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Tutorial Outline
• Learning in Nonstationary Environments (NSE): the General Picture

• Fraud Detection

• Problem Formulation Concept Drift and Learning in NSE

• Major Approaches in Learning in NSE

• Concept Drift Detection by monitoring 
• classification error

• raw data distribution

• Adaptation Strategies:
• Active Approaches

• Passive Approaches

• Concluding Remarks
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Disclaimer

This tutorial is meant to illustrate the major challenges and the basic 
principles for learning in NSE.

The major expected outcome is to cast LNSE problems in a standard 
(statistical) framework, providing you the tools for possibly understanding 
other solutions not illustrated here

I will present a few methods, but these are not an exhaustive (nor 
updated) survey on the field
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The General Picture
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General ML Framework

Prediction

Typical assumption in ML: 

Incoming data (both training or 
testing) are independent and 
identically distributed (i.i.d.) 

realizations of an unknown process

The major focus is towards making 
data-driven models able to extract 
information out of training data (TR) 
to perform inference on test data (TS) Model

i.i.d. data

Environment

Rmk: Predictions does not 
influence the environment, 

nor 𝑇𝑇𝑇𝑇/𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇/𝑇𝑇𝑇𝑇
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This Course Framework
In a streaming scenario i.i.d. assumption 
often does not hold:

• the environment might be changing 
or adversarial

• It is not possible to ignore the model-
environment interactions, since 
model outcomes are influencing the 
environment, or the way supervision 
is provided (feedback)

These settings call for:

• Techniques to learn-adapt the data-
driven model

• Techniques to monitor the model-
environment interaction

Prediction

Model

Environment

Input/Feedback

Not i.i.d.

Rmk: Predictions might 
influence the environment or 

𝑇𝑇𝑇𝑇
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At each time instant 𝑡𝑡
• we get an input 𝑥𝑥𝑡𝑡 from a stream

• we generate a prediction �𝑦𝑦𝑡𝑡
• we get feedback 𝑦𝑦𝜏𝜏 (𝜏𝜏 <  𝑡𝑡)

• we update the model as the 
learning problem might change

Example: Fraud Detection

You classify each transaction 𝑥𝑥𝑡𝑡 assigning
a label �𝑦𝑦𝑡𝑡(genuine/fraudulent), investigators check
only those labels and return a feedback 𝑦𝑦𝑡𝑡 after a while.
Feedbacks are not representative of the entire stream, and possibly delayed

Learning in Non-Stationary Environment

Prediction �𝑦𝑦𝑡𝑡

Model

Environment

Feedback 𝑦𝑦𝜏𝜏 , 𝜏𝜏 < 𝑡𝑡

Input 𝑥𝑥𝑡𝑡
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Tutorial Overview

Typical assumption in ML: 

Training and incoming data are i.i.d. 

This course: 

Training and incoming are either nonstationary or chosen by an 
adversarial 

These settings are often encountered in real-world applications on 
streaming data, e.g., to detect frauds in credit card transaction. 

The course provides an overview of techniques to employ data-driven 
models in these streaming settings
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Fraud Detection
A Cool Example for Learning in NSE



BoracchiDal Pozzolo A., Boracchi G., Caelen O., Alippi C. and Bontempi G., “Credit Card Fraud Detection: a Realistic Modeling and a Novel Learning Strategy” , IEEE TNNLS 2017
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Fraud Detection

Dal Pozzolo A., Boracchi G., Caelen O., Alippi C. and Bontempi G., “Credit Card Fraud Detection: a Realistic Modeling and a Novel Learning Strategy” , IEEE TNNLS 2017



Boracchi

The Terminal

Terminal

Purchase

Transaction
Blocking

Rules

TX 
request

TX auth.

Scoring 
Rules

Classifier

Investigators

Alerts

Feedbacks 
(𝒙𝒙,𝑦𝑦)

𝑃𝑃(+|𝒙𝒙)

𝒙𝒙

TX auth.
𝒙𝒙

Alerts
score

Offline
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The Terminal

Acceptance checks like:
• Correct PIN

• Number of attempts

• Card status (active, blocked)

• Card balance / availability

are immediately performed.

These checks are done in real time, and preliminary filter our purchases: 
when these checks are not satisfied, the card/transaction can be blocked.

Otherwise, a transaction request is entered in the system that include 
information of the actual purchase:

• transaction amount, merchant id, location, transaction type, date time,  …
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Blocking rules

Terminal

Purchase

Transaction
Blocking

Rules

TX 
request

TX auth.

Scoring 
Rules

Classifier

Investigators

Alerts

Feedbacks 
(𝒙𝒙,𝑦𝑦)

𝑃𝑃(+|𝒙𝒙)

𝒙𝒙

TX auth.
𝒙𝒙

Alerts
score

Offline

1
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Transaction Blocking Rules

Association rules (if-then-else statements) like*

IF Internet transactions AND compromised website THEN deny the 
transaction

These rules:
• are expert-driven, designed by investigators

• involves quite simple expressions with a few data

• are easy to interpret 

• have always «deny the transaction» as statement (otherwise the transaction is 
accepted)

• are executed in real time 

All the transaction RX passing these rules are authorized transactions and 
further analyzed by the FDS 

(*) Transaction blocking rules are confidential and this is just a likely example
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Near Real Time Processing

Terminal

Purchase

Transaction
Blocking

Rules

TX 
request

Scoring 
Rules

Classifier

Investigators

Alerts

Feedbacks 
(𝒙𝒙,𝑦𝑦)

𝑃𝑃(+|𝒙𝒙)

TX auth.

Alerts
score

Offline

Real time
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Feature Augmentation

A feature vector 𝒙𝒙 is associated to each authorized transaction.

The components of 𝒙𝒙 include data about the current transaction and 
customary shopping habits of the cardholder, e.g.:

• the average expenditure

• the average number of transactions per day

• the cardholder age 

• the location of the last purchases

• …

and are very informative for fraud-detection purposes

Overall, about 40 features are extracted in near-real time.
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Near Real Time Processing

Terminal

Purchase

Transaction
Blocking

Rules

TX 
request

Scoring 
Rules

Classifier

Investigators

Alerts

Feedbacks 
(𝒙𝒙,𝑦𝑦)

𝑃𝑃(+|𝒙𝒙)

Alerts
score

Offline

Real time

Transaction data

Augmented data

e.g. average amount

TX auth.
𝒙𝒙

TX auth.
𝒙𝒙

Feature Augmentation
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Scoring Rules

Terminal

Purchase

Transaction
Blocking

Rules

TX 
request

TX auth.

Scoring 
Rules

Classifier

Investigators

Alerts

Feedbacks 
(𝒙𝒙,𝑦𝑦)

𝑃𝑃(+|𝒙𝒙)

𝒙𝒙

TX auth.
𝒙𝒙

Alerts
score

Offline

1

Feature Augmentation
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Scoring Rules

Scoring rules are if-then-else statements that:
• are being processed in near-real time

• are expert-driven, designed by investigators.

• Operate on augmented features (components of 𝒙𝒙)

• Assign a score: the larger the score the riskier the transaction. The score can be 
seen as an estimate of the probability for 𝒙𝒙 to be a fraud, according to 
investigator expertise.

• Feature vector receiving large scores are alerted

• Are easy to interpret and are designed by investigators
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Scoring Rules

Examples* of scoring rules might be:
• IF previous transaction in a different country AND less than 2 hours since the 

previous transaction, AND operation using PIN THEN fraud score = 0.95

• IF amount > average of transactions + 3𝜎𝜎 AND country is a fiscal paradise AND 
customer travelling habits low THEN fraud score = 0.75

(*) Scoring rules are confidential and these are just likely examples
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Expert-Driven Models in fraud detection

Terminal

Purchase

Transaction
Blocking

Rules

TX 
request

TX auth.

Scoring 
Rules

Classifier

Investigators

Alerts

Feedbacks 
(𝒙𝒙,𝑦𝑦)

𝑃𝑃(+|𝒙𝒙)

𝒙𝒙

TX auth.
𝒙𝒙

Alerts
score

Offline

1

Expert-driven

Interpretable rules
enable interaction/adjustment
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Expert-Driven vs Data-Driven models

Scoring rules are an expert-driven model, thus:
• Can detect well-known / reasonable frauds

• Involve few components of the feature vector

• Difficult to exploit correlation among features
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Expert-Driven vs Data-Driven models

Scoring rules are an expert-driven model, thus:
• Can detect well-known / reasonable frauds

• Involve few components of the feature vector

• Difficult to exploit correlation among features

Fraudulent patterns can be directly learned from data, by means of a 
data-driven model. 

This has the potential to:
• Simultaneously analyze several components of the feature vector

• Uncover complex relations among features that cannot be identified by 
investigator

These relations can be meaningful for separating frauds from genuine 
transactions

𝐾𝐾 𝒙𝒙 =  � fraud
genuine𝒙𝒙 =
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Data-driven models in fraud detection

Terminal

Purchase

Transaction
Blocking

Rules

TX 
request

TX auth.

Scoring 
Rules

Classifier

Investigators

Alerts

Feedbacks 
(𝒙𝒙,𝑦𝑦)

𝑃𝑃(+|𝒙𝒙)

𝒙𝒙

TX auth.
𝒙𝒙

Alerts
score

Offline

Expert-driven
Data-driven



Boracchi

Data-driven models in fraud detection

Terminal

Purchase

Transaction
Blocking

Rules

TX 
request

TX auth.

Scoring 
Rules

Classifier

Investigators

Alerts

Feedbacks 
(𝒙𝒙,𝑦𝑦)

𝑃𝑃(+|𝒙𝒙)

𝒙𝒙

TX auth.
𝒙𝒙

Alerts
score

Offline

Expert-driven
Data-driven

Near real time
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Classifiers in Fraud Detection

In practice, the classifier 𝐾𝐾 then can assign a label where the label 
�𝑦𝑦 ∈ +,−  i.e., {«𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, «𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔»} to each incoming feature vector 𝒙𝒙 

𝐾𝐾 considers transactions labeled as ‘+’ as frauds

𝐾𝐾𝒙𝒙 𝐾𝐾 𝒙𝒙 ∈ {+,−}
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Classifiers in Fraud Detection

It is not feasible to alert all transactions labeled as frauds. 

Only few transactions that are very likely to be frauds can be alerted.

Thus, the FDS typically consider 𝑝𝑝𝐾𝐾(+|𝒙𝒙), an estimate of the probability 
for 𝒙𝒙 to be a fraud according to 𝐾𝐾

Since this is a binary classification problem 𝑝𝑝𝐾𝐾(−|𝒙𝒙) = 1 − 𝑝𝑝𝐾𝐾(+|𝒙𝒙)

and only transactions yielding 𝑝𝑝𝐾𝐾 + 𝒙𝒙 ≈ 1 raise an alert

𝐾𝐾𝒙𝒙 𝑝𝑝𝐾𝐾(+|𝒙𝒙)
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Investigators Provide Feedbacks 

Terminal

Purchase

Transaction
Blocking

Rules

TX 
request

TX auth.

Scoring 
Rules

Classifier

Investigators

Alerts
𝑃𝑃(+|𝒙𝒙)

𝒙𝒙

TX auth.
𝒙𝒙

Alerts
score

Update rules
“expert-driven”

Update/retrain the classifier
“data-driven”



Boracchi

Investigators

Investigators are professionals that are experienced in analyzing credit 
card transactions:

• they design blocking/scoring rules

• they call cardholders to check whether alerts correspond to frauds

• as soon as they detect a fraud, they block the card

• they annotate the true label of checked transactions

The labels associated to transactions comes in the form of feedbacks and 
can be used to re-train/update 𝐾𝐾
Given the limited number of investigators, the large number of 
transactions, the multiple sources of alerts, etc … it is important to 
provide very precise alerts
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Investigators’ feedback: Supervised Information

Terminal

Purchase

Transaction
Blocking

Rules

TX 
request

TX auth.

Scoring 
Rules

Classifier

Investigators

Feedbacks 
(𝒙𝒙,𝑦𝑦)

𝒙𝒙

TX auth.
𝒙𝒙

Expert-driven
Data-driven

Alerts
𝑃𝑃(+|𝒙𝒙)

Alerts
score

The Model

The Environment

The Environment

Transaction

Environment eveolves over time:
- Customers’ habits change
- New fraudulent strategies appear
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Investigators’ feedback: Supervised Information

Terminal

Purchase

Transaction
Blocking

Rules

TX 
request

TX auth.

Scoring 
Rules

Classifier

Investigators

Feedbacks 
(𝒙𝒙,𝑦𝑦)

𝒙𝒙

TX auth.
𝒙𝒙

Offline

Expert-driven
Data-driven

Alerts
𝑃𝑃(+|𝒙𝒙)

Alerts
score

Delayed Supervision
non i.i.d. sampling
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Problem Formulation
Classification over Datastreams
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Classification Over Datastreams

The problem: classification over a potentially infinitely long stream of data 
𝑋𝑋 = {𝒙𝒙𝟎𝟎,𝒙𝒙𝟏𝟏, … , }

Data-generating process 𝒳𝒳 generates tuples 𝒙𝒙𝑡𝑡 ,𝑦𝑦𝑡𝑡 ∼ 𝜙𝜙𝒙𝒙,𝑦𝑦

• 𝒙𝒙𝑡𝑡 is the observation at time 𝑡𝑡 (e.g., 𝒙𝒙𝑡𝑡 ∈ ℝ𝑑𝑑)

• 𝑦𝑦𝑡𝑡 is the associated label which is (often) unknown (𝑦𝑦𝑡𝑡 ∈ Λ)
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Classification Over Datastreams

Typical assumptions: 
• Inputs are independent and identically distributed (i.i.d.)

𝒙𝒙𝒕𝒕,𝑦𝑦𝑡𝑡 ∼ 𝜙𝜙𝒙𝒙,𝑦𝑦

• An initial training set 𝑇𝑇𝑇𝑇 = 𝒙𝒙0,𝑦𝑦0 , … , 𝒙𝒙𝑛𝑛,𝑦𝑦𝑛𝑛  is provided for learning 𝐾𝐾
• 𝑇𝑇𝑇𝑇 contains data generated in stationary conditions

The classifier is trained (i.e. its parameters are estimated) by optimizing 
some loss function (e.g. binary cross-entropy, hinge loss, …) over 𝑇𝑇𝑇𝑇.

A stationary condition of 𝓧𝓧 is denoted as concept.
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Classification error

A classifier estimates for each input 𝒙𝒙 a label �𝑦𝑦 (*)
�𝑦𝑦 = 𝐾𝐾 𝒙𝒙

And – hopefully – it often happens that �𝑦𝑦 = 𝑦𝑦.

Here, we consider the classification error to measure how good a learned
model 𝐾𝐾 matches the distribution 𝜙𝜙𝒙𝒙,𝑦𝑦, namely

𝑝𝑝 = #{�𝑦𝑦𝑖𝑖 ≠ 𝑦𝑦𝑖𝑖 , 𝑖𝑖 ∈ 𝑅𝑅}
being 𝑅𝑅 «a reference set» for assessing the error

(*) Classifiers typically return the posterior probability of each class



Boracchi

Training the Classifier

Training

𝑇𝑇𝑇𝑇 = 𝒙𝒙,𝑦𝑦 𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑁𝑁, 𝒙𝒙,𝑦𝑦 𝑖𝑖∼ 𝜙𝜙𝑥𝑥,𝑦𝑦

𝐾𝐾

𝒳𝒳 Data generating process 𝒳𝒳 ∼ 𝜙𝜙𝑥𝑥,𝑦𝑦
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Training Set

genuine

fraud

𝒙𝒙 = avg. month amount
transaction amount
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The output of the classifier
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Btw… that was a Neural Network
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The output of the classifier
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Classification (Inference)

𝒳𝒳 Data generating process 𝒳𝒳 ∼ 𝜙𝜙𝑥𝑥,𝑦𝑦

𝐾𝐾

Classify

(𝒙𝒙𝑡𝑡 ,𝑦𝑦𝑡𝑡)

�𝑦𝑦𝑡𝑡 = 𝐾𝐾(𝒙𝒙𝒕𝒕)𝒙𝒙𝒕𝒕 ∼ 𝜙𝜙𝒙𝒙
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Supervised Information (performance assessment)

(𝒙𝒙𝑡𝑡 ,𝑦𝑦𝑡𝑡)

�𝑦𝑦𝑡𝑡 = 𝐾𝐾(𝒙𝒙𝒕𝒕)

𝒳𝒳 Data generating process 𝒳𝒳 ∼ 𝜙𝜙𝑥𝑥,𝑦𝑦

𝐾𝐾

Gather all the supervised information { 𝒙𝒙𝒕𝒕,𝑦𝑦𝑡𝑡 ∼ 𝜙𝜙𝒙𝒙,𝑦𝑦}

These are very useful for:

• assessing performance of 𝐾𝐾

𝑝𝑝 𝑇𝑇 =
1
𝑇𝑇�

𝑡𝑡

𝑒𝑒𝑡𝑡

where 𝑒𝑒𝑡𝑡 = �0,  if �𝑦𝑦𝑡𝑡 = 𝑦𝑦𝑡𝑡
1,  if �𝑦𝑦𝑡𝑡 ≠ 𝑦𝑦𝑡𝑡

• updating 𝐾𝐾

Classify

Update,
Assess performance

𝑦𝑦𝝉𝝉
𝒙𝒙𝒕𝒕 ∼ 𝜙𝜙𝒙𝒙
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The output of the classifier
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Learning in Nonstationary 
(Streaming) Environments

The Problem Formulation
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Concept Drift

Unfortunately, in the real world, datastream 𝒳𝒳 might change 
unpredictably during operation. 

The data generating process is then modeled as:
𝒙𝒙𝒕𝒕,𝑦𝑦𝑡𝑡 ∼ 𝜙𝜙𝑡𝑡 𝒙𝒙,𝑦𝑦

We say that concept drift occurs at time 𝑡𝑡 if
𝜙𝜙𝑡𝑡 𝒙𝒙,𝑦𝑦 ≠ 𝜙𝜙𝑡𝑡+1 𝒙𝒙,𝑦𝑦

We also say 𝒳𝒳 becomes  nonstationary.

𝑇𝑇𝑇𝑇 is always assumed i.i.d. 

After the change (e.g. 10 days), data are no more i.i.d. because data are 
not identically distributed after 
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Distribution Changes

𝜙𝜙𝒙𝒙,𝑦𝑦
0
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Distribution Changes

𝜙𝜙𝒙𝒙,𝑦𝑦
1
𝜙𝜙𝒙𝒙,𝑦𝑦
1
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What happens when 𝜙𝜙𝒙𝒙,𝑦𝑦
0 → 𝜙𝜙𝒙𝒙,𝑦𝑦

1 ?

Classifier output over training data

𝜙𝜙𝒙𝒙,𝑦𝑦
0
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What happens when 𝜙𝜙𝒙𝒙,𝑦𝑦
0 → 𝜙𝜙𝒙𝒙,𝑦𝑦

1 ?

Here is what happens when distribution changes

𝜙𝜙𝒙𝒙,𝑦𝑦
1
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What happens when 𝜙𝜙𝒙𝒙,𝑦𝑦
0 → 𝜙𝜙𝒙𝒙,𝑦𝑦

1 ?

Here is what happens when distribution changes

𝜙𝜙𝒙𝒙,𝑦𝑦
1

Classification 
errors
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What happens when 𝜙𝜙𝒙𝒙,𝑦𝑦
0 → 𝜙𝜙𝒙𝒙,𝑦𝑦

1 ?

Here is what happens when distribution changes

The classification error increases!

𝜙𝜙𝒙𝒙,𝑦𝑦
1
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Problem formulation learning in NSE

The task: learn an adaptive classifier 𝐾𝐾𝑡𝑡 to predict labels
�𝑦𝑦𝑡𝑡 = 𝐾𝐾𝑡𝑡 𝒙𝒙𝑡𝑡

 in an online manner having a low classification error over time:

1
𝑇𝑇
�
𝑡𝑡=1

𝑇𝑇

𝑒𝑒𝑡𝑡 , where 𝑒𝑒𝑡𝑡 = �0,  if �𝑦𝑦𝑡𝑡 = 𝑦𝑦𝑡𝑡
1,  if �𝑦𝑦𝑡𝑡 ≠ 𝑦𝑦𝑡𝑡

This classifier should also operate when the distribution generating the 
input data changes.

• Measuring and monitoring the classification error

• Updating the classifier
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Adaptation
Do we Really Need Smart Adaptation Strategies?
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Simple Adaptation Strategies

Consider two simple adaptation 
strategies and a simple concept drift

• Incremental: continuously update 𝐾𝐾𝑡𝑡 
using all supervised couples

• Sliding Window: Train 𝐾𝐾𝑡𝑡 using only 
the last 𝛿𝛿 supervised couples
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Simple Adaptation Strategies

Classification error of two simple adaptation strategies
• Black dots: 𝐾𝐾𝑡𝑡 uses all supervised couples at time 𝑡𝑡 
• Red line: 𝐾𝐾𝑡𝑡 uses only the last 𝛿𝛿 supervised couples

Alippi, C., Boracchi, G., Roveri, M. (2013). Just-in-time classifiers for recurrent concepts. IEEE TNNLS 620-634.
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The LNSE loop

This are the standard (stationary/i.i.d.) ML settings

Model
Feedback 𝑦𝑦𝜏𝜏

Input 𝑥𝑥𝑡𝑡

Environment

Prediction �𝑦𝑦𝑡𝑡



Boracchi

Classifier 

The blue solid line denotes the expected error of the classifier that is 
never updated. The classification error changes only because the 
classification problem is changing (concept drift).
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The LNSE loop

This is the most simple pipeline in LNSE, which includes model adaptation

Different
solutions follow 
different form of 

adaptation. Prediction �𝑦𝑦𝑡𝑡

Model
Feedback 𝑦𝑦𝜏𝜏

Input 𝑥𝑥𝑡𝑡

Prediction �𝑦𝑦𝜏𝜏
Feedback 𝑦𝑦𝜏𝜏

AdaptationEnvironment
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Simple Adaptation Strategies

Classification error of two simple adaptation strategies
• Black dots: 𝐾𝐾𝑡𝑡 uses all supervised couples at time 𝑡𝑡 
• Red line: 𝐾𝐾𝑡𝑡 uses only the last 𝛿𝛿 supervised couples

Alippi, C., Boracchi, G., Roveri, M. (2013). Just-in-time classifiers for recurrent concepts. IEEE TNNLS 620-634.

Just including
"fresh" training
samples is not 

enough
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The LNSE loop

This is the most simple pipeline in LNSE, continuous adaptation

The incremental
classifier (the black 

dashed line), 
appends the new 
label 𝑦𝑦𝑡𝑡 to 𝑇𝑇𝑇𝑇 and 
forces retraining

over the entire 𝑇𝑇𝑇𝑇

Prediction �𝑦𝑦𝑡𝑡

Model
Feedback 𝑦𝑦𝜏𝜏

Input 𝑥𝑥𝑡𝑡

Prediction �𝑦𝑦𝜏𝜏
Feedback 𝑦𝑦𝜏𝜏

AdaptationEnvironment
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Simple Adaptation Strategies

Classification error of two simple adaptation strategies
• Black dots: 𝐾𝐾𝑡𝑡 uses all supervised couples at time 𝑡𝑡 
• Red line: 𝐾𝐾𝑡𝑡 uses only the last 𝛿𝛿 supervised couples

Alippi, C., Boracchi, G., Roveri, M. (2013). Just-in-time classifiers for recurrent concepts. IEEE TNNLS 620-634.

Need to integrate 
supervised samples in 
stationary conditions
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The LNSE loop

More sophisticated adaptation strategies are possible

Prediction �𝑦𝑦𝑡𝑡

Model
𝑦𝑦𝜏𝜏

𝑥𝑥𝑡𝑡

Prediction �𝑦𝑦𝜏𝜏
Feedback 𝑦𝑦𝜏𝜏

AdaptationEnvironment

More Change 
Detection

Test

Change 
Detection

Test
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Simple Adaptation Strategies

Classification error of two simple adaptation strategies
• Black dots: 𝐾𝐾𝑡𝑡 uses all supervised couples at time 𝑡𝑡 
• Red line: 𝐾𝐾𝑡𝑡 uses only the last 𝛿𝛿 supervised couples

Alippi, C., Boracchi, G., Roveri, M. (2013). Just-in-time classifiers for recurrent concepts. IEEE TNNLS 620-634.

Adaptive Learning 
algorithms trade-off  

the two aspects
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Monitoring

Change 
Detection

Test
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Change Detection: Problem Formulation
.. In a statistical framework
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Process Changes

Normal data are generated in stationary conditions, i.e. are i.i.d. 
realizations of a process 𝒫𝒫𝑁𝑁
After the change, data are generated from a different process 𝒫𝒫𝐴𝐴 ≠ 𝒫𝒫𝑁𝑁, 
which persists over time

Examples:
• Quality inspection system: faults producing flawed components

• Environmental monitoring: persistent changes in the morphology of measured 
signals

• Change of user interests in on-demand platform
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Change-Detection in a Statistical Framework

Often, the change-detection problem boils down to:

Monitor a stream 𝒙𝒙 𝑡𝑡 , 𝑡𝑡 = 1, … ,  𝒙𝒙 𝑡𝑡 ∈ ℝ𝑑𝑑 of realizations of a 
random variable, and detect the change-point 𝜏𝜏, 

𝒙𝒙 𝑡𝑡 ∼ �𝜙𝜙0 𝑡𝑡 < 𝜏𝜏 in control state
𝜙𝜙1 𝑡𝑡 ≥ 𝜏𝜏 out of control state ,

where {𝒙𝒙 𝑡𝑡 , 𝑡𝑡 < 𝜏𝜏} are i.i.d. and 𝜙𝜙0 ≠ 𝜙𝜙1
We denote such change as: 𝜙𝜙𝑜𝑜 → 𝜙𝜙1

𝑡𝑡

𝒙𝒙(
𝑡𝑡)

……

𝜏𝜏

𝜙𝜙1𝜙𝜙0
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Change-Detection in a Statistical Framework

Often, the change-detection problem boils down to:

Monitor a stream 𝒙𝒙 𝑡𝑡 , 𝑡𝑡 = 1, … ,  𝒙𝒙 𝑡𝑡 ∈ ℝ𝑑𝑑 of realizations of a 
random variable, and detect the change-point 𝜏𝜏, 

𝒙𝒙 𝑡𝑡 ∼ �𝜙𝜙0 𝑡𝑡 < 𝜏𝜏 in control state
𝜙𝜙1 𝑡𝑡 ≥ 𝜏𝜏 out of control state ,

where {𝒙𝒙 𝑡𝑡 , 𝑡𝑡 < 𝜏𝜏} are i.i.d. and 𝜙𝜙0 ≠ 𝜙𝜙1
We denote such change as: 𝜙𝜙𝑜𝑜 → 𝜙𝜙1

𝑡𝑡

𝒙𝒙(
𝑡𝑡) ……

𝜙𝜙1𝜙𝜙0

𝜏𝜏
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Change-Detection in a Statistical Framework

Here are data from an X-ray monitoring apparatus. 

There are 4 changes 𝜙𝜙𝑜𝑜 → 𝜙𝜙1 → 𝜙𝜙2 → 𝜙𝜙3 → 𝜙𝜙4 corresponding to 
different monitoring conditions and/or analyzed materials

𝜙𝜙𝑜𝑜 𝜙𝜙1 𝜙𝜙2 𝜙𝜙3 𝜙𝜙4
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Change Detection Questions

Change-detection question:

Given the previously estimated model, the arrival of new data invites the 
question: “Is yesterday’s model capable of explaining today’s data?”

Detecting process changes is important to understand the monitored 
phenomenon

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.

C. J. Chu, M. Stinchcombe, H. White "Monitoring Structural Change" Econometrica Vol. 64, No. 5 (Sep., 1996), pp. 1045-1065. 
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The Typical Solution 

Most algorithms are composed of:
• A statistic that has a known response to normal data (e.g., the average, the 

sample variance, the log-likelihood, the confidence of a classifier, an “anomaly 
score”…)

• A decision rule to analyze the statistic (e.g., an adaptive threshold, a confidence 
region)
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Statistics and Decision Rules 

Change-detection algorithms:

Statistics and decision rules are sequential, as they make a decision 
considering --in principle-- all the data received so far. Integrating 
information over time makes these algorithms able to detect subtle 
changes as well.

E.g.: The cumulative average of all the points
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The Typical Solution 

𝑡𝑡

𝒙𝒙(
𝑡𝑡) ……

data
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The Typical Solution 

𝑡𝑡

𝒙𝒙(
𝑡𝑡) ……

𝑡𝑡

𝑆𝑆(
𝒙𝒙)

…

𝛾𝛾
statistic

data
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The Typical Solutions 

𝑡𝑡

𝒙𝒙(
𝑡𝑡) ……

𝑡𝑡

𝑆𝑆(
𝒙𝒙)

…

𝛾𝛾
statistic

decision rule: 𝑆𝑆 𝒙𝒙 > 𝛾𝛾

data
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The Typical Solutions

By changing 𝛾𝛾 it is possible to achieve different detection performance 
(e.g. more true positive, more false positives)

𝑡𝑡

𝑆𝑆(
𝒙𝒙)

…

𝛾𝛾
statistic

decision rule: 𝑆𝑆 𝒙𝒙 > 𝛾𝛾
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The Typical Solutions

By changing 𝛾𝛾 it is possible to achieve different detection performance 
(e.g. more true positive, more false positives)

𝑡𝑡

𝑆𝑆(
𝒙𝒙)

…

𝛾𝛾
statistic

decision rule: 𝑆𝑆 𝒙𝒙 > 𝛾𝛾
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Statistics and Decision Rules 

Detection rules often rely on thresholds, namely 𝛾𝛾
In both these cases: It is of primary concern to control false positives, 
namely “how often” a change/anomaly is detected within stationary data.
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Controlling False Positives in Change Detection

In change-detection false positives are controlled by the Average Run 
Length 𝐴𝐴𝐴𝐴𝐿𝐿0 :

𝐴𝐴𝐴𝐴𝐿𝐿0 = E𝒙𝒙 𝜏̂𝜏 𝒙𝒙 ∼ 𝜙𝜙0]
Thus denotes the expected time between false positive detections
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Controlling False Positives in Change Detection

A good change-detection test is accompanied with a table/rule/formula 
that defines, for a target value of 𝐴𝐴𝐴𝐴𝐿𝐿0, the corresponding threshold 𝛾𝛾

𝛾𝛾 = 𝛾𝛾(𝐴𝐴𝐴𝐴𝐿𝐿0)
Watch out: thresholds depend on the statistics 𝑆𝑆, which in turn might 
depend on the distribution of the monitored data 𝜙𝜙𝑥𝑥0

Threshold computation for change-detection algorithm is more 
complicated than in anomaly-detection algorithm since bootstrap 
procedure has to consider temporal evolution of the analysis
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Learning in NSE by Monitoring
the Classification Error

…when 𝜙𝜙0 and 𝜙𝜙1 are unknown
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Monitoring the Classification Error

The simplest approach consist in monitoring the classification error 
(or similar performance measure)

Model
Feedback 𝑦𝑦𝜏𝜏

Input 𝑥𝑥𝑡𝑡

Environment

Prediction �𝑦𝑦𝑡𝑡
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Monitoring the Classification Error

The simplest approach consist in monitoring the classification error 
(or similar performance measure)

Prediction �𝑦𝑦𝑡𝑡

Model
Feedback 𝑦𝑦𝜏𝜏

Input 𝑥𝑥𝑡𝑡

Prediction �𝑦𝑦𝜏𝜏
Feedback 𝑦𝑦𝜏𝜏

Change 
Detection

Test

Adaptation

Environment
When a 
feedback

 𝑦𝑦𝜏𝜏 is 
provided
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Monitoring the Classification Error

The simplest approach consist in monitoring the classification error 
(or similar performance measure)

Pro:
• The classification error is the most straightforward figure of merit to monitor

• Changes prompts adaptation only when performance are affected

Cons:
• CD detection from supervised samples only

Model
Feedback 𝑦𝑦𝜏𝜏

Input 𝑥𝑥𝑡𝑡

Prediction �𝑦𝑦𝜏𝜏
Feedback 𝑦𝑦𝜏𝜏

Change 
Detection

Test

Adaptation

Environment
When a 
feedback

 𝑦𝑦𝜏𝜏 is 
provided

Prediction �𝑦𝑦𝑡𝑡
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Monitoring the Classification Error

The element-wise classification error 𝑒𝑒𝑡𝑡 follows a Bernoulli pdf
𝑒𝑒𝑡𝑡 ∼ Bernulli(𝑝𝑝0)

Which is a discrete probability distribution of a random variable which:

• Takes the value 1 with probability 𝑝𝑝0 
• Takes the value 0 with probability 1 − 𝑝𝑝0  
Where 𝜋𝜋0 is the expected classification error when 𝒙𝒙 ∼ 𝜙𝜙0 

expect Bernulli(𝑝𝑝0) = 𝑝𝑝0, variance Bernulli(𝑝𝑝0) = 𝑝𝑝0(1 − 𝑝𝑝0)
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Monitoring the Classification Error

The sum of errors 𝑒𝑒𝑡𝑡 in a window of 𝝂𝝂 samples follows a Binomial pdf

�
𝑡𝑡=𝑇𝑇−𝜈𝜈

𝑇𝑇

𝑒𝑒𝑡𝑡 ∼ ℬ 𝑝𝑝0, 𝜈𝜈

which is also a discrete distribution 

expect ℬ 𝑝𝑝0, 𝜈𝜈 = 𝜈𝜈𝑝𝑝0, variance ℬ 𝑝𝑝0, 𝜈𝜈 = 𝑝𝑝0
Gaussian approximation holds when 𝜈𝜈 is sufficiently large

1
𝜈𝜈

 ℬ 𝑝𝑝0, 𝜈𝜈 ≈ 𝒩𝒩 𝑝𝑝0,
𝑝𝑝0
𝜈𝜈

The average classification error over disjoint windows of 𝜈𝜈 samples 𝑝𝑝𝑡𝑡 = 1
𝜈𝜈
∑𝑡𝑡=𝑇𝑇−𝜈𝜈𝑇𝑇 𝑒𝑒𝑡𝑡 

can be approximated as a sequence of i.i.d. realization of a Gaussian distributed 
random value. Overlaps among the windows drop the independence.
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Monitoring the Classification Error: DDM

Basic idea behind Drift Detection Method (DDM):

J. Gama, P. Medas, G. Castillo, and P. Rodrigues. “Learning with Drift Detection” SBIA. Springer, Berlin, 286–295, 2004
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Monitoring the Classification Error: DDM

Basic idea behind Drift Detection Method (DDM): 
• Detect concept drift as an outlier in the classification error
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Monitoring the Classification Error: DDM

Basic idea behind Drift Detection Method (DDM): 
• Detect concept drift as an outlier in the classification error

• In stationary conditions error decreases, look for outliers in the right tail 
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Monitoring the Classification Error: DDM

1. During monitoring, steadily compute 𝑝𝑝𝑖𝑖 and 𝜎𝜎𝑖𝑖 = 𝑝𝑝𝑖𝑖 1 −𝑝𝑝𝑖𝑖
𝑖𝑖

𝑡𝑡

𝑥𝑥

𝑡𝑡

𝑝𝑝𝑖𝑖 + 𝜎𝜎𝑖𝑖

These are the 
sample estimates
of the mean and 

standard deviation
of the Gaussian of 
the average error
over the first 𝑖𝑖

samples
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Monitoring the Classification Error: DDM

1. During monitoring, steadily compute 𝑝𝑝𝑖𝑖 and 𝜎𝜎𝑖𝑖 = 𝑝𝑝𝑖𝑖 1 −𝑝𝑝𝑖𝑖
𝑖𝑖

2. Let 𝑝𝑝min be the minimum error before 𝑖𝑖 and 𝜎𝜎min = 𝑝𝑝min 1 −𝑝𝑝min
𝑖𝑖

𝑡𝑡

𝑝𝑝𝑖𝑖 + 𝜎𝜎𝑖𝑖

𝑝𝑝min + 𝜎𝜎min
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Monitoring the Classification Error: DDM

1. During monitoring, steadily compute 𝑝𝑝𝑖𝑖 and 𝜎𝜎𝑖𝑖 = 𝑝𝑝𝑖𝑖 1 −𝑝𝑝𝑖𝑖
𝑖𝑖

2. Let 𝑝𝑝min be the minimum error before 𝑖𝑖 and 𝜎𝜎min = 𝑝𝑝min 1 −𝑝𝑝min
𝑖𝑖

3. Detect concept drift when 𝑝𝑝𝑖𝑖 + 𝜎𝜎𝑖𝑖 >  𝑝𝑝min + 3 ∗ 𝜎𝜎min

𝑝𝑝𝑖𝑖 + 𝜎𝜎𝑖𝑖

𝑝𝑝min + 𝜎𝜎min

𝑡𝑡

This is an heuristic
decision rule, that
does not guarantee 
control over FPR

𝑝𝑝min + 3σmin
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Adaptation Heuristic in DDM

Adaptation
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Monitoring the Classification Error: DDM

1. During monitoring, steadily compute 𝑝𝑝𝑖𝑖 and 𝜎𝜎𝑖𝑖 = 𝑝𝑝𝑖𝑖 1 −𝑝𝑝𝑖𝑖
𝑖𝑖

2. Let 𝑝𝑝min be the minimum error before 𝑖𝑖 and 𝜎𝜎min = 𝑝𝑝min 1 −𝑝𝑝min
𝑖𝑖

3. Raise a “warning” when 𝑝𝑝𝑖𝑖 + 𝜎𝜎𝑖𝑖 >  𝑝𝑝min + 2 ∗ 𝜎𝜎min
4. Detect concept drift when 𝑝𝑝𝑖𝑖 + 𝜎𝜎𝑖𝑖 >  𝑝𝑝min + 3 ∗ 𝜎𝜎min

𝑝𝑝𝑖𝑖 + 𝜎𝜎𝑖𝑖

𝑝𝑝min + 𝜎𝜎min

𝑝𝑝min + 3σmin
𝑝𝑝min + 2σmin

𝑡𝑡
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Post-detection Adaptation: DDM
Use supervised samples in between warning and drift alert to reconfigure the classifier

 

𝑡𝑡

𝑥𝑥

𝑝𝑝𝑖𝑖 + 𝜎𝜎𝑖𝑖

𝑝𝑝min + 𝜎𝜎min

𝑝𝑝𝑖𝑖 + 3𝜎𝜎𝑖𝑖
𝑝𝑝𝑖𝑖 + 2𝜎𝜎𝑖𝑖

𝑡𝑡

𝑇𝑇𝑇𝑇
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Post-detection Adaptation: DDM
Use supervised samples in between warning and drift alert to reconfigure the classifier

Warning alerts non that are not followed by a drift alert are discarded and considered 
false-positive detections

 

𝑝𝑝min + 𝜎𝜎min

𝑝𝑝𝑖𝑖 + 3𝜎𝜎𝑖𝑖
𝑝𝑝𝑖𝑖 + 2𝜎𝜎𝑖𝑖

𝑡𝑡

𝑝𝑝𝑖𝑖 + 𝜎𝜎𝑖𝑖
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Other Monitoring Solutions for the 
Classification Error

Adaptation
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Monitoring the Classification Error: EDDM

Early Drift Detection Methods (EDDM) performs similarly but monitors the 
average distance between misclassified samples

• Average distance between two mis-classifier samples is expected to decrease 
under CD

• They aim at detecting gradual drifts

M. Baena-García, J. Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavaldá, R. Morales-Bueno. “Early drift detection method“ In Fourth 
International Workshop on Knowledge Discovery from Data Streams (2006) 
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Monitoring the Classification Error: EWMA

Use the Exponential Weighted Moving Average (EWMA) as tests statistic 
EWMA statistic, which is a convex combination of current error and 
average over the previous ones

𝑍𝑍𝑡𝑡 = 1 − 𝜆𝜆 𝑍𝑍𝑡𝑡−1 + 𝜆𝜆 𝑒𝑒𝑡𝑡 ,  𝑍𝑍0 = 0
where 𝜆𝜆 ∈ 0,1  is a configuration parameter, 𝑒𝑒𝑡𝑡 ∈ 0,1

G. J. Ross, N. M. Adams, D. K. Tasoulis, and D. J. Hand "Exponentially Weighted Moving Average Charts for Detecting Concept Drift"  
Pattern Recogn. Lett. 33, 2 (Jan. 2012), 191–198 2012
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Monitoring the Classification Error: EWMA

Use the Exponential Weighted Moving Average (EWMA) as tests statistic 
EWMA statistic, which is a convex combination of current error and 
average over the previous ones

𝑍𝑍𝑡𝑡 = 1 − 𝜆𝜆 𝑍𝑍𝑡𝑡−1 + 𝜆𝜆 𝑒𝑒𝑡𝑡 ,  𝑍𝑍0 = 0
where 𝜆𝜆 ∈ 0,1  is a configuration parameter, 𝑒𝑒𝑡𝑡 ∈ 0,1
Now, if you expand the expression

𝑍𝑍𝑡𝑡 = 1 − 𝜆𝜆 1 − 𝜆𝜆 𝑍𝑍𝑡𝑡−2 + 𝜆𝜆 𝑒𝑒𝑡𝑡−1 + 𝜆𝜆 𝑒𝑒𝑡𝑡 , 
…

𝑍𝑍𝑡𝑡 = � 1 − 𝜆𝜆 𝑡𝑡−𝑖𝑖𝜆𝜆𝑒𝑒𝑖𝑖

G. J. Ross, N. M. Adams, D. K. Tasoulis, and D. J. Hand "Exponentially Weighted Moving Average Charts for Detecting Concept Drift"  
Pattern Recogn. Lett. 33, 2 (Jan. 2012), 191–198 2012
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Monitoring the Classification Error: EWMA

Use the Exponential Weighted Moving Average (EWMA) as tests statistic 
EWMA statistic, which is a convex combination of current error and 
average over the previous ones

𝑍𝑍𝑡𝑡 = 1 − 𝜆𝜆 𝑍𝑍𝑡𝑡−1 + 𝜆𝜆 𝑒𝑒𝑡𝑡 ,  𝑍𝑍0 = 0
where 𝜆𝜆 ∈ 0,1  is a configuration parameter, 𝑒𝑒𝑡𝑡 ∈ 0,1
Now, if you expand the expression

𝑍𝑍𝑡𝑡 = 1 − 𝜆𝜆 1 − 𝜆𝜆 𝑍𝑍𝑡𝑡−2 + 𝜆𝜆 𝑒𝑒𝑡𝑡−1 + 𝜆𝜆 𝑒𝑒𝑡𝑡 , 
…

𝑍𝑍𝑡𝑡 = � 1 − 𝜆𝜆 𝑡𝑡−𝑖𝑖𝜆𝜆𝑒𝑒𝑖𝑖

G. J. Ross, N. M. Adams, D. K. Tasoulis, and D. J. Hand "Exponentially Weighted Moving Average Charts for Detecting Concept Drift"  
Pattern Recogn. Lett. 33, 2 (Jan. 2012), 191–198 2012

In stationary conditions 𝑍𝑍𝑡𝑡 is an estimate of 
𝑝𝑝0, since all 𝑒𝑒𝑖𝑖 have the same expectation. 

Since 𝜆𝜆 ∈ 0,1 , then
1 − 𝜆𝜆 𝑡𝑡−𝑖𝑖𝜆𝜆 decreases as 𝑖𝑖 increases, thus

recent samples have larger weights
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Monitoring the Classification Error: EWMA

Any change 𝜙𝜙0 → 𝜙𝜙1 introduces a bias in 𝑍𝑍𝑡𝑡, as it includes values in the 
statistic that are generated with expectation 𝑝𝑝1 > 𝑝𝑝0, the classification 
error after the change.

The Exponential Weighted Moving Average expression 

𝑍𝑍𝑡𝑡 = � 1 − 𝜆𝜆 𝑡𝑡−𝑖𝑖𝜆𝜆𝑒𝑒𝑖𝑖

Assigns much smaller weights to old samples 𝑒𝑒𝑖𝑖 𝑖𝑖 ≪ 𝑡𝑡, and is mostly 
influenced by recent classification errors 𝑒𝑒𝑖𝑖 , 𝑖𝑖 ≈ 𝑡𝑡
The parameter 𝜆𝜆 (typically set in [0.1, 0.3]) regulates how fast the 
contribution of past observations decay and how quickly 𝑍𝑍𝑡𝑡 converges 
toward 𝑝𝑝1 after the change

G. J. Ross, N. M. Adams, D. K. Tasoulis, and D. J. Hand "Exponentially Weighted Moving Average Charts for Detecting Concept Drift"  
Pattern Recogn. Lett. 33, 2 (Jan. 2012), 191–198 2012
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Monitoring the Classification Error: EWMA

A natural choice for a decision rule in our settings consists in:
𝑍𝑍𝑡𝑡 > 𝑝𝑝0 + 𝐿𝐿 𝜎𝜎𝑍𝑍𝑡𝑡

Where 𝜎𝜎𝑍𝑍𝑡𝑡 can corresponds to 

𝜎𝜎𝑍𝑍𝑡𝑡 = std 𝑍𝑍𝑡𝑡 = 𝜎𝜎0
𝜆𝜆

2 − 𝜆𝜆
1 − 1 − 𝜆𝜆 2𝑡𝑡

being 𝜎𝜎0 the standard deviation of the classification error. 

This expression holds for a general EWMA monitoring scheme. 

G. J. Ross, N. M. Adams, D. K. Tasoulis, and D. J. Hand "Exponentially Weighted Moving Average Charts for Detecting Concept Drift"  
Pattern Recogn. Lett. 33, 2 (Jan. 2012), 191–198 2012
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Unfortunately…

Before adopting the EWMA detection rule in practice
𝑍𝑍𝑡𝑡 > 𝑝𝑝0 + 𝐿𝐿 𝜎𝜎𝑍𝑍𝑡𝑡

There are quite a few things to set

1. How to estimate 𝑝𝑝0 and 𝜎𝜎0? These are typically unknown, while the 
monitoring scheme assume these are given!

2. How to set 𝐿𝐿 to guarantee a certain 𝐴𝐴𝐴𝐴𝐿𝐿0?
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EWMA for Bernoulli Random Variables
The classifier error before the change has a constant expectation 𝑝𝑝0 with the 
standard deviation 𝜎𝜎0 = 𝑝𝑝0(1 − 𝑝𝑝0) 
Replace 𝑝𝑝0 with its BLUE (Best Linear Unbiased Estimator) 𝑝̂𝑝0,𝑡𝑡 at time 𝑡𝑡 

𝑝̂𝑝0,𝑡𝑡 =
𝑡𝑡

𝑡𝑡 + 1
𝑝̂𝑝0,𝑡𝑡−1 +

1
𝑡𝑡 + 1

𝑒𝑒𝑡𝑡 =
1
𝑡𝑡
�𝑒𝑒𝑖𝑖

Compute the corresponding variance of 𝑝̂𝑝0,𝑡𝑡 from the formula for Bernoulli RV

�𝜎𝜎0,𝑡𝑡
2 = 𝑝̂𝑝0,𝑡𝑡(1 − 𝑝̂𝑝0,𝑡𝑡)

plug this in the variance of the EWMA statistic (which indeed scales �𝜎𝜎0,𝑡𝑡)

�𝜎𝜎𝑍𝑍𝑡𝑡 = �𝜎𝜎0,𝑡𝑡
𝜆𝜆

2 − 𝜆𝜆
1 − 1 − 𝜆𝜆 2𝑡𝑡
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Stopping Rule for EWMA for Bernoulli

When replacing the true values 𝑝𝑝0 and 𝜎𝜎0 by their estimates in the control chart 
we have that

𝑍𝑍𝑡𝑡 > 𝑝̂𝑝0,𝑡𝑡 + 𝐿𝐿 �𝜎𝜎𝑍𝑍𝑡𝑡
To preserve a target 𝐴𝐴𝐴𝐴𝐿𝐿0 the control limit becomes time-dependent

𝑍𝑍𝑡𝑡 > 𝑝̂𝑝0,𝑡𝑡 + 𝐿𝐿𝑡𝑡 �𝜎𝜎𝑍𝑍𝑡𝑡
Defining the sequence 𝐿𝐿𝑡𝑡 𝑡𝑡 is very complicated as these depend on 𝑝̂𝑝0,𝑡𝑡.

A «simpler» problem to address via MonteCarlo simulation is, given a value 𝐿𝐿 
and 𝑝𝑝0, to estimate the corresponding 𝐴𝐴𝐴𝐴𝐿𝐿0

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐿𝐿,𝑝𝑝0 → 𝐴𝐴𝐴𝐴𝐿𝐿0
It is also possible «to revert» this by setting up a suitable Montecarlo scheme 
such that, provided 𝐴𝐴𝐴𝐴𝐿𝐿0 and 𝑝𝑝0 one estimates 𝐿𝐿, as described in the paper.

Sparks, R.S., 2000. CUSUM charts for signalling varying location shifts. J. Qual. Technol. 32.
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Stopping Rule for EWMA for Bernoulli

So, it is possible to estimate by Montecarlo simulations a function
𝑓𝑓: 𝑃𝑃0,𝐴𝐴0 → 𝐿𝐿

that returns 𝐿𝐿 yielding 𝐴𝐴𝐴𝐴𝐿𝐿0 = 𝛼𝛼0 over Bernoulli streams having 𝑝𝑝0 = 𝑃𝑃0.
This can be done by polynomial fit in 𝑝𝑝0 over the results of MonteCarlo 
simulations, and yields a function to be invoked at each iteration of the 
algorithm since �𝒑𝒑𝟎𝟎,𝒕𝒕 does change

Ross, Adams, Tasoulis, Hand "Exponentially Weighted Moving Average Charts for Detecting Concept Drift"  Pattern Recogn. Lett. 33, 2012

𝐿𝐿
𝑝𝑝 0

,𝑡𝑡
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Stopping Rule for EWMA for Bernoulli

Very Important: thresholds does not depend on 𝝓𝝓𝟎𝟎

• The distribution of EWMA statistic does not depend on 𝜙𝜙0, as it 
monitors Bernoulli realizations that depends exclusively on 𝑝𝑝0 -> 

• The Montecarlo simulation has been done considering the above 
estimator of 𝑝̂𝑝0,𝑡𝑡, use always this estimator

• Thresholds depend on the monitoring parameters 𝐴𝐴𝐴𝐴𝐿𝐿0, 𝜆𝜆 

Ross, Adams, Tasoulis, Hand "Exponentially Weighted Moving Average Charts for Detecting Concept Drift"  Pattern Recogn. Lett. 33, 2012

𝐿𝐿
𝑝𝑝 0

,𝑡𝑡
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Adaptation in EWDMA

Like DDM, classifier reconfiguration is performed by monitoring 𝑍𝑍𝑡𝑡 also at 
a warning level 

𝑍𝑍𝑡𝑡 > 𝑝𝑝0,𝑡𝑡 + 0.5 𝐿𝐿 𝑝̂𝑝0,𝑡𝑡 𝜎𝜎𝑡𝑡

Once CD is detected, the first sample raising a warning is used to isolate 
samples from the new distribution and retrain the classifier.

This is a heuristic criteria for defining a classifier update.

Ross, Adams, Tasoulis, Hand "Exponentially Weighted Moving Average Charts for Detecting Concept Drift"  Pattern Recogn. Lett. 33, 2012
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EWMA Monitoring for concept drift

Ross, Adams, Tasoulis, Hand "Exponentially Weighted Moving Average Charts for Detecting Concept Drift"  Pattern Recogn. Lett. 33, 2012

𝐿𝐿𝑡𝑡 = 𝑓𝑓 𝑝̂𝑝0,𝑡𝑡 ,𝐴𝐴𝐴𝐴𝐿𝐿0  in the paper they refer to 𝐿𝐿𝑡𝑡 
since it is a function of 𝑝̂𝑝0,𝑡𝑡, i.e. 𝐿𝐿 𝑝̂𝑝0,𝑡𝑡 . The 
function for 𝐿𝐿 does not depend on the time.
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Monitoring the Input 
Distribution
… when 𝜙𝜙0 and 𝜙𝜙1 are both unknown

Change 
Detection 

Test
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Monitoring Input Distribution

Pros:
• Monitoring 𝜙𝜙 𝒙𝒙  does not require supervised samples

• Enables the detection of both real and virtual concept drift

• Detection before prediction

Cons:
• CD that does not affect 𝜙𝜙(𝒙𝒙) are not perceivable (e.g. classes’ swap)

• In principle, changes not affecting 𝜙𝜙 𝑦𝑦 𝒙𝒙  do not require reconfiguration.

• Difficult to design sequential detection tools when streams are multivariate and 
drawn from an unknown distribution

Prediction �𝑦𝑦𝑡𝑡
ModelEnvironment

Input 𝑥𝑥𝑡𝑡 Change 
Detection

Test
Adaptation
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Monitoring Input Distribution 
by Comparing Windows
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The Motivating Idea

Detect CD at time 𝑡𝑡 by comparing two different windows.
In practice, one computes:

𝒮𝒮(𝑊𝑊0,𝑊𝑊𝑡𝑡)
• 𝑊𝑊0: reference window of past (stationary) data

• 𝑊𝑊𝑡𝑡: sliding window of recent (possibly changed) data

• 𝒮𝒮 is a suitable statistic over the classification error

𝑥𝑥

𝑊𝑊0 𝑊𝑊𝑡𝑡
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Window Comparison: Major Approaches

Hypothesis testing:

• Select 𝑊𝑊0, a reference window from the initial concept: 𝑊𝑊0 ⊂ 𝑇𝑇𝑇𝑇
• As data arrives, crop a window 𝑊𝑊𝑡𝑡 from the latest samples

• Detect concept drift by comparing an appropriate test statistic with 𝛾𝛾
𝒮𝒮 𝑊𝑊0,𝑊𝑊𝑡𝑡 ≶ 𝛾𝛾

 

𝑥𝑥

𝑊𝑊0 𝑊𝑊𝑡𝑡
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Window Comparison: Major Approaches

Hypothesis testing:

• Select 𝑊𝑊0, a reference window from the initial concept: 𝑊𝑊0 ⊂ 𝑇𝑇𝑇𝑇
• As data arrives, crop a window 𝑊𝑊𝑡𝑡 from the latest samples

• Detect concept drift by comparing an appropriate test statistic with 𝛾𝛾
𝒯𝒯 𝑊𝑊0,𝑊𝑊𝑡𝑡 ≶ 𝛾𝛾

 

𝑥𝑥

𝑊𝑊0 𝑊𝑊𝑡𝑡

Tackle the change-detection problem as anomaly detection 
on batches cropped from the datastream

Example of statistics: t-test (Hotelling t-square) statistics 
for detecting shifts in the batch expectation for scalar 

(multivariate) streams, respectively
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Window Comparison: Major Approaches

ADWIN: Compare the averages of scalar inputs over two adjacent windows 
having increasing size. 

Whenever two “large enough” subwindows of the stream exhibit “distinct 
enough” averages, detect a change and drop the old samples in 𝑊𝑊.

ADWIN: ADAPTIVE WINDOWING 
• Initialize Window 𝑊𝑊 
• for each 𝑡𝑡 >  0 do
     𝑊𝑊 ←  𝑊𝑊 ∪  {𝑥𝑥𝑡𝑡} (add 𝑥𝑥𝑡𝑡 to the head of 𝑊𝑊) 

• repeat Drop elements from the tail of 𝑊𝑊 
     until |𝜇𝜇0  − 𝜇𝜇1 |  < 𝜖𝜖 holds  for every split 
of 𝑊𝑊 into 𝑊𝑊 =  [𝑊𝑊𝑊,𝑊𝑊𝑊]

• Output µ𝑊𝑊

𝑊𝑊 =  101010110111111

Bifet A., Gavaldà R. "Learning from time-changing data with adaptive windowing" SIAM Int. Conference on Data Mining 2007
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Window Comparison: Major Approaches

ADWIN: Compare the averages of scalar inputs over two adjacent windows 
having increasing size. 

Whenever two “large enough” subwindows of the stream exhibit “distinct 
enough” averages, detect a change and drop the old samples in 𝑊𝑊.

𝑊𝑊 =  101010110111111
𝑊𝑊0 =  1, 𝑊𝑊1 = 01010110111111

𝜇𝜇0 𝜇𝜇1

ADWIN: ADAPTIVE WINDOWING 
• Initialize Window 𝑊𝑊 
• for each 𝑡𝑡 >  0 do
     𝑊𝑊 ←  𝑊𝑊 ∪  {𝑥𝑥𝑡𝑡} (add 𝑥𝑥𝑡𝑡 to the head of 𝑊𝑊) 

• repeat Drop elements from the tail of 𝑊𝑊 
     until |𝜇𝜇0  − 𝜇𝜇1 |  < 𝜖𝜖 holds  for every split 
of 𝑊𝑊 into 𝑊𝑊 =  [𝑊𝑊𝑊,𝑊𝑊𝑊]

• Output µ𝑊𝑊

Bifet A., Gavaldà R. "Learning from time-changing data with adaptive windowing" SIAM Int. Conference on Data Mining 2007
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Window Comparison: Major Approaches

ADWIN: Compare the averages of scalar inputs over two adjacent windows 
having increasing size. 

Whenever two “large enough” subwindows of the stream exhibit “distinct 
enough” averages, detect a change and drop the old samples in 𝑊𝑊.

Bifet A., Gavaldà R. "Learning from time-changing data with adaptive windowing" SIAM Int. Conference on Data Mining 2007

𝑊𝑊 =  101010110111111
𝑊𝑊0 =  1, 𝑊𝑊1 = 01010110111111
𝑊𝑊0 =  10, 𝑊𝑊1 = 1010110111111

…
𝑊𝑊0 =  101010110, 𝑊𝑊1 = 111111

|𝜇𝜇0  − 𝜇𝜇1 | ≥ 𝜖𝜖 

ADWIN: ADAPTIVE WINDOWING 
• Initialize Window 𝑊𝑊 
• for each 𝑡𝑡 >  0 do
     𝑊𝑊 ←  𝑊𝑊 ∪  {𝑥𝑥𝑡𝑡} (add 𝑥𝑥𝑡𝑡 to the head of 𝑊𝑊) 

• repeat Drop elements from the tail of 𝑊𝑊 
     until |𝜇𝜇0  − 𝜇𝜇1 |  < 𝜖𝜖 holds  for every split 
of 𝑊𝑊 into 𝑊𝑊 =  [𝑊𝑊𝑊,𝑊𝑊𝑊]

• Output µ𝑊𝑊 ADWIN2: efficient variant reducing computation and memory footprint 
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Window Comparison: Major Approaches
1. Hypothesis testing

2. ADWIN: Compare the averages of scalar inputs over two adjacent windows

3. Compute empirical distributions of raw data over 𝑊𝑊0 and 𝑊𝑊𝑡𝑡 and compare

• The Kullback-Leibler divergence

T. Dasu, Sh. Krishnan, S. Venkatasubramanian, and K. Yi. "An Information-Theoretic Approach to Detecting Changes in Multi-
Dimensional Data Streams". In Proc. of the 38th Symp. on the Interface of Statistics, Computing Science, and Applications, 2006
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Window Comparison: Major Approaches
1. Hypothesis testing

2. ADWIN: Compare the averages of scalar inputs over two adjacent windows

3. Compute empirical distributions of raw data over 𝑊𝑊0 and 𝑊𝑊𝑡𝑡 and compare

• The Kullback-Leibler divergence

• The Hellinger distance 

G. Ditzler and R. Polikar, “Hellinger distance based drift detection for nonstationary environments” in Computational Intelligence 
in Dynamic and Uncertain Environments (CIDUE), 2011 IEEE Symposium on, April 2011, pp. 41–48.
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Window Comparison: Major Approaches
1. Hypothesis testing

2. ADWIN: Compare the averages of scalar inputs over two adjacent windows

3. Compute empirical distributions of raw data over 𝑊𝑊0 and 𝑊𝑊𝑡𝑡 and compare

• The Kullback-Leibler divergence

• The Hellinger distance 

• The density ratio over the two windows using kernel methods (to overcome 
curse of dimensionality problems when computing empirical distributions)

Kawahara, Y. and Sugiyama, M. "Sequential change-point detection based on direct density-ratio estimation". Statistical Analysis 
and Data Mining, 5(2):114–127, 2012.
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Other Schemes for Monitoring 
the Input Distribution
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Change Detection Approaches

• The Change-Point Formulation
• Parametric

• Non-parametric

• Change-Detection by Monitoring Features / the Log-likelihood

• Change-Detection by Histograms



Boracchi

Change Detection in Parametric Settings: CPM

Change-Point Methods (CPM) are sequential monitoring schemes that 
extend traditional parametric hypothesis tests.

Parametric settings: 𝜙𝜙0 and 𝜙𝜙1 are known up to their parameters (𝜃𝜃0 and 
𝜃𝜃1), thus the change 𝜙𝜙0 → 𝜙𝜙1 corresponds to a change 𝜃𝜃0 → 𝜃𝜃1
Non-Parametric settings: Both 𝜙𝜙0 and 𝜙𝜙1 are unknown, the change 𝜙𝜙0 →
𝜙𝜙1 is completely unpredictable

Pro: CPMs do not require training samples
Pro: They provide fixed 𝐴𝐴𝐴𝐴𝐿𝐿0 
Con: These nonparametric statistics are not meant for multivariate data.

Hawkins, D. M., and Zamba, K. D. “Statistical process control for shifts in mean or variance using a changepoint formulation” Technometrics 2005

Ross, G. J. “Sequential change detection in the presence of unknown parameters”. Statistics and Computing, 24(6), 1017-1030, 2014
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Change Detection in Parametric settings: CPM

In Statistical Process Control, monitoring is divided in two phases:

• Offline / Phase I: Given a sequence {𝑥𝑥𝑡𝑡}, determine whether it contains 
a change point 𝜏𝜏 or not. This is “one-shot test”

• Online / Phase II: data arrive steadily, and decision has to be taken as 
data flows (online). 

We illustrate first the basic CPM scheme in offline monitoring, then we 
show how a Phase I mechanism can be iterated to perform online change 
detection (sequential monitoring).

Hawkins, D. M., and Zamba, K. D. “Statistical process control for shifts in mean or variance using a changepoint formulation” Technometrics 2005

Ross, G. J. “Sequential change detection in the presence of unknown parameters”. Statistics and Computing, 24(6), 1017-1030, 2014



BoracchiD. M. Hawkins, P. Qiu, and C. W. Kang, “The changepoint model for statistical process control,” Journal of Quality Technology, vol.  35, No. 4,  pp. 355–366, 2003.
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The Change Point Method (CPM)

Assume a sequence 𝑋𝑋 of 1000 points is given and we want 
to find the change point 𝜏𝜏 inside (offline analysis)

𝒙𝒙 𝑡𝑡 ∼ �𝜙𝜙0 𝑡𝑡 < 𝜏𝜏 
𝜙𝜙1 𝑡𝑡 ≥ 𝜏𝜏 

Assume we are given a statistic 𝒮𝒮𝑡𝑡 to compare two datasets 
𝐴𝐴𝑡𝑡 ,𝐵𝐵𝑡𝑡 ⊂ 𝑋𝑋 coming before and after 𝑡𝑡

𝑋𝑋
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The Change Point Method (CPM)

• Test a single point 𝑡𝑡 to be a change point

• Split the dataset in two sets 𝐴𝐴𝑡𝑡 ,𝐵𝐵𝑡𝑡 ⊂ 𝑋𝑋, namely samples «before» and 
«after» the putative change at 𝑡𝑡

• Compute a test statistic 𝒮𝒮𝑡𝑡 = 𝒮𝒮 𝐴𝐴𝑡𝑡 ,𝐵𝐵𝑡𝑡  to determine whether the two sets 
are from the same distribution (e.g. same mean)

• Repeat the procedure 𝑡𝑡 = 𝛿𝛿, … , 1000 − 𝛿𝛿 and store the value of the statistic

before after

𝑡𝑡

𝐴𝐴𝑡𝑡 𝐵𝐵𝑡𝑡
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The Change Point Method (CPM)

before after

𝑡𝑡

𝐴𝐴𝑡𝑡 𝐵𝐵𝑡𝑡

• Test a single point 𝑡𝑡 to be a change point

• Split the dataset in two sets 𝐴𝐴𝑡𝑡 ,𝐵𝐵𝑡𝑡 ⊂ 𝑋𝑋, namely samples «before» and 
«after» the putative change at 𝑡𝑡

• Compute a test statistic 𝒮𝒮𝑡𝑡 = 𝒮𝒮 𝐴𝐴𝑡𝑡 ,𝐵𝐵𝑡𝑡  to determine whether the two sets 
are from the same distribution (e.g. same mean)

• Repeat the procedure 𝑡𝑡 = 𝛿𝛿, … , 1000 − 𝛿𝛿 and store the value of the statistic
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The Change Point Method (CPM)

before after

𝑡𝑡

𝐴𝐴𝑡𝑡 𝐵𝐵𝑡𝑡

• Test a single point 𝑡𝑡 to be a change point

• Split the dataset in two sets 𝐴𝐴𝑡𝑡 ,𝐵𝐵𝑡𝑡 ⊂ 𝑋𝑋, namely samples «before» and 
«after» the putative change at 𝑡𝑡

• Compute a test statistic 𝒮𝒮𝑡𝑡 = 𝒮𝒮 𝐴𝐴𝑡𝑡 ,𝐵𝐵𝑡𝑡  to determine whether the two sets 
are from the same distribution (e.g. same mean)

• Repeat the procedure 𝑡𝑡 = 𝛿𝛿, … , 1000 − 𝛿𝛿 and store the value of the statistic
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The Change Point Method (CPM)

before after

𝑡𝑡

𝐴𝐴𝑡𝑡 𝐵𝐵𝑡𝑡

• Test a single point 𝑡𝑡 to be a change point

• Split the dataset in two sets 𝐴𝐴𝑡𝑡 ,𝐵𝐵𝑡𝑡 ⊂ 𝑋𝑋, namely samples «before» and 
«after» the putative change at 𝑡𝑡

• Compute a test statistic 𝒮𝒮𝑡𝑡 = 𝒮𝒮 𝐴𝐴𝑡𝑡 ,𝐵𝐵𝑡𝑡  to determine whether the two sets 
are from the same distribution (e.g. same mean)

• Repeat the procedure 𝑡𝑡 = 𝛿𝛿, … , 1000 − 𝛿𝛿 and store the value of the statistic
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The Change Point Method (CPM)

before after

𝑡𝑡

𝑡𝑡

𝒮𝒮𝑡𝑡

𝐴𝐴𝑡𝑡 𝐵𝐵𝑡𝑡
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The Change Point Method (CPM)

The point where the statistic achieves its maximum is the most likely 
position of the change-point

As in hypothesis testing, it possible to set a threshold ℎ1000,𝛼𝛼 for 
𝒮𝒮max,1000 by setting to 𝛼𝛼 the probability of type I errors.

The CPM framework can be extended to online monitoring, and in this 
case it is possible to control the 𝐴𝐴𝐴𝐴𝐿𝐿0

𝒮𝒮max,1000

ℎ1000,𝛼𝛼
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The CPM Formulation

Phase I (offline): test all the possible splits ∀ 𝑡𝑡 ∈ [1,𝑁𝑁], being 𝑁𝑁 = #𝑋𝑋

• Define 𝐴𝐴𝑡𝑡 = 𝑥𝑥 𝑢𝑢 , 0 ≤ 𝑢𝑢 < 𝑡𝑡  and 𝐵𝐵𝑡𝑡 = 𝑥𝑥 𝑢𝑢 , 𝑡𝑡 ≤ 𝑢𝑢 ≤ 𝑁𝑁
• Compute the test statistic

𝒮𝒮𝑡𝑡 = 𝒮𝒮(𝐴𝐴𝑡𝑡 ,𝐵𝐵𝑡𝑡)
• We claim that 𝑥𝑥 𝑡𝑡 𝑡𝑡 contains a change point when

𝒮𝒮max,𝑁𝑁 = max
𝑡𝑡

(𝒮𝒮𝑡𝑡) > 𝛾𝛾𝑁𝑁

The threshold 𝛾𝛾𝑁𝑁 has to be set to control type I errors under 𝐻𝐻0 ∶ 𝑋𝑋 ∼ 𝜙𝜙0 
• The estimated change point location is

𝜏̂𝜏 = argmax
𝑡𝑡

(𝒮𝒮𝑡𝑡) > 𝛾𝛾𝑁𝑁
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Threshold Computation (Offline Analysis)

Finding a threshold 𝛾𝛾𝑁𝑁 guaranteeing control over type I error is not trivial, 
as this depends on the distribution of 𝓢𝓢𝒎𝒎𝒎𝒎𝒎𝒎,𝑵𝑵 under 𝑋𝑋 ∼ 𝜙𝜙0 
Rmk: the distribution of 𝒮𝒮max,𝑁𝑁 is very complicated due to the high 
correlation between the {𝓢𝓢𝒕𝒕,𝑵𝑵} statistics.

Other options:

• Bonferroni approximations for 𝒮𝒮𝑚𝑚𝑚𝑚𝑚𝑚,𝑁𝑁, but this is too loose an 
approximation: there are many comparisons (𝑁𝑁), one per sample

• Asymptotic bounds for 𝒮𝒮𝑚𝑚𝑚𝑚𝑚𝑚,𝑁𝑁, but these are only available for certain 
statistics 𝒮𝒮, thus wouldn’t apply to all distribution 𝜙𝜙0 (and would 
possibly yield a coarse approximation at early monitoring stages)

• Resort to MonteCarlo simulations
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Threshold Computation (offline analysis)

𝛾𝛾𝑁𝑁

𝛼𝛼𝛼 of the area

Therefore we resort to bootstrap. 

• Draw many (?!) sequences 𝑋𝑋 ∼ 𝜙𝜙0
• Compute the statistic 𝒮𝒮max,𝑁𝑁 for each sequence and store their values

• Set the threshold as the quantile of this empirical distribution

Empirical distribution of 𝑆𝑆max,𝑁𝑁
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Threshold Computation

𝛾𝛾𝑁𝑁

𝛼𝛼𝛼 of the area

Therefore we resort to bootstrap. 

• Draw many (?!) sequences 𝑋𝑋 ∼ 𝜙𝜙0
• Compute the statistic 𝒮𝒮max,𝑁𝑁 for each sequence and store their values

• Set the threshold as the quantile of this empirical distribution

The computed thresholds depends on many factors:
• The distribution of input data 𝜙𝜙0
• The length of the sequence 𝑁𝑁
• The target FPR 𝛼𝛼
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Threshold Computation

𝛾𝛾𝑁𝑁

𝛼𝛼𝛼 of the area

Therefore we resort to bootstrap. 

• Draw many (?!) sequences 𝑋𝑋 ∼ 𝜙𝜙0
• Compute the statistic 𝒮𝒮max,𝑁𝑁 for each sequence and store their values

• Set the threshold as the quantile of this empirical distribution

The computed thresholds depends on many factors:
• The distribution of input data 𝜙𝜙0
• The length of the sequence 𝑁𝑁
• The target FPR 𝛼𝛼

The same bootstrap procedure has to be repeated
for each 𝝓𝝓𝟎𝟎 (TR) and 𝑵𝑵



BoracchiG. J. Ross, D. K. Tasoulis, and N. M. Adams, “Nonparametric monitoring of data streams for changes in location and scale,”  Technometrics, vol. 53, no. 4, pp. 379–389, 2011.



BoracchiG. J. Ross, D. K. Tasoulis, and N. M. Adams, “Nonparametric monitoring of data streams for changes in location and scale,”  Technometrics, vol. 53, no. 4, pp. 379–389, 2011.
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CPM in non-parametric settings

Any statistics for HT could be used in both online and offline change-point
methods. A better option would be to adopt nonparametric statistics, like:

• Mann-Whitney, 

• Mood,

• Lepage, 

• Two sample Kolmogorov-Smirnov,

• Cramer von Mises,

which do not require any information about 𝜙𝜙0 or 𝜙𝜙1.
A relevant advantage: sequences for computing the threshold can be 
generated by an arbitrarily distribution 𝜓𝜓, as the test statistic 𝑆𝑆 does not 
depend on 𝜙𝜙0. Synthetic data generation rather than bootstrap

Ross, G. J., Tasoulis, D. K., Adams, N. M. "Nonparametric monitoring of data streams for changes in location and scale" Technometrics, 53(4), 379-389, 2012. 
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CPM in non-parametric settings

The (two samples) Kolmogorov Smirnov and Cramer Von Mises are very 
general test statistics, as they assess variations in the empirical 
distribution of data.

However, these "omnibus" tests have low power, and it is better to focus 
on statistics detecting specific types changes in 𝜙𝜙0

• Location Changes: i.e., 𝜙𝜙1 𝑥𝑥 = 𝜙𝜙0(𝑥𝑥 +  δ)
• Scale Changes: i.e., 𝜙𝜙1 𝑥𝑥 = 𝜙𝜙0(𝛿𝛿𝛿𝛿)

In practice it is very unlikely that 𝜙𝜙1and 𝜙𝜙0would differ while having the 
same expectation and variance.
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Nonparametric Statistics for Scale and Location

Most of nonparametric statistics ranks the observations

𝑟𝑟𝑟𝑟 𝑥𝑥 𝑖𝑖 = �
𝑖𝑖≠𝑗𝑗

𝐼𝐼(𝑥𝑥 𝑖𝑖 > 𝑥𝑥(𝑗𝑗))

The Mann-Whitney statitic to assess location changes between two sets

The Mood statistic to assess scale changes between two sets

Both Mann-Withney and Mood statistics:

• Can be used to compare two sets 𝐴𝐴,𝐵𝐵
• Are independent from 𝜙𝜙0 the distribution of the observations 𝑥𝑥(𝑡𝑡) 
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Mann-Whitney Statistic for two sets A and B
The idea

When 𝑁𝑁 i.i.d. samples are spread over two 
sets A and B, the expectation of the sum in 
in 𝐴𝐴 of ranks computed over 𝐴𝐴,𝐵𝐵 , should 
be like “the average rank” over [𝐴𝐴,𝐵𝐵]

𝐸𝐸 �
𝑥𝑥 𝑡𝑡 ∈𝐴𝐴

𝑟𝑟(𝑥𝑥(𝑡𝑡)) = #𝐴𝐴 ∗
#[𝐴𝐴,𝐵𝐵] + 1

2

The 𝑈𝑈 statistic measures how much the sum 
in 𝐴𝐴 of ranks over [𝐴𝐴,𝐵𝐵]

�
𝑥𝑥 𝑡𝑡 ∈𝐴𝐴

𝑟𝑟(𝑥𝑥(𝑡𝑡))

deviates from #𝐴𝐴 ∗ #[𝐴𝐴,𝐵𝐵]+1
2

m = length(A(:)); n = length(B(:)); 
N = m + n;

% row vector containing both dataset
D = [A(:); B(:)]';
% labels, 
L = [ones(1, m) , zeros(1, n)];
[~, indx] = sort(D);
V = L(indx);
xx =[1 : size(D, 2)]; % ranks
 
% U: Wilcoxon / Mann-Whitney statistic
U = xx * V';
 
%% compute normalization terms
mu = m * (N + 1) / 2;
sigma =  m * n * (N + 1)  / 12;
 
%% compute the normalized test statistic
U = abs(U - mu) / sqrt(sigma);
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Mann-Whitney Statistic for two sets A and B
The idea

When 𝑁𝑁 i.i.d. samples are spread over two 
sets A and B, the expectation of the sum in 
in 𝐴𝐴 of ranks computed over 𝐴𝐴,𝐵𝐵 , should 
be like “the average rank” over [𝐴𝐴,𝐵𝐵]

𝐸𝐸 �
𝑥𝑥 𝑡𝑡 ∈𝐴𝐴

𝑟𝑟(𝑥𝑥(𝑡𝑡)) = #𝐴𝐴 ∗
#[𝐴𝐴,𝐵𝐵] + 1

2

The 𝑈𝑈 statistic measures how much the sum 
in 𝐴𝐴 of ranks over [𝐴𝐴,𝐵𝐵]

�
𝑥𝑥 𝑡𝑡 ∈𝐴𝐴

𝑟𝑟(𝑥𝑥(𝑡𝑡))

deviates from #𝐴𝐴 ∗ #[𝐴𝐴,𝐵𝐵]+1
2

m = length(A(:)); n = length(B(:)); 
N = m + n;

% row vector containing both dataset
D = [A(:); B(:)]';
% labels, 
L = [ones(1, m) , zeros(1, n)];
[~, indx] = sort(D);
V = L(indx);
xx =[1 : size(D, 2)]; % ranks
 
% U: Wilcoxon / Mann-Whitney statistic
U = xx * V';
 
%% compute normalization terms
mu = m * (N + 1) / 2;
sigma =  m * n * (N + 1)  / 12;
 
%% compute the normalized test statistic
U = abs(U - mu) / sqrt(sigma);
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Mann-Whitney Statistic for two sets A and B
The idea

When 𝑁𝑁 i.i.d. samples are spread over two 
sets A and B, the expectation of the sum in 
in 𝐴𝐴 of ranks computed over 𝐴𝐴,𝐵𝐵 , should 
be like “the average rank” over [𝐴𝐴,𝐵𝐵]

𝐸𝐸 �
𝑥𝑥 𝑡𝑡 ∈𝐴𝐴

𝑟𝑟(𝑥𝑥(𝑡𝑡)) = #𝐴𝐴 ∗
#[𝐴𝐴,𝐵𝐵] + 1

2

The 𝑈𝑈 statistic measures how much the sum 
in 𝐴𝐴 of ranks over [𝐴𝐴,𝐵𝐵]

�
𝑥𝑥 𝑡𝑡 ∈𝐴𝐴

𝑟𝑟(𝑥𝑥(𝑡𝑡))

deviates from #𝐴𝐴 ∗ #[𝐴𝐴,𝐵𝐵]+1
2

m = length(A(:)); n = length(B(:)); 
N = m + n;

% row vector containing both dataset
D = [A(:); B(:)]';
% labels, 
L = [ones(1, m) , zeros(1, n)];
[~, indx] = sort(D);
V = L(indx);
xx =[1 : size(D, 2)]; % ranks
 
% U: Wilcoxon / Mann-Whitney statistic
U = xx * V';
 
%% compute normalization terms
mu = m * (N + 1) / 2;
sigma =  m * n * (N + 1)  / 12;
 
%% compute the normalized test statistic
U = abs(U - mu) / sqrt(sigma);

When 𝐴𝐴 ∼ 𝜙𝜙0 and 𝐵𝐵 ∼ 𝜙𝜙0 ⋅ −𝛿𝛿 , the ranks of 
elements in 𝐵𝐵 will be larger (𝛿𝛿 > 0) or smaller 

𝛿𝛿 < 0  than those in 𝐴𝐴
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Mood Statistic for two sets A and B

The idea

When 𝑁𝑁 i.i.d. samples are divided in 
two sets A and B, then

𝐸𝐸[𝑟𝑟 𝑥𝑥 𝑡𝑡 ) =
𝑁𝑁 + 1

2
the expected rank of each point under 
𝐻𝐻0 = “both sets are identically 
distributed” is (𝑁𝑁 + 1)/2
𝑀𝑀 measures the (squared) deviation of 
ranks of samples in 𝐴𝐴 from this
expectation

m = length(A(:)); n = length(B(:));
N = m + n;
 
% row vector containing both dataset
D = [A(:); B(:)]';

% compute the rank
[vs, vi] = sort(D);
[x, r] = sort(vi);
 
% Mood Statistic,
M = sum((r(1 : m) - (N + 1) / 2).^2);
 
% Expectation of Mood Stats 
mu = m * (N^2 - 1) / 12;
 
% Standard deviation of Mood Stats
sigma =  m*n*(N + 1)*(N - 2)* (N+2) / 180;
 
%% compute the normalized test statistic
M = abs((M - mu)) / sqrt(sigma);
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Mood Statistic for two sets A and B

The idea

When 𝑁𝑁 i.i.d. samples are divided in 
two sets A and B, then

𝐸𝐸[𝑟𝑟 𝑥𝑥 𝑡𝑡 ) =
𝑁𝑁 + 1

2
the expected rank of each point under 
𝐻𝐻0 = “both sets are identically 
distributed” is (𝑁𝑁 + 1)/2
𝑀𝑀 measures the (squared) deviation of 
ranks of samples in 𝐴𝐴 from this
expectation

m = length(A(:)); n = length(B(:));
N = m + n;
 
% row vector containing both dataset
D = [A(:); B(:)]';

% compute the rank
[vs, vi] = sort(D);
[x, r] = sort(vi);
 
% Mood Statistic,
M = sum((r(1 : m) - (N + 1) / 2).^2);
 
% Expectation of Mood Stats 
mu = m * (N^2 - 1) / 12;
 
% Standard deviation of Mood Stats
sigma =  m*n*(N + 1)*(N - 2)* (N+2) / 180;
 
%% compute the normalized test statistic
M = abs((M - mu)) / sqrt(sigma);
 

When 𝐴𝐴 ∼ 𝜙𝜙0(⋅) and 𝐵𝐵 ∼ 𝜙𝜙0 𝛿𝛿 ⋅ , the ranks of 
elements in 𝐵𝐵 will be more extreme (𝛿𝛿 > 1) or 

condensed 𝛿𝛿 < 1  than those in 𝐴𝐴. 
This results in a larger/smaller variance of ranks, 
which corresponds to larger values of 𝑀𝑀 statistics
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How to monitor for both Location and Scale Changes?

In practice we don’t know if 𝜙𝜙0 and 𝜙𝜙1 would differ because of location or 
scale changes

Using Mood and Mann-Whitney in parallel makes difficult to control the 
𝐴𝐴𝐴𝐴𝐿𝐿0 (or type I error in the offline scenario)

Better to monitor location and scale jointly: use the Lepage Test statistic
𝐿𝐿 = 𝑈𝑈2 + 𝑊𝑊2
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CPM for Online Monitoring

Observations arrive steadily,
𝑥𝑥 1 , … , 𝑥𝑥 𝑁𝑁 , …

possibly forming an infinite stream

At each new arrival, a Change-Point Method (CPM) assesses if the 
distribution of the observations differs from the previous samples.

The primary issue is the detection, but the CPM monitoring scheme 
performs also the estimation of change point location, once the detection 
is signalled.

In fact any online CPM returns
• �𝑇𝑇, the time instant when the change is detected, 
• 𝜏̂𝜏, the estimate of the change time-instant
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Two Issues in CPMs for Online Monitoring

In principle, one may iterate the offline approach presented before – at 
each new arrival.

Two issues:

• How to compute the thresholds? 

• Iterating CPM becomes time and resources demanding..

Even if we compute 𝛾𝛾𝑁𝑁 for the offline analysis, these thresholds would 
not be appropriate for online analysis
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Threshold Computation: Online CPM

Quantiles of test statistic 𝒮𝒮max,𝑡𝑡 used for offline analysis cannot be used, 
since 𝛾𝛾𝑡𝑡 has to be set controlling the conditional probability that

𝑃𝑃 𝒮𝒮max,𝑡𝑡 > 𝛾𝛾𝑡𝑡 | 𝒮𝒮max,𝑡𝑡−1 < 𝛾𝛾𝑡𝑡−1, … , 𝒮𝒮max,1 < 𝛾𝛾1 < 𝛼𝛼

Still, one may resort to numerical simulations to compute them in a 
sequential manner.

A few methods can set the false alarm probability (FAP) to be the same in 
each point, that is, 𝑃𝑃(𝒮𝒮max,𝑡𝑡 > 𝛾𝛾𝑡𝑡 | 𝑥𝑥 ∼ 𝜙𝜙0) = 𝛼𝛼 for all 𝑡𝑡, 

then the 𝐴𝐴𝐴𝐴𝐿𝐿0 relates to 𝛼𝛼 as

𝛼𝛼 =
1

𝐴𝐴𝐴𝐴𝐿𝐿0
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Threshold Computation: Online CPM

For each desired value of 𝛼𝛼:

Generate a dataset 𝐷𝐷 of one million streams containing 5000 points 
drawn from an arbitrary distribution 𝝍𝝍 (e.g. 𝑁𝑁(0, 1)). This is feasible 
when 𝒮𝒮 is a distribution-free statistic, as this does not depend on 𝜙𝜙0.
• For 𝑡𝑡 = 1, …

• Evaluate the statistics over each stream in 𝐷𝐷 and compute 𝒮𝒮max,𝑡𝑡 

• Compute 𝛾𝛾𝑡𝑡 over sequences in 𝐷𝐷 such that 
𝑃𝑃 𝒮𝒮max,𝑡𝑡 > 𝛾𝛾𝑡𝑡 | 𝒮𝒮max,𝑡𝑡−1 < 𝛾𝛾𝑡𝑡−1, … , 𝒮𝒮max,1 < 𝛾𝛾1 < 𝛼𝛼

• Remove from 𝐷𝐷 streams where 𝒮𝒮max,𝑡𝑡 > 𝛾𝛾𝑡𝑡
• Interpolate the values of 𝛾𝛾𝑡𝑡 by some parametric function of 𝑡𝑡, to “fill in 

possible gaps” and to smooth all the estimates.
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Threshold Computation

Here is an example of polynomial cofficients modeling 𝛾𝛾𝑡𝑡
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Online Monitoring: Ranks Computation

Ranks computation requires storing all the data in memory

Also time requirement grows at each new observation

This is usually infeasible when working with data streams.

Solution: discretization of the older part of the stream

• Past data are stored in an histogram (ranks computed from quantized
values)

• A window over the most recent data is kept to process these
accurately

• Introduce an upper bound in memory and time requirements
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Data Quantization
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Data Quantization

Sliding window
𝑊𝑊𝑤𝑤,𝑡𝑡

over the stream

Quantize past data in 𝑚𝑚 
values (range is defined 

from a training sequence)
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Data Quantization

𝑊𝑊𝑤𝑤,𝑡𝑡
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Data Quantization

𝑊𝑊𝑤𝑤,𝑡𝑡
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Ranks Computation

Each point’s rank is now defined as 

𝑟𝑟 𝑥𝑥𝑡𝑡 = 𝑟𝑟𝑤𝑤 𝑥𝑥𝑡𝑡 + �
𝑖𝑖=1

𝑚𝑚

𝑐𝑐𝑖𝑖 𝐼𝐼 𝑥𝑥𝑡𝑡 > 𝑣𝑣𝑗𝑗 − 1

the sum over 𝑊𝑊 plus the rank w.r.t the histogram 

𝑐𝑐1

𝑐𝑐12

𝑐𝑐20

𝑊𝑊𝑤𝑤,𝑡𝑡
𝑣𝑣12𝑣𝑣1
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Data Quantization

Pros: When windowing is used, the maximum number of operation 
performed becomes constant (when 𝑡𝑡 > 𝑤𝑤)

Cons: loss of accuracy in rank computation (std adjustement)
Cons: No post-detection diagnosis possible when 𝜏𝜏 falls before 𝑊𝑊𝑤𝑤,𝑡𝑡

The change point outcomes is

𝜏𝜏 = argmax
𝑡𝑡∈𝑊𝑊𝑤𝑤,𝑡𝑡

𝑆𝑆𝑡𝑡
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Change Detection Approaches

• The Change-Point Formulation
• Parametric

• Non-parametric

• Change-Detection by Monitoring Features / the Log-likelihood

• Change-Detection by Histograms
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CMPs are nice, but statistics based on 
sorting holds for scalar sterams
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Now we investigate solutions meant for 
multivariate data streams
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Change Detection by Monitoring Features

Most often, a training set 𝑇𝑇𝑇𝑇 containing stationary data is provided, as in 
semi-supervised anomaly detection methods.

Extract indicators (features), which are expected to change when 𝜙𝜙0 → 𝜙𝜙1 
and which distribution is known under 𝜙𝜙0

Alippi, C., Boracchi, G., Roveri, M. “Change detection tests using the ICI rule” IJCNN 2010 (pp. 1-7).

mean

dispersion

𝑡𝑡

𝒙𝒙(
𝑡𝑡)…

𝑇𝑇𝑇𝑇
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Nonparametric settings: Sequential Monitoring

Examples of decision rules for features
• CPM, which can control the 𝐴𝐴𝐴𝐴𝐿𝐿0
• NP-CUSUM, to detect changes in the data expectation

• ICI rule, to detect changes in the data expectation 

Unfortunately most nonparametric statistics and the decision rules do not 
apply to multivariate data. 

Different features are being monitored separately
Ross, G. J., Tasoulis, D. K., Adams, N. M. "Nonparametric monitoring of data streams for changes in location and scale" 
Technometrics, 53(4), 379-389, 2012.

Alippi, C., Boracchi, G., Roveri, M. “Change detection tests using the ICI rule” Proceedings of IJCNN 2010 (pp. 1-7).

Tartakovsky, A. G., Veeravalli, V. V. "Change-point detection in multichannel and distributed systems". Applied Sequential 
Methodologies: Real-World Examples with Data Analysis, 173, 339-370, 2004

Alippi C., Boracchi G. and Roveri M. "Ensembles of Change-Point Methods to Estimate the Change Point in Residual Sequences" Soft 
Computing, Springer, Volume 17, Issue 11 (2013)
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Monitoring the Log-Likelihood:
A Mainstream Change Detection Approach
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Three ingredients

Most change-detection algorithm consists in

i. A model �𝜙𝜙0 describing 𝜙𝜙0 
ii. A statistic 𝒯𝒯 to test incoming data:

iii. A decision rule that monitors 𝒯𝒯 to detect changes



Boracchi

Illustration
data

𝑡𝑡

𝒙𝒙(
𝑡𝑡)

…
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Illustration
data

𝑡𝑡

…

𝛾𝛾𝑡𝑡

Detection time

statistic

decision rule ℒ 𝒙𝒙 𝑡𝑡 ≷ 𝛾𝛾𝑡𝑡 statistic values
�𝜙𝜙0

𝑡𝑡

𝒙𝒙(
𝑡𝑡)

…

𝜙𝜙1𝜙𝜙0

…
ℒ
𝒙𝒙
𝑡𝑡
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Monitoring the log-likelihood

Fit a general density model �𝜙𝜙0 from 𝑇𝑇𝑇𝑇
• Gaussian Mixtures

• Nonparametric Models (KDE)

Statistic to monitor:
ℒ 𝒙𝒙 𝑡𝑡 = −log( �𝜙𝜙0(𝒙𝒙(𝑡𝑡)))

Heuristic decision rule
ℒ 𝒙𝒙 𝑡𝑡 > 𝛾𝛾

L. I. Kuncheva, “Change detection in streaming multivariate data using likelihood detectors," IEEE Transactions on Knowledge and Data Engineering, 2013.

X. Song, M. Wu, C. Jermaine, and S. Ranka, “Statistical change detection for multidimensional data," in Proceedings of International Conference on Knowledge 
Discovery and Data Mining (KDD), 2007.

J. H. Sullivan and W. H. Woodall, “Change-point detection of mean vector or covariance matrix shifts using multivariate individual observations," IIE transactions, vol. 
32, no. 6, 2000.
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Monitoring the log-likelihood

Fit a general density model �𝜙𝜙0 from 𝑇𝑇𝑇𝑇
• Gaussian Mixtures

• Nonparametric Models (KDE)

Statistic to monitor:
ℒ 𝒙𝒙 𝑡𝑡 = −log( �𝜙𝜙0(𝒙𝒙(𝑡𝑡)))

Heuristic decision rule
ℒ 𝒙𝒙 𝑡𝑡 > 𝛾𝛾

L. I. Kuncheva, “Change detection in streaming multivariate data using likelihood detectors," IEEE Transactions on Knowledge and Data Engineering, 2013.

X. Song, M. Wu, C. Jermaine, and S. Ranka, “Statistical change detection for multidimensional data," in Proceedings of International Conference on Knowledge 
Discovery and Data Mining (KDD), 2007.

J. H. Sullivan and W. H. Woodall, “Change-point detection of mean vector or covariance matrix shifts using multivariate individual observations," IIE transactions, vol. 
32, no. 6, 2000.

Computing the log 
prevents numerical errors

in case of Gaussian
densities. For Gaussian
mixtures this can be 

approximated
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Sequential Monitoring the log-likelihood

A good baseline for truly sequential and non parametric monitoring:

1. Fit a general density model �𝜙𝜙0 from 𝑇𝑇𝑇𝑇
�𝜙𝜙0 = fit_density_model 𝒙𝒙 𝑡𝑡 , 𝑡𝑡 = 1, … ,𝑁𝑁

2. For each test sample 𝒙𝒙(𝑡𝑡) compute the log-likeihood

3. Adopt a nonparametric CPM over the stream of likelihood values
𝐿𝐿 = {−log( �𝜙𝜙0(𝒙𝒙(𝑡𝑡))) , 𝑡𝑡 = 1, … , }
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Batch-wise anomaly-detection in the log-likelihood

1. Fit a general density model �𝜙𝜙0 from 𝑇𝑇𝑇𝑇 and compute the log 
likelihood from the last portion of 𝑅𝑅 training samples (which have not
been used to fit the density model �𝜙𝜙0):

�𝜙𝜙0 = fit_density_model 𝒙𝒙 𝑡𝑡 , 𝑡𝑡 = 1, … ,𝑁𝑁 − 𝑅𝑅
𝑇𝑇𝑅𝑅1 = −log �𝜙𝜙0 𝒙𝒙 𝑡𝑡 , 𝑡𝑡 = 𝑁𝑁 − 𝑅𝑅 + 1, … ,𝑁𝑁

2. Divide the incoming stream in batches and compute the likelihood
over each batch 𝑊𝑊𝑡𝑡

𝑇𝑇𝑇𝑇 = −log �𝜙𝜙0 𝒙𝒙 𝑡𝑡 , 𝑡𝑡 ∈ 𝑊𝑊𝑡𝑡

3. Detect anomalies as a left-tailed two-sample t-test comparing the 
distributions of likelihood values over 𝑇𝑇𝑅𝑅1 and 𝑇𝑇𝑆𝑆

C. Alippi, G. Boracchi, D. Carrera, M. Roveri, "Change Detection in Multivariate Datastreams: Likelihood and Detectability Loss"  IJCAI 2016, 
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CUSUM control chart (parametric case)

Fit a general density model �𝜙𝜙0 from 𝑇𝑇𝑇𝑇
• Gaussian Mixtures

• Nonparametric Models (KDE)

Make a guess on �𝜙𝜙1
• Statistic to monitor:

𝒮𝒮 𝑡𝑡 = log
�𝜙𝜙1 𝒙𝒙 𝑡𝑡
�𝜙𝜙0 𝒙𝒙 𝑡𝑡

+ 𝒯𝒯 𝑡𝑡 − 1

+

• Decision rule
𝒮𝒮 𝑡𝑡 > 𝛾𝛾
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Histograms in Change Detection
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Histograms 

An histogram ℎ0 defined over the input domain 𝒳𝒳 ⊂ ℝ𝑑𝑑 is
ℎ0 𝒳𝒳 = 𝑆𝑆𝑘𝑘 ,𝑝𝑝𝑘𝑘0 𝑘𝑘=1,…,𝐾𝐾

Where 𝑆𝑆𝑘𝑘 𝑘𝑘 is a disjoint covering of 𝒳𝒳, namely 𝑆𝑆𝑘𝑘 ⊂ 𝒳𝒳

�
𝑘𝑘

𝑆𝑆𝑘𝑘 = 𝒳𝒳 and 𝑆𝑆𝑗𝑗 ∩ 𝑆𝑆𝑖𝑖 = 𝛿𝛿𝑖𝑖,𝑗𝑗

and 𝑝𝑝𝑘𝑘0 ∈ [0,1] is the probability (estimated from 𝑇𝑇𝑇𝑇) for a sample drawn 
from 𝜙𝜙0 to fall inside 𝑆𝑆𝑘𝑘, i.e.

𝑝𝑝𝑘𝑘0 =
𝑚𝑚𝑘𝑘

𝑁𝑁
and 𝑁𝑁 = #𝑇𝑇𝑇𝑇
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Change Detection by Means of Histograms

The distribution of stationary data can be approximated by a histogram 
�𝜙𝜙0 estimated from a given training set 𝑇𝑇𝑇𝑇 containing stationary data

T. Dasu, S. Krishnan, S. Venkatasubramanian, and K. Yi. “An information-theoretic approach to detecting changes in multi-
dimensional data streams”. Symposium on the Interface of Statistics, Computing Science, and Applications. 2006

R. Sebastião, J. Gama, P. P. Rodrigues, and J. Bernardes, “Monitoring incremental histogram distribution for change detection in 
data streams,” Lecture Notes on Computer in Knowledge Discovery from Sensor Data, 2017.

𝑡𝑡

𝒙𝒙(
𝑡𝑡)…

𝑇𝑇𝑇𝑇

�𝜙𝜙0
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Monitoring Approaches

Two major monitoring approaches using histograms:

• Likelihood-based methods

• Distance-based methods

whose applicability also depends on the partitioning scheme
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Log-likelihood – Based Monitoring Scheme

As in density-based methods, �𝜙𝜙0 can be used to compute the log-
likelihood, which can be then monitored by univariate CDT

1. During training, estimate �𝜙𝜙0 = 𝑆𝑆𝑘𝑘 ,𝑝𝑝𝑘𝑘0 𝑘𝑘=1,…,𝐾𝐾 from 𝑇𝑇𝑇𝑇

2. During testing, compute 
ℒ 𝒙𝒙 𝑡𝑡 = �𝜙𝜙0 𝒙𝒙 𝑡𝑡

3. Monitor ℒ 𝒙𝒙 𝑡𝑡 , 𝑡𝑡 = 1, …  which is now discrete
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Log-likelihood – Based Monitoring Scheme

As in density-based methods, �𝜙𝜙0 can be used to compute the log-
likelihood, which can be then monitored by univariate CDT

1. During training, estimate �𝜙𝜙0 = 𝑆𝑆𝑘𝑘 ,𝑝𝑝𝑘𝑘0 𝑘𝑘=1,…,𝐾𝐾 from 𝑇𝑇𝑇𝑇

2. During testing, compute 
ℒ 𝒙𝒙 𝑡𝑡 = �𝜙𝜙0 𝒙𝒙 𝑡𝑡 = 𝑝𝑝𝑘𝑘0 s. t. 𝒙𝒙 𝑡𝑡 ∈ 𝑆𝑆𝑘𝑘

3. Monitor ℒ 𝒙𝒙 𝑡𝑡 , 𝑡𝑡 = 1, …  which is now discrete

This is the problem of 
associating each 

incoming sample to the 
corresponding bin
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Log-likelihood – Based Monitoring Scheme

As in density-based methods, �𝜙𝜙0 can be used to compute the log-
likelihood, which can be then monitored by univariate CDT

1. During training, estimate �𝜙𝜙0 = 𝑆𝑆𝑘𝑘 ,𝑝𝑝𝑘𝑘0 𝑘𝑘=1,…,𝐾𝐾 from 𝑇𝑇𝑇𝑇

2. During testing, compute 
ℒ 𝒙𝒙 𝑡𝑡 = �𝜙𝜙0 𝒙𝒙 𝑡𝑡 = 𝑝𝑝𝑘𝑘0 s. t. 𝒙𝒙 𝑡𝑡 ∈ 𝑆𝑆𝑘𝑘

3. Monitor ℒ 𝒙𝒙 𝑡𝑡 , 𝑡𝑡 = 1, …  which is now discrete

𝑡𝑡

𝒙𝒙(
𝑡𝑡)…

ℒ
𝒙𝒙
𝑡𝑡

…
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Distance-Based (or batch) Monitoring Scheme

�𝜙𝜙0 can be used to monitor the datastream window-wise:

• During training, estimate �𝜙𝜙0 = 𝑆𝑆𝑘𝑘 ,𝑝𝑝𝑘𝑘0 𝑘𝑘=1,…,𝐾𝐾 from 𝑇𝑇𝑇𝑇

• Crop a window 𝑊𝑊 over the most recent data

• Estimate �𝜙𝜙1 = 𝑆𝑆𝑘𝑘 ,𝑝𝑝𝑘𝑘1 𝑘𝑘=1,…,𝐾𝐾 from 𝑊𝑊

• Compare �𝜙𝜙0 and �𝜙𝜙1 by a distance 𝑑𝑑 between distributions

• Monitor 𝑑𝑑 �𝜙𝜙0, �𝜙𝜙1

𝑡𝑡

𝒙𝒙(
𝑡𝑡)…

𝑇𝑇𝑇𝑇

�𝜙𝜙0 �𝜙𝜙1

𝑊𝑊

𝑑𝑑( �𝜙𝜙0, �𝜙𝜙1)
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Distance-Based (or batch) Monitoring Scheme

�𝜙𝜙0 can be used to monitor the datastream window-wise:

• During training, estimate �𝜙𝜙0 = 𝑆𝑆𝑘𝑘 ,𝑝𝑝𝑘𝑘0 𝑘𝑘=1,…,𝐾𝐾 from 𝑇𝑇𝑇𝑇

• Crop a window 𝑊𝑊 over the most recent data

• Estimate �𝜙𝜙1 = 𝑆𝑆𝑘𝑘 ,𝑝𝑝𝑘𝑘1 𝑘𝑘=1,…,𝐾𝐾 from 𝑊𝑊

• Compare �𝜙𝜙0 and �𝜙𝜙1 by a distance 𝑑𝑑 between distributions

• Monitor 𝑑𝑑 �𝜙𝜙0, �𝜙𝜙1

𝑡𝑡

𝒙𝒙(
𝑡𝑡)…

𝑇𝑇𝑇𝑇

�𝜙𝜙0 �𝜙𝜙1

𝑊𝑊

𝑑𝑑( �𝜙𝜙0, �𝜙𝜙1)

Here bins are defined by 
�𝜙𝜙0, we just have to 

associate each sample to 
the corresponding bin
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Distance-Based Monitoring scheme: Stopping Rule

Thresholding the distance is the typical stopping rule. 
𝑑𝑑 �𝜙𝜙0, �𝜙𝜙1 ≷ 𝛾𝛾

• 𝛾𝛾 defined from the empirical distribution of 𝑑𝑑 �𝜙𝜙0, �𝜙𝜙1 , which is computed 
through a Bootstrap procedure.

• 𝛾𝛾 given from approximation of the statistic, which typically holds asymptotically, 
as in case the of the Pearson statistics

Similar approaches can be used to compare features extracted in different 
data-windows.

Dasu, T., Krishnan, S., Venkatasubramanian, S., Yi, K. "An information-theoretic approach to detecting changes in multi-dimensional data streams". Symp. on the 
Interface of Statistics, Computing Science, and Applications, 2006.

Ditzler G., Polikar R., “Hellinger distance based drift detection for nonstationary environments”, IEEE SSCI 2011.

Boracchi G., Cervellera C., and Maccio D. "Uniform Histograms for Change Detection in Multivariate Data" IJCNN 2017 

Sebastião R., Gama J. Mendonça T. "Fading histograms in detecting distribution and concept changes" IJDSA, 2017

Bu L., Alippi C., Zhao D. “A pdf-free change detection test based on density difference estimation” TNNLS 2016

S. Liu, M. Yamada, N. Collier, and M. Sugiyama, “Change-point detection in time-series data by relative density-ratio estimation,” Neural Networks, 2013
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An example of distance-based monitoring scheme

1. Compute the probabilities for an incoming batch 𝑊𝑊 over {𝑆𝑆𝑘𝑘}

𝑝𝑝𝑘𝑘𝑊𝑊 =
#{𝒙𝒙𝑖𝑖 ∈ 𝑆𝑆𝑘𝑘 ∩𝑊𝑊}

𝜈𝜈
 

2. Compare ℎ0 and ℎ𝑊𝑊 by a suitable distance, e.g. 

𝑑𝑑𝑇𝑇𝑇𝑇 ℎ0, ℎ𝑊𝑊 =
1
2
�
𝑘𝑘

|𝑝𝑝𝑘𝑘0  − 𝑝𝑝𝑘𝑘𝑊𝑊|  (total variation)

or

𝑑𝑑𝑃𝑃𝑃𝑃 ℎ0,ℎ𝑊𝑊 = 𝜈𝜈�
𝑘𝑘

𝑝𝑝𝑘𝑘0  − 𝑝𝑝𝑘𝑘𝑊𝑊
2

𝑝𝑝𝑘𝑘0
 (Pearson)

3. Run an HT on 𝑑𝑑𝑇𝑇𝑇𝑇 (having estimated its p-values empirically) or 𝑑𝑑𝑃𝑃 
(this follows a 𝜒𝜒-square distribution) 
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Pros and Cons of using histograms 

Pros: 

• Histograms are very general and flexible models.

• Some partitioning schemes can be associated with a tree having splits 
along a single component (kd-trees, quantTrees). This enable very fast 
searches through the histogram.

Cons:

• When 𝑑𝑑 increases, grids are not a viable option, since they require 𝑞𝑞𝑑𝑑 
bins. 

• In general, the distribution of test statistic is unknown
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Pros and Cons of using histograms 

Pros: 

• Histograms are very general and flexible models.

• Some partitioning schemes can be associated with a tree having splits 
along a single component (kd-trees, quantTrees). This enable very fast 
searches through the histogram.

Cons:

• When 𝑑𝑑 increases, grids are not a viable option, since they require 𝑞𝑞𝑑𝑑 
bins. 

• In general, the distribution of test statistic is unknown

However, there is quite a lot of freedom in 
designing 𝑆𝑆𝑘𝑘 𝑘𝑘



Boracchi

Histograms yielding uniform volume

“grids”: the most common way of constructing histograms.

Build a tessellation of supp(𝑇𝑇𝑇𝑇) by splitting each component in 𝑞𝑞 equally 
sized parts.

This yields 𝑞𝑞𝑑𝑑 hyper-rectangles 𝑆𝑆𝑘𝑘  having the same volume 

An example of 2D histogram 𝑞𝑞 = 1/3

1
3

range(X1)

1 3
ra

ng
e(

X 2
)
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Histograms yielding uniform volume

“grids”: the most common way of constructing histograms.

Build a tessellation of supp(𝑇𝑇𝑇𝑇) by splitting each component in 𝑞𝑞 equally 
sized parts.

This yields 𝑞𝑞𝑑𝑑 hyper-rectangles 𝑆𝑆𝑘𝑘  having the same volume 

An example of 2D histogram 𝑞𝑞 = 1/3

1
3

range(X1)

1 3
ra

ng
e(

X 2
)

Add to the histogram a region to 
gather points that during 
operation, won’t fall in supp 𝑇𝑇𝑇𝑇

𝑆𝑆𝐾𝐾 = 𝑇𝑇𝑇𝑇,𝑝𝑝𝐾𝐾0 = 0

being 𝐾𝐾 = 𝑞𝑞𝑑𝑑 + 1
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Histograms yielding uniform density

Define the partition 𝑆𝑆𝑘𝑘 𝑘𝑘 in such a way that all the subsets have the 
uniform density, i.e., 

𝑝𝑝𝑘𝑘0 ≈
1
𝐾𝐾

 , 𝑘𝑘 = 1, . . ,𝐾𝐾

Such that each of the 𝑞𝑞𝑑𝑑 hyper-rectangles contains the
same number of points

No need to consider a bin for �𝑋𝑋

Boracchi G., Cervellera C., and Maccio D. "Uniform Histograms for Change Detection in Multivariate Data" IJCNN 2017 

An example of 2D histogram 𝑞𝑞 = 1/3

𝑁𝑁
9

 points
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Histograms yielding uniform density

Define the partition 𝑆𝑆𝑘𝑘 𝑘𝑘 in such a way that all the subsets have the 
uniform density, i.e., 

𝑝𝑝𝑘𝑘0 ≈
1
𝐾𝐾

 , 𝑘𝑘 = 1, . . ,𝐾𝐾

Such that each of the 𝑞𝑞𝑑𝑑 hyper-rectangles contains the
same number of points

No need to consider a bin for �𝑋𝑋

Boracchi G., Cervellera C., and Maccio D. "Uniform Histograms for Change Detection in Multivariate Data" IJCNN 2017 

An example of 2D histogram 𝑞𝑞 = 1/3

𝑁𝑁
9

 points

This is an example of k-d tree, 
there are many alternatives…
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Adaptation in NSE

Adaptation
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Adaptation Strategies Under Concept Drift

Two main solutions in the literature:

• Active: the classifier 𝐾𝐾𝑡𝑡 is combined with statistical tools to detect 
concept drift and pilot the adaptation

• Passive: the classifier 𝐾𝐾𝑡𝑡 undergoes continuous adaptation 
determining every time which supervised information to preserve

Which is best depends on the expected change rate and 
memory/computational availability
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Active Approaches

Peculiarities:

• Rely on an explicit drift-detection mechanism: such as an outlier 
detection or a change detection test (CDT)

• Specific post-detection adaptation procedures to isolate data 
generated after the change, which are coherent with the new concept

Pro:

• Also provide information that CD has occurred

• Can improve their performance in stationary conditions

• Alternatively, classifier adapts only after detection

Cons:

• Difficult to handle incremental and gradual drifts
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Passive Approaches

Passive approaches:

• Do not have an explicit CD detection mechanism

• They are aware that 𝜙𝜙𝑡𝑡(𝒙𝒙,𝑦𝑦) might change at any time and at any 
rate

• Perform continuous adaptation of their model(s) parameters at each 
new arrival

They can be divided in:

• Single model methods

• Ensemble methods
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Adaptation in Active 
Approaches
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Methods Based on Windows Comparison
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Paired Learners

To cope with concept drift, we paired a stable online learner with a 
reactive one. A stable learner 𝑆𝑆 predicts based on all of its experience, 
whereas a reactive learner 𝑅𝑅𝑊𝑊 predicts based on its experience over a 
short, recent window of time.

Bach, S.H.; Maloof, M., "Paired Learners for Concept Drift"  ICDM '08.

𝑥𝑥

𝑡𝑡

𝑥𝑥

𝑆𝑆
𝑅𝑅𝑊𝑊
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Paired Learners

To cope with concept drift, we paired a stable online learner with a 
reactive one. A stable learner 𝑆𝑆 predicts based on all of its experience, 
whereas a reactive learner 𝑅𝑅𝑊𝑊 predicts based on its experience over a 
short, recent window of time.

Paired Learning copes with concept drift by:

• Leveraging the interplay between reactive and stable learners 

• Analyze the differences in their accuracy to cope with concept drift

Bach, S.H.; Maloof, M., "Paired Learners for Concept Drift"  ICDM '08.
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Paired Learners

𝑅𝑅𝑊𝑊

𝑆𝑆



Boracchi

Paired Learners
Limitations of fixed window methods:

• A too reactive 𝑅𝑅𝑊𝑊 may have difficulty acquiring any target concept

• A too stable learner 𝑆𝑆 may be overly burdened by knowledge of a previous 
concept to learn a new one.

Strengths:

• 𝑺𝑺 outperforms 𝑹𝑹𝑾𝑾 when acquiring a stationary concept, 

• 𝑹𝑹𝑾𝑾 outperforms 𝑺𝑺 when the concept changes. 

Idea:

• Detect a change when 𝑅𝑅𝑊𝑊 outperforms 𝑆𝑆 over a short window of time

• Adapt to the new concept by replacing 𝑆𝑆 with 𝑅𝑅𝑊𝑊
• Predictions are always provided by the stable classifier 𝑆𝑆 
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Paired Learners

Two classifiers are trained and steadily updated
• A stable online learner (𝑆𝑆) that predicts based on all the supervised samples

• A reactive one (𝑅𝑅𝑤𝑤) trained over a short sliding window

During operation
• Only 𝑆𝑆 provides the outputs of the model

• Predictions of 𝑅𝑅𝑤𝑤 are computed but not provided 

• As soon as, on the most recent samples, 𝑹𝑹𝒘𝒘 outperforms 𝑆𝑆 over a test window 
of length 𝑤𝑤, then detect CD

Adaptation consists in replacing 𝑆𝑆 by 𝑅𝑅𝑤𝑤

Bach, S.H.; Maloof, M., "Paired Learners for Concept Drift"  ICDM '08.
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Paired Learners

Bach, S.H.; Maloof, M., "Paired Learners for Concept Drift"  ICDM '08.

This is to keep track of classification
errors 𝜖𝜖𝑡𝑡over the window 𝑤𝑤
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Paired Learners

Bach, S.H.; Maloof, M., "Paired Learners for Concept Drift"  ICDM '08.

Predictions are only provided by 𝑆𝑆
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Paired Learners

Bach, S.H.; Maloof, M., "Paired Learners for Concept Drift"  ICDM '08.

Drift deteceted when more than 𝜃𝜃 times
over the latest 𝑤𝑤 samples, 𝑅𝑅𝑊𝑊 provides 

a correct prediction while 𝑆𝑆 does not
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Paired Learners

Bach, S.H.; Maloof, M., "Paired Learners for Concept Drift"  ICDM '08.

Adaptation: 𝑅𝑅𝑊𝑊 replaces 𝑆𝑆 and the error 
computation is reset

Detection suggests that samples before 𝑡𝑡 −
𝑤𝑤 do not conform with the current status of 

the process
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JUST-IN-TIME Classifiers 
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JIT Classifiers

Idea: 

• use different 
change-detection 
methods to 
segment the 
stream in 
stationary 
distributions 

• After the change, 
recover useful 
knowledge from 
the past observed 
concepts

JIT: learns on stationary
segments of the 

stream
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Just In Time Classifiers

JIT classifiers are described in terms of:
• concept representations

• operators for concept representations

JIT classifiers are able to:

• detect abrupt CD (both real or virtual)

• identify a new training set for the new concept and exploit recurrent concepts

JIT classifiers leverage:

• sequential techniques to detect CD, monitoring both classification error and raw 
data distribution

• statistical techniques to identify the new concept and possibly recurrent ones 

C. Alippi, G. Boracchi, M. Roveri  "Just In Time Classifiers for Recurrent Concepts" IEEE TNNLS 2016
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An example of Concept Representations

𝐶𝐶𝑖𝑖 = (𝑍𝑍𝑖𝑖 ,𝐹𝐹𝑖𝑖 ,𝐷𝐷𝑖𝑖)
𝑍𝑍𝑖𝑖 = 𝒙𝒙𝟎𝟎,𝑦𝑦0 , … , 𝒙𝒙𝒏𝒏,𝑦𝑦𝑛𝑛 : supervised samples provided during the 
𝑖𝑖th concept 
𝐹𝐹𝑖𝑖 features describing 𝑝𝑝(𝒙𝒙) of the 𝑖𝑖th concept. We take: 

• the sample mean 𝑀𝑀 ⋅
• the power-low transform of the sample variance 𝑉𝑉(⋅)

extracted from non-overlapping sequences

𝐷𝐷𝑖𝑖 features for detecting concept drift. These include:
• the sample mean 𝑀𝑀 ⋅
• the power-low transform of the sample variance 𝑉𝑉(⋅)
• the average classification error 𝑝𝑝𝑡𝑡(⋅)

extracted from non-overlapping sequences

In stationary conditions features are i.i.d.
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JIT Classifiers: the Algorithm

Concept Representations 
𝐶𝐶 = (𝑍𝑍,𝐹𝐹,𝐷𝐷)

• 𝑍𝑍: set of supervised samples

• 𝐹𝐹: set of features for assessing concept 
equivalence

• 𝐷𝐷: set of features for detecting concept drift

Initial Training

Use the initial training sequence to build 
the concept representation 𝐶𝐶0
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JIT Classifiers: Initial training

𝑡𝑡

𝐶𝐶0

𝑇𝑇𝑇𝑇

Build 𝐶𝐶0, a practical representation of the current concept
• Characterize both 𝜙𝜙(𝒙𝒙) and 𝜙𝜙 𝑦𝑦|𝒙𝒙 in stationary conditions
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JIT Classifiers: the Algorithm

Concept Representations 
𝐶𝐶 = (𝑍𝑍,𝐹𝐹,𝐷𝐷)

• 𝑍𝑍 : set of supervised samples

• 𝐹𝐹 : set of features for assessing concept 
equivalence

• 𝐷𝐷 : set of features for detecting concept 
drift

Operators for Concepts
• 𝒟𝒟 concept-drift detection

• Υ concept split

• ℰ equivalence operators

• 𝒰𝒰 concept update
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JIT Classifiers: the Algorithm

Concept Update:

During operations, each input 
sample is analyzed to:

• Extract features that are 
appended to 𝐹𝐹𝑖𝑖

• Append supervised 
information in 𝑍𝑍𝑖𝑖

thus updating the current 
concept representation
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JIT Classifiers: Concept Update

𝑡𝑡

𝐶𝐶0

𝑇𝑇𝑇𝑇

The concept representation 𝐶𝐶0 is always updated during operation, 
• Including supervised samples in 𝑍𝑍0 (to describe 𝑝𝑝(𝑦𝑦|𝒙𝒙))
• Computing feature 𝐹𝐹0 (to describe 𝑝𝑝(𝒙𝒙))
• Computing feature 𝐷𝐷0
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JIT Classifiers: the Algorithm

Concept Drift Detection:

The current concept representation is 
analyzed by 𝒟𝒟 to determine whether 
concept drift has occurred
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JIT Classifiers: Concept Drift Detection

Determine when features in 𝑫𝑫 are no more stationary
• 𝒟𝒟 monitoring the datastream by means of online and sequential change-

detection tests (CDTs)

• Depending on features, both changes in 𝜙𝜙 𝑦𝑦 𝒙𝒙  and 𝜙𝜙(𝒙𝒙) can be detected

• �𝑇𝑇 is the detection time

𝑡𝑡�𝑇𝑇

𝐶𝐶0
𝒟𝒟(𝐶𝐶0) = 1
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An example of detection operator

𝒟𝒟 𝐶𝐶𝑖𝑖 ∈ {0,1}
Implements online change-detection tests (CDTs) based on the 
Intersection of Confidence Intervals (ICI) rule

The ICI-rule is an adaptation technique used to define adaptive supports 
for polynomial regression

The ICI-rule determines when feature sequence (𝐷𝐷𝑖𝑖) cannot be fit by a 
zero-order polynomial, thus when 𝑫𝑫𝒊𝒊 is non stationary

ICI-rule requires Gaussian-distributed features but no assumptions on the 
post-change distribution

A. Goldenshluger and A. Nemirovski, “On spatial adaptive estimation of nonparametric regression” Math. Meth. Statistics,1997.

V. Katkovnik, “A new method for varying adaptive bandwidth selection” IEEE Trans. on Signal Proc, vol. 47, pp. 2567–2571, 1999.
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JIT Classifiers: the Algorithm

Concept Split

Divide the current concept 𝐶𝐶𝑖𝑖−1 into two 
concepts 𝐶𝐶𝑘𝑘 and 𝐶𝐶𝑙𝑙, with the former 
being consistent with the current state 
of the process
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JIT Classifiers: Concept Split

Goal: estimating the change point 𝜏𝜏 (detections are always delayed). 
Samples in between 𝜏̂𝜏 and �𝑇𝑇
Uses statistical tools for performing an offline and retrospective analysis 
over the recent data, like:

• as hypothesis tests (HT)

• change-point methods (CPM)

𝑡𝑡�𝑇𝑇𝜏̂𝜏
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JIT Classifiers: Concept Split

Given 𝜏̂𝜏, two different concept representations are built

𝑡𝑡�𝑇𝑇𝜏̂𝜏

1

𝐶𝐶1𝐶𝐶0
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Examples of Concept Split Operator

Υ(𝐶𝐶0) = (𝐶𝐶0,𝐶𝐶1)
It performs an offline analysis on 𝐹𝐹𝑖𝑖 (just the feature detecting the change) to 
estimate when concept drift has actually happened

Detections �𝑇𝑇 are delayed w.r.t. the actual change point 𝜏𝜏
Change-Point Methods implement the following hypothesis test on the feature 
sequence:

�
𝐻𝐻0: "𝐹𝐹𝑖𝑖  contains i. i. d.  samples"
𝐻𝐻1: "𝐹𝐹𝑖𝑖  contains a change point"

testing all the possible partitions of 𝐹𝐹𝑖𝑖  and determining the most likely to 
contain a change point

ICI-based CDTs implement a refinement procedure to estimate 𝜏𝜏 after having 
detected a change at �𝑇𝑇. 
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JIT Classifiers: the Algorithm

Concept Equivalence

Look for concepts that are equivalent to 
the current one. 

Gather supervised samples from all the 
representations 𝐶𝐶𝑗𝑗 that refers to the 
same concept
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JIT Classifiers: Comparing Concepts

Concept equivalence is assessed by 
• comparing features 𝐹𝐹 to determine whether 𝜙𝜙 𝒙𝒙  is the same on 𝐶𝐶𝑚𝑚 and 𝐶𝐶𝑛𝑛 

using a test of equivalence

• comparing classifiers trained on 𝐶𝐶𝑚𝑚 and 𝐶𝐶𝑛𝑛 to determine whether 𝜙𝜙 𝑦𝑦 𝒙𝒙  is the 
same

𝑡𝑡�𝑇𝑇

𝐶𝐶𝑛𝑛 𝐶𝐶𝑚𝑚 

ℰ 𝐶𝐶𝑚𝑚,𝐶𝐶𝑛𝑛 = 1

𝜏̂𝜏
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Testing for Equivalence

Conventional HTs are meant to assess if two populations are different and 
assume under 𝑯𝑯𝟎𝟎 that “they are the same”

When there is not enough statistical evidence to conclude that the two 
populations are different, there is no hint on whether the two populations 
are the same.

We use Two One-Sided t-Test (TOST) to assess equivalence of 𝐹𝐹0 and 𝐹𝐹1.
In TOST, 𝐻𝐻0 corresponds to the non-equivalence of the two populations. 
Discarding 𝐻𝐻0 implies accepting that the two populations are equivalent.

[40] P. Bauer and M. Kieser, “A unifying approach for confidence intervals and testing of equivalence and  difference,” Biometrika, 
vol. 83, no. 4, pp. pp. 934–937, 1996. http://www.jstor.org/stable/2337298

http://www.jstor.org/stable/2337298
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JIT Classifiers: the Algorithm

Label Prediction:

The classifier 𝐾𝐾 is reconfigured using all 
the available supervised couples
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The Passive Approach
Classifiers undergoing continuous adaptation
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Passive Approach

Passive approaches:

• Do not have an explicit CD detection mechanism

• They are aware that 𝜙𝜙𝑡𝑡(𝒙𝒙,𝑦𝑦) might change at any time / any rate

• Perform continuous adaptation of their model(s) parameters at each 
new arrival

They can be divided in:

• Single model methods

• Ensemble method
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Passive Approach

• Overcomes the potential disadvantage of active methods that can get 
false alarms or delays in the detection of drift.

• Potentially better suited for slow concept drifts.

• Potential disadvantage not addressing concept drift detection: don’t 
inform of whether concept drift is occurring.
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Single Classifier Models

Lower computational costs

Mainly related to specific classifiers

• CVFDT: Concept-adapting Very Fast Decision 
Tree learner, and online decision tree algorithm that incrementally 
learns from a sliding window

P. Domingos and G. Hulton, “Mining high-speed data streams” in Proc. of the sixth ACM SIGKDD international conference on 
Knowledge discovery and data mining, pp. 71–80, 2000.

G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data streams” in Proc. of Conference on Knowledge Discovery in 
Data, pp. 97–106, 2001.
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Single Classifier Models

Lower computational costs

Mainly related to specific classifiers

• CVFDT: Concept-adapting Very Fast Decision 
Tree learner, and online decision tree algorithm that incrementally 
learns from a sliding window

• OLIN: fuzzy-logic based approach that exploits a sliding window

L. Cohen, G. Avrahami-Bakish, M. Last, A. Kandel, and O. Kipersztok, "Real-time data mining of non-stationary data streams from 
sensor networks", Information Fusion, vol. 9, no. 3, pp. 344–353, 2008.



Boracchi

Single Classifier Models

Lower computational costs

Mainly related to specific classifiers

• CVFDT: Concept-adapting Very Fast Decision 
Tree learner, and online decision tree algorithm that incrementally 
learns from a sliding window

• OLIN: fuzzy-logic based approach that exploits a sliding window

• An Extreme Learning Machine has been also combined with a time-
varying NN

Y. Ye, S. Squartini, and F. Piazza, "Online sequential extreme learning machine in nonstationary environments", Neurocomputing, 
vol. 116, no. 20, pp. 94–101, 2013
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Ensemble methods
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A Dilemma of Sorts

The ability of an algorithm to 
recall old information that it 
has learned in the past 

Plasticity 

The ability for an algorithm to 
learn new information when 
data are available 

Stability

Sounds like we could have two opposing ideas!
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Ensemble Methods

An ensemble of multiple models is preserved in memory 
ℋ = ℎ0, … ,ℎ𝑁𝑁

Each individual ℎ𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑁𝑁 is typically trained from a different training 
set and could be from different models

Final prediction of the ensemble is given by (weighted) aggregation of the 
individual predictions

ℋ 𝒙𝒙𝒕𝒕 = argmax
𝒚𝒚∈𝚲𝚲

�
𝒉𝒉𝒊𝒊∈𝓗𝓗

𝛼𝛼𝑖𝑖 ℎ𝑖𝑖 𝒙𝒙𝑡𝑡 = 𝑦𝑦

Typically, one assumes data arrives in batches and each classifier is 
trained over a batch
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Ensemble Methods

An ensemble of multiple models is preserved in memory 
ℋ = ℎ0, … ,ℎ𝑁𝑁

Each individual ℎ𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑁𝑁 is typically trained from a different training 
set and could be from a different model

Final prediction of the ensemble is given by (weighted) aggregation of the 
individual predictions

ℋ 𝒙𝒙𝒕𝒕 = argmax
𝒚𝒚∈𝚲𝚲

�
𝒉𝒉𝒊𝒊∈𝓗𝓗

𝛼𝛼𝑖𝑖 ℎ𝑖𝑖 𝒙𝒙𝑡𝑡 = 𝑦𝑦

Typically, one assumes data arrives in batches and each classifier is 
trained over a batch

The weight 𝛼𝛼𝑖𝑖 encodes how reliable the 
prediction from ℎ𝑖𝑖 is at the current time. 

Different methods set different weighting schemes, which are typically 
based on the posterior of ℎ𝑖𝑖 or the accuracy of ℎ𝑖𝑖 over recent data
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Ensemble Methods and Concept Drift

Each individual ℎ𝑖𝑖 implicitly refers to a component of a mixture 
distribution characterizing a concept

Often, ensemble methods assume data (supervised and unsupervised) are 
provided in batches

Adaptation can be achieved by:

• updating each individual: either in batch or online manner

• dynamic aggregation: adaptively defining weights 𝛼𝛼𝑖𝑖(𝑡𝑡)
• structural update: including new (pruning old) individuals in the 

ensemble, possibly recovering past ones that are useful in case of 
recurrent concepts

Kuncheva, L. I. "Classifier ensembles for changing environments" In Workshop on Multiple Classifier Systems. MCS. 1–15 2004.
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Ensemble Methods and Concept Drift

Ensemble based approaches provide a natural fit to the problem of learning in 
nonstationary settings,

• Ensembles tend to be more accurate than single classifier-based systems 
due to reduction in the variance of the error

• Stability: flexible to easily incorporate new data into a classification model, 
simply by adding new individuals to the ensemble and by updating each 
individual

• Plasticity: provide a natural mechanism to forget irrelevant knowledge, by 
simply removing old individual(s) from the ensemble

• They can operate in continuously drifting environments

Adaptive strategies can be applied to add/remove classifiers by on individual 
classifier and the ensemble error

Kuncheva, L. I. "Classifier ensembles for changing environments" In Workshop on Multiple Classifier Systems. MCS. 1–15 2004.
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Streaming Ensemble Algorithm: SEA

An ensemble of a fixed number of individuals ℋ performs

• batch learning

• structural update to adapt to concept drift

 

Two additional classifiers are stored ℎ𝑡𝑡 and ℎ𝑡𝑡−1
• ℎ𝑡𝑡 is being trained on the current batch

• ℎ𝑡𝑡−1 is the classifier trained on the previous batch 

W. N. Street and Y. Kim, "A streaming ensemble algorithm (SEA) for large scale classification", in Proceedings to the 7th ACM 
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 377–382, 2001
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Streaming Ensemble Algorithm: SEA

When a new batch 𝑆𝑆 = 𝒙𝒙𝟎𝟎𝒕𝒕 ,𝑦𝑦0𝑡𝑡 , 𝒙𝒙𝟏𝟏𝒕𝒕 ,𝑦𝑦1𝑡𝑡 , … , 𝒙𝒙𝑩𝑩𝒕𝒕 ,𝑦𝑦𝐵𝐵𝑡𝑡  arrives

• train ℎ𝑡𝑡 on 𝑆𝑆 
• test ℎ𝑡𝑡−1 on 𝑆𝑆
• If the ensemble is not full (#ℋ < 𝑁𝑁), add ℎ𝑡𝑡−1 to ℋ
• Otherwise, remove ℎ𝑖𝑖 ∈ ℋ that is less accurate on 𝑆𝑆 (as far as this is 

worst than ℎ𝑡𝑡−1)
Classifier ℎ𝑡𝑡 is never added as its performance on the current batch are  
affected by overfitting

Adaptation to concept drift is performed by replacing individuals (no 
update of each individual instead)

Pruning the ensemble to improve the overall performance
W. N. Street and Y. Kim, "A streaming ensemble algorithm (SEA) for large scale classification", in Proceedings to the 7th ACM 
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 377–382, 2001
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Streaming Ensemble Algorithm: SEA

The individuals are decision trees, 
which enables fast processing

Majority voting as aggregation 
strategy over the ensemble 

“Quality” of an individual is an 
indicator to favor individuals that 
correctly classify recent samples in 
𝑺𝑺 where the ensemble was 
“undecided” providing a score 
close to 0.5 (in two class 
problems)

W. N. Street and Y. Kim, "A streaming ensemble algorithm (SEA) for large scale classification", in Proceedings to the 7th ACM 
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 377–382, 2001
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Dynamic Weighted Majority: DWM

Dynamic weighted majority (DWM) is an ensemble where:

• Individuals are trained on different batches of data and regularly 
updated at a pre-defined frequency

• Each individual is associated to a weight {𝛼𝛼𝑖𝑖}
• Predictions are made by weighted majority voting

• Weights 𝛼𝛼𝑖𝑖 are decreased to individuals that are not accurate on the 
samples of the current batch

• Individuals having low weights are dropped

• When the ensemble makes a wrong guess, a new individual is added

• The ensemble size is also dynamic as it might vary over time

Kolter, J. and Maloof, M. "Dynamic weighted majority: An ensemble method for drifting concepts". Journal of Machine Learning 
Research 8, 2755–2790. 2007
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Learns++ .NSE

Batch-learning algorithm performing predictions based on a weighted 
majority voting scheme:

• Two different weighting schemes for individuals and training samples

• Misclassified training samples receive large weights: samples from 
new concepts are often misclassified, thus receive large weights.

• Weights of the individuals depends on the time-adjusted errors on 
current and past batches: old individuals can be recovered in case of 
recurrent concepts

• Old individuals are not discarded

Elwell R. and Polikar R., “Incremental Learning of Concept Drift in Nonstationary Environments” IEEE TNNLS , vol. 22, 2011.
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Concluding Remarks
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Comments from my personal experience

In Learning problems the classification error is typically the most 
important figure of merit. 

• In this scenario, in general, false positives hurt less than detection 
delays

• Things might change on class unbalance

Active approaches might be penalized due to their detection delay, while 
passive approaches might start adaptation earlier
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Comments from my personal experience

Providing enough i.i.d. samples for reconfiguration seems more critical. 
When estimating the change-time:

• Overestimates of 𝜏𝜏 provide too few samples

• Underestimates of 𝜏𝜏 provide non i.i.d. data

• Worth using accurate SPC methods like change-point methods (CPMs)

D. M. Hawkins, P. Qiu, and C. W. Kang, “The changepoint model for statistical process control” Journal of Quality Technology, 2003.
𝑡𝑡�𝑇𝑇𝜏̂𝜏
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Comments from my personal experience

Exploiting recurrent concept is important 

• Providing additional samples could make the difference

• Mitigate the impact of false positives
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Comments from my personal experience

• Ensemble classifier approaches have had more success that single 
classifier implementations for nonstationary environments

• Hybrid approaches (active & passive) can be beneficial! 

• In practice, a weighted majority vote is a better strategy as long as we 
have a reliable estimate of a classifiers error 
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Comments from my personal experience

We have combined
• a JIT classifier using recurrent concepts

• a sliding window classifier

As in paired learners,
• JIT is meant to provide the best post-detection adaptation and best performance 

in a stationary state

• The sliding window classifier is meant to provide the quickest reaction to CD

We used a simple aggregation "Predictions are made by the most accurate 
classifier over the last 20 samples"
Actually, this ensemble performed very well, combining the advantages of 
the two classifiers

C. Alippi, G. Boracchi and M. Roveri, “Just In Time Classifiers for Recurrent Concepts” IEEE Transactions on Neural Networks and 
Learning Systems, 2013. vol. 24, no.4, pp. 620 -634
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The ensemble using jit classifier
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