal experience
	Comments from my personal experience
	Comments from my personal experience
	The ensemble using jit classifier

