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N| ANOMALY DETECTION PROBLEMS

Anomaly detection problems are ubiquitous in imaging
applications.

Relevant examples spans from quality inspection and health

manufacturing
manufacturing

mammograms

nanofiber production
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Quality Inspection Systems: monitoring the nanofiber production
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Carrera D., Manganini F., Boracchi G., Lanzarone E. "Defect Detection in SEM Images of Nanofibrous Materials",
IEEE Transactions on Industrial Informatics 2017, 11 pages, doi:10.1109/TIl.2016.2641472




E ... AN ANOMALY-DETECTION PROBLEM

Detection of anomalies in chip production




N ... A DETECTION PROBLEM

Detect/Identify patterns in wafer defect maps

k] N These might indicate faults,
problems or malfunctioning
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in the chip production.
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.. A DETECTION PROBLEM

Detect/Identify patterns in wafer defect maps

.. L These might indicate faults,
- N problems or malfunctioning
/ i While this is not truly an anomaly P production.
/ | ~ detection, it is representative of a broad - - -
/" ~ class of (supervised) detection problems
‘ that are often encountered and which we
\ will briefly survey in this tutorial. SR
x.,\\ '» /f < ' ﬁ.
\:\ // .L
\“\\'“'&1 ~ it : : 4 — o ®
_ \\\v : i /// '

)i Bella, Carrera, Rossi, Fragneto, Boracchi Wafer Defect Map Classification Using Sparse Convolutional Neural NetworRs ICIAPo9



.. A DETECTION PROBLEM

|

Detect/Identify patterns in wafer defect maps

N These might indicate faults,

problems or malfunctioning

in the chip production.
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. OBJECT DETECTION IN NATURAL IMAGES




Not only images



... AN ANOMALY-DETECTION PROBLEM

Health monitoring / wearable devices:

Automatically analyze EGC tracings to
detect arrhythmias or incorrect device
positioning
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D. Carrera, B. Rossi, D. Zambon, P. Fragneto, and G. Boracchi "ECG Monitoring in Wearable Devices by Sparse Models" in
Proceedings of ECML-PKDD 2016, 16 pages
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| ... A DETECTION PROBLEM

Anomaly detection in web sessions in bank e-commerce site
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... A DETECTION PROBLEM

Fraud detection in credit card transactions/web sessions
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Dal Pozzolo A., Boracchi G., Caelen 0., Alippi C. and Bontempi G., “Credit Card Fraud Detection: a Realistic Modeling and a
Novel Learning Strategy” , IEEE TNNL 2017, 14 pages
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| PRESENTATION OUTLINE

Part1, Problem Formulation and the “Random Variable” world:
« Problem formulation

- Performance measures
- Anomaly detection approaches for random variables
(supervised, semi-supervised, unsupervised)
Part2, Anomaly detection in images by learned models:
- Patch-based approaches (semi-supervised, unsupervised)
- Reference-based solutions

- Deep-learning solutions
(supervised, semi-supervised, unsupervised)
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DISCLAIMERS

| refer to either changes/anomalies according to our personal
experience in the applications we have been addressing.

Anomaly and change detection are different problems, we will
briefly summarize the two.

For a complete overview on change/anomaly algorithms please
refer to surveys below.

T. Ehret, A. Davy, JM Morel, M. Delbracio "Image Anomalies: A Review and Synthesis of Detection Methods", Journal of
Mathematical Imaging and Vision, 1-34

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (July 2009), 58 pages.
Pimentel, M. A., Clifton, D. A., Clifton, L., Tarassenko, L. “A review of novelty detection” Signal Processing, 99, 215-249 (2014)

A. Zimek, E. Schubert, H.P. Kriegel. “A survey on unsupervised outlier detection in high-dimensional numerical data”
Statistical Analysis and Data Mining: The ASA Data Science Journal, 5(5), 2012.



The Problem Formulation

Anomaly Detection Problem where observations are i.i.d.
realizations of a random variable
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Forget about images for a while and
look for anomalies in a set of
random vectors

.. these techniques will come very
handy also for images



ANOMALIES

“Anomalies are patterns in data that do not conform to a well
defined notion of normal behavior”
Thus:
e Normal data are generated from a stationary process Py
e Anomalies are from a different process P, + Py

Examples:
e Frauds in the stream of all the credit card transactions
e Arrhythmias in ECG tracings
o Defective regions in an image, which do not conform a
reference pattern

Anomalies might appear as spurious elements, and are typically
the most informative samples in the stream

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (July 2009), 58 pages.
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| ANOMALY-DETECTION IN A STATISTICAL FRAMEWORK

Often, the anomaly-detection problem boils down to:
Monitor a set of data (not necessarily a stream)
{x(t), t =1ty ..}, x(t) e R?

where x(t) are realizations of a random variable having pdf ¢,
and detect outliers i.e., those points that do not conform with ¢,

normal data
x() ~ {20 o
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| ANOMALY-DETECTION IN A STATISTICAL FRAMEWORK

Often, the anomaly-detection problem boils down to:
Monitor a set of data (not necessarily a stream)
{x(t), t=1ty, ..}, x(t) eR?

where x(t) are realizations of a random variable having pdf ¢,,
and detect outliers i.e., those points that do not conform with ¢,
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|THE LEGAL CASE OF MR HADLUM V. MRS HADLUM (1949)

The sole evidence of adultery consisted of the birth of a child
349 days after Mr Hadlum had left for military service abroad.

Vic Barnett “The Study of Outliers: Purpose and Model” Journal of the Royal Statistical Society. Series C (Applied Statistics)
Vol. 27, No. 3 (1978), pp. 242-250




Statistical Approaches

..to detect anomalies
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| THE ANOMALY / CHANGE DETECTION PROBLEMS

Anomaly-detection problem:

Locate those samples that do not conform the normal ones or a
model explaining normal ones

Anomalies in data translate to significant information

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.
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| THE TYPICAL SOLUTIONS

Most algorithms are composed of:

o A statistic that has a known response to normal data (e.g.,
the average, the sample variance, the log-likelihood, the
confidence of a classifier, an “anomaly score”...)

A decision rule to analyze the statistic (e.g., an adaptive
threshold, a confidence region)

- I POLITECNICO DI MILANO
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| THE TYPICAL SOLUTIONS

N 4
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| THE TYPICAL SOLUTIONS
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| THE TYPICAL SOLUTIONS
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Performance Measures

Assessing performance of anomaly detection algorithms
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| ANOMALY-DETECTION PERFORMANCE

Anomaly detection performance:

#{anomalies detected}

e True positive rate: TPR = w{anomalies}

#{normal samples detected}

e False positive rate: FPR = #{normal samples}

You have probably also heard of
 False negative rate (or miss-rate): FNR =1 — TPR
e True negative rate (or specificity): TNR = 1 — FPR

#{anomalies detected}
#{detections}

o Recall on anomalies (or sensitivity, hit-rate): TPR

e Precision on anomalies:

- I POLITECNICO DI MILANO
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| THE TYPICAL SOLUTIONS

There is always a trade-off between TPR and FPR (and similarly
for derived quantities), which is ruled by algorithm parameters

By changing y performance changes (e.g. true positive increases
but also false positives do)

decision rule: S(x) >y

4 ﬁ \ statistic

i AN -

Nl
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There is always a trade-off between TPR and FPR (and similarly
for derived quantities), which is ruled by algorithm parameters

By changing y performance changes (e.g. true positive increases
but also false positives do)

decision rule: S(x) >y

4 \ statistic




I
| ANOMALY-DETECTION PERFORMANCE

There is always a trade-off between TPR and FPR (and similarly
for derived quantities), which is ruled by algorithm parameters

Thus, to correctly assess performance it is necessary to consider
at least two indicators (e.g., TPR, FPR)

Indicators combining both TPR and FPR:

#{anomalies detected} + #{normal samples not detected}

Accur =
ccuracy #{samples}

2#{anomalies detected}

F1 re =
Score #{detections} + #{anomalies}

These equal 1 in case of “ideal detector” which detects all the
anomalies and has no false positives

- I POLITECNICO DI MILANO




| ANOMALY-DETECTION PERFORMANCE
|

Comparing different methods might be tricky since we have to
make sure that both have been configured in their best conditions

Testing a large number of parameters lead to the ROC (receiver

operating characteristic) curve

The ideal detector would achieve:
e« FPR = 0%,
e« TPR = 100%

Thus, the closer to (0,1) the better 3

TP

The largest the Area Under the
Curve (AUC), the better

The optimal parameter is the one
yielding the point closest to (0,1)
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(FPR,TPR) for a
specific parameter

—— STSIM
AUC = 0.619
Coding
AUC = 0.812
Variance
AUC = 0.775
e (Gradient
AUC = 0.704
—— Grad & Var
AUC = 0.796
mm Proposed
AUC = 0.926




Anomaly detection approaches

..when ¢, and ¢4 are unknown
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|ANOMALY DETECTION WHEN ¢po AND ¢p; ARE UNKNOWN

Most often, only a training set TR is provided:

There are three scenarios:

e Supervised: Both normal and anomalous training data are
provided in TR.

e Semi-Supervised: Only normal training data are provided, i.e.
no anomalies in TR.

e Unsupervised: TR is provided without label.

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.
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SUPERVISED ANOMALY DETECTION - DISCLAIMER

Most papers and reviews agree that supervised methods have not
to be considered part of anomaly detection, because:

« Anomalies in general lacks of a statistical coherence

« Not (enough) training samples are provided for anomalies

However,

* Some supervised problems are often referred to as «detection»,
in case of severe class imbalance (e.g. fraud detection)

* Supervised models can be transferred in unsupervised
methods, in particular for deep learning

T. Ehret, A. Davy, ]M Morel, M. Delbracio "Image Anomalies: A Review and Synthesis of Detection Methods", Journal of
Mathematical Imaging and Vision, 1-34
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| SUPERVISED ANOMALY DETECTION - SOLUTIONS

In supervised methods training data are annotated and divided in
normal (+) and anomalies (—) :

TR = {(x(t),y(t)), t<ty,x€RYyc€{+ -}

Solution:

e Train a two-class classifier to distinguish normal vs

anomalous data.

During training:

e Learn a classifier X from TR.
During testing:

o Compute the classifier output K (x), or

o Set a threshold on the posterior ps(—|x), or

e Select the k —most likely anomalies

POLITECNICO DI MILANO
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| SUPERVISED ANOMALY DETECTION - CHALLENGES
|
These classification problems are challenging because these
anomaly-detection settings typically imply:

e Class Imbalance: Normal data far outhnumber anomalies

e Concept Drift: Anomalies might evolve over time, thus the
few annotated anomalies might not be representative of
anomalies occurring during operations

o Selection Bias: Training samples are typically selected
through a closed-loop and biased procedure. Often only
detected anomalies are annotated, and the vast majority of
the stream remain unsupervised. This biases the selection
of training samples.

Dal Pozzolo A., Boracchi G., Caelen 0., Alippi C. and Bontempi G., “Credit Card Fraud Detection: a Realistic Modeling and a
Novel Learning Strategy” , IEEE TNNL 2017, 14 pages
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| SUPERVISED ANOMALY DETECTION - AN EXAMPLE

This is what typically happens in fraud detection.

Class Imbalance:
e Frauds are typically less than 1% of genuine transactions

Concept Drift:
e Fraudster always implement new strategies

Sampling Selection Bias:

e Only alerted / reported transactions are controlled and
annotated

e 0ld transactions that have not been disputed are considered
genuine transactions

Dal Pozzolo A., Boracchi G., Caelen 0., Alippi C. and Bontempi G., “Credit Card Fraud Detection: a Realistic Modeling and a
Novel Learning Strategy” , IEEE TNNL 2017, 14 pages
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|ANOMALY DETECTION WHEN ¢po AND ¢p; ARE UNKNOWN

Most often, only a training set TR is provided:

There are three scenarios:

e Supervised: Both normal and anomalous training data are
provided in TR.

e Semi-Supervised: Only normal training data are provided, i.e.
no anomalies in TR.

e Unsupervised: TR is provided without label.

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.
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| SEMI-SUPERVISED ANOMALY DETECTION

In semi-supervised methods the TR is composed of normal data
TR = {x(t),t < ty,x ~ Py}

Very practical assumptions:
e Normal data are often easy to gather

e Anomalous data are difficult/costly to collect/select and it
would be difficult to gather a representative training set

e Training examples in TR might not be representative of all
the possible anomalies that can occur

All in all, it is often safer to detect any data departing from the
normal conditions

Semi-supervised anomaly-detection methods are also referred to
as novelty-detection methods

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.
Pimentel, M. A., Clifton, D. A., Clifton, L., Tarassenko, L. “A review of novelty detection” Signal Processing, 99, 215-249 (2014)
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| DENSITY-BASED METHODS

Density-Based Methods: Normal data occur in high probability
regions of a stochastic model, while anomalies occur in the low
probability regions of the model

During training: ¢, can be estimated from the training set
TR = {x(t),t < ty,x ~ Py}
o parametric models (e.g., Gaussian mixture models)
e nonparametric models (e.g. KDE, histograms)
During testing:
 Anomalies are detected as data yielding ¢o(x) < 7

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.
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| DENSITY-BASED METHODS

Advantages:
. ¢o(x) indicates how safe a detection is (like a p-value)

o If the density estimation process is robust to outliers, it is
possible to tolerate few anomalous samples in TR

e Histograms are simple to compute in relatively small
dimensions
Challenges:
e It is challenging to fit models for high-dimensional data

e Histograms traditionally suffer of curse of dimensionality
when d increases

e Often the 1D histograms of the marginals are monitored,
ignoring the correlations among components

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.



I
| DENSITY-BASED METHODS: MONITORING THE LOG-LIKELIHOOD

Monitoring the log-likelihood of data w.r.t ¢, allow to address
anomaly-detection problem in multivariate data

1. During training, estimate ¢, from TR

2. During testing, compute
L(x(@®)) = log($o(x(t)))
3. Monitor {£(x(¢)), t =1,.

x(t)

(x(®)

s
o

Nl 4




DENSITY-BASED METHODS: MONITORING THE LOG-LIKELIHOOD

Monitoring the log-likelihood of data w.r.t ¢, allow to address
anomaly-detection problem in multivariate data

1. During training, estimate ¢, from TR
2. During testing, compute

£(x(1)) = log(o(x(1)))
3. Monitor {£(x(¢)), t=1,...}

This is quite a popular approach in either anomaly and change
detection algorithms

L. I. Kuncheva, “Change detection in streaming multivariate data using likelihood detectors," IEEE Transactions on Knowledge
and Data Engineering, vol. 25, no. 5, 2013.

X. Song, M. Wu, C. Jermaine, and S. Ranka, “Statistical change detection for multidimensional data," in Proceedings of
International Conference on Knowledge Discovery and Data Mining (KDD), 2007.

J. H. Sullivan and W. H. Woodall, “Change-point detection of mean vector or covariance matrix shifts using multivariate
individual observations," lIE transactions, vol. 32, no. 6, 2000.

C. Alippi, G. Boracchi, D. Carrera, M. Roveri, "Change Detection in Multivariate Datastreams: Likelihood and Detectability
Loss" 1JCAIl 2016, New York, USA, July 9 - 13



DOMAIN-BASED METHODS

|| L I
Domain-based methods: Estimate a boundary around normal
data, rather than the density of normal data.

A drawback of density-estimation methods is that they are meant
to be accurate in high-density regions, while anomalies live in
low-density ones.

One-Class SVM are domain-based methods defined by the normal
samples at the periphery of the distribution.

Schaolkopf, B., Williamson, R. C., Smola, A. ., Shawe-Taylor, J., Platt, ]. C. "Support Vector Method for Novelty Detection". In
NIPS 1999 (Vol. 12, pp. 582-588).

Tax, D. M., Duin, R. P. "Support vector domain description". Pattern recognition letters, 20(11), 1191-1199 (1999)
Pimentel, M. A., Clifton, D. A., Clifton, L., Tarassenko, L. “A review of novelty detection” Signal Processing, 99, 215-249 (2014)



| | .
| ONE-CLASS SVM (SCHOLKOPF ET AL. 1999)

Idea: define boundaries by estimating a binary function f that
captures regions of the input space where density is higher.

As in support vector methods, f is defined in the feature space
F and decision boundaries are defined by a few support vectors
(i.e., a few normal data).

Let Y (x) the feature associated to x, f is defined as
f(x) = sign(< w,p(x) > —p)

Where the hyperplane parameters w, p are optimized to yield a
function that is positive on most training samples. Thus in the
feature space, normal points can be separated from the origin.

A linear separation in the feature space corresponds to a variety
of nonlinear boundaries in the space of x.

Scholkopf, B., Williamson, R. C., Smola, A. ]., Shawe-Taylor, |., Platt, J. C. "Support Vector Method for Novelty
Detection". In NIPS 1999 (Vol. 12, pp. 582-588).
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| ONE-CLASS SVM (TAX AND DUIN 1999)

Boundaries of normal region can be also defined by an
hypersphere that, in the feature space, encloses most of the
normal data.

Similar detection formulas hold, measuring the distance in the
feature space between the sphere center and ¥ (x) for x € TR.

The function is always defined by a few support vectors.

Remarks: In both one-class approaches, the amount of samples
that falls within the margin (outliers) is controlled by
regularization parameters.

This parameter regulates the number of outliers in the training set
and the detector sensitivity.

Tax, D. M., Duin, R. P. "Support vector domain description". Pattern recognition letters, 20(11), 1191-1199 (1999)
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|ANOMALY DETECTION WHEN ¢po AND ¢p; ARE UNKNOWN

Most often, only a training set TR is provided:

There are three scenarios:

e Supervised: Both normal and anomalous training data are
provided in TR.

e Semi-Supervised: Only normal training data are provided, i.e.
no anomalies in TR.

e Unsupervised: TR is provided without label.

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.



I
| UNSUPERVISED ANOMALY-DETECTION

The training set TR might contain both normal and anomalous
data. However, no labels are provided

TR = {x(t),t < t,}
Underlying assumption: Anomalies are rare w.r.t. normal data TR

One in principle could use:

e Density/Domain based methods that are robust to outliers
can be applied in an unsupervised scenario

e Unsupervised methods can be improved whenever labels
are available

- I POLITECNICO DI MILANO




DISTANCE-BASED METHODS

Distance-based methods: normal data fall in dense
neighborhoods, while anomalies are far from their closest

neighbors.

A critical aspect is the choice of the similarity measure to use.

Anomalies are detected by monitoring:
o distance between each data and its k —nearest neighbor

cf}“

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.
Zhao, M., Saligrama, V. “Anomaly detection with score functions based on nearest neighbor graphs”. NIPS 2009
A. Zimek, E. Schubert, H. Kriegel. “A survey on unsupervised outlier detection in high-dimensional numerical data” SADM 2012



| DISTANCE-BASED METHODS

Distance-based methods: normal data fall in dense
neighborhoods, while anomalies are far from their closest

neighbors.

A critical aspect is the choice of the similarity measure to use.

Anomalies are detected by monitoring:
o distance between each data and its k —nearest neighbor
e the above distance considered relatively to neighbors

QQ ® .:?.
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V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.
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| DISTANCE-BASED METHODS

Distance-based methods: normal data fall in dense
neighborhoods, while anomalies are far from their closest

neighbors.

A critical aspect is the choice of the similarity measure to use.

Anomalies are detected by monitoring:
o distance between each data and its k —nearest neighbor
e the above distance considered relatively to neighbors

e whether they do not belong to clusters, or are at the cluster

periphery, or belong to small and sparse clusters

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.



| ISOLATION FOREST

Builds upon the rationale that «anomalies are easier to separate
from the rest of normal data»

This idea is implemented very efficiently through a forest of binary
trees that are constructed via an iterative procedure

%000 o O
o 0o 0o 000
® o § 0..
o..‘C.o

Fei Tony Liu, Kai Ming Ting and Zhi-Hua Zhou, Isolation Forest, ICDM 2008
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| ISOLATION FOREST

Builds upon the rationale that «anomalies are easier to separate
from the rest of normal data»

This idea is implemented very efficiently through a forest of binary
trees that are constructed via an iterative procedure
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| ISOLATION FOREST

Builds upon the rationale that «anomalies are easier to separate
from the rest of normal data»

This idea is implemented very efficiently through a forest of binary
trees that are constructed via an iterative procedure
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| ISOLATION FOREST

Builds upon the rationale that «anomalies are easier to separate
from the rest of normal data»

This idea is implemented very efficiently through a forest of binary
trees that are constructed via an iterative procedure
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Fei Tony Liu, Kai Ming Ting and Zhi-Hua Zhou, Isolation Forest, ICDM 2008



| ISOLATION FOREST

Builds upon the rationale that «anomalies are easier to separate
from the rest of normal data»

This idea is implemented very efficiently through a forest of binary
trees that are constructed via an iterative procedure
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Fei Tony Liu, Kai Ming Ting and Zhi-Hua Zhou, Isolation Forest, ICDM 2008



| ISOLATION FOREST

Builds upon the rationale that «anomalies are easier to separate
from the rest of normal data»

This idea is implemented very efficiently through a forest of binary
trees that are constructed via an iterative procedure

’ o.‘l..o ° Repeat the
°, ®le’e rocedure on
c oo poe P
o‘:""“";.’ each node:
| Te® e Randomly select
: a component and
a cut point

Fei Tony Liu, Kai Ming Ting and Zhi-Hua Zhou, Isolation Forest, ICDM 2008
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| ISOLATION FOREST

Builds upon the rationale that «anomalies are easier to separate
from the rest of normal data»

This idea is implemented very efficiently through a forest of binary
trees that are constructed through an iterative scheme

a splitting criteria

0e%e o1 o Randomly choose
® ol1e’
c 6% p® . a component and
'y .--r”";,, @ a value within the
o ® o° range and define
|
|

Fei Tony Liu, Kai Ming Ting and Zhi-Hua Zhou, Isolation Forest, ICDM 2008
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| ISOLATION FOREST

Builds upon the rationale that «anomalies are easier to separate
from the rest of normal data»

This idea is implemented very efficiently through a forest of binary
trees that are constructed via an iterative procedure

!
!

o.‘l... 1 o Repeat the

%o @100 | rocedure on the
o 0o poo P
L nodes:

ol® 01° Randomly select
: : : a component and

. I . a cut point

Fei Tony Liu, Kai Ming Ting and Zhi-Hua Zhou, Isolation Forest, ICDM 2008
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| ISOLATION FOREST

Builds upon the rationale that «anomalies are easier to separate
from the rest of normal data»

This idea is implemented very efficiently through a forest of binary
trees that are constructed via an iterative procedure

|
|
Jo0le o1 o Anomalies lies in
- o’ ::,‘.: leaves close to
e OTE ¢, the root.
° o0 ®
ol ol I
| 1
| 1
|

Fei Tony Liu, Kai Ming Ting and Zhi-Hua Zhou, Isolation Forest, ICDM 2008



ISOLATION FOREST

An anomalous point (x,) can be easily isolated

Genuine points (x;) are instead difficult to isolate.
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Fei Tony Liu, Kai Ming Ting and Zhi-Hua Zhou, Isolation Forest, ICDM 2008



| ISOLATION FOREST

Anomalies

Fei Tony Liu, Kai Ming Ting and Zhi-Hua Zhou, Isolation Forest, ICDM 2008




| ISOLATION FOREST

Normal data

Fei Tony Liu, Kai Ming Ting and Zhi-Hua Zhou, Isolation Forest, ICDM 2008
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| ISOLATION FOREST: TESTING

Compute E(h(x)), the average path length among all the trees in
the forest, of a test sample x

|\
4

/
‘R f?xgs@l%
‘L j 14,

o,

Fei Tony Liu, Kai Ming Ting and Zhi-Hua Zhou, Isolation Forest, ICDM 2008
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| ISOLATION FOREST: TESTING

A test sample is identified as anomalous when:

_E(h(x))
Alx)=2 <) >y

e n :number of sessions in TR

* c(n) : average path length of unsuccessful search in Binary

Fei Tony Liu, Kai Ming Ting and Zhi-Hua Zhou, Isolation Forest, ICDM 2008



Let’s go back to images now..

Applying statistical methods to image patches
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| OUR RUNNING EXAMPLE Py "4V

Goal: Automatically measure area covered by defects

RIS\
Yﬂ&%&w&r N

V7 ";‘7&”‘!\%'“ X
~. ‘ 780 'ér NS
DSR2

27 Y 1L<) N N SUALA V

3 1'
” '/-




I
|ANOMALY DETECTION IN IMAGES

The goal not determining whether the whole image is normal or
anomalous, but locate/segment possible anomalies

Therefore, it is convenient to

1. Analyze the image patch-wise
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2. Isolate regions containing
patches that are detected as
as anomalies

A

X

\
Q‘

\/
'(
|

LD

(%

v

@A
TN v‘m
'\

F

A J
l‘x .
.



Can we pursue approaches meant
for random variables on image
patches’



E_—
| DENSITY-BASED APPROACH ON IMAGE PATCHES

A density-based approach to AD would be:
Training
I.  Split the normal image in patches s

ii. Fit a statistical model ¢, = N (y, X) describing normal
patches.

Testing
I.  Split the test image in patches

ii. Compute ¢y(s) the likelihood of each test patch s

iii. Detect anomalies by thresholding the likelihood

Du, B., Zhang, L.: Random-selection-based anomaly detector for hyperspectral imagery. IEEE Transactions on
Geoscience and Remote sensing
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| DENSITY-BASED APPROACH ON IMAGE PATCHES

A density-based approach to AD would be:
Training

I.  Split the normal image in patches s

ii. Fit a statistical model‘ o = N (u,X)|describing normal
patches.

This model is rarely accurate
on natural images.
Small patches (e.g. 2 X 2 or
5 X 5) are typically preferred

Du, B., Zhang, L.: Random-selection-based anomaly detector for hyperspectral imagery. IEEE Transactions on
Geoscience and Remote sensing

X Xie, M Mirmehdi “Texture exemplars for defect detection on random textures” - ICPR 2005




DENSITY-BASED APPROACH ON IMAGE PATCHES

A density-based approach to AD would be:
Training

I.  Split the normal image in patches s

ii. Fit a statistical model‘ o = N (u,X)|describing normal
patches.

In some cases (textures) a
Gaussian Mixture was used
as a more general model

Du, B., Zhang, L.: Random-selection-based anomaly detector for hyperspectral imagery. IEEE Transactions on
Geoscience and Remote sensing

X Xie, M Mirmehdi “Texture exemplars for defect detection on random textures” - ICPR 2005




| DENSITY-BASED APPROACH ON IMAGE PATCHES

A density-based approach to AD would be:

Training

I.  Split the normal image in patches s

ii. | Fit a statistical

patches.

model ¢, = N (u, T) describing normal

Random selection procedures
can be employed to minimize
the risk of including outliers

Du, B., Zhang, L.: Random-selection-based anomaly detector for hyperspectral imagery. IEEE Transactions on

Geoscience and Remote sensing



I
| THE LIMITATIONS OF THE RANDOM VARIABLE MODEL

In many anomaly-detection problems in imaging, normal regions

exhibit peculiar structures and spatial correlation
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I
| THE LIMITATIONS OF THE RANDOM VARIABLE MODEL

In many anomaly-detection problems in imaging, normal regions
exhibit peculiar structures and spatial correlation

"z AN AL N
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Normal Data:
e are clearly correlated in space and |
« exhibit a specific structure k -

""i
P ™ ] 7
The random variable model is not very ' ‘

.. |
6\
appropriate for describing images IQ%&“
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I
| REAL WORLD DETECTION PROBLEMS

Random variable model does not successfully apply to signals or
images (not even small portions)
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| REAL WORLD DETECTION PROBLEMS

Random variable model does not successfully apply to signals or
images (not even small portions)
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Stacking each signal s € R? in a vector x is not convenient:
e Data dimension d can become huge
e Correlation among components is difficult to model
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| REAL WORLD DETECTION PROBLEMS

Random variable model does not successfully apply to signals or
images (not even small portions)
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Stacking each signal s € R? in a vector x is not convenient:
e Data dimension d can become huge
e Correlation among components is difficult to model

It is not easy to estimate a density model or threat these as
realizations of a random variable
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| REAL WORLD DETECTION PROBLEMS

Random variable model does not successfully apply to signals or
images (not even small portions)

L
;||'=.,

Stacking each signal s € R? in a vector x is not convenient:
e Data dimension d can become huge
e Correlation among components is difficult to model

It is not easy to estimate a density model or threat these as
realizations of a random variable

Moreover, when normal data exhibit a peculiar structure, we are
interested in detecting changes/anomalies affecting that structure
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| REAL WORLD DETECTION PROBLEMS
|

Normal patches -> background

 Exhibit a specific structure (geometry) or intensities

\'C

e Are rare elements that do not confrom with the background

L ui‘:'?"

Anomalous patches:




Patch-based approaches

Out of the “Random Variable” World:
signal-based models for images
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B
| THE TYPICAL APPROACH
|

Most of the considered methods
1. Estimate a model describing normal data (background model)

2. Provide, for each test sample, an anomaly score, or measure
of rareness, w.r.t. the learned model

3. Apply a decision rule to detect anomalies (typically
thresholding)

4. [optional] Perform post-processing operations to enforce
smooth detections and avoid isolated pixels that are not
consistent with neighborhoods

Remark: Statistical-based approaches seen before uses as
background model the statistical distribution ¢, and a statistic as
anomaly score
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| THE TYPICAL APPROACH

Most of the considered methods

1. Estimate a model describing normal data (background model)

2. Provide, for each test sample, an anomaly score, or measure
of rareness, w.r.t. the learned model

3. Apply a decision rule to detect anomalies (typically
thresholding)

4. [optronal] Perform post processrng operatrons to enforce

smooth 1t are not
The background model IS used to

nsist:
consist bring an image patch into the
Remark: St “random variable world” ISes as
backgrounc (regression, encoding, feature 1d a statistic as

anomaly sc extraction...)
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THE TYPICAL APPROACH

Most of the considered methods

1.

Estimate a model describing normal data (background model)

2. Provide, for each test sample, an anomaly score, or measure
of rareness, w.r.t. the learned model

3. Apply a decision rule to detect anomalies (typically
thresholding)

4. [optlonal] Perform post processmg operat|ons to enforce
smcz Once “applled“ the background model, one € not
COT can use most of anomaly detection methods

Remark: for the “random variable world”. as

backgro This might require fitting an statistic as

anomaly additional model
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| THE TYPICAL APPROACH
|

Different options to learn the background model

* semi-supervised approach, background model is learned
exclusively normal data

* unsupervised approach, background model is fit to both normal
and anomalous but it is robust to outliers

- I POLITECNICO DI MILANO
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| SEMI-SUPERVISED ANOMALY-DETECTION IN IMAGES

Out of the "Random Variable" world

* Reconstruction-based methods
- Subspace methods

* Feature-based monitoring
- Expert-driven Features
- Data-driven Features

POLITECNICO DI MILANO
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| SEMI-SUPERVISED ANOMALY-DETECTION IN IMAGES

Out of the "Random Variable" world

* | Reconstruction-based methods
- Subspace methods

* Feature-based monitoring
- Expert-driven Features
- Data-driven Features
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| RECONSTRUCTION-BASED METHODS

Fit a statistical model to the observation to describe dependence,
apply anomaly detection on the independent residuals.

Detection is performed by using a model M which represents
normal data:

e During training: learn the model M from training set TR
e During testing:

- Reconstruct each test signal s through M.

- Assess the residuals between s and its reconstruction

The rationale is that M can reconstruct only normal data, thus
anomalies are expected to yield large reconstruction errors.

Bengio, Y., Courville, A., Vincent, P. "Representation learning: A review and new perspectives”. IEEE TPAMI 2013
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| RECONSTRUCTION-BASED METHODS

Popular models are:
 autoregressive models for time series (ARMA, ARIMA...)

* neural networks, in particular auto-encoders, for higher
dimensional data

 projection on subspaces / manifolds

 dictionaries yielding sparse-representations

The two latter can be also interpreted as subspace methods

- I POLITECNICO DI MILANO




RECONSTRUCTION-BASED METHODS

Autoencoders are neural networks used for data reconstruction
(learn the identity function)

The typical structure of an autoencoder is:

Encoder &€ Decolder D

Output layer,
d neurons

Input layer,
d neurons
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| RECONSTRUCTION-BASED METHODS

Autoencoders are non-parametric models that can be trained to
reconstruct all the data in a training set. The reconstruction loss is

> s - p(e@)],

SES

and training of D(&(-)) is performed through standard
backpropagation algorithms (e.g. SGD)

Remark
* AE typically does not provide exact reconstruction since n < d.

e Additional regularization terms might be included in the loss
function

Bengio, Y., Courville, A., Vincent, P. "Representation learning: A review and new perspectives”. IEEE TPAMI 2013

Mishne, G., Shaham, U., Cloninger, A., & Cohen, I. Diffusion nets. Applied and Computational Harmonic Analysis (2017).
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| MONITORING THE RECONSTRUCTION ERROR

Detection by reconstruction error monitoring (AE notation)
Training (Monitoring the Reconstruction Error):
1. Train the model D(E(+)) from the training set TR
2. Learn the distribution of reconstruction errors
err(s) = [[s —D(E(s))||,, seV
over a validation set V #+ TR and define a suitable threshold y
Testing (Monitoring the Reconstruction Error):
1. Perform encoding and compute the reconstruction error
err(s) = ||s — 2)(8(5))”2

2. Consider s anomalous when err(s) >y
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| MONITORING THE RECONSTRUCTION ERROR

Normal data are expected to yield values of err(s) that are low,
while anomalies do not. This holds when the model M was
specifically learned to describe normal data

Outliers can be detected by a threshold on err(s)
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| OUTLINE ON SEMI-SUPERVISED APPROACHES

Out of the "Random Variable" world

 Reconstruction-based methods
- Subspace methods

* Feature-based monitoring
- Expert-driven Features
- Data-driven Features
- Extended models
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| SUBSPACE METHODS

The underlying assumption is that
* normal patches live in a subspace that can be identified by TR

* anomalies can be detected by projecting test patches in such
subspace and by monitoring the reconstruction error (distance

with the projection)

Normal
Data Data

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.



|

UBSPACE METHODS

A few example of models used for describing normal patches:

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.

Fourier transform: normal patches can be expressed by a few
specific frequencies

PCA: normal patches live in the linear subspace of the first
components.

Robust PCA: defined on the 1 distance to be insensitive to
outliers in normal data

Kernel PCA: normal patches live in a non-linear manifold

Random projections

Normal

Data Data
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| SUBSPACE METHODS: STATISTICS

Examples of statistics for PCA monitoring (and similar techniques):

* The projection on the subspace,
s'=PTs, PeR™¢ m«d
which is the projection over the first m principal components
and a way to reduce data-dimensionality. Statistical techniques
can be applied to monitor projections P's

* The least-principal component, which resembles an anomaly
score: low in normal patches, increases for anomalies.

* The reconstruction error:
err(s) = ||s — PPTs]||,
which is the distance between s and its projection PPTs over
the subspace of normal patches

..
Data s *.
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| SUBSPACE METHODS: SPARSE REPRESENTATIONS

Basic assumption: normal data live in a union of low-dimensional
subspaces of the input space

The model learned from S is a matrix: the dictionary D.

Each signal is decomposed as a sum of a few dictionary atoms
(representation is constrained to be sparse).

Atoms represent the many building blocks that can be used to
reconstruct normal signals.

There are typically more atoms than the signal dimension.

Effective as long as the learned dictionary D is very specific for
normal data

M. Elad "Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing”,
Springer, 2010




| DICTIONARIES YIELDING SPARSE REPRESENTATIONS

Dictionaries are just matrices! D € R4*™
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| DICTIONARIES YIELDING SPARSE REPRESENTATIONS

Dictionaries are just matrices! D € R4*™ ‘

S

Each column is an atom:

 lives in the input space

* it is one of the learned building blocks
to reconstruct the input signal
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| SPARSE REPRESENTATIONS

Let s € R" be the input signal, a sparse representation is
M

S = Z a; di
i=1
a linear combination of few dictionary atoms {d;}, i.e., most of
coefficients are such that a; = 0

An illustrative example in case of our patches
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| SPARSE REPRESENTATIONS... MATRIX EXPRESSION

Let s € R" be the input signal, a sparse representation is
M

s = Z a;d; = Da
i=1
a linear combination of few dictionary atoms {d;} and ||a||, < L,
i.e. only a few coefficients are nonzero, i.e. & is sparse.

$ D a This vector

= / a = [C(l, vee ) C(M]
(] — . E is sparse

|

[




SPARSE CODING...

Sprase Coding: computing the sparse representation for an input
signal s w.r.t. D

se R¢ a € R"

It is solved as the following optimization problem, (e.g. via the
Orthogonal Matching Pursuit, OMP)

a = argmin ||Da —s||, s.t. ||la]lp <L
acR”

; ‘ ﬂ.n -l H
a= 0.7 0 0 0.1 0 0

In the previous illustration ¢ = [0.7,0,0,0.1,0,0,0,—0.2]

w

0 —0.2

-

Pati, Y.; Rezaiifar, R.; Krishnaprasad, P. Orthogonal Matching Pursuit: recursive function approximation with application to
wavelet decomposition. Asilomar Conf. on Signals, Systems and Comput. 1993
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| ... AND DICTIONARY LEARNING

Dictionary Learning: estimate D from a training set of M
E ]:Rdxn

) D e R

It is solved as the following optimization problem typically
through block-coordinates descent (e.g. KSVD algorithm)

|ID, X] argmin 14Y — S|, s.t. |lyillo <L, Vy;

AE ]Rd)(n YE ]RnXM

A L lInTI
_-h ¥ [he A

Aharon, M.; Elad, M. Bruckstein, A. K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation |EEE
TSP, 2006

S = {Sl, SM}

D

TR

—
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| SPARSE REPRESENTATION MONITORING: STATISTICS

Anomalies can be directly detected during the sparse coding
stage, by changing the functional being optimized.

A set of test signals is modeled as:
S=DX+E+V
where X is sparse, V is a noise term, and E is a matrix having

most columns set to zero. Columns e; # 0 indicate anomalies, as
they do not admit a sparse representation w.r.t. D

A. Adler, M. Elad, Y. Hel-Or, and E. Rivlin, “Sparse coding with anomaly detection” Journal of Signal Processing Systems, vol.
79, NO. 2, pp. 179-188, 2015.




SPARSE REPRESENTATION MONITORING: STATISTICS
Anomalies can be detected by solving (through ADMM) the
following sparse coding problem

1
argg(r};in (E IS — DX — EllF + AllXIl, + M||E||z,1)

—— [ N

Data-fidelity for normal data Sparsity Group sparsity
regularization, only a few
columns can be nonzero

.. and identifying as anomalies the signals corresponding to
columns of E that are nonzero.

A. Adler, M. Elad, Y. Hel-Or, and E. Rivlin, “Sparse coding with anomaly detection” Journal of Signal Processing Systems, vol.
79, NO. 2, pp. 179-188, 2015.
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| OUTLINE ON SEMI-SUPERVISED APPROACHES

 Detrending/Filtering for time-series

* Reconstruction-based methods
- Subspace methods

| Feature-based monitoring

- Expert-driven Features
- Data-driven Features
- Extended models
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MONITORING FEATURES

|
Feature extraction: meaningful indicators to be monitored which
have a known / controlled response w.r.t. normal data

Random variables

Feature Change/Anomaly
vector detector

|f‘> $0(x(t))§n E

x(t) € R4
d<p
Feature Extraction: signal processing, The customary framework for
a priori information, learning methods change / anomaly detection

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.




FEATURE EXTRACTION

The peculiar structures of normal images and signals suggest that
normal data live in a manifold having lower dimension than the
input domain

Data dimensionality can be reduced by extracting features

Good features should:
e Yield a stable response w.r.t. normal data
 Yield unusual response on anomalies / when data change

Reconstruction error and representation coefficients can be
considered features.

Features can be monitored in either one-shot/sequential
monitoring schemes.

V. Chandola, A. Banerjee, V. Kumar. "Anomaly detection: A survey". ACM Comput. Surv. 41, 3, Article 15 (2009), 58 pages.
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| FEATURE EXTRACTION APPROACHES

There are two major approaches for extracting features:

Expert-driven (hand-crafted) features: computational expressions

that are manually designed by experts to distinguish between
normal and anomalous data

Data-driven features: features characterizing normal data are
automatically learned from training data TR

POLITECNICO DI MILANO
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| OUTLINE ON SEMI-SUPERVISED APPROACHES

 Detrending/Filtering for time-series

* Reconstruction-based methods
- Subspace methods

* Feature-based monitoring

- Expert-driven Features

- Data-driven Features
- Extended models
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| EXAMPLES OF EXPERT-DRIVEN FEATURES Py "4

Expert-driven features: each patch of an image s
s, = {s(c+u),u €U}

Example of features are:
e the average,
e the variance,
o the total variation (the energy of gradients)

These can hopefully distinguish normal and anomalous patches
(since image in anomalous region is expected to be flat or without

edges characterizing normal regions)
" LY m oAd®

~Carrera D., Manganini F, Boracchi G., Lanzarone E. "Defect Detection in SEM Images of Nanofibrous Materials", |EEE
Transactions on Industrial Informatics 2017, 11 pages, doi:10.1109/TIl.2016.2641472
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| OUTLINE ON SEMI-SUPERVISED APPROACHES

 Detrending/Filtering for time-series

* Reconstruction-based methods
- Subspace methods

* Feature-based monitoring
- Expert-driven Features

- Data-driven Features

- Extended models
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EXAMPLES OF DATA-DRIVEN FEATURES P4V

Analyze each patch of an image s
s, ={s(c+u),u € U}

and determine whether it is normal or anomalous.

Data driven features: expressions to quantitatively assess whether
test patches conform or not with the model, learned from normal
data.

A\ Pr4”

~Carrera D., Manganini F, Boracchi G., Lanzarone E. "Defect Detection in SEM Images of Nanofibrous Materials", |EEE
Transactions on Industrial Informatics 2017, 11 pages, doi:10.1109/TIl.2016.2641472
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|A LEARNED DICTIONARY OF NORMAL PATCHES Py "4

Example of training patches Few learned atoms (BPDN based learning)




DATA-DRIVEN FEATURES Py "4V

To assess the conformance of s, with D we solve the following
Sparse coding:

a = argmin||Da& — s||5 + A&, A>0
acR"

which is the BPDN formulation and we solve using ADMM.

The penalized #* formulation has more degrees of freedom in the
reconstruction, the conformance of s with D have to be assessed
monitoring both terms of the functional

Boyd S., Parikh N., Chu E., Peleato B., Eckstein J., "Distributed optimization and statistical learning via the alternating
direction method of multipliers" 2011
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|DATA-DRIVEN FEATURES Py "4

Features then include both the reconstruction error
err(s) = ||Da — sl|3
and the sparsity of the representation

lexll4

. . Da — s||5
Thus obtaining a data-driven feature vector x = | ”2]

el



| DENSITY-BASED MONITORING ON DATA-DRIVEN FEATURESII® g 4| ¥

Anomalies

10 4 =25

Sparsity

Normal patches: 1.5

1 1 | | | 1 1 | 1 0-5
0 0.1 02 03 04 05 06 07 0.8
Reconstruction Error



DATA-DRIVEN FEATURES Py "4V

Training:
* Learn from TR\V the dictionary D

« Learn from V, the distribution ¢, of normal features vectors x.

Testing:
 Compute feature vectors x via sparse coding

« Detect anomalies when ¢(x) <7

Carrera D., Manganini F., Boracchi G., Lanzarone E. "Defect Detection in SEM Images of Nanofibrous Materials",
IEEE Transactions on Industrial Informatics 2017, 11 pages, doi:10.1109/TIl.2016.2641472
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| DATA-DRIVEN FEATURES Py "4V

Training:
* Learn from TR\V the dictionary D

« Learn from V, the distribution ¢, of normal features vectors x.

Testing:
 Compute feature vectors x via sparse coding

« Detect anomalies when ¢(x) <7

This solution is rather flexible and can be adapted when operating
conditions changes (e.g. different zooming level)

Carrera D., Boracchi G., Foi A., Wohlberg B. "Scale-invariant Anomaly Detection With multiscale Group-sparse
Models" ICIP 2016









FEATURE-BASED METHODS

Autoencoders can be also used in feature-based monitoring
schemes, where the hidden representation of the input is the
feature being monitored

Encoder &€ Decolder D

Output layer,
d neurons

Input layer,
d neurons
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| MONITORING FEATURE DISTRIBUTION

Detection by feature monitoring (AE notation)

Training (Monitoring Feature Distribution):
* Learn the autoencoder D(E(+)) from the training set S

* Fit a density model ¢, to the encoded features
{E(s),s eV}
over a validation set V # §
- Define a suitable threshold y for ¢4(s)
Testing (Monitoring Feature Distribution):

* Encode each incoming signal s through &

« Detect anomalies if ¢y (E(s)) <y
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| MONITORING FEATURE DISTRIBUTION

Normal data are expected to yield £(s) that are i.i.d. vectors (or
features) and that follow an unknown distribution ¢,.

Anomalous data do not, as they follow ¢; # ¢,.

We are back to our statistical framework and we can
o learn ¢, from a set features extracted from normal data

e detect anomalous data by computing x = £(s) and then
check whether ¢q(x) < y

QG ° ° ® o

x(t)

o
S () L ® () ®

o(x)
—
°




Reference-based approaches
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B
N | REFERENCE BASED-METHODS

In some cases anomalies can be detected by comparing
e the target, namely the image to be tested
e against a reference, namely an anomaly-free image

Examples include: a pair of temporally close images (in SAR and
remote sensing) images for quality inspection.

reference

Zontak, M., Cohen, I.: Defect detection in patterned wafers using anisotropic Rernels." Machine Vision and
Applications 21(2), 129{141 (2010)
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In some cases anomalies can be detected by comparing
e the target, namely the image to be tested

e against a reference, namely an anomaly-free image

Examples include: a pair of temporally close images (in SAR and
remote sensing) images for quality inspection.

reference

Zontak, M., Cohen, I.: Defect detection in patterned wafers using anisotropic Rernels." Machine Vision and
Applications 21(2), 129{141 (2010)



REFERENCE BASED-METHODS

Non trivial when direct comparison is prevented:

« Reference and target might not be aligned nor easy to register
with a global transformation

« Reference and target might be from different modalities or
resolution (e.g. a SAR image and an optical image)

Zontak, M., Cohen, l.: Defect detection in patterned wafers using anisotropic Rernels." Machine Vision and
Applications 21(2), 129{141 (2010)

L. T. Luppino, F. M. Bianchi, G. Moser, S. N. Anfinsen, “Unsupervised Image Regression for Heterogeneous
Chnnae Doetectinn” IEEE Trancactinne an Ceaccience and Pemote Sencino (7n10)



Deep Learning Approaches
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B
| OUTLINE

e Supervised approaches
- Detection by image classification

* Semi-supervised approaches
- Neural Networks as feature extractors
- Generative Models

- I POLITECNICO DI MILANO




Supervised Approaches

Detection by Image Classification
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E_—
| IMAGE CLASSIFICATION

The problem: assigning to an input image s one label [ from a
fixed set of L categories A

“wheel”

“castle”

A = {"wheel", "cars” .....
...... "castle”, "baboon’, ... }




E_—
| IMAGE CLASSIFICATION

The problem: assigning to an input image s one label [ from a
fixed set of L categories A

“wheel” 65%, “tyre” 30%..

“castle” 55%, “tower” 43%..

A = {"wheel", "cars” .....
...... "castle”, "baboon’, ... }




| DEEP LEARNING AND IMAGE CLASSIFICATION

Since 2010 ImageNet organizes ILSVRC (ImageNet Large Scale Visual

Recognition Challenge)
Classification error rate (top 5 accuracy):

* In 2011: 25%

Deep learning

* In 2012: 16% (achieved by a CNN)

* In 2017: < 5% (for 29 of 38 competing teams, deep learning)

IMAGE



I
| DEEP LEARNING AND IMAGE CLASSIFICATION

Deep Learning boasted image classification performance, thanks to
- Advances in parallel hardware (e.g. GPU)
- Availability of large annotated dataset (e.g. the ImageNet

project is a large database visual recognition over 14M
hand-annotated images in more than 20K categories)
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N CONVOLUTIONAL NEURAL NETWORKS (CNN)

The typical architecture of a convolutional neural network

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

By Aphex34 - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=45679374

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. “Gradient-based learning applied to document recognition”

Drareadince nf the IEEE 1002 Q4(11) 229Q9.299 4



N CONVOLUTIONAL NEURAL NETWORKS (CNN)

The typical architecture of a convolutional neural network

Feature maps

I Convolutions I Subsall’npling | Convolutions I Subsampling IFuIIy- connected I

Convolution filters are Thresholding + Fully connected Neural
learned for the Downsampling Network providing as
classification task at hand (ReLu + Maxpooling) output the class
scores




N| CONVOLUTIONAL NEURAL NETWORKS (CNN)

The typical architecture of a convolutional neural network
size=1XxX1XN

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

The output of the fully connected layer has the same size as the
number of classes, and each component provide a score for the
input image to belong to a specific class



N CONVOLUTIONAL NEURAL NETWORKS (CNN)

The typical architecture of a convolutional neural network

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

~~

Extract high-level features from pixel data Classify




B
| THE OUTPUT OF A CNN

"Castle” probability

/

0.02

0.01

0.11

Trained :> 0.81
CNN

0.1

"Wheel"
probability




B
| OBJECT DETECTION TASK

Given a fixed set of categories and an input image which contains
an unknown and varying number of instances

Draw a bounding box on each object instance

A training set of annotated images
with labels and bounding boxes
for each object is required

MAN: (x,y,h,w) . -
KID: (x,y,h,w) — ’
GLOVE: (x,y,h,w) |
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I
N| CONVOLUTIONAL NEURAL NETWORKS (CNN)

The typical architecture of a convolutional neural network

Feature maps size=1XxX1XN

I Convolutions Subsall*npling Convolutions Subsamplingl IFuIIy- connected I

CNNs are meant to process fixed-size input (e.g. 224 x 224 X 3).

The convolutional and subsampling layers operate in a sliding
manner over image having arbitrary size

The fully connected layer constrains the input to a fixed size.



N THE STRAIGHTFORWARD SOLUTION: SLIDING WINDOW

1000 X 2000 pixels

 Slide on the image a window of that size and
classify each region.
* Assign the predicted label to the central pixel

Adopt the whole machinery seen so far to each
crop of the image

{Hl » car

_ POLITECNICO DI MILANO




N THE STRAIGHTFORWARD SOLUTION: SLIDING WINDOW

1000 X 2000 pixels

A pretrained model is meant to process a

fixed input size (e.g. 224 x 224 X 3)

 Slide on the image a window of that size and
classify each region.

* Assign the predicted label to the central pixel

Adopt the whole machinery seen so far to each
crop of the image

m-l » wheel
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N THE STRAIGHTFORWARD SOLUTION: SLIDING WINDOW

1000 X 2000 pixels

A pretrained model is meant to process a
fixed input size (e.g. 224 x 224 X 3)

Slide on the image a window of that size and
classify each region.

Assign the predicted label to the central pixel

Adopt the whole machinery seen so far to each
crop of the image

The background class has to be included!

M » background

_ POLITECNICO DI MILANO




N MANY DRAWBACKS...

cons:

* Very inefficient! Does not re-use features that are «shared»
among overlapping crops

 How to choose the crop size?
 Difficult to detect objects at different scales!

* A huge number of crops of different sizes
should be considered....

Plus:

* The CNN is trained for the simpler image
classification task

POLITECNICO DI MILANO



I
N| CONVOLUTIONAL NEURAL NETWORKS (CNN)

The typical architecture of a convolutional neural network

Input Feature maps size=M; XM, XN

Lonvolutions Subsampling Convolutions Subsampling Fully connected

Applying the first CNN layers to larger images yield larger volumes
through all the network until the input of the FC layer.

The FC network can not be used to compute class scores.



I
N| FULLY CONVOLUTIONAL NEURAL NETWORKS (F-CNN)

The typical architecture of a convolutional neural network

Input Feature maps size=M; XM, XN

Lonvolutions Subsampling Convolutions Subsampling Fully connected

Since the FC is linear, it can be represented as convolution against
L filters of size 1 x 1 X N (each one contains the FC weights)

Convolutional filters can be applied to volumes of any size,
yielding images as outputs. The CNN becomes fully convolutional

Long, )., Shelhamer, E., Darrell, T. “Fully convolutional networks for semantic segmentation”. CVPR 2015



N OUTPUT OF A F-CNN AS HEATMAPS

"Castle" probability

Trained
Fully
CNN

"Wheel"

An larger image than
those used for training
the network

probability

N

-

/




N OUTPUT OF A F-CNN AS HEATMAPS

EaCh pixel in the heatmap "Castle" probability
corresponds to a "receptive

field" in the input image /

"Wheel"
probability




N OBJECT DETECTION FROM THE HEATMAPS

Then apply some aggregation strategy on the heatmaps to perform
object detection by a pre-trained CNN network.




REGION PROPOSAL

Region proposal algorithms (and networks) are meant to select all
the objects in an image and provide a bounding box around each

of them

Algorithms with rather high recall (but low precision) were there
before the deep learning advent

The idea is to apply first a region proposal
algorithm and fed them to a classification

network to the proposal regions
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R-CNN

Object detection by means of region proposal (R stands for
regions)

SVM +
BB regressor

warped region

aeroplane? no.

erson? vyes.
y

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classify
image  proposals (~2k) CNN features regions

Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation." CVPR

2N1 A




R-CNN

Object detection by means of region proposal

Warping is
necessary when
CNN has the FC SVM +
layer BB regressor

warped region

aeroplane? no.

person? yes.

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classify

image  proposals (~2k) CNN features regions
There is no It i§ also pos§iple to refine Fhe
learning in the region by t:]ael?vlvnoilj regression
region proposal Region of interest can exceed image

algorithm




B
| R-CNN LIMITATIONS

Ad-hoc training objectives and not an end-to-end training
e Fine-tune network with softmax classifier (log loss)
o Train post-hoc linear SVMs (hinge loss)
e Train post-hoc bounding-box regressions (least squares)

Region proposals are from a different algorithm and that part has
not been optimized for the detection by CNN

Training is slow (84h), takes a lot of disk space

Inference (detection) is slow since the CNN has to be executed on
each region proposal (no feature re-use)

o 47s [/ image with VGG16
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FAST R-CNN

1. The whole image is fed to a CNN that extracts feature maps.

2. Region proposals are identified from the image and projected
into the feature maps (re-use convolutional computation)

=] Outputs: o
S BLCa softmax regressor
| |ConvNet f— e
— | RO' FC ool FC
: o pooling
| Rol 4 e o
4 = ‘projection\\' |
Conv X Rol feature
feature map VeCtor For each Rol

Girshick, Ross. "Fast r-cnn." ICCV 2015




FASTER R-CNN

*A region proposal network (RPN) is a Fully Convolutoinal NN (3x3
filter size) that replaces the ROI extraction algorithm.

*RPN operates on feature maps of the conv. layers of the Fast R-

CNN
*Given the image, it provides a set of BB with their objectness
score
RPN
*The network becomes much faster [ e | [Homime | < fmtorbons
(0.25 test time per image) N 1" D
t‘ =N

conv feature map

Ren, Shaoqing, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NIPS 2015



YOLO

1. divide the image in a coars grid (e.g. 7x7)
2. each grid cell there are B base-bounding boxes associated

3. For each cell and bounding box we want to predict:

e The bounding box offset, to better match the object: (dx,
dy, dh, dw, objectness_score)

e The class associated to the bounding box over the C
considered categories

So, the output of the network is
7X7XBX (5 + C)

Redmon, Joseph, et al. "You only look once: Unified, real-time object detection.” CVPR 2016.




I
| FROM SUPERVISED TO SEMI-SUPERVISED

Training a CNN requires a lot of labeled data

In real world applications anomalous data are very difficult to
collect

Semi-supervised approaches require only normal data and are
more appealing
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Semi-supervised approaches
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I
| SEMI-SUPERVISED APPROACHES

 CNN as data-driven feature extractor
- Transfer learning

- Autoencoders
- Self-supervised learning
- Domain-based

 (Generative models

- I POLITECNICO DI MILANO




B
N| CNN AS DATA-DRIVEN FEATURE EXTRACTOR

Extract high-level features from pixel data Classify

l_‘_\

Convolution layers Fully connected layers

- - ‘ 256x1
1024x1
1024

4096x1




I
N| CNN AS DATA-DRIVEN FEATURE EXTRACTOR

The feature vector extracted from the last
layer can be modeled as a random vector

Extract high-level features from pixel data Classify
Convolution layers Fully connected layers

- ---‘-,»: Y 256x1
e 1024x1
1024 —



I
| SEMI-SUPERVISED APPROACHES

 CNN as data-driven feature extractor
- | Transfer learning

- Autoencoders
- Self-supervised learning
- Domain-based

 (Generative models
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I
| TRANSFER LEARNING
|

Idea:

« Use a pretrained network CNN (e.g. AlexNet), that was trained
for a different task and on a different dataset

« Throw away the last layer(s)
e Use the CNN to build a new dataset TR’ from TR:
TR' = {lp(Si), S; € TR}

 Train your favorite anomaly detector on TR’

- I POLITECNICO DI MILANO




E_—
| TRANSFER LEARNING
|

* Features extracted from a CNN, i.e., Y(s) is typically very large
for deep networks (e.g. ResNET). Reduce data-dimensionality by

PCA defined on a set of normal features

 Anomalies can be detected by measuring distance w.r.t. normal
features, possibly using clustering to speed up performance.

* Thresholds can be computed by the three-sigma rule or
bootstrap.

Napoletano P., Piccoli F., Schettini R., "Anomaly Detection in Nanofibrous Materials by CNN-Based Self-Similarity", Sensors 2018



| TRANSFER LEARNING
|

Pros: pretrained networks are very powerful models, since they
usually trained on datasets with million of images

Cons: the network is not trained on normal data. Meaningful
structures in normal images might not be successfully captured by
network trained on images from a different domain (e.g. medical

vs natural images)



I
| SEMI-SUPERVISED APPROACHES

 CNN as data-driven feature extractor
- Transfer learning

| Autoencoders (revisited)

- Self-supervised learning
- Domain-based

 (Generative models
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B
| AUTOENCODERS (REVISITED)

Encoder € Decoder D

Autoencoders can be trained directly on normal data by
minimizing the reconstruction loss:

> s = pE®),

SETR

- I POLITECNICO DI MILANO




B
| AUTOENCODERS (REVISITED)

Encoder € Decoder D

We can fit a density model (e.g. Gaussian Mixture) on a = £(s):

a~ z TiPus;

i

Where ¢, 5. is the pdf of V' (u;, ;)
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B
| EM-ALGORITHM FOR GAUSSIAN MIXTURES

Estimation of Gaussian Mixture parameters {m;, i;, 2;} from a training
set {a,, },,is typically performed via EM-algorithm, that iterates the E and

M steps
* E-step: compute the membership weights y,,; for each training
sample a,,
Vo = T[i(Pui,Zi(an)
o Zk Ty (pﬂk,zk (an)
Y1~ 1
Y2 ~ 0
/& .
a

Bishop, “Pattern recognition and machine learning”
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Estimation of Gaussian Mixture parameters {m;, i;, 2;} from a training
set {a,, },,is typically performed via EM-algorithm, that iterates the E and

M steps
* E-step: compute the membership weights y,,; for each training
sample a,,
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o Zk Ty (pﬂk,zk (an)
Y1~ 0
Y2 ~ 1
o
a
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B
| EM-ALGORITHM FOR GAUSSIAN MIXTURES

Estimation of Gaussian Mixture parameters {m;, i;, 2;} from a training
set {a,, },,is typically performed via EM-algorithm, that iterates the E and

M steps
* E-step: compute the membership weights y,,; for each training
sample a,,
Vo = T[i(Pui,Zi(an)
o Zk Ty (pﬂk,zk (an)
1
Y1~ 2
1
Y2 ~ 5
@
a

Bishop, “Pattern recognition and machine learning”



B
| EM-ALGORITHM FOR GAUSSIAN MIXTURES

Estimation of Gaussian Mixture parameters {m;, i;, 2;} from a training
set {a,, },,is typically performed via EM-algorithm, that iterates the E and

M steps
* E-step: compute the membership weights y,,; for each training
sample a,,
_ TPux; (an)
ni = Dk T Pu,, 5, (An)

* M-step: update the parameters of the Gaussian Mixture

Ty = %Zn Vn,i
_ 2nVniln
InVYni
5, = Yn Vri(@n—p) (an—p)’
InVYn,i

i

Bishop, “Pattern recognition and machine learning”




B
| AUTOENCODERS (REVISITED)

Encoder € Decoder D

We can compute the likelihood of a test sample s as:

L(8) = ) Tz, (E(5)),

i
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B
| AUTOENCODERS (REVISITED)

Encoder € Decoder D

We can compute the likelihood of a test sample s as:

L(8) = ) Tz, (E(5)),

i

The autoencoder and the Gaussian Mixture are not jointly learned!
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JOINT LEARNING OF AUTOENCODER AND DENSITY MODEL

Idea: given a training set of N samples use a NN to predict the
membership weights of each sample

Zong et al, “Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection”, ICLR 2018



JOINT LEARNING OF AUTOENCODER AND DENSITY MODEL

Idea: given a training set of N samples use a NN to predict the
membership weights of each sample

_ Xn Vn,i(“n —pu)(a, —p)"
LnVn,i M-step

Zong et al, “Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection”, ICLR 2018

2




E_—
| DEEP AUTOENCODING GAUSSIAN MIXTURE MODEL

Minimize the loss:

minz s - 2)(8(5))”2 + AR(E(S))

Where

R(@) = ~1og ) mipy,z,(@)
I

Additional regularizations has to be imposed on ; to avoid trivial
solution

R(E(s)) can be used an anomaly score for a sample s

Zong et al, “Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection”, ICLR 2018




E——
| SOME REMARKS

* The estimation network introduces a regularization that helps
to avoid local optima of the recontruction error

* The autoencoder is then able to extract meaningful feature
from normal data

* Density estimation enables anomaly detection, but it is a more
complicated task



I
| SEMI-SUPERVISED APPROACHES

* CNN as data-driven feature extractor
- Transfer learning
- Autoencoders

| Domain-based

- Self-supervised learning

 (Generative models
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I
| SUPPORT VECTOR DATA DESCRIPTION (SVDD) REVISITED

We want to find an hypersphere that, in the feature space,
encloses most of the normal data

- I POLITECNICO DI MILANO




I
| SUPPORT VECTOR DATA DESCRIPTION (SVDD) REVISITED

We want to find an hypersphere that, in the feature space,
encloses most of the normal data

We expect that anomalous data lie outside the sphere

- I POLITECNICO DI MILANO




I
| SUPPORT VECTOR DATA DESCRIPTION (SVDD) REVISITED

Typically the sphere is computed in a high (possibly infinite)
dimensional feature space

Feature are defined using kernels
e Polinomial kernel

e Gaussian kernel

- I POLITECNICO DI MILANO




I
SUPPORT VECTOR DATA DESCRIPTION (SVDD) REVISITED
|
Idea: can we learn the feature from normal data using a neural
network?
o ® ()
o ¢ :
o ® o o
o ° g ® ®
o © 0
- ¢

Ruff et al, “Deep One-Class Classification”, ICML 2018



E_—
| SOFT-BOUNDARY DEEP SVDD

Minimize the loss:

min R? + —z max{0, |[¥g(s,) — c|| — R%} + /'l||0||

R,0

* The samples s, such that
Ye(s,,) is inside the sphere do
not contribute to the loss

e v provides a bound on the o
False Positive Rate

2 . o
- 2|161|" is a regularization term

A test sample s is anomalous if Yg(s) —c >R

Ruff et al, “Deep One-Class Classification”, ICML 2018



E_—
| SOFT-BOUNDARY DEEP SVDD

Minimize the loss:

R,0

min R? + —z max{0, |[¥g(s,) — c|| — R%} + /'l||0||

Remarks:

* Some contraints must be imposed on the network g to avoid
trivial solutions:
- No bias terms

- Unbounded activations

¢ is not optimized but has to be precomputed from data
- ¢ must be different from ¢y, = Y, (s)

Ruff et al, “Deep One-Class Classification”, ICML 2018



| A SIMPLER FORMULATION: DEEP SVDD
|

_ 1 - 2 ile 2
min + NZHIIJ(;(Sn)—C” +2/16]|
n=1

cons:

 No bound on the FPR provided by v

* A threshold has to be chosen for the anomaly score:

|1g(s) — C||2

Ruff et al, “Deep One-Class Classification”, ICML 2018



I
| SEMI-SUPERVISED APPROACHES

* CNN as data-driven feature extractor
- Transfer learning
« Autoencoders
- Domain-based

-| Self-supervised learning

 (Generative models
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I
| SELF-SUPERVISED LEARNING

We can build a labeled dataset for multiclass classification from
normal data

* Consider a set of T transformation 7' = {t4, ..., T7}

* Apply each transformation t; to every s € TR:
TR, o = {(1;(s),i) | s€ETR,i=1,...,T}

* Traina CNN on TR,,,,

* The output of the last layer of the CNN is used as feature
vector

- I POLITECNICO DI MILANO




I
| SELF-SUPERVISED LEARNING

Example:

* TR contains only images representing digit 3

e T contains rotations and horizontal/vertical flips

POLITECNICO DI MILANO




I
| SELF-SUPERVISED LEARNING

Example:

* TR contains only images representing digit 3 Training set of

e J contains rotations and horizontal/vertical flips normal data

/\\.

T3 T4
Labeled training set
with T classes

- I POLITECNICO DI MILANO




I
| SELF-SUPERVISED LEARNING

Convolution Fully connected

Softmax

T;i(s)

Use the output of the last layer as feature vector:
a; = P(t;(s)) € [0,1]"
Estimate the conditional distributions P(a;|t;) for each t;

Parametric distributions such as Dirichlet distribution can be used

Golan, El-Yaniv, “Deep Anomaly Detection Using Geometric Transformations”, NeurlPS 2018



I
| SELF-SUPERVISED LEARNING

Convolution Fully connected

Softmax

T;i(s)

Compute the anomaly score as

score(s) = — Z log P(a;|t;)
i

Golan, El-Yaniv, “Deep Anomaly Detection Using Geometric Transformations”, NeurlPS 2018



I
| SELF-SUPERVISED LEARNING

The set of transformation has to be properly chosen:

 if during training the trained classifier cannot discriminate the
transformed samples, it does not extract meaningful feature for
anomaly detection

« Non-geometric transformations (Gaussian blur, gamma
correction, sharpening) might eliminate important feature and
are less performing than geometric ones

Golan, El-Yaniv, “Deep Anomaly Detection Using Geometric Transformations”, NeurlPS 2018



I
| SEMI-SUPERVISED APPROACHES

* CNN as data-driven feature extractor
- Transfer learning
« Autoencoders
- Domain-based
- Self-supervised learning

* | Generative models
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| B
GENERATIVE MODELS

Goal:

generative models generate, given a training set of images (data)
S, other images (data) that are similar to those in S

- I POLITECNICO DI MILANO




| GENERATIVE ADVERSARIAL NETWORKS (GAN)

The GAN approach:

Do not look for an explicit density model ¢ describing the
manifold of natural images.

Just find out a model able to generate samples that looks like
training samples S ¢ R"

Instead of sampling from ¢, just use:
« Sample a seed from a known distribution ¢,

* Feed this seed to a learned transformation that generates
realistic samples, as if they were drawn from ¢g

Use a neural network to learn this transformation

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, ... & Bengio, Y. Generative adversarial nets NIPS 2014




| GENERATIVE ADVERSARIAL NETWORKS (GAN)

The GAN approach:

-

g‘> Generative
Network

Z~ (pz
Draw a sample from
the noise distribution

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, ... & Bengio, Y. Generative adversarial nets NIPS 2014




| GENERATIVE ADVERSARIAL NETWORKS (GAN)

The GAN approach:

g‘> Generative g‘>
Network % 4

zZ ~ (pz
Draw a sample from
the noise distribution

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, ... & Bengio, Y. Generative adversarial nets NIPS 2014




I
| GENERATIVE ADVERSARIAL NETWORKS (GAN)

The GAN solution: Train a pair of neural networks with different
tasks that compete in a sort of two player game.

These models are:

* Generator G that produces realistic samples e.g. taking as input
some random noise. G tries to fool the discriminator

e Discriminator D that takes as input an image and assess
whether it is real or generated by G

Train the two and at the end, keep only §

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, ... & Bengio, Y. Generative adversarial nets NIPS 2014




| GAN AR

CHITECTURE

Generated image

|
ol

Real image from
the training set S




| GAN AR

CHITECTURE

Generated image

|
ol

Real image from
the training set S




E——
| USING GAN

Generated image

]
T

Discriminator D is completely useless and as such dropped. After a
successful GAN training, D is not able to distinguish the real/fake




GAN

| I
Both D and G are conveniently chosen as Neural Networks
Setting up the stage

Our networks take as input:

e D=D(s)

« G=G(z)
s € R™ is an input image (either real or generated by G) and z € R% is
some random noise to be fed to the generator.

Our network give as output:
D(-):R™ - [0,1]
the posteriori for an input to be a true image (1)
G():RY > R"

the generated image

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, ... & Bengio, Y. Generative adversarial nets NIPS 2014



B
| GAN TRAINING

A good discriminator is such:

 D(s) is maximum when s € S
1 —D(s) is maximum when s was generated from G

» 1—-D(G(2)) is maximum when z ~ ¢

Training D consists in maximizing the binary cross-entroy
mgx(ES~¢S llogD(s)] + E;~yp, [log(1 — D(G(2)))])
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| GAN TRAINING

A good discriminator is such:

 D(s) is maximum when s € S
1 —D(s) is maximum when s was generated from G

» 1—-D(G(2)) is maximum when z ~ ¢

Training D consists in maximizing the binary cross-entroy
mgx(ES~¢S llogD(s)] + E;~yp, [log(1 — D(G(2)))])

s v

This has to be 1 since s ~ ¢5,  This has to be o since G(z)

thus images are real is a generated (fake) image
.




B
| GAN TRAINING

A good discriminator is such:

 D(s) is maximum when s € S
1 —D(s) is maximum when s was generated from G

» 1—-D(G(2)) is maximum when z ~ ¢

Training D consists in maximizing the binary cross-entroy
mgx(ES~¢S llogD(s)] + E;~yp, [log(1 — D(G(2)))])

A good generator G is the one which makes D to fail

min max(E-gg[log D(s)] + E;-g,[log(1 — D(G(2)))])
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| ILLUSTRATION
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Goodfellow, I. et al “Generative adversarial nets” NIPS 2014



training samples
closest to the
second-last column

Generated samples

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, ... & Bengio, Y. Generative adversarial nets NIPS 2014



I
| INTERPOLATION IN THE LATENT SPACE

We can interpolate between two points in the latent space and
obtain smooth transitions from a digit to another one

VAYAYARARARAVAVAVA N

Goodfellow, I., Pouget-Abadie, |., Mirza, M., Xu, B., Warde-Farley, ... &t Bengio, Y. Generative adversarial nets NIPS 2014



AT THE END OF THE DAY...

The discriminator D is discarded
The generator G and ¢, are preserved as generative model

Remarks:

* The training is rather unstable, need to carefully synchronize the two steps
(many later works in this direction, e.g. Wasserstein GAN)

* Training by standard tools: backpropagation and dropout
* Theoretical results provided

* Generator does not use S directly during training

* Generator performance is difficult to assess quantitatively

* There is no explicit expression for the generator, it is provided in an implicit

form -> you cannot compute the likelihood of a sample w.r.t. the learned
GAN
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I
| GAN FOR ANOMALY DETECTION

Idea: let us train a GAN on normal data. We expect that the
generator G cannot generate any anomalous sample s.

Problem: Given a test sample s how can we determine if it could
be generated by G’

Anomalous

Latent space Manifold M of
normal data

- I POLITECNICO DI MILANO




| ANOGAN

Project the test sample s on the manifold M by solving the
optimization problem:

2 = min ||G(2) - s|| + Alog(1 — D(G(2)))

* |1G(2) — s|| ensures that s is well approximated by the
generator

- log(1 —D(G(2))) ensures that the projection G(2) is similar
to a real (normal) sample

g

Manifold M of
normal data

Latent space
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| ANOGAN

Project the test sample s on the manifold M by solving the
optimization problem:

2 = min ||G(2) - s|| + Alog(1 — D(G(2)))

* |1G(2) — s|| ensures that s is well approximated by the
generator

- log(1 —D(G(2))) ensures that the projection G(2) is similar
to a real (normal) sample (since G fools D)

Anomaly score:

score(s) = [|1G(2) — sl| + Alog(1 — D(G(2)))

Schlegl et al, "Unsupervised anomaly detection with generative adversarial networks to guide marker discovery", IPMI 2017
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| ANOGAN

Project the test sample s on the manifold M by solving the
optimization problem:

Z= mzin ||g(z) — S|| + Alog(1 — D(Q(z)))
* |1G(2) — s|| ensures that s is well approximated by the

generator

- log(1 —D(G(2))) ensures that the projection G(2) is similar
to a real (normal) sample (since G fools D)

Anomaly score:

score(s) = ||G(2) — sl| + Alog(1 — D(G(2)))

We need to solve an optimization problem for each test sample!

Schlegl et al, "Unsupervised anomaly detection with generative adversarial networks to guide marker discovery", IPMI 2017



B
| BIDIRECTIONAL GAN

Latent Space Data Space
Generator

R
z { g | {G(@)
Q Lij Discriminator

2]

o

S

Encoder

Donahue et al, "Adversarial feature learning", ICLR 2017
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| BIDIRECTIONAL GAN

Latent Space Data Space
Generator

O——@

z 1§ 16(2)

J — :@ |_Di>srcriminator
Nl

\

O
Encoder
Irgl’18n max L(D,E,G)

L(D,E,G) = Esp4llogD(s, E(s)] + E,~y,ll0g(1 —D(G(2), 2))]

Donahue et al, "Adversarial feature learning", ICLR 2017
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| BIDIRECTIONAL GAN

Latent Space Data Space
Generator

C\ ‘ AQ

z 1 G 16(2)

J L—J : g(z),z |_Di>srcriminator
N D]

-

E(s)) |l E ||: @

Encoder

It can be proved that on the manifold M (i.e. on normal data):

E=6""

Donahue et al, "Adversarial feature learning", ICLR 2017



E——
| ANOGAN IMPROVED

We can use BiGAN to efficiently invert the generator in AnoGAN:

A\

— ] = 7

Zenati et al, "Efficient GAN-based anomaly detection", Workshop ICLR 2018



E——
| ANOGAN IMPROVED

We can use BiGAN to efficiently invert the generator in AnoGAN:

A\

= mi = —
zZ=E&(s)

score(s) = |1G(2) — s|| + 11og (1 — D(g(ﬁ))) —

= [1G(€()) = sl| + Alog (1 - D(G(E(s))))

Zenati et al, "Efficient GAN-based anomaly detection", Workshop ICLR 2018



E_—
| AUTOENCODER AS GENERATIVE MODELS

Denoising

Discriminator
R Autoencoder

. r N
Noise IS
added to & g D
real images \ )
s+ N(0,02) 4 .S’ > [0,1]

min max(Es-g[log D($)] + Es_pgav(0,0%) 1081 = D(RGI)])

Sabokrou et al, "Adversarially learned one-class classifier for novelty detection", CVPR 2018




E_—
| AUTOENCODER AS GENERATIVE MODELS

Denoising
R Autoencoder

4 )
plaj
\_ /
> Z

=S’ > [0,1]

Discriminator

s+ N(0,0%)

min max(Es.-g[10g D($)] + Fs =5 v 00nlog(1 — D(R()))])

Sabokrou et al, "Adversarially learned one-class classifier for novelty detection", CVPR 2018
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| AUTOENCODER AS GENERATIVE MODELS

Denoising

Discriminator
R Autoencoder

E g D

s+ N(0,02) 4 .S’ > [0,1]

min max(Es-g[log D($)] + Es_pg1av(0,0%)[l08(1 = D(RG))])

We expect that R can successfully reconstruct (thus, fool D) only
normal sample:
score(s) = D(R(s))

Sabokrou et al, "Adversarially learned one-class classifier for novelty detection", CVPR 2018




AUTOENCODER AS GENERATIVE MODELS

The generator G may be able to generate samples also of
anomalous class

In this case it would be impossible to use G to discriminate
between normal and anomalous samples

: g

\
\

ECINERER

Perera et al, "OCGAN: One-class novelty detection using GANs with constrained latent representations”, CVPR 2019




AUTOENCODER AS GENERATIVE MODELS

The generator G may be able to generate samples also of
anomalous class

In this case it would be impossible to use G to discriminate
between normal and anomalous samples

Idea: we can enforce a known
distribution on the latent space

: g

\
\

ECINERER

Perera et al, "OCGAN: One-class novelty detection using GANs with constrained latent representations”, CVPR 2019




AUTOENCODER AS GENERATIVE MODELS

) o y
= Zn Vn,i (an — ”i)(an — I’li)T
2:nyn,i

2

Zong et al, “Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection”, ICLR 2018



AUTOENCODER AS GENERATIVE MODELS

The generator G may be able to generate samples also of
anomalous class

In this case it would be impossible to use G to discriminate
between normal and anomalous samples

Idea: we can enforce a known B
distribution on the latent space \

This can be done using a latent
discriminator on the latent space

|
.' g ;
oy ¢ 1]18]D

Perera et al, "OCGAN: One-class novelty detection using GANs with constrained latent representations”, CVPR 2019



MUCH MORE COMPLICATED ARCHITECTURE

1111

-~ | — 2] LN
[ || En H e ] I—‘ Dy \/nh

, J 3 &

Denoising Autoencoder Visual Discriminator Latent Discriminator

|_| Images of known class
—| Reconstructed image using known class image

_—| Fake Image
J Latent vecior of known class image
" | sample of latent distribution
|:| Visual Discriminator
:I Latent Discriminator
Decoder
Encodar

| Classifier
[ | sampler

Perera et al, "OCGAN: One-class novelty detection using GANs with constrained latent representations”, CVPR 2019




MUCH MORE COMPLICATED ARCHITECTURE
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Perera et al,
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"OCGAN: One-class novelty detection using GANs with constrained latent representations”, CVPR 2019




Concluding Remarks
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| A FEW CONCLUDING REMARKS

Nowadays, anomaly detection problems are ubiquitous in
engineering and applied sciences.

The presented general framework encompasses most of
algorithms in the literature, which often boil down to

 Feature extraction
* Definition of suitable statistics

* Applying decision rules to a set of random variables.
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| A FEW CONCLUDING REMARKS

When data are characterized by complex structures, as in case of

images and signals, the feature extraction phase is the most
critical one.

Data-driven models provide meaningful representations to images,
that can be used to extract good feature for detection.

Nowadays the most powerful algorithms for feature extraction are

based on deep learning, and in particular Convolutional Neural
Networks

POLITECNICO DI MILANO
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| A FEW CONCLUDING REMARKS

CNNs can be used either:

* As data-driven feature extractor that are put on top of an
anomaly detector designed for random vectors

- The best performance are achieved where the CNN and
the anomaly detector are jointly learned
* As a generative model that allows to sample from the
distribution of normal images

- This generator has to be somehow inverted for anomaly
detection
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SOME RESOURCES

Annotated Datasets:
e http://web.mi.imati.cnr.it/ettore/NanoTWICE/ -'- j."‘

e https://www.kaggle.com/c/severstal-steel-defect-
detection/data

Carrera D., Manganini F., Boracchi G., Lanzarone E. "Defect Detection in SEM Images of Nanofibrous Materials", |EEE
Transactions on Industrial Informatics 2017, 11 pages, doi:10.1109/Tll.2016.2641472


http://web.mi.imati.cnr.it/ettore/NanoTWICE/
https://www.kaggle.com/c/severstal-steel-defect-detection/data

B
| SOME RESOURCES

Public software:

e Anomaly detection using sparse representations
http://home.deib.polimi.it/boracchi/Projects/projects.html
https://home.deib.polimi.it/carrerad/projects.html

e https://github.com/PramuPerera/OCGAN
e https://github.com/izikeo/AnomalyDetectionTransformations

e https://github.com/houssamzenati/Efficient-GAN-Anomaly-
Detection.git

e https://github.com/lukasruff/Deep-SVDD
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